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A B S T R A C T

We introduce a computational framework to forecast cloud index (CI) fields for up to one hour on a spatial
domain that covers a city. Such intra-hour CI forecasts are important to produce solar power forecasts of utility
scale solar power and distributed rooftop solar. Our method combines a 2D advection model with cloud motion
vectors (CMVs) derived from a mesoscale numerical weather prediction (NWP) model and sparse optical flow
acting on successive, geostationary satellite images. We use ensemble data assimilation to combine these sources
of cloud motion information based on the uncertainty of each data source. Our technique produces forecasts that
have similar or lower root mean square error than reference techniques that use only optical flow, NWP CMV
fields, or persistence. We describe how the method operates on three representative case studies and present
results from 39 cloudy days.

1. Introduction

Power grid management benefits from accurate predictions of solar
power generation. Load balancing, dispatching reserves, curtailing
production, energy storage, and economical trading in energy markets
are aided by solar power forecasts on an intra-hour time scale (Kleissl,
2013). Solar power generation on this time scale is effected by clouds
on small spatial (1 km) and temporal (15min) scales. Forecasting on
intra-hour time scales requires computationally efficient methods (an
intra-hour forecast that takes more than a few minutes to compute is
not useful).

We describe a computational framework for intra-hour cloud index
(CI) forecasts based on a 2D advection model with random perturba-
tions. We study a region, centered on Tucson, AZ, that contains 385MW
of solar power capacity (TEP, 2018). The advection of CI is driven by
cloud motion vectors (CMVs) from satellite images and a mesoscale
numerical weather prediction (NWP) model that are combined using
data assimilation (DA). We use DA to assimilate CMVs derived from
optical flow (Horn and Schunck, 1981; Lucas and Kanade, 1981) ap-
plied to successive geostationary satellite images every 15min and
CMV fields derived hourly from a mesoscale NWP model. These two
data sources are assimilated into a background ensemble that is in-
itialized with a NWP CMV field. We refer to the system as ANOC for the
Assimilation of NWP winds and Optical flow CMVs.

Generically, DA is a Bayesian technique to update numerical models

using sparse and noisy observations (Reich and Cotter, 2015; Asch
et al., 2016). We use an ensemble Kalman filter (EnKF) (see, e.g.,
Evensen, 2009) to perform our assimilations. EnKFs are computational
tools for DA where forecast uncertainty is represented by an ensemble.

Optical flow is a method to determine a velocity field from con-
secutive scalar fields. Numerical methods for optical flow can be di-
vided into two categories: dense optical flow (Horn and Schunck,
1981), where an entire vector field is produced, and sparse optical flow
(Lucas and Kanade, 1981), where point estimates of a vector field are
produced. We use dense and sparse optical flow to determine CMVs in
this study.

Advection of satellite-derived cloud properties for intra-hour CI or
irradiance field forecasts for solar power applications has been con-
sidered in several studies (Kleissl, 2013). A mean squared error mini-
mization method (Lorenz et al., 2004; Wolff et al., 2016), optical flow
(Nonnenmacher and Coimbra, 2014; Peng et al., 2013), neural net-
works (Cõté and Tatnall, 1995) and a Monte Carlo method (Hammer
et al., 1999) have been used to derive CMVs from successive cloud
images. Advection-based forecasts with CMV fields derived from NWP
models are described in Miller et al. (2012, 2017), Descombes et al.
(2014), Arbizu-Barrena et al. (2017). The ANOC system we describe in
this paper uses DA to combine CMVs from an NWP model and CMVs
derived from optical flow.

Previous works also explore combinations of different irradiance
forecasts. For example, Wolff et al. (2016) use support vector regression
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to generate irradiance forecasts from a combination of ground mea-
surements, satellite advection via CMV fields, and NWP irradiance
forecasts. Haupt et al. (2018), combine several different irradiance
forecasting models (e.g. statistical methods based on surface measure-
ments, sky imagers, satellite advection, and NWP) using the observed
performance of each of the different forecasting methods at different
forecast horizons.

Meteorologists use DA to assimilate CMVs into NWP models as
observations of atmospheric flow. These CMVs are often obtained using
a cross-correlation or mean squared error minimization method and are
most useful over remote regions, e.g. oceans, where direct observations
are not available (Menzel, 2001; Nieman et al., 1997).

The ANOC system uses DA with a conceptually intuitive and com-
putationally inexpensive 2D advection model. The 2D advection model
produces forecasts that are easy to understand and allows for DA to be
implemented in a clear way. The computational savings compared to a
full 3D model allows us to forecast at shorter time scales and also allows
for ensemble forecasts and ensemble DA. These two characteristics of
the ANOC model allow us to assimilate CMV data into our ensemble,
taking the certainty in each source of data into account. This approach
is inspired by Lorenzo et al. (2017) where DA is used to combine ground
sensors with clear-sky index fields derived from geostationary satellite
images.

The remainder of the paper is organized as follows. In Section 2 we
introduce the satellite imagery and the NWP model that we use. In
Section 3 we describe the operation of the ANOC system. In Section 4
we briefly describe reference forecasts that we compare to the ANOC
system. In Section 5 we describe how ANOC functions in the context of
three case studies. In Section 6 we present results computed over
39 days. Section 7 contains our concluding remarks.

2. Satellite imagery and numerical weather model

The ANOC forecasting system combines geostationary satellite
images and winds from a mesoscale NWP model. We use satellite data
and model output over a region containing Tucson, AZ (discussed in
Section 3.1) and over the time period of April, May, and June, 2014.
These three months are chosen because they are the same three months
studied by Lorenzo et al. (2017). The WRF wind fields and satellite
images used in this study can be found in the supplementary material
(Harty, 2019).

2.1. Satellite data

We use images taken by the GOES-15 geostationary satellite located
in the GOES-West position. Satellite images are usually available every
15min, though the time between satellite images is sometimes longer.
For simplicity, we will refer to satellite images being available every
15min. We use the visible band at a spatial resolution of approximately
1 km. The latitude and longitude coordinates of the satellite image are
converted to kilometers with the Lambert conformal conic projection
(Snyder, 1987). The result is interpolated onto a regular square 1 km2

grid with nearest neighbor interpolation. Nearest neighbor is used for
computational efficiency and because the original and interpolated grid
have approximately the same resolution. The satellite images are
downloaded from the Comprehensive Large Array-data Stewardship
System (CLASS) (NOAA, 2018). Animations of the satellite images are
available in the supplementary material (Harty, 2019).

The pixel values of a satellite image are converted into CI following
in part the methods described in Perez et al. (2002). First, the pixel
value is normalized:

=norpix pix·am·soldist, (1)

where pix is the raw satellite pixel, am is the absolute airmass, and
soldist is the Earth-Sun distance in astronomical units. The normalized
pixel value (norpix) is converted into a cloud index (CI) value:

=
−
−

CI
norpix low
high low

.
(2)

Following Lorenzo et al. (2017), high is equal to the mean of the 20
highest norpix values over the three month window to estimate the
upper dynamic range of the satellite. Following Perez et al. (2002), for
each time of day, low is calculated as the mean of the 40 lowest norpix
values for that time of day over the three month window. However, our
method of calculating low differs from the method in Perez et al. (2002)
in that our low is changed every 15min rather than every hour.

Furthermore, when calculating low and high we use all three months
of satellite data, meaning that the resulting CI fields could not have
been used to create true forecasts. This problem can be mitigated by
using a sliding window of past satellite images to calculate high and low
(as is done in Perez et al. (2002)), rather than using the full three
months of satellite images. We anticipate only minor differences be-
tween our method and that presented in Perez et al. (2002) because our
window of 91 days is similar to the 60 day window suggested in Perez
et al. (2002). The method of CI conversion is not critical for our pur-
poses because we use the same conversion technique for the forecasts
and observations.

After calculating the CI field, it is linearly interpolated onto a square
grid with a grid box size of 250m×250m that is used in ANOC for 2D
advection, further discussed in Section 3.2.

2.2. Numerical weather prediction model

We use the wind and relative humidity fields from the operational
forecasts of the University of Arizona Department of Hydrology and
Atmospheric Sciences. The forecast system uses the Weather Research
and Forecasting (WRF) model with an outer domain covering the
western US with a 5.4 km horizontal grid spacing, and an inner domain
covering Arizona with a 1.8 km horizontal grid spacing. Parameter
values of the WRF model used can be found in the supplementary
material (Harty, 2019). We use forecasts that are initialized at 12Z with
the Global Forecast System (GFS) data produced by the National Cen-
ters for Environmental Prediction (NCEP). We use the WRF model be-
cause it is readily available to us, but we expect our approach will
perform similarly with a different mesoscale NWP model. The use and
processing of these data is further discussed in Section 3.4.

3. The ANOC forecast system

We summarize the operation of the Assimilation of NWP winds and
Optical flow CMVs system (ANOC). The ANOC system uses an ensemble
where each ensemble member consists of a CI field and a corresponding
CMV field with u (west to east) and v (south to north) components over
a given spatial domain (see Section 3.1). A 2D advection model advects
the CI component of each ensemble member using the CMV component
of the ensemble member (see Section 3.2). The CMV information is
derived from sparse optical flow (see Section 3.3), as well as from the
NWP model (see Section 3.4). DA is used to combine these two sources
of information with the CMV component of the ensemble (see Section
3.5).

The ANOC system is started every day at 16:30 UTC (9:30 MST)
with an initial ensemble (see Section 3.6). The system runs until 22:30
UTC (15:30 MST). Using satellite images from this window (centered
around solar noon) eliminates time periods with low solar elevation
angles that could complicate this proof of principle study. A detailed
overview of the ANOC forecast system is shown in Fig. 1.

The ANOC system has a many different components (e.g. ensemble
Kalman filter, NWP model, sparse optical flow) each of which has as-
sociated parameters. We do not make an effort to carefully tune all
parameters, but present parameters that lead to results that we consider
to be reasonable. Our main goal is not to present a fully tuned method
over Tucson, AZ, but to describe the overall ANOC approach that can be
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applied in different conditions with the possible need for further
parameter tuning.

3.1. ANOC domains

ANOC produces CI forecasts for a region centered around Tucson,
AZ, whose sides are 40 km from west to east and 56 km from south to
north. We call this the validation domain. The computational domain
includes the region around Tucson and is defined to be large enough to
avoid the advection of boundary artifacts into the validation domain at
the maximum wind speed and longest forecast horizon. The size of the
computational domain is adaptable and depends on the wind velocities.
To define the computational domain for a given day we find the max-
imum wind speed in the four cardinal directions, as forecasted by the
NWP model, in a domain that is centered on Tucson, AZ, and 360 km on
both sides. These maximum wind speeds, along with the longest fore-
cast horizon, allow us to determine how much larger the computational
domain must be in each direction than the validation domain. Fig. 2
illustrates the computational domain and the validation domain for
May 29, 2014. On this day, the winds are stronger in the north-south
than in the east-west direction. As a result, the computational domain is
larger in the north-south than in the east-west direction.

3.2. Advection model and random perturbations

In ANOC, predictions of CI are based on a 2D advection model with
open boundaries. Random perturbations are added to the CI and CMV
fields to represent data and model errors. In particular our framework

does not allow for condensation or evaporation.
The advection equation is

= −∇

=

∂
∂ ψ

ψ ψ

C·( )

(0)
,

ψ
t

0 (3)

where ψ t( ) is the 2D CI field at time t ψ, 0 is the initial CI field, and
= u vC ( , ) is the CMV field. We solve Eq. (3) using a third-order Runge-

Kutta method in time and a fourth-order spatial derivative described in
Wicker and Skamarock (2002). To increase the effective resolution of
the advected grid we perform the advection on a 250m grid. Further-
more, to prevent dispersion of sharp cloud edges in the field, we line-
arly interpolate the CI field to the 250m grid. This has the effect of a
smoother transition from cloud to clear sky, while maintaining a sharp
cloud edge at the original resolution of the satellite image. The time
step of each advection is calculated every 15 model minutes using
= + −dt u v(0.7)(250)( )max max

1 , where 0.7 is the maximum Courant-
Friedrichs-Lewy (CFL) number, 250m is the grid spacing, and umax and
vmax are the maximum wind speeds in each direction in meters per
second. The maximum CFL number of 0.7 is low enough to ensure
numerical stability for the advection scheme used (Wicker and
Skamarock, 2002).

We keep the CMV fields divergence free (see Fig. 1). Whenever an
operation introduces divergence (assimilating sparse optical flow or
NWP CMV fields) we remove it as follows. The CMV field, C, is de-
composed into a divergence-free component, ̃C, and a component that
has non-zero divergence. The non-zero divergence component is the
gradient of a scalar field ϕ:

Fig. 1. This figure shows a schematic of the initialization and initial operation of the ANOC system. We illustrate input data (satellite images and NWP wind fields) in
orange, intermediaries (optical flow CMVs and background ensemble) in light red, functions (perturbing CI or CMV fields, removing divergence, calculating sparse
optical flow, replacing CI fields, and assimilating CMV fields) in green, and outputs (analysis ensemble and forecasts) in blue. The system is initialized at 16:00 UTC
with an initial satellite image (Sat 1600) and NWP CMV field (NWP 1600). The divergence is removed from the NWP CMV field, then the fields are randomly
perturbed to form the initial ensemble. This initial ensemble is advected (with random perturbations) for 15min (represented by orange arrows) producing a 15min
forecast ensemble (15min FX). This process is repeated three more times creating 30, 45, and 60min forecast ensembles for times 16:30, 16:45, and 17:00. The mean
of the advected ensemble is the ANOC ensemble mean forecast. The process for creating the ANOC control forecast (not shown) is similar to that of the ANOC
ensemble mean forecast, except that the mean of the ensemble is taken before advection and random perturbations are not applied. The 15min forecast ensemble is
also the first background ensemble (Background) into which new data are assimilated. At 16:15, a new satellite image (Sat 1615) is available. Two consecutive
satellite images (Sat 1600 and Sat 1615) are used to calculate sparse optical flow vectors (OF 1615) that are assimilated into the background CMV field. Divergence is
removed from the resulting CMV field and the CI field, derived from the current satellite image (Sat 1615), replaces the background CI fields. This results in the
analysis ensemble (Analysis). The above process is then repeated with the analysis ensemble rather than the initial ensemble. The entire cycle repeats until a
predetermined stopping time. There is a slight change at time 17:00 when a new NWP CMV field is available (NWP 1700). The only difference for this time, and all
other times when NWP CMV fields are available, is that the NWP CMV field is assimilated into the CMV component of the background ensemble in addition to the
sparse optical flow CMVs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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̃ = + ∇ϕC C . (4)

We obtain ∇ϕ, and therefore ̃C, by solving Poisson’s equation. We
use Neumann boundary conditions for numerical efficiency and solve
the Poisson problem using a finite element solver implemented in the
FEniCS package (Alnæs et al., 2015; Logg et al., 2012).

After every 5min of modeled advection, each ensemble member’s CI
and CMV fields are randomly perturbed. To perturb the CI fields, we
first identify the cloudy areas of the CI field. This is done by defining a
“target field” which is equal to one in cloudy areas and decays to zero
(logistic decay) in clear areas. The target field is multiplied element
wise (Schur or Hadamard matrix product) by a Gaussian random field
(GRF). Each element of the GRF has a mean of zero and standard de-
viation of 0.03 CI. The GRF has a squared exponential correlation
function with a length scale of 5 km. The product of target and random
fields is added to the ensemble member’s CI field. This has the effect of
perturbing the cloudy areas of the CI field while leaving the clear areas
unchanged.

To perturb the CMV component of the ensemble, we generate a
stream function using a GRF. Each element of the GRF has a mean of
zero and standard deviation of 1m2sec−1. The GRF has a squared ex-
ponential correlation function with a length scale equal to 50 km. After
calculating the corresponding 2D vector field,

=
∂
∂

= −
∂
∂

U
ϕ
y

V
ϕ
x

, ,
(5)

where ϕ is the random stream function, the resulting U and V random
CMV fields are then multiplied by 0.25 resulting in a standard deviation
of 0.25m sec−1 for each element of each field. The stream functions
generate random, divergence-free CMV fields which are added to the
CMV component of the ensemble.

The CI fields of four ensemble members, the ensemble mean of all
20 members, and the control forecast (see Section 3.5) are shown in
Fig. 3. The differences between the ensemble members are a result of
the random perturbations and assimilating CMVs from optical flow (see
Section 3.3).

3.3. CMV observations from sparse optical flow

Optical flow is a method to determine a velocity field from con-
secutive scalar fields. The optical flow method relies on the assumption
that the positions of individual elements of the field move, but the field
values remain unchanged. The sparse optical flow method of Lucas-
Kanade (Lucas and Kanade, 1981) identifies a set of points in the first of
two images where the gradient is large in orthogonal directions. This set
of points is tracked to the next image and, once the points are located in
the next image, the vectors that connect the set of points in the first and
second images define the velocity field at these points in the second
image.

We use this technique, implemented as described in Bradski (2000),
to compute CMVs based on two consecutive satellite images. The CMVs
derived from sparse optical flow are assimilated as “CMV observations”
(see Section 3.4 and Fig. 1). The number of CMV observations, as well
as their location, changes from image to image (every 15min).

3.4. CMV observations from an NWP model

The ANOC forecasting system uses 2D advection and we assume that
there is only one cloud level with clouds moving with the wind. These
assumptions are often violated (see, e.g., the case study with two dis-
tinct cloud layers in Section 5.3) but allow for an easily understandable
and computationally inexpensive forecasting process.

The NWP model we use has 38 vertical levels. Following Lave and
Kleissl (2013), we use the winds from the vertical level with the highest
mean relative humidity over an area that is 360 km on each side and
centered on Tucson, AZ. We use the u (west to east) and v (south to
north) components of the wind field in the selected vertical layer (ne-
glecting motion in the vertical direction). The two wind components are
interpolated using nearest neighbor to a 1 km Arakawa-C grid. We then
linearly interpolate to the 250m grid used for advection. The resulting
2D wind field is smoothed by a Gaussian filter with a standard deviation
of 15 km. This level of smoothing is found through trial and error to
reduce forecast error.

3.5. Data assimilation and forecasting

We use an ensemble Kalman filter (EnKF) to assimilate CMV

Fig. 2. Domains used by the ANOC forecast on May 29, 2014. The area shown is
a square with 360 km sides, centered on Tucson, AZ. The solid line describes the
computational domain (for May 29, 2014) over which CI fields are advected
and DA is performed. The smaller domain, surrounded by a dashed line, is the
validation domain over which forecasts are produced and evaluated. The va-
lidation domain is approximately the Tucson, AZ, region. The whole image is
the domain over which the average relative humidity is calculated in order to
select a vertical level from the NWP model. Highways (thin solid line) and the
international boarder (thin dotted line) are also shown.

Fig. 3. 30min CI forecast for April 26, 2014, at 13:00 MST on the advection
grid with a grid box size of 250m×250m. This figure shows the CI fields of
four ensemble members, the ensemble mean of all 20 members, and the control
forecast (see Section 3.5). Ensemble members are different due to random
perturbations of the CI and CMV fields. The ensemble mean is smoother than an
individual ensemble member, but the control forecast is not.

T.M. Harty, et al. Solar Energy 185 (2019) 270–282

273



observations from sparse optical flow (every 15min) and CMV fields
from the NWP model (every hour) into the CMV component of the
ensemble (see Fig. 1). An EnKF uses a numerical model to generate a
“background” ensemble and, using the observations, updates the
background to an analysis ensemble (see, e.g., Evensen, 2009). The
analysis ensemble is used to generate forecasts at horizons of 15, 30, 45,
and 60min. Thus, the ANOC system produces a forecast ensemble rather
than a single CI forecast.

As is common in ensemble NWP systems, we consider an ensemble
mean and a control forecast. The ensemble mean forecast is made by
computing the mean of a forecasted ensemble. The control forecast is
made by advecting (without random perturbations) the analysis mean.
The ensemble mean forecast tends to be smoother than the control
forecast or individual ensemble members, but also tends to have higher
skill (Kalnay, 2003) even after accounting for the additional smoothing
(Toth and Kalnay, 1997). The control forecast, however, maintains
sharper cloud edges that are important for forecasting how quickly
solar power output will change. In our assessments of the ANOC
method we consider the control and ensemble mean forecasts.

Two implementations of EnKF are used in ANOC. We use the sto-
chastic ensemble Kalman filter (Burgers et al., 1998) to assimilate
sparse optical flow CMVs and the Local Ensemble Transform Kalman
Filter (LETKF) (Hunt et al., 2007) to assimilate CMV fields from the
NWP model. We make these choices because of computational con-
siderations. Assimilating the CMV fields from the NWP model is a high-
dimensional problem because we assimilate a large number of ob-
servations on a large domain (both on the order of hundreds of thou-
sands). The LETKF is an efficient DA technique for high-dimensional
problems. Assimilating the CMVs from optical flow is a low-dimen-
sional problem because the number of observations is small (on the
order of tens or hundreds). The stochastic EnKF can handle this task and
is easy to implement and to tune.

The EnKFs require that we define an observation error covariance
matrix, R. For optical flow CMVs and NWP CMV fields, R is diagonal,
i.e., errors are assumed to be independent. This is common when the
only source of error in an observation comes from instrument noise
(Kalnay, 2003). Though this is not the case for the data we assimilate, it
is a convenient assumption for this study. The diagonal elements of R
are the squares of error standard deviations. The error standard de-
viations are constant and equal to 1m sec−1 for optical flow CMVs and
equal to 8m sec−1 for NWP CMV fields. These values for R are chosen
though trial and error to produce forecasts with low root mean square
error (RMSE, see Section 4.6 for a precise definition).

The ensemble size for the EnKF is 20. One could also consider larger
ensemble sizes, though this will increase the computational expense of
advection. We have found that 20 is a good trade off between decreased
error and increased computational expense. Using an ensemble of size
10 was found to result in a significant increase in RMSE of forecasts,
while an ensemble of size 40 was not found to result in a significant
decrease in RMSE.

The use of a finite ensemble means that computed sample covar-
iance matrices, used during DA, contain large sampling error.
Localization and inflation are two tools to account for this sampling
error (Evensen, 2009). Localization reduces spurious correlations due to
a small ensemble size and inflation enlarges the covariance matrix be-
cause covariances computed with a small ensemble size are typically
underestimated.

The parameters that define the localization and inflation are tuned.
We consider 36 different sets of these parameters and, for each one, run
ANOC for three days that are carefully chosen to represent different
weather conditions. We choose April 15, 2014, which is characterized
by zonal flow (see Section 5.1), May 29, 2014, which is characterized
by a short wave trough (see Section 5.2), and June 11, 2014, which is
characterized by shallow convection and zonal flow. We determine
which localization/inflation parameters lead to the smallest RMSE for
each day and only find minor differences between the three days (see

Section 4.6 for a precise definition of RMSE). We then declare the set of
parameters that leads to the smallest RMSE on average over the three
days to be optimal and use these parameters throughout this paper.

3.6. Initial ANOC ensemble

The CMV component of the initial ensemble is generated as follows.
We obtain a CMV field from the NWP model (see Section 3.4) and
perturb it by adding a random number from a normal distribution with
mean zero and standard deviation 1ms−1. The CI component of the
initial ensemble is derived from the satellite image at 16:30 UTC that is
perturbed by random scaling. This is done by linearly rescaling the CI
values from a range of [0, 1] to [min, max] where min is drawn from a
normal distribution with mean zero and standard deviation 0.04 and
max is drawn from a normal distribution with mean one and standard
deviation 0.2.

3.7. Computational requirements of ANOC

Each day’s forecast has a different run time because different wind
conditions lead to differently sized computational domains. On May 29,
2014 (also discussed in Section 5.2), a one hour long forecast requires
approximately 5.5 min. Approximately 2% of the time is spent assim-
ilating NWP CMV fields, 2% of the time is spent assimilating sparse
optical flow CMVs, 34% of the time is spent advecting and perturbing,
and 62% of the time is spent removing divergence from the ensemble’s
CMV fields. The large proportion of time spent on removing divergence
(solving a Poisson problem) can be reduced, but we do not pursue this
problem here. The above run time for the ANOC system was found on a
virtual machine allocated 32 of 48 virtual cores coming from two Intel
Xeon E5-2690 v3 processors each with 12 cores (24 virtual cores with
hyper threading) with a base frequency of 2.6 GHz.

4. Reference forecasts

In this section we describe reference forecast systems that will be
used to benchmark the ANOC forecast in later sections. None of the
reference forecast systems use ensembles or DA. These systems, how-
ever, are intuitive and some are in use. Later on (Sections 5 and 6),
these methods will serve as benchmarks to assess the utility of ANOC
with a set of performance metrics, described at the end of this section.

All reference forecast systems (except persistence) estimate CMV
based on one source of information (satellite imagery, a NWP model or
a radiosonde) and use ANOC’s 2D advection model (without random
perturbations) for the CI forecast. For each forecast system, we explain
how many CMVs are used and how often these are updated during a six
hour forecasting day. This should be compared to the ANOC system that
uses × × × ×N M 6 4 20 vectors for one day’s forecasts, assuming a
computational domain of size ×N M , six hours of forecasts, a new
satellite image every 15min, and 20 ensemble members.

4.1. Persistence forecast

In the persistence forecast the CI derived from one satellite image
(see Section 2.1) is used as the 15, 30, 45, and 60min forecast. The
forecasts are updated every 15min when a new satellite image becomes
available. The persistence forecast is intuitive and accurate on short
time horizons, but less accurate for longer horizons. No vectors are used
to produce this forecast because it does not make use of a CMV field.

4.2. Radiosonde forecast

The radiosonde forecast uses the TWC 12Z radiosonde measure-
ments of winds in u and v directions at the level with the highest re-
lative humidity (Lave and Kleissl, 2013; Guillot et al., 2012). The u and
v winds are used over the entire domain and for the entire day. Every
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15min, the CI field derived from a satellite image is advected using
these winds and the 2D advection (without random perturbation) of
ANOC. For one six hour day, this forecast uses one vector to describe
the CMV field.

4.3. Forecast based on the spatial average of NWP winds

The forecast based on the spatial average of NWP winds uses the
spatial average of the u and v wind components of the NWP model at
the vertical layer described in Section 3.4. The NWP winds are updated
hourly, therefore this forecast updates the CMV field every hour. For
one six hour day, this forecast uses six vectors to describe the CMV field.

4.4. Forecast based on NWP winds

Winds from the NWP model, as described in Section 3.4, are used to
generate a divergence-free CMV field. This technique uses the NWP
model winds that are updated hourly, therefore the CMV field is up-
dated every hour. For one six hour day and an ×N M advection do-
main, this forecast uses × ×N M 6 vectors to describe the CMV field.

4.5. Dense optical flow forecast

We use dense optical flow applied to consecutive satellite images to
generate a CMV field (Nonnenmacher and Coimbra, 2014). We use the
dense optical flow method of Horn-Schunck (Horn and Schunck, 1981),
implemented as described in Sun et al. (2010). The Horn-Schunck
method is a variational technique that includes a smoothness constraint
on the dense vector field. One effect of this smoothness constraint is
that portions of the image that do not contain points to be tracked
(because the image gradient is uniform) assume values from neigh-
boring regions.

The CMV field is updated when a new satellite image becomes
available (every 15min). We remove divergence from the CMV field
before producing a CI forecast with the 2D advection model (without
random perturbations) of ANOC. For one six hour day and an ×N M
advection domain, this forecast uses × × ×N M 6 4 vectors, assuming a
new satellite image every 15min, to describe the CMV field. Dense
optical flow creates CMV vectors at every point in the image. This is in
contrast to sparse optical flow, used in ANOC, that generates CMVs only
at points that are easily tracked.

4.6. Performance metrics

Comparisons of the various forecast systems use the following per-
formance metrics for the CI field forecasts:

(i) Root Mean Square Error (RMSE) of a CI forecast and the CI field
derived from a satellite image.

(ii) The Pearson correlation coefficient (Corr.) between the CI forecast
and the CI field derived from a satellite image.

(iii) Bias between the CI forecast and the CI field derived from a sa-
tellite image.

(iv) RMSE Skill Score, with the persistence forecast serving as the re-
ference forecast (SSper).

Each forecast method can have up to 4 forecasts (one for each
forecast horizon) for each validation time, for this reason all analysis is
done by forecast horizon. To compute the performance metrics, we use
the time series of CI generated by a forecast system (Xf ) subsampled to
the 1 km×1 km grid for a particular forecast horizon and the time
series of CI derived from the satellite images (XT) on its native
1 km×1 km grid, both over the validation domain, as described in
Section 3.1. These time series are of shape n n n( , , )x y t where nx and ny
are the side lengths of the validation domain (as opposed to the com-
putational domain of size ×N M), and nt is the number of time periods

being compared. For computations, we reshape the arrays into one
dimensional vectors xf and xT , each of size =n n n nx y t . With this no-
tation, the performance metrics are defined as:
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where xi f, and xi T, are the ith entry of xf and x x, ‾T is the average of
x, RMSEf is the RMSE of a forecast, and RMSEp is the RMSE of the
persistence reference forecast. Further discussion of these metrics can
be found in Wilks (2011).

5. Case studies

We describe how ANOC operates and how it compares to reference
forecasting systems in the context of three case studies that represent
typical weather conditions for Tucson, AZ. Weather maps and satellite
images for these three case studies can be found in the supplementary
material (Harty, 2019).

5.1. Case Study 1: zonal flow

The first day we explore, April 15, 2014, is dominated by zonal flow
without convection. The clouds are cirrus with low CI values, mostly
less than 0.6 CI, and do not exhibit much dissipation or growth. The
12Z radiosonde reports a relative humidity peak near 11 km where the
wind speed is 30ms−1. For this day, the essential assumptions of the
ANOC, dense optical flow, and NWP winds forecast systems are satisfied
and we expect these methods to produce similar forecasts.

The performance metrics are shown in Table 1. Bold type highlights
the smallest errors and highest correlation. As expected, all forecast
systems, apart from persistence and radiosonde forecast systems, per-
form similarly on this day. The ANOC forecasts, however, have lower
RMSEs and higher correlations than the other forecast systems for all
horizons. Moreover, at 45 and 60min horizons the ANOC forecasts have
significantly higher correlation than all other forecast systems.

Fig. 4 shows RMSE as a function of forecast horizon of the ANOC
ensemble, the ANOC ensemble mean and control, the dense optical flow
forecast, the forecast using NWP winds, and the persistence forecast.
For clarity, in Figs. 4, 5, and 7, the radiosonde forecast and the forecast
based on the spatial average of NWP winds are not included. The RMSE
of the individual ANOC ensemble members are all similar to the RMSE
of the forecast based on NWP winds and the forecast based on dense
optical flow for this day. The effect of averaging the ensemble members
results in the ANOC ensemble mean forecast that has a lower RMSE
than any of the other ensemble members. The ANOC control forecast
has an RMSE lower than the individual ANOC ensemble members, but
higher than the ensemble mean.

5.2. Case Study 2: shortwave trough

The weather on May 29, 2014 is driven by a shortwave trough
moving from west to east. Local winds are strongest from south to
north, with the wind field weaker and more variable in the west to east
direction. The clouds on this day are a mixed variety of mid-altitude
clouds. The clouds are significantly thicker than the clouds in Case
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Study 1, with many of the larger clouds having a CI value of around 1.0.
There is also a larger amount of convection and a greater amount of
cloud growth and dissipation. The 12Z radiosonde for this day shows a
peak in relative humidity near 5.5 km where the wind speed is 15ms−1.

The performance metrics for the forecast systems are shown in
Table 2. The ANOC ensemble mean and control have higher correla-
tions and lower RMSEs than all other forecast systems. As in Case Study
1, the reduction in RMSE and the increase in correlation of the ANOC
forecasts compared to the other forecast systems increases with the
forecast horizon. This is illustrated in Fig. 5, where we show RMSE as a
function of forecast horizon for the ANOC ensemble, ANOC ensemble
mean, ANOC control, the forecast based on dense optical flow, the
forecast based on NWP winds, and the persistence forecast. All ANOC
ensemble members have comparable RMSE. The ANOC ensemble
member's RMSE is similar to the forecast based on NWP winds, but
lower than the forecast based on dense optical flow.

Fig. 6, shows a typical forecast using the ANOC ensemble mean,
dense optical flow, and NWP winds along with corresponding errors.
The forecast based on dense optical flow leads to large errors because it
advects the cloud edge too far to the east and thins the clouds too much.
These issues are reduced in the ANOC forecasts because the optical flow

derived information is combined with the winds of the NWP model.

5.3. Case Study 3: mid-latitude trough

The weather on April 26, 2014, is driven by a strong mid-latitude
trough. Winds are blowing from the southwest to the northeast. There
are two distinct cloud layers and clouds are a mixed variety of mid-
altitude clouds as well as high-altitude cirrus. The cirrus clouds are
moving at a significantly higher speed than the mid-altitude clouds: the
12Z radiosonde shows relative humidity peaks near 4 km and 10 km
with respective wind speeds of 20ms−1 and 40ms−1. Thus, this case
study features a two level cloud system and violates ANOC’s assumption
of a single cloud layer.

The performance metrics are listed in Table 3. As before, bold type
highlights the smallest errors and highest correlation. The ANOC en-
semble mean has lower RMSE and higher correlation than the other
methods. Fig. 7 shows RMSE as a function of forecast horizon of the
ANOC ensemble, ensemble mean, and control as well as of the forecasts
based on dense optical flow, NWP winds, and the persistence forecast.
In contrast to Case Study 2, we find that RMSE of the forecast based on

Table 1
Performance metrics for Case Study 1, April 15, 2014, a day with cloud motion dominated by zonal flow. The units of RMSE and bias are CI. The lowest RMSE,
highest RMSE skill score, highest correlation, and lowest bias for each forecast horizon are in bold type. The ANOC ensemble mean and control forecast have lower
RMSEs and higher correlations than the reference forecasts, but all forecasts have low RMSE.

ANOC Ens. Mean ANOC Control Opt. Flow NWP Winds NWP Avg. Winds Radiosonde Persis.
Horizon

RMSE 15 0.04 0.04 0.04 0.04 0.04 0.07 0.07
30 0.04 0.05 0.05 0.05 0.05 0.08 0.08
45 0.05 0.06 0.06 0.06 0.06 0.09 0.08
60 0.06 0.06 0.06 0.07 0.07 0.09 0.09

SSper 15 0.51 0.50 0.45 0.44 0.47 0.00 –
30 0.43 0.39 0.37 0.30 0.33 −0.05 –
45 0.36 0.31 0.24 0.23 0.25 −0.11 –
60 0.39 0.34 0.30 0.24 0.27 −0.02 –

Corr. 15 0.83 0.83 0.79 0.78 0.81 0.28 0.30
30 0.76 0.72 0.70 0.62 0.66 0.19 0.28
45 0.67 0.62 0.53 0.49 0.54 0.06 0.22
60 0.64 0.57 0.48 0.37 0.46 0.08 0.06

Bias 15 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.01
30 −0.00 −0.00 −0.00 −0.01 −0.00 −0.00 −0.01
45 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
60 −0.01 −0.01 −0.01 −0.02 −0.01 −0.01 −0.01

Fig. 4. RMSE as a function of forecast horizon in Case Study 1 (zonal flow).
Shown are RMSE of the ANOC ensemble, ANOC ensemble mean, ANOC control,
and of two reference forecast systems. All forecast systems perform similarly on
this day.

Fig. 5. RMSE as a function of forecast horizon in Case Study 2 (shortwave
trough). Shown are RMSE of the ANOC ensemble, ANOC ensemble mean, ANOC
control, and of two reference forecast systems. The forecast based on dense
optical flow has the highest RMSE. The ANOC ensemble and the forecast based
on NWP winds have comparable RMSE. The ANOC ensemble mean and control
forecast have the lowest RMSE.
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NWP winds is higher than RMSE of the forecast based on dense optical
flow. The relative reduction in RMSE of the forecast based on dense
optical flow compared to the forecast based on NWP winds, however,
decreases with the forecast horizon, i.e., on time scales that are more
appropriate for the NWP model.

Forecasts of the ANOC ensemble mean, dense optical flow, and NWP
winds are shown in Fig. 8. The ANOC ensemble mean and dense optical
flow forecasts contain a thick cloud in the upper portion of the domain.
In the same part of the domain, the clouds produced by the forecast

based on NWP winds are thinner. This occurs because, as the radio-
sonde indicates, there are two cloud layers moving at different speeds.
The forecast based on NWP winds sometimes uses winds from the high-
altitude level (contains the fast moving cirrus) but other times uses
winds from the mid-altitude level (contains the slower moving mid-
altitude clouds). This problem is avoided in ANOC by assimilating
sparse optical flow vectors in addition to the CMV fields from the NWP
model.

Table 2
Performance metrics for Case Study 2, May 29, 2014, a day with weather conditions driven by a shortwave trough. The units of RMSE and bias are CI. The lowest
RMSE, highest RMSE skill score, highest correlation, and lowest bias for each forecast horizon are in bold type. The ANOC ensemble mean and control forecasts have
the lowest RMSE for all forecast horizons. The forecast based on NWP winds has a lower RMSE than that based on dense optical flow for the 30, 45, and 60min
horizons.

ANOC Ens. Mean ANOC Control Opt. Flow NWP Winds NWP Avg. Winds Radiosonde Persis.
Horizon

RMSE 15 0.15 0.15 0.16 0.16 0.16 0.19 0.18
30 0.18 0.19 0.20 0.20 0.19 0.26 0.23
45 0.17 0.18 0.25 0.21 0.21 0.29 0.24
60 0.18 0.19 0.28 0.21 0.22 0.30 0.27

SSper 15 0.17 0.15 0.12 0.10 0.12 −0.07 –
30 0.21 0.18 0.11 0.13 0.16 −0.15 –
45 0.30 0.26 −0.02 0.15 0.13 −0.18 –
60 0.32 0.29 −0.04 0.21 0.18 −0.12 –

Corr. 15 0.88 0.87 0.87 0.86 0.87 0.79 0.82
30 0.82 0.82 0.81 0.81 0.82 0.62 0.72
45 0.83 0.82 0.74 0.79 0.78 0.46 0.64
60 0.81 0.80 0.70 0.79 0.77 0.37 0.54

Bias 15 −0.00 0.00 −0.04 0.01 0.00 0.04 0.03
30 −0.00 0.00 −0.08 0.02 −0.00 0.08 0.06
45 −0.01 0.00 −0.14 0.03 −0.01 0.08 0.07
60 −0.02 −0.01 −0.17 0.03 0.00 0.07 0.08

Fig. 6. Forecasts and errors (calculated as forecast – observation) in Case Study 2, May 29, 2014, at 12:15 MST. The forecast horizon is 30min. Top row, left to right:
satellite derived CI field at 12:15 MST, and forecasts based on dense optical flow, NWP winds and ANOC. Bottom row: error fields corresponding to each forecast. The
forecast based on dense optical flow does not accurately advect the cloud edge and thins the cloud, leading to poor performance metrics compared to ANOC or NWP
wind based forecasts.
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5.4. Case study summary

In all three case studies, the daily RMSE of the ANOC ensemble
mean is lower than those of the reference forecasts for all forecast
horizons (15, 30, 45, and 60min). The precise value of daily RMSE,
however, varies between days. When the weather is dominated by ad-
vection (Case Study 1), all forecasts with time dependent CMV fields
(NWP spatially averaged winds, NWP winds, dense optical flow, and
ANOC) yield better forecasts, in terms of the performance metrics, than
the persistence or radiosonde forecasts. Whether forecasts based on
dense optical flow or those based on NWP winds have lower RMSE
depends on the weather conditions: in Case Study 2 (shortwave trough),
the NWP based forecasts are better than those based on dense optical
flow, but in Case Study 3 (mid-latitude trough), dense optical flow leads
to better forecasts than forecasts based on the NWP model. The ANOC
forecast system combines the strength of both techniques and leads to
better forecasts, but requires an increase in computational requirements
and conceptual complexity.

Finally, recall that the ANOC ensemble mean forecast results in a

smoother forecast (Fig. 3) with a lower standard deviation, and lower
RMSE than the ANOC ensemble members and ANOC control (see Figs. 5
and 7). RMSE can be decomposed as

= + − +σ σ σ σRMSE 2 Corr. Bias ,f t f t
2 2 2

(10)

where σf is the standard deviation of the forecast and σt is the standard
deviation of the observed CI field. Therefore, increasing smoothness
(decreasing σf ) can reduce RMSE.

The lower RMSE of the ANOC ensemble mean compared to the
ANOC control suggests some of the reduction is a result of increased
smoothness. Case Studies 2 and 3, however, suggest that smoothing is
not the only source of the reduced RMSE. In Case Study 2, ANOC’s
ensemble members all yield a lower RMSE than the forecast based on
dense optical flow (see Fig. 5) and the ensemble members are not
smoothed. In the same case study, the ANOC control forecast has a
lower RMSE than the forecast based on dense optical flow or NWP
winds and also does not have a smoothed CI field. In Case Study 3,
ANOC’s ensemble members and control forecast yield a lower RMSE
than forecasts based only on the NWP model for all horizons. In the
same case study, the RMSEs of the ANOC ensemble members and
control forecast are comparable to the RMSE of the forecast based on
dense optical flow at the 15 and 30min horizons, but lower at the 45
and 60min horizons (see Fig. 7).

The choice between using the ANOC ensemble mean or the ANOC
control forecast comes down to a choice between smoothness and
RMSE. If an application requires a forecast with low RMSE but does not
require a field with realistically sharp cloud edges, then the ensemble
mean may be a better forecast. If, however, the sharpness of the cloud
edges is critical (e.g. forecasting ramp rates) then the control forecast
may be more valuable.

6. Analysis over 3months

We compute performance metrics over 39 days taken from April,
May, and June of 2014. We only consider days where cloud cover is
detected. We manually inspect the satellite images over the three month
period to determine when cloud cover is present. Days with at least one
image with (even a small amount of) cloud coverage are included. Thus,
while all 39 days have some amount of cloud cover at some point
during the day, there are periods that are free of cloud cover.

We first consider the RMSE for each of the 39 individual days. The
results are shown in Fig. 9. We highlight four observations from these

Table 3
Performance metrics for Case Study 3, April 26, 2014, a day with weather driven by a strong mid-latitude trough. The units of RMSE and bias are CI. The lowest
RMSE, highest RMSE skill score, highest correlation, and lowest bias for each forecast horizon are in bold type. The ANOC ensemble mean and control forecasts have
the lowest RMSE for all forecast horizons. The forecast based on dense optical flow has a lower RMSE than that based NWP winds for all forecast horizons.

ANOC Ens. Mean ANOC Control Opt. Flow NWP Winds NWP Avg. Winds Radiosonde Persis.
Horizon

RMSE 15 0.23 0.24 0.24 0.30 0.29 0.37 0.25
30 0.28 0.30 0.30 0.40 0.38 0.39 0.33
45 0.29 0.31 0.35 0.40 0.42 0.38 0.38
60 0.30 0.33 0.36 0.40 0.40 0.36 0.39

SSper 15 0.07 0.05 0.05 −0.21 −0.17 −0.47 –
30 0.14 0.11 0.10 −0.20 −0.16 −0.19 –
45 0.23 0.18 0.09 −0.06 −0.09 0.01 –
60 0.22 0.15 0.08 −0.02 −0.03 0.07 –

Corr. 15 0.75 0.74 0.74 0.60 0.62 0.39 0.72
30 0.63 0.61 0.61 0.25 0.32 0.23 0.51
45 0.59 0.57 0.48 0.18 0.16 0.28 0.35
60 0.59 0.55 0.49 0.23 0.26 0.39 0.34

Bias 15 −0.02 −0.02 0.02 −0.10 −0.08 −0.10 0.01
30 −0.03 −0.03 0.04 −0.12 −0.10 −0.05 0.01
45 −0.04 −0.04 0.04 −0.11 −0.10 0.01 0.00
60 −0.06 −0.06 0.02 −0.09 −0.07 −0.01 −0.03

Fig. 7. RMSE as a function of forecast horizon in Case Study 3 (mid-latitude
trough). Shown are RMSE of the ANOC ensemble, ANOC ensemble mean, ANOC
control, and of two reference forecast systems. The forecast based on NWP
winds has the highest RMSE. The forecast based on dense optical flow is
comparable to the ANOC forecasts for 15 and 30min horizons. RMSE of the
forecast based on dense optical flow is larger than RMSE of the ANOC ensemble
and control forecast for 45 and 60min horizons.
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results.

1. The ANOC ensemble mean tends to have a daily RMSE lower than
the forecast based on NWP winds or the forecast based on dense
optical flow.

2. The improvement in RMSE for the ANOC ensemble mean is more
significant for days in which the RMSE of all forecasts is relatively
high (above 0.1 CI for instance).

3. The ANOC ensemble mean typically leads to a better forecasts for
longer horizons. For example, for the 15min forecast horizon, there
are 14 days for which the ANOC ensemble mean has an RMSE above
0.1. Of these 14 days the ANOC ensemble mean has the lowest RMSE
for 10. For the 60min horizon, there are 18 days for which the
ANOC ensemble mean has an RMSE above 0.1, and the ANOC en-
semble mean has a lower RMSE for all of them. This is partially due
to an increase in ensemble spread at longer forecast horizons leading
to greater smoothing.

4. The two ANOC forecasts perform similarly to the more established
NWP winds and dense optical flow forecasts on all days suggesting
that the ANOC method is a useful technique.

Performance metrics averaged over 39 days are listed in Table 4.
The ANOC ensemble mean has a lower RMSE and higher correlation
than all other forecast systems. The ANOC control forecast performs
almost the same as the forecasts based on dense optical flow and NWP
winds in terms of RMSE and correlation. The bias of all the forecasts are
nearly zero apart from the forecasts based on NWP or radiosonde winds,
though these are low as well.

Table 4 also contains RMSE skill scores (persistence serves as the
reference) of the ANOC and reference forecasts. The ANOC ensemble
mean forecast skill increases with forecast horizon. The ANOC control
forecast skill is fairly consistent over time. The skill of the forecast
based on dense optical flow, however, decreases with the forecast

horizon. The skill of the forecast based on NWP winds is lower, but does
not change with forecast horizon.

These skill score results are intuitive. Dense optical flow used here is
based on the movement of clouds over a 15min period. The CMV fields
from dense optical flow will therefore be sensitive to the dynamics over
this shorter time scale. It is expected that skill scores of forecasts based
on these CMV fields will decrease with forecast horizon. The short term
nature of the dense optical flow CMV fields is not found in the NWP
model. This can partially explain why the skill scores of forecasts based
on NWP winds do not increase with forecast horizon. The NWP model
we use is initialized at 12Z and does not assimilate observations
throughout the day. It is thus reasonable that the skill score of forecasts
based on NWP winds is relatively low since it does not use more recent
information from the satellite images.

The ANOC system uses DA to combine these sources of information
based on the relative uncertainty assigned to each. Therefore, it is
reasonable that the ensemble mean and control forecasts have a higher
skill for all horizons than either the NWP winds or dense optical flow
forecasts. The skill of the ANOC ensemble mean increases with the
forecast horizon, while the ANOC control forecast decreases slightly.
Ensemble means often have a larger skill than control forecasts over
longer forecast horizons (Kalnay, 2003), but some of the skill increase
of the ensemble mean can be attributed to increased smoothness. This
smoothing is based on the uncertainty of the underlying system.

Fig. 10 illustrates the average RMSE of the ANOC ensemble mean
forecast, the ANOC control forecast, the forecast based on dense optical
flow, and the forecast based on NWP winds. Average RMSE exhibits a
pattern familiar from the case studies: RMSE of the ANOC ensemble
mean is lower than RMSE of forecasts based on dense optical flow or
NWP winds. While the RMSE of all methods increases with forecast
horizon, the RMSE of the ANOC ensemble mean increases at the slowest
rate. The ANOC control forecast performs similarly to the optical flow
forecast as 15 and 30min forecasts, but has a lower RMSE at 45 and

Fig. 8. Forecasts and errors (calculated as forecast – observation) in Case Study 3, April 26, 2014, at 13:00 MST. The forecast horizon is 30min. Top row, left to right:
satellite derived CI field at 13:00 MST, and forecasts based on dense optical flow, NWP winds and the ANOC ensemble mean. Bottom row: error fields corresponding
to each forecast. The NWP winds forecast does not accurately advect the clouds on this day due to the presence of two cloud levels and two local maxima in relative
humidity. The ANOC system corrects the NWP based CMV field by assimilating sparse optical flow CMVs.
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Fig. 9. Bar charts of daily RMSE (measured in units of CI) for the ANOC ensemble mean and control, and forecasts using dense optical flow and NWP winds for
forecast horizons of 15, 30, 45, and 60min for each cloudy day and all cloudy days for the study period. The ANOC forecast typically has the lowest RMSE of all three
methods when all methods yield a large RMSE, e.g., 4/5, 4/26 or 6/17. The ANOC forecast sometimes has a higher RMSE than the reference forecasts when all
methods yield a low RMSE, e.g., 5/5 or 6/22. The forecast methods tend to produce similar results.
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60min horizons.

7. Conclusion

We introduced the ANOC forecast system for intra-hour forecasts of
CI over the area of a city. ANOC uses a conceptually simple forecast
model and combines CMV data based on the uncertainties associated
with each data source using data assimilation.

We validated the ANOC system by comparing it to reference forecast
techniques. Our comparisons are based on a standard set of perfor-
mance metrics. We considered three representative case studies and
found that the ANOC forecasts perform similarly or better, in terms of
the performance metrics, than the reference forecast techniques. This
comes at the cost of an increase in computational requirements and
conceptual complexity. We also considered performance metrics over
39 days to confirm our conclusions from the case studies. The results
suggest that ANOC, or similar DA based systems, can be useful in intra-
hour forecasting for solar power applications.

The ANOC ensemble mean is smoother than the reference forecasts,
and is smoother than the true CI fields. This smoothness is caused by

ensemble spread. Quantifying the relationship between ensemble
spread and forecast uncertainty or skill is left for future work.

Individual ensemble members and the control forecast of the ANOC
are not averages and are therefore not smoothed like the ensemble
mean. A smooth CI forecast produces a smooth power forecast; this
results in ramp rates that are underestimated. We can therefore use
individual ensemble members and the control forecast rather than the
ensemble mean to predict the amplitude of ramp events. The control
forecast is the best prediction of the ramp event, and the individual
ensemble members could provide information on the uncertainty of the
magnitude and timing of the ramp event.

In summary, ANOC’s forecasts are on average similar or better, in
terms of the performance metrics, than the reference forecasts. This
conclusion is based on averages computed over a three month period
and over a domain centered on Tucson, AZ. Further study is needed to
determine if the ANOC system will perform similarly in other parts of
the country or during a different time of the year over Tucson. Our
study, however, indicates that ANOC, or systems similar to ANOC, are
computationally feasible and further developments for a ensemble
based DA framework in this context is promising.

Supplementary material

The code used in this study can be found in Harty and Lorenzo
(2019). Harty (2019) includes the data used in this study, the para-
meters of the WRF model used in this study, videos of satellite images
for each of the 3months of this study, a video of satellite images for
each of the three case studies, and weather maps for each of the three
case studies.
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Table 4
Performance metrics averaged over 39 days. The units of RMSE and bias are CI. The lowest RMSE, highest RMSE skill score, highest correlation, and lowest bias for
each forecast horizon are in bold type. The ANOC control forecast performs similarly to the forecasts based on optical flow and those based on NWP winds. The ANOC
ensemble mean forecast has the lowest RMSE for all forecast horizons, though it performs similarly to the reference forecasts.

ANOC Ens. Mean ANOC Control Opt. Flow NWP Winds NWP Avg. Winds Radiosonde Persis.
Horizon

RMSE 15 0.11 0.12 0.12 0.12 0.12 0.14 0.13
30 0.13 0.14 0.14 0.15 0.15 0.16 0.15
45 0.13 0.14 0.15 0.15 0.15 0.16 0.16
60 0.14 0.15 0.16 0.15 0.16 0.17 0.17

SSper 15 0.14 0.12 0.11 0.08 0.09 −0.08 –
30 0.15 0.10 0.09 0.03 0.04 −0.05 –
45 0.18 0.11 0.07 0.06 0.05 −0.01 –
60 0.17 0.09 0.05 0.06 0.05 −0.02 –

Corr. 15 0.87 0.86 0.86 0.84 0.85 0.79 0.82
30 0.83 0.81 0.80 0.78 0.78 0.74 0.77
45 0.81 0.79 0.77 0.76 0.75 0.72 0.74
60 0.80 0.76 0.74 0.75 0.74 0.70 0.72

Bias 15 −0.00 −0.00 −0.00 −0.01 −0.01 −0.01 −0.00
30 −0.00 −0.01 −0.00 −0.02 −0.02 −0.01 −0.00
45 −0.01 −0.01 −0.01 −0.02 −0.02 −0.02 −0.01
60 −0.01 −0.01 −0.01 −0.02 −0.02 −0.02 −0.01

Fig. 10. Average RMSE as a function of forecast horizon for ANOC ensemble
mean and control, forecasts based on dense optical flow and forecasts based on
NWP winds. The ANOC forecast yields lower RMSE than the other forecast
techniques. For the large forecast horizons, RMSE of the forecast based on NWP
winds is lower than RMSE of the forecast based on dense optical flow.
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