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Abstract

In many applications such as copy number variant (CNV) detection, the goal is to
identify short segments on which the observations have different means or medi-
ans from the background. Those segments are usually short and hidden in a long
sequence and hence are very challenging to find. We study a super scalable short
segment (4S) detection algorithm in this paper. This nonparametric method clusters
the locations where the observations exceed a threshold for segment detection. It is
computationally efficient and does not rely on Gaussian noise assumption. Moreo-
ver, we develop a framework to assign significance levels for detected segments. We
demonstrate the advantages of our proposed method by theoretical, simulation, and
real data studies.

Keywords Copy number variation - Inference - Nonparametric method - Signal
detection

1 Introduction

Chromosome copy number variant (CNV) is a type of structural variation with
abnormal copy number changes involving DNA fragments [5, 6]. CNVs result in
gains or losses of the genome, therefore interfering downstream functions of the
DNA contents. Accounting for a substantial amount of genetic variation, CNVs are
considered to be a risk factor for human diseases. Over the past decade, advances
in genomic technologies have revealed that CNVs underlie many human diseases,
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including autism [15], cancer [4], schizophrenia [3], and major depressive disorder
[13]. It is fundamental to develop fast and accurate CNV detection tools.

A variety of statistical tools have been developed to discover structural changes
in CNV data during last 20 years. Popular algorithms include circular binary seg-
mentation [14], the fused LASSO [16], likelihood ratio selection [10], and screen-
ing and ranking algorithm [11]. Some other change-point detection tools such as
wild binary segmentation [8] and simultaneous multiscale change-point estimator
[7] can be also applied to CNV data. See [12] for a recent review on modern change-
point analysis techniques. A majority of existing methods are based on Gaussian
assumption, although quantile normalization [18] or local median transformation [2]
can be used for normalization. The computational complexity is also of concern for
some of the existing methods as the modern technologies produce extraordinarily
big data. In spite of some fast algorithms [17], few algorithms are known to possess
both computational efficiency and solid theoretical foundation. Moreover, with only
a few exceptions [7, 9], the existing methods focus on detection whereas not offering
statistical inference. For these reasons, we develop a fast nonparametric method for
CNV detection with theoretical foundation and the opportunity of conducting statis-
tical inference.

In this paper, we model the CNVs as short segments with nonzero height param-
eters, which are sparsely hidden in a long sequence. The goal is to identify those
segments with high probability and, moreover, to assess the significance levels for
detected segments. In particular, we propose a scalable nonparametric algorithm for
short segment detection. It depends on only the ranks of the absolute values of the
measurements and hence requires minimal assumptions on the noise distribution.
A short segment may be present when there are a large enough number of observa-
tions exceeding a certain threshold on a short segment; for instance, 8 on a seg-
ment of 10 observations are larger than the 99th percentile of the data. Following
this idea, we implement a super scalable short segment (4S) detection algorithm to
cluster the points to form a segment when such a phenomenon occurs. The advan-
tages of our method are fourfold. First, this nonparametric method requires minimal
assumption on the noise distribution. Second, it is super fast as the core algorithm
requires only O(n) operations to analyze a sequence of n measurements. In particu-
lar, it takes less than 2 s for our R codes to analyze 272 sequences with a range of
about 34,000 measurements. Third, we establish a non-asymptotic theory to ensure
the detection of all signal segments. Last but not least, our method can compute the
significance level for each detected segment and offer a convenient approach to sta-
tistical inference.

2 Method
2.1 Notations and the Main Idea

Let {X;} 7:1 be a sequence of random variables such that
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X;=pte (1

where the height parameter vector u = (u, ..., )" is sparse and {g }j’.‘=1 are random

noises with median 0. Moreover, we assume that the nonzero entries of u are sup-
ported in the union of disjoint intervals 7 = Uszl I, so that

_Jw#0, ifjel, cZfor somek;
K= { 0, ifj¢ 7.

Here we assume that I, = {7}, +1,...,r} and r, <, — 1 for all k. Note
that such a representation of 7 is unique and used throughout this paper for Z or
its estimator Z. For convenience and without confusion, we use the interval [£}, 7]
to imply the set of integers {£,,¢, + 1, ..., r,} when referred to a set of locations.
We call those intervals segments. In particular, a signal segment is a segment
where the height parameter is a nonzero constant. Let u; denote a subvector of u
restricted to 7 C {1,...,n}. We denote by |S| the cardinality of a set S. In particu-
lar, |I| = r— ¢ + 1 for I = [£,r]. 0 and 1 denote vectors, (0,...,0)" and (1,...,1)T,
respectively.

Naturally, a primary goal for model (1) is to identify the set of signal segments
{Ik}szl. Moreover, while rarely done, it is useful to assign a significance level for
each of the detected segments. In this paper, we will study both estimation and
related inference problems on segment detection. Our strategy is to cluster “puta-
tive locations” using spatial information. In particular, we consider the set of
positions S, = {j : |X;| > c¢,1 <j <n}, where the observations gxceeg a threshold
¢ > 0. Intuitively, for a properly chosen ¢ and some segment [, if [/ n'S,| is big
enough compared with |1], it is likely that H; # 0.

To illustrate our idea, we consider a game of ball painting. Suppose that we
start with n white balls in a row, and paint the jth ball with black color if |X;| > c.
Let m be the total number of black balls, which is much smaller than n. If we
observe that there are a few black balls crowded in a short segment, e.g., ‘seg-
ment 1’ illustrated in Fig. 1, it is plausible that the height parameter is not zero
in the segment. Our proposed algorithm can easily identify those segments. Also
it may happen that in a neighborhood there is only a single black ball, e.g., ‘seg-
ment 2’ in Fig. 1. Then, we may not have strong evidence against y = 0. To put
this intuition into a sound theoretical framework, it is imperative to evaluate the
significance for each pattern. In fact, given the numbers of white and black balls
in a short segment, we may calculate how likely a certain pattern appears in a
sequence of length n with m black balls, when white and black balls are actually
randomly placed. We will develop a framework of inference based on this idea in
Sect. 2.3.

Fig. 1 Segment 1 and segment 2 £ 000000000000 -+ --- 0000 ® 000O0:---
—_—— ~—
segment 1 segment 2
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2.2 Algorithm

To estimate Z, we propose a super scalable short segment (4S) detection algorithm
which is described as follows.

Step I: thresholding. Define S, = {j : |X;| > c}. That is, we collect the positions
where the observations exceed a threshold.

Step 2: completion. Construct the completion set c,. , by the criterion that j € S.if
and only if there exist j;, j, € S, j; <Jj, <j; +d+ 1such that j, <j<j,. That
is, we add the whole segment [j,, j,] into the completion set if the gap between j|,
Jo € S, s small enough

Write S ed = Uk 1Ik where I, = [/, 7] with 7, < ka 1. Note that this decom-
position is unique.

Step 3: clean up. We delete Ik from S ' if \I,| = 7, — £, + 1 < h, and obtain our
final estimator Z, edh = U et 1,. That is, we ignore the segments that are too short
to be considered.

The whole procedure depends on three parameters ¢, d, and h. The choice of ¢
is crucial and depends on applications. d and A are relatively more flexible as we
can screen false positives using significance levels defined later. We may ignore the
subscripts and simply refer to S, S and 7 when the sets obtained from the three steps
above corresponding to ¢, d and & are clear in the context. Figure 2 illustrates our
procedure, where the location set obtained in each step is indicated by the positions
of black balls.

2.3 Theory: Consistency and Inference

Our goal is to identify the set of signal segments Z = U r=1 1y with a false positive
control. Here we say that /; € 7 is identified by an estimator I= U el 1, if there is
a unique I, € Z,such that I, NI, # @, and I,, N I;=fforallI; € 7 and j # k. Such
an Ik, is a true positive. We define that Z is 1dent1ﬁed by an estimator 7 if every
I, € 1 is identified by 7. That is, there is a one-to-one correspondence between Z
and a subset of 7, and the K pairs under this correspondence are the only pairs with
nonempty interaction among all segments in Z and 7. See Fig. 3 for an illustration of
the definition.

S: 000000000800 - -~ O00C0C@e0e@000:--
S: 000000000000 """ O00C0Cee®e@e00O0::--
I: ++r00OC00000O0OOOO """ O0O0O00O0O000O0---

Fig.2 An illustration of three steps in the 4S algorithm with d = h = 3. Top row: the black balls indicate
the locations where the observation has absolute value larger than a threshold. Middle row: the small
gaps with length < d between the black balls are filled in with the black balls. Bottom row: the segment
of black balls with length < £ is deleted
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Il I2
7: ~~ooomoooooooooomoooocw”
_'2—1: +r00000000000000000000000000000O0:- -
_'2—2: +©r00000000000000000000000000C000E: -
i—gz +++000000000000000000000000000000 -
1—4: c©r00000000000000000000000000000O0- -

Fig.3 An illustration of relationship between signal segments (*) and four estimators (*). Z consists of
two signal segments /, and I,. Both 7, and I, are successfully identified by Z;. I, is also identified by Z,
and Z. Z has one true positive (left) and one false positive (right). Z has one true positive (left) and two
false positives (middle and right). L has one false positive

In our three-step procedure, the first two steps establish an estimator and the last
one aims to delete obvious false positives. Our theory proceeds in two main steps.
First, we characterize the non-asymptotic probability that the first two steps produce
an estimator which successfully identifies Z. In order to identify /;, € Z, we should
ensure two conditions. Condition one is that, after step 1, the black balls are dense
enough on /; so that they do not split into two or more segments in step 2. Condition
two is that, in the gap between I and I, ,, the black balls are sparse enough so that
the black balls on I, and I, ; do not connect to a big segment. Theorem 1 addresses
how to bound the probabilities of these two conditions for all k.

Second, we develop a framework of inference to control false positives. As a
rough control, Theorem 2 gives an upper bound for the expected number of false
positives if all segments of length one are deleted in step 3. In general, after step 2,
it is not optimal to decide the likelihood of a detected segment being a false posi-
tive only by its length. Therefore, for each segment in S, we check its original color
pattern back in step 1 and calculate a p value of this pattern under null hypothesis
p = 0. This assigns a significance level for each detected segment which helps con-
trol false positive. It is difficult to find the exact p values. Lemma 2 offers a reason-
able approximation.

To facilitate theoretical analysis, we assume that, in this subsection, {.9}”
independent and identically distributed (IID) noises with median 0. Moreover, ¢; has
a continuous density function f that is symmetric with respect to 0. Under this
assumption, the black balls are randomly distributed for arbitrary threshold ¢ when
u=>0.

Now we investigate when a signal segment can be detected by our algorithm. Let
F be the cumulative distribution function of the noise density f. We use f, = F~'(«)
to denote the a-percentile. Suppose that there is a segment I such that |I| =
p; = vl and pyny =0, where H is a segment containing / such that /N H is the
union of two segments both of which are of length D. Without loss of generality,
we assume that v =f, > 0 i.e., « > 0.5. For a threshold 0 < ¢ =fﬂ < v, let us con-
tinue our game of ball painting and focus on this segment and its neighborhood.
Recall that we paint the ball at position j with black color if and only if |X;| > ¢ = f}.
The following two events together can ensure that the segment 7 is 1dent1ﬁed by our
method.
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A ={On, there does not exist a sub-segment of min{d, L} consecutive white balls}
B, = {On both sides of I, within distance D, there are d consecutive white balls}

Event A ensures that this segment can be detected as a whole segment while event
B, controls the total length of the detected segment and makes sure that the detected
segments are separated from each other. A and B, together guarantee that our algo-
rithm identifies a segment 7 such that I N1 # @, and I N I’ = @ for any other signal
segment I’. The following lemma gives non-asymptotic bounds for P(A) and P(53p).

Lemma 1 Let H D I be two segments such that u; = v1 and pry =0, |I| = L.
I¢ N H is the union of two segments both of which are of length D. Let ' =2 — 1.
For0 < c=f; <vandd > 0, after the thresholding and completion steps, we have

| —(@L—d+2)2-, ifd <L
P(A)Z{l—z—L, ifd>1L

and
P(By) 2 1-2(1—-fd)\7),

Let v, =min,|v,] be the minimal signal strength among all Is,
L, = min, |I,|, L, = max, |/,| be the minimal and maximal lengths of signal
segments, respectively, and D,;, = min,(Z;,; — r;, — 1) be the minimal gap between
two signal segments. Define f;, = F(Vpyip) SO Vi = fp - Let Bl =2p — 1. Tak-
ing into account all signal segments in Z, the theorem below gives a lower probabil-
ity bound for identifying 7 after first two steps.

Theorem 1 Withc =v,;, =fp,-d>0and h =0, i’c’d,h can identify all signal seg-
ments in T with probability at least

: Dumin
1 — K max { %(Lmax —d+2),1 }2—m1“‘d’Lmin} — (K= 1)(1 - ﬁr’;ﬁn)[ = o
Corollary 1 The  probability (2) goes to 1  asymptotically  if

logK +1logL,,, < min{d,L.;,} - coandlogK < D,;,/d - c0asn — .

Although Theorem 1 gives a theoretical guarantee to recover all signal segments
with a large probability, there are some false positives. As an ad-hoc way, we may
take 4 = 2 or 3 to eliminate some obvious false positives. This clean up step is sim-
ple and helpful to delete isolated black balls. The Theorem below gives an upper

bound on the number of false positives with a conservative choice & = 1.

Theorem 2 Assume p=0 and |S,|=m. Then E|Z, ;| <m(1 - []j_, 25
withh = 1.

The expected number of false positive segments can be well controlled if both
m/n and d are small. Next, we illustrate how to access the significance levels for the
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detected segments by our method, which is helpful to control false positives. Recall
our estimator 7 = U,’;l 1, where I, = [fk, #.).Foreach I lets, = |I|.z, = |I, N S.|,
and m = |S,|. Now consider n balls in a row with m black and n — m white balls. Let
A, m,s,., D€ an event that there exists a segment of length s, where at least 7, balls are
black, in a sequence of n balls with m blacks ones. The p value of I, can be defined
as the probability of An’m,sk’,k if the balls are randomly placed. This p value can effec-
tively control the false positives. However, it is challenging to find the exact formula
to calculate the p value. The lemma below gives an upper bound of P(A,,  , )-
Lemma2 P(A4,,, )< P(A,,ﬁm’sk,tk) =mP(Y > t, — 1) where Y follows a hypergeo-
metric distribution with total population size n — 1, number of success states m — 1,
and number of draws s, — 1.

This approximated p value is useful to eliminate false positives.

2.4 Implementation

Our proposed method is nonparametric and depends on only the rank of absolute
measurements {|X; |} . For a fixed triplet (c, d, h), it typically needs less than 3n
operations to determlne 7 when |S.|/n is small, say, less than 0.1. We need 2n oper-
ations to compare each measurement with the threshold to determine S,. Let
w = (W, ...,w,,)" be a vector of locations in S, in an ascending order. In the com-
pletion step, we compare Aw = (W, — wy,...,w, —w,,_;)' to a threshold. In par-
ticular, we declare that w; and w;, | belong to different segments if and only if
Wipp —w; >d. Let iy, ..., ig be those indices such as w; ., —w; >d. S consists of
segments [wy,w; 1,..., [w; ,w,,]. We record the start and end points of each segment
only. In the deletion step, we delete [w; ,w; _;]if its length is not greater than .
The total operations can be controlled within 2n + 10m.

The choice of threshold c is crucial to the 4S algorithm and may need to be deter-
mined on a case-by-case basis. Here, we offer a general guideline for parameter
selection. Recall that for the Gaussian model, the signal strength of a segment with
length L and height v = §¢ is usually measured by S = 6°L; see, e.g., Table 1 in
[12]. If there are two segments with the same overall signal strength S, however, one
with large 6 and small L (say, type A), and another one with small § and large L (say,
type B), then it is usually not equally easy to detect both of them by an algorithm of
complex O(n). Indeed, for many segment detection algorithms, it is tricky to balance
the powers to detect these two types of segments. Intuitively, the threshold param-
eter ¢ controls this tradeoff in our methods. A higher threshold may be more power-
ful in detecting type A segments but less powerful in detecting type B segments and
vice versa. In practice, we may choose the threshold as a certain sample percentile
of the absolute values of the observations based on a pre-specified preference. For
example, if we know the signal segments have relatively large height parameters but
can be as short as 5 data points, then with a fixed n, we can ﬁnd largest m such
as P(.Anm 5.5) < 0.05 and the percentile is chosen as & =1 — —. That is, we want
to guarantee that a segment of 5 consecutive black balls is 51gn1ﬁcant enough to
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stand out. In another scenario, our preference might be longer segments with pos-
sibly lower heights. Then we may choose a threshold to include segments of length
10 with at least 6 black balls. In general, such m (or a) can be easily determined
given n, s, t and p, by solving ﬁ(.An,m!S,,) < p. We illustrate in Fig. 4 the relationship
between logn and selected percentile « for (s, ) = (5,5), (10, 6), p = 0.05 and 0.1.
Because our main goal in this paper is to identify short segments, we prefer a large
threshold such as 95th sample percentile. An even larger threshold can be used to
identify shorter segments, and a smaller threshold can be used for detecting longer
segments with lower heights.

3 Numerical Studies
3.1 Simulated Data

We use simulation studies to evaluate the performance of our method in terms of the
average number of true positives (TP) and false positives (FP) for identifying signal
segments. Recall that in our definition, a detected segment 1e€7is atrue positive,
if it interacts with only one signal segment / € Z, and it is the only one in Z that
interacts I.

In Example 1, we show the effectiveness of our inference framework on the false
positive control of the 4S algorithm by a null model. As suggested by Fig. 4, we
choose the 95th percentile of absolute values of the observations as the threshold c.
We set d = 9 and h = 3. We use various p value thresholds for false positive control
and compare them with a vanilla version of 4S, which is the one without p value
control.

1.00
!
1.00
1

o
oo
0.98
1
°
o

0.95
1
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VO\ o
0.96
1
°
V() o
°

percentile
°
~O
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Fig.4 Selected percentile versus logn foras=t=35, p =0.05and 0.10; b s = 10,1 =6, p = 0.05 and
0.10
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Example 1 (Null Model) We generate a sequence based on model (1) with
n = 10,000 and u = 0. We consider three scenarios for the error distributions. In
the first two scenarios, we consider {¢; };': which are IID from N(0, 1) and ¢, respec-
tively. In the last scenario, we consider {¢;}!_, which are marginally N(0, 1) and
jointly from an autoregressive (AR) model with autocorrelation 0.2.

As Z = @ in this example, all detected segments are FPs. We report the average
FPs for three versions of 4S (Vanilla, p = 0.05 and p = 0.1) based on 100 repli-
cates in Table 1. We see that our inference framework can effectively control the
number of FPs.

In Example 2, we compare 4S with three algorithms CBS [14], LRS [10] and
WBS [8]. The CBS and WBS methods, implemented by R packages DNAcopy
and wbs respectively, give a segmentation of the sequence which consists of a
set of all segments rather than only the signal segments. In order to include their
results for comparison, we ignore the long segments (with length greater than
100) detected by CBS or WBS, which decreases their false positives. For LRS,
we set the maximum length of signal segments as 50.

Example 2 We generate a sequence based on model (1) with n = 10, 000. There are
5 signal segments with lengths 8, 16, 24, 32, and 40 respectively. We use the same
error distributions as in Example 1. We consider two levels of height parameter for
different signal strengths. In particular, we set height v as the 99-, and 97th percen-
tiles of the marginal error distribution in two scenarios, labeled by S1 and S2. For
the standard normal error, the height values are 2.326 and 1.881, respectively.

The threshold ¢ we used for 4S is the 95th sample percentile of absolute val-
ues, that is around the 97.5th percentile of the error distribution, e.g., around 1.96
for the Gaussian case. Therefore, the true height is greater than c in S1, but lower
in S2. Average numbers of TPs and FPs are reported in Tables 2 and 3.

Overall, CBS performs the best for the IID Gaussian case, but suffers from a
low power in the heavy-tail case, and high FPs in the correlated case. LRS and
WBS perform reasonable well with slightly high FPs in the heavy-tail case. 4S
methods are more robust against the error type. When the noise is Gaussian and
the signal strength is weak, it is slightly less powerful than the methods based on
the Gaussian assumption. In terms of computation time (Table 4), 4S is about 100
times faster than all other methods.

Table 1 Average number of FPs 4S (Vanilla) 45 (p = 0.05) 4 (p=0.1)
for the null model

N(,1) 102.38 0.03 0.13

t; 101.68 0.12 0.26

AR(1) 100.39 0.10 0.33
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Table2 Average number of TPs
4S (p = 0.05) 4S (p=0.1) 4S (p=10.5) CBS LRS WBS

S1
N(0,1) 4.41 4.58 4.73 4.89 4.41 453
13 4.95 4.98 4.99 2.16 441 4.52
AR(1) 4.40 4.53 4.65 4.68 4.41 4.53
S2
N(0,1) 3.77 3.94 4.20 4.59 3.76 3.94
ty 3.34 3.47 3.73 0.51 3.75 3.93
AR(1) 3.75 3.94 4.09 4.43 3.76 3.95

Table 3 Average number of FPs
4S (p = 0.05) 4S (p=0.1) 4S (p=10.5) CBS LRS WBS

S1
N(0,1) 0.02 0.05 0.29 0.10 0.05 0.14
1y 0.04 0.09 0.36 0.13 0.45 0.36
AR(1) 0.05 0.14 0.44 1.99 0.05 0.14
S2
N(O,1) 0.02 0.08 0.40 0.16 0.09 0.22
ty 0.10 0.18 0.63 0.07 0.49 0.44
AR(1) 0.09 0.22 0.58 1.84 0.09 0.23

Table 4 Computation time (in s)
to complete 300 sequences in S1

for each method Time 0.83 115.52 108.72 86.17

Method 4S CBS LRS WBS

3.2 Real Data Example

We applied the 4S method to the 272 individuals from HapMap project. In par-
ticular, we tried 4S (with p value thresholds 0.05 and 0.5) to the LRR sequence of
chromosome 1, which consists of 33991 measurements for each subject. We com-
pared 4S with CBS, which has been a benchmark method in CNV detection. Note
that CBS produces a segmentation of the sequence rather than the CNV segments
directly. Therefore, we focused on only the short (less than 100 data points) seg-
ments detected by CBS because the long segments had means close to zero and are
not likely to be CNVs. We found that most of these short segments are separated.
But a very small portion of them are connected as CBS sometimes tends to over
segment the sequence. Therefore, we merged two short segments detected by CBS if
they are next to each other.
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Table 5 Real data results: total

4, =(. 4 =0. B
number of detected CNVs, S (p = 0.0 S(p=09 CBS

average length of CNV, Number of CNVs 2832 3141 2962

and computation time for all

methods Average length 28.60 27.70 23.15
Computation time 1.86 1.93 230.18

Fig.5 Histogram of affinity, a ° Histogram of affinity [

similarity measure defined in 27

(3), among 2753 pairs of com-

monly detected CNVs by 4S and »

CBS. Affinity equals to 1 if two 28|

detected CNVs are identical, g -

and equals to 0 if two detected s

CNVs do not overlap § .

T T T T T T T 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

affinity

The 48 algorithm is extremely fast. It took less than 2 s (on a desktop with CPU
3.6 GHz Intel Core i7 and 16 GB memory) to complete 272 sequences with p values
calculated for all detected segments. CBS algorithm is reasonably fast, but much
slower than our algorithm. In Table 5, we list the total number of detected CNVs,
average length of CNVs, and computation time for all methods.

Overall, the segment detection results were very similar. We further compared the
segments detected by two algorithms, i.e., 4S with threshold p = 0.05 and CBS. We
found that 2753 segments are in common. Here by a common segment we mean a
pair of segments, one detected from each algorithm, such that they overlap to each
other but do not overlap with other detected segments. Among these common seg-
ments, we calculated a similarity measure, called affinity in [1], defined as follows.

Inr
,0(],1,)2 L 3)

VI

p(I,I") = 1if two segments I and I’ are the same and p(I, ") = 0 if they do not over-
lap. We found that the average value of this similarity measure is 0.9290 among
2753 pairs.

Figure 5 presents the histogram of affinity among 2753 pairs of commonly
detected segments by 4S and CBS. We can see that 87.76% of those pairs have
affinity values larger than 0.8. We further divided the detected segments into three
groups: those detected by both methods (group 1); those detected by only 4S method
with p = 0.05 (group 2); those detected by only CBS (group 3). For each detected
segment, we calculated its length and the sample mean of the measurements on the
segment. Figure 6 displays the scatter plots of sample means versus lengths for all
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Fig. 6 Scatter plots of sample means versus lengths for detected segments in three groups. Group 1: seg-
ments detected by both methods; Group 2: segments detected by only 4S method with p = 0.05; Group
3: segments detected by only CBS

the segments in three groups. Most segments in group 1 carries relatively strong
signals. So it is not surprised that they were detected by both algorithms. The groups
2 and 3 have much smaller sizes than group 1. In particular, we found that most seg-
ments in group 3 (i.e., those detected by only CBS) are very short, consisting of only
2 or 3 data points. Those segments are not significant in our inference framework
unless we set a very high threshold ¢ in step 1. Some segments in group 2 (i.e., those
detected by only the 4S method) have relatively small sample mean values, which
explains why they were not detected by CBS. Some of these segments might be true
positives with the sample mean affected by outliers. Overall, the 4S and CBS meth-
ods gave similar results. The segments detected by only one method may be prone to
false positives, or true positives have weak signal strengths.

4 Discussion
We proposed a scalable nonparametric algorithm for segment detection,and

applied it to real data for CNV detection. Two main advantages of the 4S algo-
rithm are its computational efficiency and independence of the normal error
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assumption. We introduced an inference framework to assign significance levels
to all detected segments. Our numerical studies demonstrated that our algorithm
was much faster than CBS and performed similarly to CBS under the normal-
ity assumption and better when the normality assumption was violated. Although
our inference framework depended on the assumption of IID noise, our numerical
experiments suggested that our algorithm worked well under weakly correlated
noises. Hence, the proposed method is faster and more robust against non-normal
noises than CBS. Overall, the 4S algorithm is a safe and fast alternative to CBS,
which has been a benchmark method in CNV studies.

In the literature, there are two popular classes of change-point models used
to study CNYV related problems. The first one assumes only a piecewise constant
median/mean structure. The second one assumes, in addition, a baseline, which
reflects the background information or normal status of the data. Quite often, it
assumes that the abnormal part, called signal segments in our paper, are sparse.
For the first approach, the goal is to identify the change points. In contrast, the
second approach emphasizes more on segment detection rather than change-point
detection. The difference is subtle for estimation but might become remarkable
for inference. For example, it is technically difficult to define ‘true positive’ in the
context of change-point detection [9]. But it is easier to define related concepts for
segment detection as we did in this paper. Roughly speaking, the first approach is
more general, and the second one is more specific and suitable to model certain
CNV data, e.g., SNP array data. In particular, the 4S algorithm aims to solve
change-point models in the second class. It can be applied to any data sequence
when there is a baseline. When the baseline mean/median is unknown, we suggest
that the data should be centered first by the estimated mean/median. Our method
can not be applied to data when a baseline does not exist. Besides change-point
models, there are other approaches to study CNV such as hidden Markov model
[17]. Due to the space limit, we restricted our comparison to the methods based
on change-point models and implemented by R packages.

Most segment detection algorithms involve one or more tuning parameters,
whose values are critical to the results. In the study of segment detection, there
are two trade-offs that researchers should consider in choosing algorithms as well
as their parameters. The first one is the usual type I/type II errors trade-off, which
might be tricky sometimes but well-known. The second one is more delicate and
quite unique. For a signal segment, both its height and length determine the sig-
nal strength. Therefore, segments with weak but detectable signals can be roughly
divided into two categories, the ones with small length (say, type A) and the ones
with small height (say, type B). Typically, a method may detect type A segments
more powerfully, but type B segments less powerfully, than the other method.
For the proposed 4S algorithm, a choice of a larger threshold parameter in step 1
makes the algorithm more powerful in detecting short and high signal segments
(type A), and vice versa. The 4S algorithm can be easily tuned to maximize the
power in detecting of a certain type of the signal segments. We may also try dif-
ferent thresholding levels in data analysis in order to detect different types of seg-
ments. In general, the choice of the parameters depends on the research goals and
balance of two trade-offs mentioned above.
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There are various platforms and technologies which produce data for CNV
detection. Besides the SNP array data studied in this work, read depth data from
next-generation sequencing (NGS) technologies are often used in CNV studies.
As one referee pointed out, the speed of 4S algorithm would be an advantage
when applied to read depth data from whole genome sequencing. This is a won-
derful research direction that we will investigate next.

An R package SSSS implementing our proposed method can be downloaded
via https://publichealth.yale.edu/c2s2/software.
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Appendix

Proof of Lemma 1 Let I be the interval of integers [, r] with L = r + 1 — £. For each
X;,i € I, the probability that the ball at i is white is 7 = P(|X;| < ¢) < P(X; <c¢) < %
as v >c¢ and f is symmetric. It is trivial to bound P(A) for the case d > L as
P(A°) = zt < 27L. Now let us consider the case d < L. Let &,,i € I be the event that
the first segment of d consecutive white balls starts from position i. Then

PER<(U-mzd,if¢ <i<r+1-d
=0, ifi>r+2-d.

Therefore, P(A°) =Y, PE) <zt +(L-d)(1-mz? <1+ (L d)(5 Ly a
P(A)>1—-(L—-d+ 2)2 ~4-1_ Note that 7 is a constant dependlng onf,v and ¢, SO
a sharper bound than 5 for £ may be used to bound P(A) if more information is
available.

Let us consider the segment [r+ 1,r+ D] on the right hand side of I Bi)
implies that there is at least one black ball in each of the segments [r+ 1,7 + d],
[r+d+1,r+2d], etc. Note that X; ~ F on these segments so the probability of
white ball at i is P(|X;| < ¢ = f3) = f’ = 2 — 1. Consider all [DJ segments of length
d on the right side of /. The probability that all these segments contain at least one
black ball is (1 — #¢)L4). Therefore, P(B,) > 1 — 2(1 — gL/ O

Proof of Theorem 1 For T = U}_ I, let L, = |I;| and D, be the gap between /; and
I ;. Define
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A, ={on I, there does not exist a sub-segment of min {d,L,} consecutive white balls}

B, = {there are d consecutive white balls on D, }.

Note that all segments in Z are identified under event <ﬂszl Ak> N ( f:_ll Bk>. By
Lemma 1, P(AS)<27% or 1(L,—d+2)27% which can be bounded by

max{ 2Ly —d+2),1)27 ™04 Em) - Moreover,  P(B) < (1 - 417 <
Dmin
1- ﬁ[’fin)[ "1, The conclusion follows Bonferroni inequality. a

Proof of Theorem 2 Let S, = {j,,...,j,,} be the locations of black balls after step
1. Note that j; and j;,; will be connected in step 2 if and only if j, , —j; < d. We
aims to count the number of segments with at least 2 consecutive black balls
after step 2, as all isolated black balls will be eliminated in step 3. Such a seg-
ment starts at j; only if j,,; —j; < d. So the total number of such segments is at
most [{i : ji.4 —Jj; £d}|. Let Z; follow Bernoulli distribution with Z; =1 if
and only if j, —j,<d for i=1,...,m. When pu =0, all black balls are ran-
domly distributed. P(Z; = 0), i.e., the probability that all balls are white in
next d positions following j; is ("% /(") = [I(, =2 Therefore,

m—1 n—k

5 d —n l—km_l
ElZ g, Y0 Z: <m(1 -], %). O

Proof of Lemma 2 We drop the subscript k in P(A,,,, ) as it is irrelevant in our
derivation below. Under the assumption that m black balls are randomly assigned
in n position, at a position of black ball, we calculate the probability that there are
at least # — 1 black balls in next s — 1 positions. Let Y be the count of black balls in
those s — 1 positions. Y follows a hypergeometric distribution with total population
size n — 1, number of success states m — 1, and number of draws s — 1. Therefore,
P(A ) <mP(Y >t — 1) as there are m black balls. O
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