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Abstract—This article discusses column-row factorizations of
low-rank matrices, and extensions of these to approximations
of full rank matrices. We give perturbation estimates for CUR
decompositions, and provide some numerical illustrations of the
practical aspects of these approximations.

I. INTRODUCTION

In modern times, low rank approximations have become ex-
tremely important both in theory and application, particularly
as a dimensionality reduction or compression tool. Oftentimes,
data matrices are well-approximated by a low rank matrix,
i.e. are of the form Ã = A + E, where A is low rank and
E is some noise (deterministic or random). There are many
classical factorizations of low-rank matrices which give rise to
natural low-rank approximations of matrices. While the trun-
cated Singular Value Decomposition (SVD) provides the best
approximation (in the spectral or Frobenius norm) to a given
matrix, it has an issue of interpretability and computational
feasibility [9]. That is, if a matrix consists of data vectors
whose interpretations are clear to a domain scientist (such
as gene expression data), then using the SVD for dimension
reduction could come at the cost of a clear interpretation,
e.g. what is an eigengene or an eigenpatient? Additionally,
computing even the truncated SVD of a huge matrix can be
somewhat costly; the naı̈ve algorithm takes O(k2 min{m,n})
operations for an m×n matrix, whereas finding the full SVD
of the matrix has complexity O(min{mn2,m2n}). Finally, we
note that storing a full SVD requires storing O(m2 +n2 + k)
entries.

One of many alternative low-rank approximations is the
so-called CUR decomposition. Here, one seeks to express a
given low-rank matrix in the form A = CUR, where C
and R are actual column and row submatrices of A, and
U is suitably chosen (more on how to do this later). At
minimum this amounts to storage savings in that one may
store a rank k matrix via this decomposition by keeping only
O(k(m+n+k)) values, which is notably smaller than the full
SVD, but the same as the truncated SVD. Moreover, if one
knows appropriate columns and rows to choose to form C and
R, then the complexity of forming a suitable U can be O(k3).
Many works consider random sampling of columns and rows
[3], [4], [5], [9] and such methods can provide good error
estimates, although there are some sensitivity issues in the
presence of noise [8]; however, recent works have considered
fast methods for deterministically selecting columns and rows
[12], [14].

With this setup in mind, there are two natural questions to
be asked:
• How should one choose columns and rows to form C and
R, and how many should one choose?

• What is the right matrix U?
Let us begin by considering the second question above.

Suppose we are given A ∈ Rm×n and suitable column and
row submatrices C and R, respectively (suitable here meaning
that at least rank (C) = rank (R) = rank (A) so that there
is hope of obtaining a factorization of A). Then we desire a
function f satisfying the following properties:
• A = Cf(A)R, and
• f is stable under small perturbations, e.g. ‖f(A+ E)−
f(A)‖ is small if ‖E‖ is small.

II. EXACT CUR DECOMPOSITION

We begin by illustrating a particular choice for the function
f above which satisfies the factorization condition. This is
the original (and most general) formulation of what is today
called the CUR decomposition. It’s history is not easy to pin
down, but it appears implicitly at least as far back as a paper
of Penrose [10]. For notation here, [n] is the set {1, . . . , n};
given index sets I ⊂ [m] and J ⊂ [n], A(I, J) is the |I|× |J |
submatrix of A whose entries are indexed by I×J , and A(I, :)
is a |I| × n row submatrix of A while A(:, J) is a m × |J |
column submatrix. Given a matrix A, A† represents its Moore–
Penrose pseudoinverse. Note that throughout this paper, ‖ · ‖
will represent the spectral norm of a matrix, and ‖ · ‖F is the
Frobenius norm.

Theorem II.1 ([6]). Let A ∈ Rm×n have rank r, and let I ⊂
[m] and J ⊂ [n] with |I| ≥ r and |J | ≥ r. Let C = A(:, J),
R = A(I, :), and U = A(I, J). If rank (U) = rank (A), then

A = CU †R.

For a very simple proof of Theorem II.1, consult [1]. This
theorem suggests that one reasonable choice of f is to set
f(A) = A(I, J) if good index sets I and J are given.

III. COLUMN SELECTION AND CUR APPROXIMATIONS

Another way to find a CUR decomposition of A given C
and R would be to find the minimizer of ‖A − CZR‖. This
minimizer is known in the Frobenius norm as the following
shows:
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Proposition III.1 ([13]). Let A ∈ Rm×n (not necessarily low
rank) and C and R be column and row submatrices of A,
respectively. Then the following holds:

argmin
Z

‖A− CZR‖F = C†AR†.

It should be noted that Proposition III.1 is not true for
spectral norm. Given the result of Proposition III.1, much
of the literature surrounding the CUR decomposition takes
A ≈ CC†AR†R to be the CUR decomposition of A even in
the case that A is not low rank.

As a first note, these two manners of performing a CUR
approximation of A are the same in the exact decomposition
case:

Proposition III.2. If A = CU †R is an exact CUR decompo-
sition of A, then U † = C†AR†.

Sketch of Proof. It suffices to note that C†C and U†U are
orthogonal projections onto the same subspace, and likewise
so are RR† and UU †. Then

C†AR† = C†CU †RR†

= U†UU †UU †

= U †,

where the final step follows from basic properties of the
Moore–Penrose pseudoinverse.

Note also that by a simple computation noting that CC† is
an orthogonal projection, it follows that

‖A− CC†AR†R‖ ≤ ‖A− CC†A‖+ ‖A−AR†R‖.

Here, CC†A is the projection of the columns of A onto the
span of the columns in C, and AR†R is the projection of
the rows of A onto the span of the rows in R. Going back
to the question of choosing good columns and rows, we see
that if we are able to find the best column submatrix of A on
which to project and similarly the best row submatrix, then we
will have a good CUR approximation of A. This problem is
termed the Column Subset Selection Problem in the theoretical
computer science literature [2], and was recently shown to be
NP–hard [11].

Thus far we have shown that two common choices for the
function f given columns C and R are f1(A) = A(I, J) and
f2(A) = C†AR†. These both satisfy the first property listed in
the introduction. In general, f1(A) requires much less compu-
tation than f2(A), but at the expense of not giving the minimal
distance from A as in Proposition III.1. Demonstrating stability
under small perturbations is difficult for general matrices given
the necessity of estimating the norms of pseudoinverses of
submatrices; this issue is left to future work.

IV. PERTURBATIONS OF CUR DECOMPOSITIONS

Armed with some notion of how to form CUR decomposi-
tions of low-rank matrices, let us discuss what happens under
small perturbations. We will consider matrices of the form
Ã = A + E where A has low rank k, and E is a (typically)

full rank noise matrix. In our numerical experiments we will
take E to be a random matrix, but here we do not make
any assumption on its entries. We give upper bounds on a
CUR approximation of Ã in terms of the underlying CUR
decomposition of A and the magnitude of the noise.

If Ã = A+E, and we consider C̃ = Ã(:, J), R̃ = Ã(I, :),
and Ũ = Ã(I, J) for some index sets I and J , then we write

C̃ = C+E(:, J), R̃ = R+E(I, :), Ũ = U+E(I, J) (1)

where C := A(:, J), R := A(I, :), and U := A(I, J). Thus if
we choose columns and rows, C̃ and R̃ of Ã, we would like to
determine how this compares to the underlying approximation
of the low rank matrix A by its columns and rows, C and R.

For ease of notation, we will use the conventions that
EI := E(I, :), EJ := E(:, J), and EI,J := E(I, J). The
following proposition gives a first estimate of the performance
of the CUR approximation suggested by the exact CUR
decomposition of Theorem II.1 in terms of the underlying
CUR decomposition of A (proofs of these and further results
are in a forthcoming manuscript [7]).

Proposition IV.1. Suppose that A,C,U, and R are as in
Theorem II.1 but with no assumption on the rank of U , and
let Ã = A + E for some fixed but arbitrary E ∈ Rm×n. Let
C̃, R̃, and Ũ be as in (1). Then the following holds:

‖A− C̃Ũ †R̃‖ ≤ ‖A− CU †R‖+ ‖CŨ †‖‖EI‖
+ ‖Ũ †R̃‖‖EJ‖

+ ‖CU †‖‖U†R‖‖|EI,J‖(3 + ‖Ũ †‖‖EI,J‖).

If columns and rows are chosen such that a valid CUR
decomposition of the underlying low-rank matrix A is obtained
(i.e. A = CU †R), then the error term on the right-hand side
above will be dominated by the noise E as long as the other
terms are not too large. However, these may be difficult to
assess for general matrices. Thus Proposition IV.1 gives only
a preliminary estimate, but is also flexible since it allows the
use of any submultiplicative norm. While the decomposition
considered here is the direct analogue of that in Theorem
II.1, there is one key difference due to the presence of noise:
namely that the rank of Ũ is typically larger than the rank of
A provided more than rank (A) columns or rows are chosen.
Therefore, C̃Ũ†R̃ is an approximation of A that has larger
rank; in fact we shall see experimentally that this leads to
much worse approximation (cf. Figure 1). It is natural then
to consider what happens if the target rank is enforced. By
modifying the proof of Proposition IV.1, one has the following.

Proposition IV.2. With the notations and assumptions of
Proposition IV.1, suppose rank (A) = rank (U ) = k, and let
Ũk be the best rank k approximation of Ũ . Then

‖A− C̃Ũ†kR̃‖ ≤ ‖CŨ†k‖‖EJ‖+ ‖Ũ †kR‖‖EI‖
+‖CU †‖‖U†R‖(3‖U − Ũk‖
+‖Ũ †k‖‖U − Ũk‖2).

Note that if we are able to select U such that ‖EI,J‖ is small
compared to σk(U), then ‖U† − Ũ †k‖ can be well estimated.
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Doing so will give estimations of ‖A− C̃Ũ †kR̃‖ which depend
primarily on A itself rather than ‖U†‖ which can be arbitrarily
large. The following gives a preliminary estimate.

Theorem IV.3. With the notations and assumptions of Propo-
sition IV.1, if additionally σk(U) > 2µ ‖EI,J‖, then

‖A− C̃Ũ †kR̃‖ ≤
‖U†‖

1− 2µ‖A†‖2‖EI,J‖{
2‖EI,J‖

[
‖EJ‖‖AR†‖+ ‖EI‖‖C†A‖+

+2‖EI,J‖‖AR†‖‖C†A‖
]
+ ‖EI‖‖EJ‖

}
+ ‖AR†‖‖EJ‖+ ‖C†A‖‖EI‖+ 6‖AR†‖‖C†A‖‖EI,J‖.

As noted in [7], the norms of C†U and UR† are equal
to row and column submatrices of the left and right singular
vector matrices of A, respectively. In the case that the rows and
columns are selected to give the maximal volume submatrices
of the singular vectors, then all estimates in Theorem IV.3 can
be made dependent upon A and the noise E, and are of the
form

‖A− C̃Ũ†kR̃‖ = O(‖E‖+ ‖A†‖‖E‖2).

V. NUMERICAL SIMULATIONS

Here, we illustrate the performance of some of the basic
CUR approximations mentioned previously on matrices of
the form Ã = A + E, where A is low-rank and E is a
small perturbation matrix. In the experiments, we will take
the entries of E to be i.i.d. Gaussian with mean zero and a
prescribed variance σ2.

Experiment 1. In this simulation, we test how enforcing
the low-rank constraint on Ũr will influence the relative
error ‖A− C̃Ũ†r R̃‖2/‖A‖2, where r varies from rank (A) to
rank (Ũ). We consider a 500×500 matrix of rank 10 perturbed
by Gaussian noise with standard deviation 10−4. We randomly
choose 60 columns and rows, and for each fixed r, we repeat
this process 100 times and compute the average error. For
illustration, we use three common sampling methods: Lever-
age Scores, column lengths, and uniform; each corresponds to
sampling columns with replacement with probabilities given
by

plev
i :=

1

k
‖Vk(i, :)‖22, pcol

i :=
‖A(:, i)‖22
‖A‖2F

, punif
i :=

1

n
.

The row sampling probabilities are defined analogously. Figure
1 shows that if r is closer to rank (A), the relative error is
smaller as one might expect, while as the rank increases the
error is saturated by the noise.

Experiment 2. In this simulation, the set-up is the same
as in Experiment 1. We compared the relative error ‖A −
C̃Ũ†r R̃‖2/‖A‖2 with the error ‖A − C̃C̃†ÃR̃†R̃‖2/‖A‖2,
when r varies from rank(A) to rank(U ). The result is re-
ported in Figure 2. The figure shows that if we could set
r = rank(A), then C̃Ũ†r R̃ is almost the best CUR estimation
of A.

Fig. 1: Averaged errors ‖A − C̃Ũ†r R̃‖2/‖A‖2 vs. r over 100
trials of sampling columns/rows.

Fig. 2: The blue line represents ‖A − C̃Ũ †r R̃‖2/‖A‖2 vs. r
which varies from rank (A) to 50 for averaged errors over 100
trials of sampling columns and rows uniformly, and the red
line stands for the averaged error ‖A − C̃C̃†ÃR̃†R̃‖2/‖A‖2
over 100 trials of sampling columns/rows under the uniform
probability.
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