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Abstract
We consider fractional online covering problems with �q -norm objectives as well as
its dual packing problems. The problem of interest is of the form min{ f (x) : Ax ≥
1, x ≥ 0} where f (x) = ∑

e ce‖x(Se)‖qe is the weighted sum of �q -norms and A
is a non-negative matrix. The rows of A (i.e. covering constraints) arrive online over
time. We provide an online O(log d + log ρ)-competitive algorithm where ρ = amax

amin
and d is the maximum of the row sparsity of A and max |Se|. This is based on the
online primal-dual framework where we use the dual of the above convex program.
Our result is nearly tight (even in the linear special case), and it expands the class
of convex programs that admit online algorithms. We also provide two applications
where such convex programs arise as relaxations of discrete optimization problems, for
which our result leads to good online algorithms. In particular, we obtain an improved
online algorithm (by two logarithmic factors) for non-uniform buy-at-bulk network
design and a poly-logarithmic competitive ratio for throughput maximization under
�p-norm capacities.

Mathematics Subject Classification 90C25 · 68W27

1 Introduction

The online primal-dual method is a widely used approach for online problems. This
involves solving a discrete optimization problemonline as follows (i) formulate a linear
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programming relaxation and obtain a primal-dual online algorithm for it; (ii) obtain
an online rounding algorithm for the resulting fractional solution. While this is similar
to a linear programming (LP) based approach for offline optimization problems, a key
difference is that solving the LP relaxation in the online setting is highly non-trivial.
(Recall that there are general polynomial time algorithms for solving LPs offline.) So
there has been a lot of effort in obtaining good online algorithms for various classes of
LPs: see [1,15,26] for pure covering LPs, [15] for pure packing LPs and [5] for certain
mixed packing/covering LPs. Such online LP solvers have been useful in obtaining
online algorithms for various problems, eg. set cover [2], facility location [1], machine
scheduling [5], caching [8] and buy-at-bulk network design [24].

Recently, [6] initiated a systematic study of online fractional covering and packing
with convex objectives; see also the full versions [7,13,17]. These papers obtained good
online algorithms for a large class of fractional convex covering problems. They also
demonstrated the utility of this approach viamany applications that could not be solved
using just online LPs. However these results were limited to convex objectives f :
R

n+ → R+ satisfying a monotone gradient property, i.e. ∇ f (z) ≥ ∇ f (y) pointwise
for all z, y ∈ R

n with z ≥ y. There are however many natural convex functions that do
not satisfy such a gradient monotonicity condition. Note that this condition requires
the Hessian ∇2 f (x) to be pointwise non-negative in addition to convexity which only
requires ∇2 f (x) to be positive semidefinite.

One of the goals in this paper is to expand the class of convex programs with
good online algorithms. To this end, we focus on convex functions f that are sums of
different �q -norms. This is a canonical class of convex functions with non-monotone
gradients and prior results are not applicable; see Sect. 1.1 for more details. Another
goal in this paper is to obtain better online algorithms for discrete optimization using
such convex relaxations. Here, we show that sum of �q -norm objectives arise naturally
as relaxations of some network design/routing problems for which our result leads to
better online algorithms.

We show that covering programs with sums of �q -norm objectives (and their dual
packing programs) admit an online algorithm with a logarithmic competitive ratio.
This result is nearly tight because there is a logarithmic lower bound even for online
covering LPs (which corresponds to an �1 norm objective).

We also provide two applications of our fractional solver. The first is a covering
application: we obtain improved competitive ratios (by two logarithmic factors) for
online non-uniform buy-at-bulk problems. The second is a packing application: we
obtain the first poly-logarithmic online algorithm for throughput maximization with
“group” edge capacities where there is an �p-norm constraint on the flows through
some subsets of edges.

Given that we achieve log-competitive online algorithms for sums of �q -norms, a
natural question is whether such a result holds for all norms. Recall that any norm
is a convex function. It turns out that a log-competitive algorithm is not possible for
general norms. This follows from a result in [7] which shows an Ω(q log d) lower
bound for minimizing the objective ‖Bx‖q under covering constraints (where B is a
non-negative matrix and d is the row-sparsity of the constraint matrix A). It is still
an interesting open question to identify the correct competitive ratio for general norm
functions.
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1.1 Our results and techniques

We consider the online covering problem

min
r∑

e=1

ce‖x(Se)‖qe (P)

s.t. Ax ≥ 1,

x ≥ 0.

Above, each Se ⊆ [n] := {1, 2, . . . n}, qe ≥ 1, ce ≥ 0 and A is a non-negative m × n
matrix. For any x ∈ R

n and S ⊆ [n], we use x(S) ∈ R
|S| to denote the vector with

coordinates (xi )i∈S ; moreover, given any q ≥ 1 we use ‖x(S)‖q = (∑
i∈S xq

i

)1/q
.

For any subset S ⊆ [n] we use S := [n]\S. We also consider the dual of the above
convex program, which is the following packing problem:

max
m∑

k=1

yk (D)

s.t. AT y = μ,

r∑

e=1

μe = μ,

‖μe(Se)‖pe ≤ ce, ∀e ∈ [r ],
μe(Se) = 0, ∀e ∈ [r ],
y ≥ 0.

The values pe above satisfy 1
pe

+ 1
qe

= 1; so ‖ · ‖pe is the dual norm of ‖ · ‖qe . This
dual can be derived from (P) using Lagrangian duality; see Sect. 2.

Our framework captures the classic setting of packing/covering LPs when r = n
and for each e ∈ [n] we have Se = {e} and qe = 1. Our first main result is:

Theorem 1 There is an O(log d + log ρ)-competitive online algorithm for (P) and (D)
where the covering constraints in (P) and variables y in (D) arrive over time. Here
ρ = amax

amin
, amax := max{ai j }, amin := min{ai j : ai j > 0}, and d is the maximum of

the row-sparsity of A and maxr
e=1 |Se|.

We note that this bound is also the best possible, even in the linear case [15] when we
require monotone primal and dual variables. For just the covering problem, a better
O(log d) bound is known for linear objectives [26] and for monotone-gradient convex
functions [6]: these results involve non-monotone dual variables. Obtaining a similar
O(log d) bound for our covering program (P) remains an open question.

The algorithm in Theorem 1 is the natural extension of the primal-dual approach for
online LPs [15]. We use the gradient∇ f (x) at the current primal solution x as the cost
function, and use this to define a multiplicative update for the primal. Simultaneously,
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the dual solution y is increased additively. This algorithm is in fact identical to the
one in [6] for convex functions with monotone gradients. Our contribution here is in
the analysis of this algorithm, which requires new ideas to deal with non-monotone
gradients. In Appendix B, we show that a naive approach using the previous proof
ideas fails.

We also provide two applications of Theorem 1, one using the result for the covering
problem (P) and another using the packing problem (D).

Non-uniform multicommodity buy-at-bulk. This is a well-studied network design
problem in the offline setting [18,19]. The setting is as follows. We are given an
undirected (or directed) graph G = (V , E) with a monotone subadditive cost func-
tion ge : R+ → R+ on each edge e ∈ E and a collection {(si , ti )}m

i=1 of m
source/destination pairs. The goal is to find an si − ti path Pi for each i ∈ [m]
such that the objective

∑
e∈E ge(loade) is minimized; here loade is the number of

paths using e. In its online version, the source-destination pairs arrive incrementally
over time and we need to select the path for each pair immediately upon arrival. The
first poly-logarithmic competitive ratio for the online problem was obtained recently
in [24]. A key step in this result was a fractional online algorithm for a specific mixed
packing-covering LP. By utilizing Theorem 1 we improve the competitive ratio of this
step from O(log3 n) to O(log n) which is also the best possible. Combined with the
other steps in [24], we obtain:

Theorem 2 There is an O(αβγ · log3 n)-competitive ratio for non-uniform multi-
commodity buy-at-bulk, where α is the “junction tree” approximation ratio, β is the
integrality gap of the natural LP relaxation for single-source instances, and γ is the
competitive ratio for single-source instances.

See Sect. 4 for more details on the parameters α, β and γ . The corresponding compet-
itive ratio in [24] was O(αβγ · log5 n). In particular, for undirected multicommodity
buy-at-bulk we obtain an O(log9 n) competitive ratio, improving over the O(log11 n)

ratio in [24].
Themain idea inTheorem2 is a reformulation of theLP from [24] as a pure covering

program where the objective is a sum of �1 and �∞ norms. This reformulation uses
the equivalence of maximum-flow and minimum-cut. The resulting covering program
has an exponential number of constraints: but we still obtain a polynomial-time online
algorithm using a suitable separation oracle.

Throughput maximization with �p-norm capacities. The online problem of maxi-
mizing throughput subject to edge capacities is a classic online optimization problem
[4,15]. Here we are given a directed graph with m edges and edge capacities u(e).
Source/destination requests (si , ti ) arrive in an online fashion. An algorithm needs to
select a subset of requests to accept and assign a path to each accepted request so that
the load on each edge e is at most ue. The goal is to maximize the number of accepted
requests. We consider a natural generalization where there are capacity constraints
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Online covering with �q-norm objectives 159

on groups of edges: each such constraint requires the �p j -norm of the loads on some
edge-subset S j to be at most a given capacity c j .

Theorem 3 The throughput maximization problem with �p-norm capacities admits a
randomized O(logm)-competitive algorithm when:

1. the capacity c j = Ω(logm) |S j |1/p j for each group j , or
2. each capacity may be violated by an O(log1+1/p m) factor and p = min j p j ,

where m is maximum of the number of edges and the number of constraint subsets.

The two algorithms above rely on different convex relaxations, both of which have
the form of our dual program (D). So Theorem 1 can be used directly to solve these
convex programs. In order to obtain integral solutions, the algorithms use a natural
randomized rounding. The first algorithm runs in polynomial time, whereas the second
algorithm takes exponential time. On the other hand, the second algorithm achieves a
better capacity violation when |S j | is large.

We note that some “high capacity” assumption is required (regardless of running
time) to obtain any sub-polynomial competitive ratio even in the usual throughput
maximization problem where each |S j | = 1 [4,10].

Our approach for Theorem 1. We first show that by duplicating variables and using
an online separation oracle approach one can ensure that the sets {Se}r

e=1 are disjoint.
The use of a separation oracle in the online context is similar to [1]. The disjoint
structure of Ses allows for a simple expression for ∇ f which is useful in the later
analysis. Then we utilize the specific form of the primal-dual convex programs (P)
and (D) and an explicit expression for ∇ f to show that the dual y is approximately
feasible. In particular we show that ‖yT A(Se)‖pe ≤ O(log dρ) · ce for each e ∈ [r ];
here A(Se) denotes the submatrix of A with columns from Se. Note that this is a weaker
requirement than upper bounding AT y pointwise by ∇ f (x̄) which was the approach
in [6] for functions with monotone gradients.

In order to bound ‖yT A(Se)‖pe , we analyze each e ∈ [r ] separately. We partition
the steps of the algorithm into phases where phase j corresponds to steps where
Φe = ∑

i∈Se
xqe

i ≈ θ j ; here θ > 1 is a parameter that depends on qe. The number of
phases can be bounded using the fact that Φe is monotonically increasing. By triangle
inequality we upper bound ‖yT A(Se)‖pe by

∑
j ‖yT

( j) A(Se)‖pe where y( j) denotes
the dual variables that arrive in phase j . And in each phase j , we can upper bound
‖yT

( j) A(Se)‖pe using the differential equations for the primal and dual updates.

1.2 Related work

The online primal-dual framework for linear programs [16] is fairly well understood.
Tight results are known for the class of packing and covering LPs [15,26], with com-
petitive ratio O(log d) for covering LPs and O(log dρ) for packing LPs; here d is the
row-sparsity and ρ is the ratio of the maximum to minimum entries in the constraint
matrix. SuchLPs are very useful because they correspond to theLP relaxations ofmany
combinatorial optimization problems. Combining the online LP solver with suitable
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online rounding schemes, good online algorithms have been obtained for many prob-
lems, eg. set cover [2], group Steiner tree [1], caching [8] and ad-auctions [14]. Online
algorithms for LPs with mixed packing and covering constraints were obtained in [5];
the competitive ratio was improved in [6]. Such mixed packing/covering LPs were
also used to obtain an online algorithm for capacitated facility location [5]. A more
complex mixed packing/covering LP was used recently in [24] to obtain online algo-
rithms for non-uniform buy-at-bulk network design: as an application of our result,
we obtain a simpler and better (by two log-factors) online algorithm for this problem.

There have also been a number of results utilizing the online primal-dual frame-
work with convex objectives for specific problems, eg. matching [22], caching
[30], energy-efficient scheduling [21,25] and welfare maximization [11,28]. All of
these results involve separable convex/concave functions. Recently, [6] considered
packing/covering problems with general (non-separable) convex objectives, but (as
discussed previously) this result requires a monotone gradient assumption on the con-
vex function. The sum of �q -norm objectives considered in this paper does not satisfy
this condition.

All the results above (as well as ours) involve convex objectives and linear
constraints. We note that [23] obtained online primal-dual algorithms for certain
semidefinite programs (i.e. involving non-linear constraints). While both our result
and [23] generalize packing/covering LPs, they are not directly comparable.

We also note that online algorithms with �q -norm objectives have been studied
previously for many scheduling problems, eg. [3,9]. More recently [7] used ideas
from the online primal-dual approach in an online algorithm for unrelated machine
scheduling where the objective is the sum of �p-norm of loads and startup costs. These
results use different techniques and are not directly comparable to ours.

2 Preliminaries

Recall the primal covering problem (P) and its dual packing problem (D). In the online
setting, the constraints in the primal and variables in the dual arrive over time.We need
to maintain monotonically increasing primal (x) and dual (y) solutions.

Deriving the dual packing problem. We first describe how (D) can be derived as the
Lagrangian dual of (P). Let

fe(x) = ce‖x(Se)‖qe for each e ∈ [r ] and f (x) =
r∑

e=1

fe(x).

The Fenchel conjugate of f is f ∗(μ) = maxx∈Rn+{μT x − f (x)} for μ ≥ 0 [12,
§3.3.1]. Since fe(x) = ce‖x(Se)‖qe , for μe ∈ R

n+,

f ∗
e (μe) =

{
0, if ‖μe(Se)‖pe ≤ ce andμe(Se) = 0,
∞, otherwise.

(1)
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For completeness, the derivation of f ∗
e (·) is shown in Appendix A.

The Lagrangian dual of problem (P) is given by

sup
y≥0

inf
x≥0

(
r∑

e=1

ce‖x(Se)‖qe + yT (1 − Ax)

)

= sup
y≥0

(
m∑

k=1

yk − sup
x≥0

(

(AT y)T x −
r∑

e=1

ce‖x(Se)‖qe

))

= sup
y≥0

(
m∑

k=1

yk − f ∗(AT y)

)

(2)

where f ∗(·) is the conjugate function of f (·). Let μ = AT y. Note that μ ≥ 0 since
y ≥ 0 and A is a nonnegative matrix. We can apply the Moreau-Rockafellar formula
[32, §6.8] [34, Thm 3.2] to calculate f ∗(·) because f (x) = ∑r

e=1 fe(x) is closed,
proper, continuous and convex. This yields:

f ∗(μ) = f ∗
1 (μ) ⊕ · · · ⊕ f ∗

r (μ)

= inf
μ1+···+μr =μ

{
r∑

e=1

f ∗
e (μe)

}

, ∀μ ∈ R
n,

where ⊕ is the infimal convolution.
Using the expression (1) for f ∗

e (·), problem (2) can be reformulated as

max
m∑

k=1

yk

s.t. AT y = μ,

r∑

e=1

μe = μ,

‖μe(Se)‖pe ≤ ce, ∀e ∈ [r ],
μe(Se) = 0, ∀e ∈ [r ],
y ≥ 0.

which is exactly the packing problem (D).
Note that strong duality holds since the Slater’s condition holds [12, §5.2.3], that

is, there is x ∈ R
n such that Ax > 1 and x > 0.

Disjointness assumption on Ses. We next show that one can assume that the sets
{Se}r

e=1 are disjointwithout loss of generality. This leads to a much simpler expression
for∇ f that will be used in Sect. 3. An online algorithm for the covering problem (P) is
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said to be primal-dual if it alsomaintains dual variables in (D) and the primal objective
is bounded in terms of the dual objective.

Lemma 1 Suppose there is a polynomial time α-competitive algorithm A for the cov-
ering problem (P) with disjoint Se. Then, there is a polynomial time O(α)-competitive
algorithm for (P) on general instances. Moreover, if algorithm A is primal-dual and
maintains monotonically non-decreasing dual variables, then there is a polynomial
time O(α)-competitive algorithm for the packing problem (D) on general instances.

Proof Let A denote an α-competitive algorithm for the covering problem (P) with
disjoint Se. We assume that it is a minimal algorithm, that is when constraint k arrives
it stops increasing x when

∑n
i=1 aki xi = 1. (Any online algorithm can be ensured to

be of this form.)
Given an instance PI of the covering problem (P) with general {Se}r

e=1, we define
an instance PJ with disjoint S′

e as follows. For each variable xi , we introduce r copies

x (1)
i , . . . , x (r)

i where x (e)
i corresponds to the possible occurrence of xi in Se. So there are

nr variables inPJ . For each e ∈ [r ]we set S′
e to consist of the variables x (e)

i for i ∈ Se.
So {S′

e}r
e=1 are disjoint. For each constraint aT

k x ≥ 1 in instance PI , we introduce a
family of rn constraints in instance PJ which corresponds to all combinations of the
x (e)

i variables, namely

n∑

i=1

aki · x (ei )
i ≥ 1, ∀e1 ∈ [r ], e1 ∈ [r ], . . . en ∈ [r ]. (3)

If x̄ is a feasible solution of PI , then x (e)
i = x̄i , for all e ∈ [r ] and i ∈ [n] is a

feasible solution to PJ with the same objective value. Conversely, if x is a feasible
solution for PJ then x̄i = minr

e=1 x (e)
i for all i ∈ [n] is a feasible solution for PI with

at most the same objective value. Hence, instances PI and PJ share the same optimal
value. So an α-competitive algorithm for PJ also leads to one for PI . However, this
is not a polynomial time reduction as there are exponentially many constraints in J .
In order to deal with this, we use a separation oracle based algorithm, as in [1]. The
separation oracle is described as Algorithm 1.

When the kth covering constraint
∑n

i=1 aki xi ≥ 1 arrives in PI

while
∑n

i=1 aki · minr
e=1 x(e)

i < 1
2 do

let ei = argminr
e=1 x(e)

i for all i ∈ [n];
add constraint

∑n
i=1 aki · x

(ei )
i ≥ 1 to instance PJ and run algorithmA;

end

Output current solution x̄i = 2 · minr
e=1 x(e)

i for all i ∈ [n];
Algorithm 1: Separation Oracle Based Algorithm for General Se

It is obvious that the output solution is feasible for instance PI . As x is an α-
competitive solution to PJ , the output solution is 2α-competitive for PI . It remains
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to show that Algorithm 1 runs in polynomial time upon arrival of any constraint k.
For this, define potential function ψ = ∑n

i=1
∑r

e=1 aki · x (e)
i which is monotone

non-decreasing. We know that maxi,e aki x (e)
i ≤ 1 since algorithm A is minimal. So

ψ ≤ rn. In each iteration of Algorithm 1,
∑n

i=1 aki · x (ei )
i increases by at least 1

2 , i.e.
ψ also increases by at least 1

2 . So the number of iterations is bounded by 2rn which
is polynomial. This completes the first part of the proof.

LetDI andDJ be the dual programs for PI and PJ respectively. By strong duality
and the fact that PI and PJ share the same optimal value, DI and DJ also have the
same optimal value. Let μ′ ∈ R

nr denote the μ-variables in DJ . Recall from (3) that
each constraint k in PI corresponds to rn constraints in PJ : let y′

k,� for � ∈ [rn]
denote the dual variables in DJ for these constraints. Given a feasible dual solution
μ′, y′ for DJ , we can obtain a feasible solution for DI by setting yk = ∑

� y′
k,�, for

all k,

μe(i) =
{

μ′(e, i) if i ∈ Se

0 if i /∈ Se
, for i ∈ [n] and e ∈ [r ],

and μ = ∑r
e=1 μe. Note also that the objective value of (y, μ) in DI equals that of

(y′, μ′) inDJ , Furthermore, since the online algorithm maintains monotone variables
y′, the corresponding y-variables are also monotone. The running time is polynomial
(same as for the primal instance). Finally, as the algorithm is primal-dual, we obtain
an O(β)-competitive ratio for the dual problemDI as well. This completes the second
part of the proof. ��

Henceforth we will assume that the sets {Se}r
e=1 are disjoint. Our algorithm in this

case (Sect. 3) is primal-dual andmaintains monotone duals. Using Lemma 1wewould
then obtain online algorithms for both covering and packing on general instances.

When {Se}r
e=1 are disjoint, the constraints

∑r
e=1 μe = μ, ‖μe(Se)‖pe ≤ ce and

μe(Se) = 0 for e ∈ [r ] are equivalent to ‖μ(Se)‖pe ≤ ce for e ∈ [r ] andμ(∩e Se) = 0.
Then the dual packing problem (D) simplifies to:

max

{
m∑

k=1

yk : AT y = μ, ‖μ(Se)‖pe ≤ ce ∀e ∈ [r ], μ(∩e Se) = 0, y ≥ 0

}

.

(DD)

This is the dual program that will be used in Sect. 3. We show below (for complete-
ness) that weak duality holds for the primal program (P) and its dual (DD). We note
that strong duality also holds because (P) satisfies Slater’s condition; however we do
not use this fact in in Sect. 3.

Lemma 2 For any pair of feasible solutions x to (P) and (y, μ) to (DD), we have

r∑

e=1

ce‖x(Se)‖qe ≥
m∑

k=1

yk .
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Proof This follows from the following inequalities:

m∑

k=1

yk = yT 1 ≤ yT Ax = μT x ≤
r∑

e=1

∑

i∈Se

μi · xi

≤
r∑

e=1

‖μ(Se)‖pe · ‖x(Se)‖qe

≤
r∑

e=1

ce · ‖x(Se)‖qe .

The first inequality is by primal feasibility; the second inequality is by x ≥ 0, μi ≥ 0
and μi = 0 if i ∈ ∩e Se. The third inequality is by Hölder’s inequality. The last
inequality is by dual feasibility. ��

3 Algorithm and analysis

Let f (x) = ∑r
e=1 ce‖x(Se)‖qe denote the primal objective in (P).

When the kth request
∑n

i=1 aki xi ≥ 1 arrives;
Let τ be a continuous variable denoting the current time;
while the constraint is unsatisfied, i.e.,

∑n
i=1 aki xi < 1 do

For each i with aki > 0, increase xi at rate
∂xi
∂τ

= aki xi + 1
d∇i f (x)

= aki xi + 1
d

cexqe−1
i

‖x(Se)‖qe−1
qe ;

; // If ∇i f (x) = 0, increase xi at rate ∂xi
∂τ

= ∞;

1 Increase yk at rate ∂ yk
∂τ

= 1;
2 Set μ = AT y;
end

Algorithm 2: Algorithm for �q -norm packing/covering

In order to ensure that the gradient ∇ f is defined, the primal solution x starts off as
δ·1where δ > 0 is arbitrarily small. So the initial primal value is atmost nδ·maxr

e=1 ce,
which can be made arbitrarily small.

It is clear that the algorithmmaintains a feasible and monotonically non-decreasing
primal solution x . The dual solution (y, μ) is also monotonically non-decreasing, but
not necessarily feasible.Wewill show that (y, μ) is O(log ρd)-approximately feasible,
i.e. the packing constraints in (DD) are violated by at most an O(log ρd) factor.

Lemma 3 The primal objective f (x) is at most twice the dual objective
∑m

k=1 yk.

Proof We will show that the rate of increase of the primal is at most twice that of the
dual. Consider the algorithm upon the arrival of some constraint k. Then

d f (x)

dτ
=

∑

i :aki >0

∇i f (x) · ∂xi

∂τ
=

∑

i :aki >0

(

aki xi + 1

d

)

≤ 2.
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The inequality comes from the fact that (i) the process for the kth constraint is termi-
nated when

∑
i aki xi = 1 and (ii) the number of non-zeroes in constraint k is at most

d. Also it is clear that the dual objective increases at rate one, which finishes the proof.
��

Lemma 4 The dual solution (y, μ) is O(log ρd)-approximately feasible, i.e.

μ(∩e Se) = 0, (4)

and

‖μ(Se)‖pe ≤ O(log ρd) · ce, ∀e ∈ [r ]. (5)

Proof First we prove (4). For any i ∈ ∩e Se we always have ∇i f (x) = 0: we will
show that μi = 0 always. Consider the arrival of any constraint

∑n
i=1 aki xi ≥ 1. If

aki = 0 then ∂μi
∂τ

= 0. If aki > 0 then xi increases at ∞ rate: so the constraint will be
satisfied immediately without increasing yk , so μi also stays 0.

In order to prove (5), fix any e ∈ [r ]. When qe = 1, the corresponding part
of the objective function is reduced to the linear case ce

∑
i∈Se

xi and we want to
prove ‖μ(Se)‖∞ ≤ O(log ρd) · ce for all e ∈ [r ]. It is equivalent to prove that
μi ≤ O(log ρd) · ce for all i ∈ Se. In this case, we have

∂xi

∂τ
= aki xi + 1

d

ce
,

∂ yk

∂τ
= 1,

∂μi

∂τ
= aki

⇒ dμi = ce aki

aki xi + 1
d

dxi

This means that the increase in μi over the entire algorithm is:

Δμi ≤
∫ 1

amin

0

ce aki

aki xi + 1
d

dxi = ce · ln
(

aki · d

amin
+ 1

)

= O(log ρd) · ce.

Recall that amin = min{ai j : ai j > 0}. The first inequality above follows from the
fact that when xi = 1/amin all constraints involving i are satisfied (so xi will not be
increased further).

The case qe > 1 is the main part of the analysis. In order to prove the desired upper
bound on ‖μ(Se)‖pe we use a potential function Φ = ∑

i∈Se
(xqe

i ). Let phase zero

denote the period where Φ ≤ ζ := ( 1
amax·d2 )

qe ; recall that amax = max{ai j }. For each
� ≥ 1, phase � is the period where θ�−1 · ζ ≤ Φ < θ� · ζ . Here θ > 1 is a parameter
depending on qe that will be determined later. Note that Φ ≤ d( 1

amin
)qe as variable xi

will never be increased beyond 1/amin. Hence if L denotes the number of phases then
( 1

amax·d2 )
qeθ L ≤ d( 1

amin
)qe , which implies L ≤ 3qe · log(dρ)/ log θ . Next, we bound

the increase in ‖μ(Se)‖pe for each phase separately.
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For any phase, we have the following equalities

∂xi

∂τ
= aki xi + 1

d

cexqe−1
i

‖x(Se)‖qe−1
qe ,

∂ yk

∂τ
= 1,

∂μi

∂τ
= aki

⇒ dμi = ce aki xqe−1
i

(∑
j∈Se

xqe
j

)1− 1
qe (

aki xi + 1
d

)
dxi . (6)

Phase zero. Suppose that each xi increases to αi in phase zero. From (6) we have

dμi ≤ d ce aki xqe−1
i

(∑
j∈Se

xqe
j

)1− 1
qe

dxi ⇒ 1

d ce aki
dμi ≤ xqe−1

i
(∑

j∈Se
xqe

j

)1− 1
qe

dxi .

This means that the increase Δμi in μi (during phase zero) can be bounded as:

1

d ce aki
Δμi ≤

∫ αi

δ

xqe−1
i

(∑
j∈Se

xqe
j

)1− 1
qe

dxi ≤
∫ αi

0
1dxi ≤ αi .

Since in phase zero,Φ ≤ ( 1
amax·d2 )

qe , we know that each αi ≤ 1
amax·d2 . SoΔμi ≤ ce

d
and at the end of phase zero, we have ‖μ(Se)‖pe ≤ ‖μ(Se)‖1 ≤ ce. The last inequality
is because d ≥ maxe |Se|.
Phase � ≥ 1. Let Φ0 and Φ1 be the value of Φ at the beginning and end of this phase
respectively. In phase �, suppose that each xi increases from si to ti . Then,

dμi = ce aki xqe−1
i

(∑
j∈Se

xqe
j

)1− 1
qe (

aki xi + 1
d

)
dxi ≤ cexqe−2

i
(∑

j∈Se
xqe

j

)1− 1
qe

dxi

So the increase Δμi in μi during this phase is:

Δμi ≤
∫ ti

si

cexqe−2
i

(∑
j∈Se

xqe
j

)1− 1
qe

dxi .

Note that variables xi ′ for i ′ �= i can also increase in this phase: so we cannot directly
bound the above integral. This is precisely where the potential Φ is useful. We know
that throughout this phase,

∑
j∈Se

xqe
j ≥ Φ0. So the increase in μi during this phase

is:

Δμi ≤ ce

∫ ti

si

xqe−2
i

Φ
1− 1

qe
0

dxi = ce
tqe−1
i − sqe−1

i

(qe − 1)Φ
1− 1

qe
0

= ce
tqe−1
i − sqe−1

i

(qe − 1)Φ
1
pe
0

.
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Note that here is where we used the assumption that qe > 1: it is needed in evaluating
the integral. Now,

(Δμi )
pe ≤ cpe

e

(qe − 1)pe Φ0
·
(

tqe−1
i − sqe−1

i

)pe

≤ cpe
e

(qe − 1)pe Φ0
·
(

t (qe−1)pe
i − s(qe−1)pe

i

)

= cpe
e

(qe − 1)pe Φ0
· (

tqe
i − sqe

i

)

The second inequality above uses the fact that (z1 + z2)pe ≥ z pe
1 + z pe

2 for any pe ≥ 1

and z1, z2 ≥ 0, with z1 = sqe−1
i and z2 = tqe−1

i − sqe−1
i . The last equality uses

1
pe

+ 1
qe

= 1.
We can now bound

∑

i∈Se

(Δμi )
pe ≤ cpe

e

(qe − 1)pe Φ0
·
∑

i∈Se

(
tqe
i − sqe

i

) = cpe
e (Φ1 − Φ0)

(qe − 1)pe Φ0
≤ cpe

e (θ − 1)

(qe − 1)pe

Let vector μ(�) ∈ R
Se denote the increase in variables {μi : i ∈ Se} during phase

�. It follows from the above that ‖μ(�)‖pe ≤ ce
qe−1 (θ − 1)1/pe .

Combining across phases. Note that the final vector μ = ∑
�≥0 μ(�). By triangle

inequality, we have

‖μ‖pe ≤
∑

�≥0

‖μ(�)‖pe ≤ ce +
∑

�≥1

‖μ(�)‖pe ≤ ce

(

1 + 3qe(θ − 1)1/pe

(qe − 1) log θ
· log(dρ)

)

(7)

The last inequality uses ‖μ(�)‖pe ≤ ce
qe−1 (θ − 1)1/pe and that the number of phases is

at most 3qe · log(dρ)/ log θ .
To complete the proof we show next that for any qe > 1, there is some choice of

θ > 1 such that the right-hand-side above is O(log(dρ)) · ce.

Case 1: qe ≥ 2. In this case, setting θ = 2, we have 3qe
(qe−1) (θ − 1)1/pe/ log θ ≤ 6.

Case 2: 1 < qe < 2. Here we set θ = 1+ (qe − 1)−ε pe , where ε = 1
− log(qe−1) > 0.

We have

(θ − 1)
1
pe

log θ
≤ (θ − 1)

1
pe

log(qe − 1)−ε pe
= (qe − 1)−ε

log(qe − 1)−ε pe

= (qe − 1)−ε

−ε pe log(qe − 1)
= (qe − 1)−ε

pe
= 2

pe
.
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The first inequality above uses that θ − 1 = (qe − 1)−ε pe > 1. Thus we have

3qe(θ − 1)1/pe

(qe − 1) log θ
≤ 6qe

(qe − 1)pe
= 6,

where the last equality uses 1
pe

+ 1
qe

= 1.
So in either casewe have that the right-hand-side of (7) is atmost (1+6 log(dρ))·ce.

��
Combining Lemmas 2, 3 and 4, we obtain Theorem 1.

4 Application to online buy-at-bulk network design

In the non-uniform multicommodity buy-at-bulk problem, we are given a directed
or undirected graph G = (V , E) with a monotone subadditive cost function ge :
R+ → R+ on each edge e ∈ E and a collection {(si , ti )}m

i=1 of m source/destination
pairs. The goal is to find an si − ti path Pi for each i ∈ [m] such that the objective∑

e∈E ge(loade) isminimized; here loade is the number of paths using e.An equivalent
view of this problem involves two costs ce and �e for each edge e ∈ E and the objective∑

e∈∪Pi
ce + ∑

e∈E �e · loade. In the online setting, the pairs (si , ti ) arrive over time
and we need to decide on the path Pi immediately after the i th pair arrives.

Recently, [24] gave a modular online algorithm for non-uniform buy-at-bulk prob-
lems with competitive ratio O(αβγ · log5 n) where:

– β is the integrality gap of the natural LP relaxation for single-source instances,
where all si s correspond to the same node.

– γ is the competitive ratio of an online algorithm for single-source instances.
– α is the “junction tree” approximation ratio. A junction-tree is a specific solution
structure (introduced in [19]) that enables a reduction from multicommodity to
single-source instances. In such a solution, the m pairs are partitioned into groups
and each group S ⊆ [m] corresponds to a root vertex r ∈ V such that the path
for each pair in S goes through r . There is no sharing of costs across groups: in
particular, we view the solution for each group as using a distinct copy of the
graph. The value α is the worst-case ratio of the cost of a junction-tree solution to
the optimum.

One of the main components in the result in [24] was an O(log3 n)-competitive
fractional online algorithm for a certain mixed packing/covering LP. Here we show
that Theorem 1 can be used to provide a better (and tight) O(log n)-competitive ratio
for the same LP. This leads to the improved O(αβγ · log3 n)-competitive ratio stated
in Theorem 2.

The LP relaxation.We now describe the LP relaxation used in [24]. Let T = {si , ti :
i ∈ [m]} denote the set of all sources/destinations. For each i ∈ [m] and root r ∈ V
variable zir denotes the extent to which both si and ti route to/from r : this corresponds
to assigning pair i to the group (in the junction-tree solution) with root r . For each
r ∈ V and e ∈ E , variable xer denotes the extent to which edge e is used in the routing
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to root r : this corresponds to whether/not edge e is used in the junction-tree solution
for root r . For each r ∈ V and u ∈ T , variables { fr ,u,e : e ∈ E} represent a flow
between r and u.

min
∑

r∈V

∑

e∈E

ce · xe,r +
∑

r∈V

∑

e∈E

�e ·
∑

u∈T
fr ,u,e

s.t.
∑

r∈V

zir ≥ 1, ∀i ∈ [m]

{ fr ,si ,e : e ∈ E} is a flow from si to r of zir units, ∀r ∈ V , ∀i ∈ [m]
{ fr ,ti ,e : e ∈ E} is a flow from r to ti of zir units, ∀r ∈ V , ∀i ∈ [m]
fr ,u,e ≤ xe,r , ∀u ∈ T , ∀e ∈ E, ∀r ∈ V

x, f , z ≥ 0

The above LP is not of packing or covering type due to the flow constraints: there
are both positive and negative signs on variables. The online algorithm in [24] for this
LP uses various ideas and has competitive ratio O(D · log n)w.r.t. the optimal integral
solution; here D is an upper bound on the length of any si − ti path (note that D can be
as large as n). Using a height reduction operation, they could ensure that D = O(log n)

while incurring an additional O(log n)-factor loss in the objective. This lead to the
O(log3 n) factor for the fractional online algorithm. Here we provide an improved
O(log n)-competitive algorithm that does not require any bound on the path-lengths
and that also guarantees the approximation relative to the optimal fractional solution.

For any r ∈ V and u ∈ T , letMC(r , u) denote the u − r (resp. r − u) minimum cut
in the graphwith edge capacities { fr ,u,e : e ∈ E} if u is a source (resp. destination). By
themax-flowmin-cut theorem, it follows that zir ≤ min {MC(r , si ) , MC(r , ti )}. Using
this, we can combine the first three constraints of the above LP into the following:

∑

r∈V

min {MC(r , si ) , MC(r , ti )} ≥ 1, ∀i ∈ [m].

For a fixed i ∈ [m], this constraint is equivalent to the following. For each r ∈ V ,
pick either an si − r cut (under capacities fr ,si ,�) or an r − ti cut (under capacities
fr ,ti ,�), and check if the total cost of these cuts is at least one. Moreover, given values
for the f -variables, it is optimal for the LP to set xer = maxu∈T fr ,u,e for all e ∈ E
and r ∈ V .

This leads to the following equivalent reformulation that eliminates the x and z
variables. Below, we use the notation fr ,u(S) = ∑

e∈S fr ,u,e for any subset S ⊆ E
and r ∈ V , u ∈ T .

min
∑

r∈V

∑

e∈E

ce ·
(

max
u∈T fr ,u,e

)

+
∑

r∈V

∑

e∈E

�e ·
∑

u∈T
fr ,u,e

s.t.
∑

r∈Rs

fr ,si (Sr ) +
∑

r∈Rt

fr ,ti (Tr ) ≥ 1, ∀i ∈ [m], ∀(Rs , Rt ) partition of V ,

∀Sr : si − r cut, ∀r ∈ Rs , ∀Tr : r − ti cut, ∀r ∈ Rt ,

f ≥ 0.
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Note that �log(n)-norm is a constant approximation for �∞-norm. Therefore we can
reformulate the above objective function (at the loss of a constant factor) as the sum
of �log(n) and �1 norms. Our fractional solver applies to this convex covering problem,
and yields an O(log n)-competitive ratio; note that ρ = 1 for this instance.

In order to get a polynomial running time, we can use the natural “separation oracle”
approach (as in Sect. 2) to produce violated covering constraints. This is described in
Algorithm3. Each iteration ofAlgorithm3 runs in polynomial time since theminimum
cuts can be computed in polynomial time. In order to bound the number of iterations,
consider the potential ψ = ∑

e∈E ( fr ,si ,e + fr ,ti ,e). Note that 0 ≤ ψ ≤ 2|E | and each
iteration increases ψ by at least 1

2 . So the number of iterations is at most 4|E |.

When the i th request (si , ti ) arrives
while

∑
r∈V min {MC(r , si ) , MC(r , ti )} < 1

2 do
For each r ∈ V , compute MC(r , si ) and MC(r , ti ) and the respective cuts Sr and Tr ;
Let Rs = {r ∈ V : MC(r , si ) ≤ MC(r , ti )} and Rt = V \Rs ;
Run Algorithm 2 with constraint

∑
r∈Rs

fr ,si (Sr ) + ∑
r∈Rt

fr ,ti (Tr ) ≥ 1;
end

Algorithm 3: Separation Oracle Based Algorithm for Buy-at-Bulk

Results for specific buy-at-bulk problems.Using existing results from offline and
single-source versions of these problems, Theorem 2 implies the following:

– For undirected edge-weighted buy-at-bulk we obtain an O(log9 n)-competitive
ratio in polynomial time using α = O(log n) [19], β = O(log n) [20] and γ =
O(log4 n) [31]. This improves upon the O(log11 n)-competitive ratio that follows
from [24].

– For undirected node-weighted buy-at-bulk we obtain an O(log9 n)-competitive
ratio in quasipolynomial time using α = O(log n) [19], β = O(log n) [19] and
γ = O(log4 n) [1,24]. This again improves upon the O(log11 n)-competitive ratio
that follows from [24]. The quasipolynomial runtime is due to the online single-
source algorithm that relies on the height-reduction technique for directed Steiner
problems [27].

– As discussed in [24], we can also obtain the same competitive ratios for the prize-
collecting variants of these problems, where pairs may be left disconnected by
paying a penalty in the objective. So our result implies an O(log9 n)-competitive
ratio here as well.

5 Application to throughput maximization with �p-norm capacities

The online problem of maximizing multicommodity flow was studied in [4,15]. In
this problem, we are given a directed graph G = (V , E) with edge capacities u(e).
Requests (si , ti ) arrive in an online fashion. The algorithm needs to accept a subset of
these requests and choose an si − ti path for each accepted request i . The number of
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paths using any edge e (referred to as the load of edge e) is not allowed to exceed its
capacity u(e). The goal is to maximize the number of accepted requests.

Here we consider an extension with capacity constraints on subsets of edges. In
particular, we are also given a number of groups where the j th group consists of a
subset S j ⊆ E and requires the �p j -norm of the loads of these edges to be at most c j ,

i.e.
∑

e∈S j
L

p j
e ≤ c

p j
j where Le denotes the load of edge e. The objective is again to

maximize the number of accepted requests. Note that if each |S j | = 1 then we recover
the classic setting of individual edge capacities.

In this section we assume (without loss of generality) that the subsets S j form a
partition of E . By subdividing edges if necessary, we can ensure that the subsets S j

are disjoint. If ∪ j S j � E then we can just add a dummy group consisting of edges
E\∪ j S j and assign a very high capacity to the dummy group. We denote the number
of edges by m; as the groups are disjoint, the number of groups is at most m. We also
use i to index requests, j to index groups and e to index edges.

We provide two online algorithms for this problem. The first algorithm (in Sect. 5.1)
runs in polynomial time and achieves an O(logm)-competitive ratio when each
c j = Ω(logm) · |S j |1/p j . Without the high-capacity assumption, this implies an
O(logm)-competitive ratio while violating capacities by an O(m1/p · logm) factor,
where p = min j p j . The second algorithm (in Sect. 5.2) allows for any capac-
ities and achieves an O(logm)-competitive ratio while violating capacities by an
O(log1+1/p m) factor, where p = min j p j . The second algorithm provides a better
capacity violation than the first (for arbitrary capacities). However, the second algo-
rithm does not run in polynomial time. The two algorithms rely on different convex
relaxations, both of which correspond to our dual problem (D). We note that in the
absence of a high-capacity assumption (or some capacity violation), there is no sub-
polynomial randomized competitive ratio even in the special case where |S j | = 1 [10].

A randomized (α, β)-bicriteria competitive algorithm finds a solution that (i) has
expected objective value at least 1

α
times the offline optimum, and (ii) violates each

capacity constraint by at most factor β with probability one.

5.1 Polynomial-time (O(logm),O(m1/p logm)) bicriteria algorithm

Here we prove the first part of Theorem 3, which is restated below:

Theorem 4 Assume that c j = Ω(logm) · |S j |1/p j for each j . Then there is a
polynomial-time randomized O(logm)-competitive online algorithm for throughput
maximization with �p-norm capacities, where m is the maximum of the number of
edges in the graph and the number of constraint subsets.

In particular, we will show that (i) the algorithm’s solution satisfies all capacities
with probability one and (ii) has expected objective at least an O(logm) fraction of
the optimum.

In a fractional version of the problem, a request can be satisfied by several paths
and the allocation of bandwidth can be in the range [0, 1] instead of being restricted
to {0, 1}. For request (si , ti ), let Pi be the set of simple paths from si to ti . Variable
fi,P is defined to be the amount of flow on the path P for request (si , ti ). The total
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profit is the (fractional) number of requests served. The complete fractional relaxation
is given below:

max
∑

i

∑

P∈Pi

fi,P (8)

s.t.
∑

P∈Pi

fi,P ≤ 1, ∀i (9)

∑

i

∑

P∈Pi :e∈P

fi,P = μe, ∀e (10)

‖μ(S j )‖p j ≤ c j , ∀ j (11)

f ≥ 0 (12)

Constraint (9) ensures that at most one path is selected for each request, (10) assigns
to each variableμe the load on edge e and (11) is the capacity constraint on each group.
It is clear that when each fi,P ∈ {0, 1} we obtain an exact formulation of the routing
problem. Rewriting constraint (9) as

∑
P∈Pi

fi,P = νi and νi ≤ 1, we have the
following equivalent relaxation:

max
∑

i

∑

P∈Pi

fi,P (13)

s.t.
∑

P∈Pi

fi,P = νi , ∀i (14)

∑

i

∑

P∈Pi :e∈P

fi,P = μe, ∀e (15)

‖ν‖∞ ≤ 1, (16)

‖μ(S j )‖p j ≤ c j , ∀ j (17)

f ≥ 0 (18)

Note that this corresponds to the (dual) packing program (D). In particular, if zi and
xe are the primal variables corresponding to constraints (14) and (15) respectively, the
primal problem is:

min
∑

j

c j‖x(S j )‖q j +
∑

i

zi

s.t. zi +
∑

e∈P

xe ≥ 1, ∀i, ∀P ∈ Pi

x, z ≥ 0

This is in the form of (P), so Theorem 1 can be applied. However, each request is
associated with an exponential number of constraints and to obtain a polynomial-time
algorithm we again need to apply a separation oracle. This is based on computing
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shortest paths in a modified graph: we add a vertex s′
i and edge (s′

i , si ) to graph G.
Let zi be the length of edge (s′

i , si ) and xe be the length of each edge e ∈ E , and let
H denote this edge-weighted graph.

When the i th request (si , ti ) arrives
while shortest s′

i − ti path in H has length less than 1
2 do

Let P ∈ Pi be the path corresponding to the shortest s′
i − ti path in H ;

Run Algorithm 2 with request zi + ∑
e∈P xe ≥ 1;

end

Algorithm 4: Online Algorithm for Throughput Maximization

The shortest path algorithm runs in polynomial time and it finds a constraint with
zi + ∑

e∈P xe < 1
2 (if any). To see that the number of iterations of Algorithm 4 is

polynomial, define potential functionψ = zi +∑
e∈E xe.We know thatψ ≤ m+1 the

number of edges in H since our algorithm is minimal, that is, each iteration terminates
with zi +∑

e∈P xe = 1. In each iteration,ψ increases by at least 12 . So the total number
of iteration is at most 2m. Finally, by doubling the variables z, x we have a feasible
solution and the objective increases by factor two.

Using Algorithm 2, we obtain an O(logm)-competitive online algorithm for the
fractional relaxation (13)–(18). To get an integer solution, we use a simple randomized
rounding algorithm. For each request i , choose a path P ∈ Pi with probability fi,P

8 ,
and choose no path with the remaining probability 1− 1

8

∑
P∈Pi

fi,P . For each request
i and edge e, let Xi,e = 1 if the path chosen for request i contains edge e and Xi,e = 0
otherwise. Let Xe = ∑

i Xi,e denote the load on each edge e ∈ E ; note that Xe

is the sum of independent 0 − 1 random variables. Also, by the rounding algorithm
and constraint (15), E(Xe) = μe

8 for each edge e. We use the following standard
concentration inequality.

Theorem 5 (Chernoff Bound 1) Let X = ∑
i Xi where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi , and all Xi are independent. Then

Pr[X ≥ (1 + ε)E[X ]] ≤ e− ε2
2+ε

E[X ] for all ε > 0.

Let δ = 36 logm. Using this result on Xe = ∑
i Xi,e with ε = 1 + 2δ/μe,

Pr

[

Xe >
μe

4
+ δ

4

]

= Pr [Xe > (1 + ε)E[Xe]]

≤ e
− (1+ 2δ

μe )2

2+(1+ 2δ
μe )

μe
8 ≤ e− μe+2δ

24 ≤ e− δ
12 = 1

m3 .

Then by union bound over all m edges, we obtain that Xe ≤ μe
4 + δ

4 for all e ∈ E ,
with probability at least 1 − 1/m2. Conditioned on this “good event” we have
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∑

e∈S j

X
p j
e ≤

∑

e∈S j

(
μe

4
+ δ

4

)p j

≤
∑

e∈S j

2p j

(
μ

p j
e

4p j
+ δ p j

4p j

)

= 1

2p j
(‖μ(S j )‖p j

p j + |S j |δ p j ) < c
p j
j , ∀ j . (19)

where the last inequality is by constraint (17) and c j = Ω(logm) · |S j |
1

p j .
In order to guarantee that we always find a feasible solution (i.e. satisfy all the

capacities) we simply terminate the algorithm when any capacity constraint is about
to be violated. Below ALG denotes the number of paths selected in the randomized
rounding and ALG is the number of paths selected before the algorithm is terminated.

To prove the O(logm)-competitive ratio, let O PT be the offline optimal value of
the throughput maximization instance.We first assume O PT = Ω(logm) and handle
the case O PT = O(logm) later. Define the following random variables:

– For each request i , Ai = 1 if the rounding satisfies request i and Ai = 0 otherwise.
– I = 0 if the rounding satisfies all capacities and I = 1 otherwise.
– ALG = ∑

i Ai the number of requests satisfied by the rounding.
– ALG = ALG if I = 0 and ALG = 0 otherwise.
– G = min(ALG, O PT ) − O PT · I .

Note that E[ALG] = ∑
i E[Ai ] = ∑

i
∑

P∈Pi

fi,P
8 ≥ O PT

O(logm)
because our

fractional online algorithm is O(logm)-competitive. Moreover, assuming O PT =
Ω(logm) we have E[ALG] = Ω(1).

By definition of G, we have ALG ≥ G because:

1. if the rounded solution is feasible (I = 0) then ALG = ALG ≥
min(ALG, O PT ), and

2. if the rounded solution is infeasible (I = 1) then ALG ≥ 0 ≥ G.

Now we have

E[ALG] ≥ E[G] = E[min(ALG, O PT )] − O PT · E[I ]
≥ E[min(ALG, O PT )] − O PT

m2 . (20)

The last inequality is by (19) which implies E[I ] ≤ 1
m2 .

We now use the Chernoff bound on the lower tail.

Theorem 6 (Chernoff Bound 2) Let X = ∑
i Xi where Xi = 1 with probability pi

and Xi = 0 with probability 1 − pi , and all Xi are independent. Then

Pr[X ≤ (1 − ε)E[X ]] ≤ e− ε2
2 E[X ] for all 0 < ε < 1.

Recall E[ALG] = Ω(1) (using our assumption on O PT ) and Ai ∈ {0, 1} for
all i . By choosing ε = 1

2 in Theorem 6, with constant probability we have ALG ≥
1
2E[ALG] ≥ O PT

O(logm)
. Finally, using ALG ≥ 0 we have E[min(ALG, O PT )] =

O PT
O(logm)

. Combined with (20) we obtain E[ALG] = O PT
O(logm)

.

123



Online covering with �q-norm objectives 175

We now handle the case O PT = O(logm). Note that in this case, just selecting
a single path is an O(logm)-competitive solution. The overall algorithm runs with
probability half either the above rounding or the greedy choice of selecting any path for
thefirst request.Note that selecting anypath P ∈ Pi leads to a feasible solution because
of our capacity assumption. Finally, the expected objective is O PT /O(logm), which
completes the proof of Theorem 4.

5.2 An (O(logm),O(log1+1/p m)) bicriteria algorithm

We now prove the second part of Theorem 3 (restated below).

Theorem 7 There is a randomized (O(logm), O(log1+1/p m))-bicriteria competitive
online algorithm for throughput maximization with �p-norm capacities, where m is
the maximum of the number of edges in the graph and the number of constraint subsets
and p = min j p j .

For this result we further strengthen the dual continuous relaxation to

max
∑

i

∑

P∈Qi

fi,P (21)

s.t.
∑

P∈Qi

fi,P ≤ 1, ∀i (22)

∑

i

∑

P∈Qi

|S j ∩ P| fi,P ≤ c
p j
j , ∀ j (23)

∑

i

∑

P∈Qi :e∈P

fi,P = μe, ∀e (24)

‖μ(S j )‖p j ≤ c j , ∀ j (25)

f ≥ 0. (26)

Here Qi is the set of simple paths P between si and ti such that |S j ∩ P| ≤ c
p j
j for

all groups j .

Lemma 5 Convex program (21)–(26) is a relaxation of the throughput maximization
problem.

Proof We first observe that only paths in ∪iQi may be used in any feasible solution
for the throughput maximization problem. Suppose (for a contradiction) that some
si − ti path P ∈ Pi\Qi is used. Then it is clear that the load induced by path P alone
violates some capacity c j , which contradicts the feasibility. This justifies using only
fi,P variables corresponding to P ∈ Qi .
Now, note that any feasible solution to the throughput maximization problem cor-

responds to a solution ( f , μ) with each fi,P ∈ {0, 1} that satisfies constraints (22),
(24) and (25). The objective value (number of accepted requests) is clearly (21).
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We only need to show that the new constraints (23) are also satisfied. We know that
the �p j load on each edge subset S j is at most c j . That is,

∑

e∈S j

⎛

⎝
∑

i

∑

P∈Qi :e∈P

fi,P

⎞

⎠

p j

≤ c
p j
j , ∀ j .

Then, using the fact that each fi,P ∈ {0, 1} we have for any group j ,

∑

e∈S j

⎛

⎝
∑

i

∑

P∈Qi :e∈P

fi,P

⎞

⎠

p j

≥
∑

e∈S j

∑

i

∑

P∈Qi :e∈P

fi,P =
∑

i

∑

e∈S j

∑

P∈Qi :e∈P

fi,P

=
∑

i

∑

P∈Qi

|S j ∩ P| fi,P .

Hence we obtain
∑

i
∑

P∈Qi
|S j ∩ P| fi,P ≤ c

p j
j for all j , as desired. ��

Now, the relaxation (21)–(26) can be recast as

max
∑

i

∑

P∈Qi

fi,P (27)

s.t.
∑

P∈Qi

fi,P = νi , ∀i (28)

∑

i

∑

P∈Qi

|S j ∩ P| fi,P = λ j , ∀ j (29)

∑

i

∑

P∈Qi :e∈P

fi,P = μe, ∀e (30)

‖ν‖∞ ≤ 1, (31)

‖μ(S j )‖p j ≤ c j , ∀ j (32)

‖λ j‖∞ ≤ c
p j
j , ∀ j (33)

f ≥ 0. (34)

This is exactly in the form of our dual program (D). If zi , y j and xe are primal variables
corresponding to (28), (29) and (30) respectively, the primal program is

min
∑

j

c j‖x(S j )‖q j +
∑

j

c
p j
j y j +

∑

i

zi

s.t. zi +
∑

j

|S j ∩ P|y j +
∑

e∈P

xe ≥ 1, ∀i, ∀P ∈ Qi

x, y, z ≥ 0.
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Wecan apply Theorem 1 to this primal formulation to obtain an O(logm) -competitive
online algorithm. However, there are an exponential number of constraints and in
this case we are not aware of an efficient separation oracle. The separation problem
corresponds to resource constrained shortest path [29] and to the best of our knowledge,
no efficient (exact or approximation) algorithms are known. So the running time of
our fractional online algorithm is exponential.

The online randomized rounding algorithm is the same as Sect. 5.1. We again use
Chernoff bound to prove that with high probability the load on each edge e is small.
Recall that for each request i and edge e, random variable Xi,e the the indicator if the
path chosen for request i contains edge e, and Xe = ∑

i Xi,e is the load on edge e. We
also use Yi,P as the indicator that path P ∈ Qi is selected for request i . We analyze
the following two cases separately.

Case 1: μe ≥ 1. Let δ = 36 logm. By Chernoff bound (Theorem 5), we have

Pr

[

Xe >
μe

4
+ δ

4

]

≤ e
− (1+ 2δ

μe )2

2+(1+ 2δ
μe )

μ
8 ≤ e− μe+2δ

24 ≤ e− δ
12 = 1

m3 .

So, with probability 1− 1
m3 we have Xe ≤ (b logm)μe, where b ≤ 10, which implies

X
p j
e ≤ (3 logm)p j μ

p j
e for all groups j .

Case 2: μe ≤ 1. Let random variable Re = 1 if some path using e is selected, and
Re = 0 otherwise. Note that Re ≤ ∑

i
∑

P∈Qi :e∈P Yi,P . Again by Chernoff bound
(Theorem 5),

Pr[Xe > b logm] ≤ 1

m3 .

Conditioned on Xe ≤ b logm, we have Xe ≤ b logm · Re because Xe = 0 if and only
if Re = 0. Then

X
p j
e ≤ (b logm)p j · Re ≤ (b logm)p j

∑

i

∑

P∈Qi :e∈P

Yi,P , ∀ j .

Let E denote the event that Xe ≤ (b logm) · max{μe, 1} for all edges e. It follows
from above that Pr[E] ≥ 1− 1

m2 . Moreover, conditioned on E , we have for each group
j :

∑

e∈S j

X
p j
e ≤

∑

e∈S j

(b logm)p j μ
p j
e +

∑

e∈S j

(b logm)p j
∑

i

∑

P∈Qi :e∈P

Yi,P

= (b logm)p j
∑

e∈S j

μ
p j
e + (b logm)p j

∑

i

∑

e∈S j

∑

P∈Qi :e∈P

Yi,P
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= (b logm)p j
∑

e∈S j

μ
p j
e + (b logm)p j

∑

i

∑

P∈Qi

|S j ∩ P| · Yi,P

≤ (b logm)p j · c
p j
j + (b logm)p j

∑

i

∑

P∈Qi

|S j ∩ P| · Yi,P . (35)

where the last inequality is by constraint (25).
By the constraints (23) and definition of Qi , we have:

E

⎡

⎣
∑

i

∑

P∈Qi

|S j ∩ P| · Yi,P

⎤

⎦ ≤ c
p j
j and |S j ∩ P| ≤ c

p j
j for all P ∈ ∪iQi .

Note that the random variables
∑

P∈Qi
|S j ∩ P| ·Yi,P are independent across requests

i and bounded between 0 and c
p j
j . By Chernoff bound (Theorem 5) and union bound

over groups j , it follows that with probability at least 1 − 1
m2 ,

∑

i

∑

P∈Qi

|S j ∩ P| · Yi,P ≤ (4 logm)c
p j
j , ∀ j .

Let F denote the above event. Combined with (35), we obtain that conditioned on E
and F ,

∑

e∈S j

X
p j
e ≤ (b logm)p j · c

p j
j + (b logm)p j · (4 logm)c

p j
j

≤ 2(b logm)p j +1 · c
p j
j , ∀ j .

As Pr[E ∧ F] ≥ 1 − 2
m2 and b ≤ 10, it follows that the capacities are violated by at

most an O(log1+1/p m) factor with high probability. Here p = min j p j .
The proof of the O(logm) competitive ratio and ensuring that the capacity bounds

hold with probability one, are identical to that in Sect. 5.1. This completes the proof
of Theorem 7.

6 Conclusion

In this paper we obtained a nearly tight O(log d + log ρ)-competitive algorithm for
fractional online covering problems with �q -norm objectives and its dual packing
problem. We also demonstrated the applicability of this result in two settings: non-
uniform buy-at-bulk network design and throughput maximization under �p-norm
capacities. Identifying online algorithms for other classes of convex programs is an
interesting direction. Another open question is to design online algorithms for more
combinatorial optimization problems using convex program relaxations.
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A Deriving f ∗
e (·)

Recall that fe(x) = ce‖x(Se)‖qe where x ∈ R
n+ and Se ⊆ [n]. For any μ ∈ R

n+ we
have

f ∗
e (μ) = sup

x∈Rn+
μT x − ce‖x(Se)‖qe

= sup
x∈Rn+

{
μ(Se)

T x(Se) + μe(Se)
T x(Se) − ce‖x(Se)‖qe

}
.

If μ(Se) �= 0 then it is clear that f ∗
e (μ) = ∞. So we assume μ(Se) = 0, in which

case

f ∗
e (μ) = sup

y∈R|Se |
+

{
μ(Se)

T y − ce‖y‖qe

}
.

Let ‖ · ‖pe be the dual norm of ‖ · ‖qe . By the definition of the dual norm, if
‖μ(Se)‖pe > ce, there exists z ∈ R

|Se| with ‖z‖qe ≤ 1 such that μ(Se)
T z > ce. As

μ ≥ 0, we can ensure z ≥ 0. Then taking y = t z as t → ∞, we have

f ∗
e (μ) ≥ μ(Se)

T y − ce‖y‖qe = t(μ(Se)
T z − ce‖z‖qe ) → ∞.

On the other hand, if‖μ(Se)‖pe ≤ ce, then byHölder’s inequality, for any y ∈ R
|Se|+ ,

μ(Se)
T y ≤ ‖μ(Se)‖pe‖y‖qe ≤ ce‖y‖pe ,

which implies that f ∗
e (μ) = 0.

Summarizing the above cases, we have for any μ ∈ R
n+:

f ∗
e (μ) =

{
0, if ‖μ(Se)‖pe ≤ ce and μ(Se) = 0,
∞, otherwise.

B Limitations of previous approaches in handling �q-norm objectives.

The general convex covering problem is

min { f (x) : Ax ≥ 1, x ≥ 0} ,

where f : R
n+ → R+ is a convex function and A ∈ R

m×n+ . Its dual is:

max

{
m∑

k=1

yk − f ∗(μ) : AT y = μ, y ≥ 0

}

,
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where f ∗(μ) = maxx∈Rn+{μT x − f (x)} is the Fenchel conjugate of f . When f is the
sum of �q -norms, these primal-dual convex programs reduce to (P) and (D).

We restrict the discussion of prior techniques to functions f with maxx∈Rn+
xT ∇ f (x)

f (x)

≤ 1 because this condition is satisfied by sums of �q norms.1 At a high level, the
analysis in [6] uses the gradientmonotonicity to prove a pointwise upper bound AT y ≤
∇ f (x̄) where x̄ is the final primal solution. This allows them to lower bound the dual
objective by

∑m
k=1 yk because f ∗(∇ f (x̄)) ≤ 0 for any x̄ (see Lemma 4(d) in [6]).

Moreover, proving the pointwise upper bound AT y ≤ ∇ f (x̄) is similar to the task of
showing dual feasibility in the linear case [15,26] where ∇ f (x̄) corresponds to the
(fixed) primal cost coefficients.

Below we give a simple example with an �q -norm objective where the pointwise
upper bound AT y ≤ ∇ f (x̄) is not satisfied by the online primal-dual algorithm unless
the dual solution y is scaled down by a large (i.e. polynomial) factor. This means that
one cannot obtain a sub-polynomial competitive ratio for (P) using this approach
directly.

Consider an instance with objective function f (x) = ‖x‖2 =
√∑n

i=1 x2i . So the

gradient ∇ f (x) = x/‖x‖2 which is not monotone. There are m = √
n covering

constraints, where the kth constraint is
∑km

i=m(k−1)+1 xi ≥ 1. Note that each variable
appears in only one constraint. Let P be the value of the primal objective and D be the
value of the dual objective at any time. Suppose that the rate of increase of the primal
objective is at most α times that of the dual; α corresponds to the competitive ratio
in the online primal-dual algorithm. Upon arrival of any constraint k, it follows from
the primal updates that all the variables {xi }km

i=m(k−1)+1 increase from 0 to 1
m . So the

increase in P due to constraint k is (
√

k −√
k − 1) 1√

m
for iteration k. This means that

the increase in D is at least 1
α
(
√

k − √
k − 1) 1√

m
, and so yk ≥ 1

α
(
√

k − √
k − 1) 1√

m
.

Finally, since x̄ = 1
m 1, we know that ∇ f (x̄) = 1

m 1 (recall n = m2). On the other
hand, (AT y)1 = y1 ≥ 1

α
√

m
. Therefore, in order to guarantee AT y ≤ ∇ f (x̄) we must

have α ≥ √
m = n1/4.
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