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ABSTRACT

Following the understanding of the cold atmospheric plasma jet control, the optimization of plasma parameters for biomedical applications
has become an important area of research in the field of plasma-based cancer treatment. A real-time feedback signal is usually required by a
control algorithm, such as a self-adaptive plasma jet, which is designed to automatically self-optimize its parameters to adapt to a variety of
biomedical applications and situations. In this paper, we introduce the potential of replacing the cell viability or cell stress assay with electro-
chemical impedance spectroscopy (EIS) to provide a real-time feedback signal for a model predictive control (MPC) method aided by
machine learning. The EIS frequency is in the kHz to GHz regime. Therefore, the MPC method is not only designed for minimizing the can-
cer cell viability, but also considered to optimize cell membrane behaviors and other chemical species dialing. Since these signals are in the
range of GHz, we introduce alternatives for the impedance analyzer to measure the impedance spectrum, including a Fabry–P�erot resonator
and one of its scanning-array variations.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003528

I. SELF-ADAPTIVE COLD PLASMA CANCER
TREATMENT

The medical use of plasma has been studied for decades, includ-
ing blood coagulation, bacterial decontamination, tissue removal, and
the cancer treatment using a cold atmospheric plasma jet (CAPJ).1–5

CAPJ is a nonequilibrium plasma in which ions and molecules are at
room temperature while the electron temperature remains high.6,7 The
main advantage of such a plasma-based cancer treatment is selectivity,
i.e., different types of cells/tissues react differently to CAPJ. Therefore,
using the difference correctly may effectively damage more cancer cells
than normal cells.8,9 However, it is also obvious that the noble gas
guided plasma interacting with cells/tissues in the air can be unstable
due to the disturbance of the environment and can vary significantly
with the target, which is a boundary condition to the plasma.10–16 The
cold plasma therapy provides a combination of reactive nitrogen and

oxygen species (RNOS) and the electromagnetic waves from RF to
UV; hence, an optimization of plasma parameters becomes a prerequi-
site for targeting cancer cells with a consistent efficiency among a large
variety of patients. One solution of such an issue is a self-adaptive cold
atmospheric plasma jet (SACAPJ), which includes a control circuit
sampling the cell/tissue target for a feedback signal to optimize the
CAPJ in real-time and eventually maximize the selectivity. The control
algorithm enables the CAPJ to adapt to patients and the local environ-
ment automatically.17–19

To achieve such a level of optimization control, a database of
how cell lines react to CAPJ is usually required. As a nascent research
field, only a few preliminary research articles have been published,
including a model predictive control (MPC) method20 and some
machine learning approaches.21,22 As the first approach, an MPC
study on the SACAPJ for treating U87MG human primary
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glioblastoma (brain cancer) and MDA-MB-231 human breast adeno-
carcinoma (breast cancer) was reported in Ref. 20. The first step of
MPC in SACAPJ is to design a net proliferation rate function F(t, p)
(with unknown constants to be determined) for the cancer cell popula-
tion model _p ¼ pFðt; pÞ, where t is the time after treatment and p is
the cell viability.20,23 The next step, also called “system identification,”
is to fit the function F(t, p) with experimental data to determine those
unknown constants. The fitting is achieved by minimizing an objective
function J ¼

Pn
i¼1
Ð ttot
0 kpi � pmodelk2dt, where ttot is the total time of

cell observation, pi represents the cell viability in the ith experiment,
and pmodel is the viability computed from the cancer cell population
model.20 For multiple control parameters, each of them has its objec-
tive function, and the final objective function becomes a weighted
summation.20 The final step is thus to select the correct control param-
eter setups to meet the treatment requirement that maximizes the
selectivity. However, to ensure that the MPC method can accurately
achieve the treatment objective, one-step MPC–CAPJ treatment is not
enough.20 The CAPJ treatment must be applied periodically when
each treatment setup was determined by the MPC algorithm consider-
ing the actual cell viability.20 Unfortunately, for biomedical experi-
ments, cell viability is usually measured using 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.18 The method
takes a couple of hours to acquire a result and makes the sample unus-
able after adding the MTT solution. Therefore, for an actual MPC
optimized SACAPJ, real-time measurement of cell viability without
deteriorating the sample is required. Generally, no matter what algo-
rithm is designed for the CAPJ, even for machine learning, a feedback
signal is always a key to reach the self-adaptive optimization. Due to
the biomedical applications of SACAPJ, real-time direct measurement
of cell/tissue conditions should be the top priority to solve, and one
solution that should be considered is a well-developed technology:
electrochemical impedance spectroscopy (EIS).

The first study of electric properties in biological tissues was per-
formed in 1780 when Galvani discovered bioelectricity in his famous
frog’s legs experiment.24 After that, in the 19th century, more research
was done on the relevance of the bioelectricity in muscle tissue and
nerve. With the help of electrical technology advancement, in the 20th
century, the impedance analysis of tissues was developed based on the
study of dielectric properties for both low and high frequencies.25–29 In
the last two decades, research in bioelectrical impedance has become
increasingly widespread to the extent that about 1600 papers in this
area have been published from 1990 to 2003.30 For the impedance
analysis, there is now a mature technology named Electrochemistry
Impedance Spectroscopy which is fully functional in both the research
environment and clinical diagnostics. Using EIS, researchers can iden-
tify and observe the behavior of biological cells in bulk fluids, in addi-
tion to macromolecules such as DNA and enzymes.31 Moreover, such
an observation is real-time during a cell culture.32

Therefore, EIS makes it possible to provide the information of
not only the cell viability, but also the ion cloud around cells, mem-
brane behaviors, and even chemical compositions such as reactive spe-
cies and proteins. Hence, EIS can be considered as a powerful real-
time sampling tool to collect feedback signals from the biomedical tar-
get and optimize the plasma. In this paper, we focus on the high-
impact potential of merging EIS with the SACAPJ control system to
achieve an optimized plasma treatment hardware for both laboratory
research and clinical use. Furthermore, we present a data-based

dynamic model for the cancer cell response, as an alternative to a heu-
ristic approach.20 Utilizing this, we propose a Model Predictive
Learning Control (MPLC) framework, where the dynamic model is
adjusted online based on the real-time measurements through EIS.
Compared with the results of MPC,20 the proposed learning frame-
work does not require multiple periodic treatments to achieve the
treatment goal.

II. A STANDARD ELECTROCHEMICAL IMPEDANCE
SPECTROSCOPY ROUTINE

A basic example design of the EIS-SACAPJ hardware is shown in
Fig. 1. To measure the impedance, two electrodes are immersed in the
media for the cell culture. An AC voltage is applied to these electrodes
with the frequency usually swept from DC to a few GHz frequencies.33

When changing such an excitation frequency, the complex impedance
will be recorded and analyzed. Based on the relation

e��1 ¼ �xe0ZIM þ jxe0ZREAL; (1)

the measured impedance will indicate the complex permittivity prop-
erties as a function of frequency, where e� is the complex permittivity
that e� ¼ e0 þ je00, j is the imaginary unit, x is the angular frequency,
e0 is the permittivity of vacuum, ZIM is the imaginary of the impedance
measured, and ZREAL is the real part of it. The frequency response of
both impedance and permittivity can be analyzed using a Bode plot,
which shows both the magnitude and phase and in the Nyquist plot,
which shows results in a complex plane.33,34

After the measurement, an equivalent circuit is formulated to fit
the impedance results. The equivalent circuit is a combination of resis-
tors, capacitors, inductors, and other nonideal circuit elements33 such
as constant phase elements (CPEs). Nonideal circuit elements are used
for fitting nonlinear slopes of the impedance in frequency responses
while an ideal capacitor has an impedance Z ¼ ð2pfCÞ�1, where f is
the frequency and C is the capacitance. The CPE is a revised model of
a capacitor with a phase irrelevant to the excitation frequency. The
impedance of the CPE can be designed as follows:33

FIG. 1. A basic hardware setup of electrochemical impedance spectroscopy and
self-adaptive cold atmospheric plasma jet.
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ZCPE ¼
1

Qxa
cos

ap
2

� �
� jsin

ap
2

� �� �
; (2)

where Q is known as the CPE in X�1 sa, x is the angular frequency of
the excitation voltage, j is the imaginary unit, and a is the variable to
make the CPE fit a nonlinear impedance. When a ¼ 0, the CPE can
be considered as an ideal resistor. When a ¼ 1, the CPE is an ideal
capacitor. Later in this work, the concept of CPEs will be used to
describe the cell-media system such as the cell membrane and bulk
media. Each of them will include their Q and a in the equivalent cir-
cuit. The combinations of these electrical elements simulate electrical
behaviors and electrochemical processes of the species in the media.
These events are summarized as follows:33

1. a “bulk media impedance” for species movements;
2. a double layer near an electrode has a “double layer capacitance”;
3. charge transfer resistance;
4. species adsorption in double-layer cause an “electrochemical

sorption impedance”;
5. “mass transfer impedance” in double-layer.

Moreover, for an in vitro experiment, cells with the membrane
and the plasma jet should also be considered. Therefore, the actual
schematic of such an electrochemical-plasma-biomedical coupled
problem can be summarized in Fig. 2.

First, for the bulk media, considered as an electrolyte, its imped-
ance can be expressed as Rbulk paralleled with Cbulk. Rbulk represents
the conductive part of the media which includes free ions, that

Rbulk ¼
dE

A
P

ziliC
�
i
; (3)

where dE is the distance between the electrodes, A is the interface area
of the electrodes and media, and zi, li, and Ci

� are the charge, mobility,
and concentration of the ith ion. Cbulk can be a CPE for a better result
fitting, which is denoted as CPEbulk. Similarly, the capacitance of the
cell membrane is also defined as a CPE paralleled by an ideal resistor
to represent the total cell impedance. These two elements will be
denoted as CPECMem and Rcell.

Second, at the interface of the electrodes and bulk media, the elec-
trolysis, species adsorption, desorption, and molecule polarization
result in a special region named double layer, which consists of the
Helmholtz layer and diffuse layer.33 The capacitance of this region can
be expressed as33

C�1DL ¼ C�1Helmholtz þ C�1diffuse; (4)

CHelmholtz ¼ ere0LH ; (5)

Cdiffuse ¼
ere0
kD

cosh
zie/D

kBT

� �
; (6)

where CDL, CHelmholtz, and Cdiffuse are the capacitance of double layer,
Helmholtz layer, and diffuse layer. er is the relative permittivity of the
media, LH is the thickness of Helmholtz layer which is usually 1–2nm,
e is the unit charge, /D is the potential between Helmholtz layer and
diffuse layer, kB is the Boltzmann constant, T is the local temperature,
and the Debye length kD is the thickness of the diffuse layer, that33

kD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ere0kBT
8pe2

P
z2i C

�
i

s
: (7)

Similar to the plasma sheath, the potential changes contentiously
across this layer.

In the process of electrolysis around the electrodes, an equilib-
rium potential of a redox reaction is established. When the electrode
voltage differs from the equilibrium voltage, there will be a charge
transfer that occurs at the interface. The resistance of charge transfer
can be computed as33

RCT ¼
RgT

zFI0
; (8)

where Rg is the ideal gas constant, F is Faraday constant which equals
to 96 500C/mol, and I0 is the charge transfer current that

33

I0 ¼ zFAk0C
�1�a
OX C�aRED: (9)

In this expression, COX
� and CRED

� are the concentration of the oxi-
dant and reductant in media, a is the reaction order, and k0 is the
kinetic rate constant of redox reaction that can be expressed using
Eyring’s equation35

k0 ¼
akBT
h

exp
�DG
RgT

 !
; (10)

where h is the Planck constant and DG is the Gibbs energy of activa-
tion in the redox reaction. The capacitance and resistance of the spe-
cies adsorption at the interface can be computed as follows:33

Cads ¼
F2AC
4RT

; (11)

Rads ¼
2RgT

F2ACkf
; (12)

where C is the amount of adsorbed species in mol/cm2 and kf is the
kinetic rate constant of adsorption which had been well defined.36

Also, mass transport occurs over the entire bulk of media espe-
cially in the double layer around the electrodes. This impedance is also
named “Warburg impedance.” Its value can be computed as

FIG. 2. The schematic diagram of plasma jet treatment and impedance
spectroscopy.
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ZW ¼
RgT 1� jð Þ

F2A
P

z2i C
�
i

ffiffiffiffiffiffiffiffiffiffiffi
2xDi
p ; (13)

where Di is the diffusion coefficient of the ith species. The coefficient
value can be estimated by the Einstein–Smoluchowski relation that

Di ¼ likBTi; (14)

where li and Ti are the mobility and temperature of the ith species.
With all the elements and processes defined above, the equivalent

circuit can be designed as shown in Fig. 3 corresponding to the sche-
matic diagram shown in Fig. 2. In this circuit, CPEbulk and CPECMem

are defined in Eq. (2), Rbulk and Rcell are defined in Eq. (3), CDL is
defined in Eq. (4), RCT is defined in Eq. (8), Cads is defined in Eq. (11),
Rads is defined in Eq. (12), and ZW is defined in Eq. (13). After assum-
ing and adjusting the variables in these equations, the frequency
response of the equivalent circuit will fit the measured curves of
impedance and permittivity.

A common result of permittivity for biological tissue had been
shown in EIS publications.37 The total permittivity drops in three
stair-like patterns, which are named a, b, and c dispersions. All of
them are related to the electric properties of the cell membrane. The a
dispersion is located in the Hz–kHz region. The low frequency corre-
sponds to a long relaxation period. Based on the previous research,37

three possible events of the cell membrane (or the combination of
them) may lead to the a dispersion. First, the ion exchange through
the membrane holes makes the membrane impedance as a function of
frequency with a relaxation time of a dispersion. Second, the ion cloud
around the cell causes the a dispersion of membrane conductivity.
Third, the membrane itself may have a frequency response of both the
a and b dispersion which is in the region of radio frequency. For the
cells in suspensions, their properties of membrane can be computed
using Maxwell–Wagner relaxation theory.37 For the c dispersion, the
frequency is higher than 10GHz. The inner substance of cells such as
protein and water results in such a dispersion.37 Moreover, some
recent publications indicate that the electromagnetic emission from
the CAPJ may enable the cells into an activation state that is more sen-
sitive to reactive species and medicine.38,39 One of the physical explan-
ations of such a phenomenon is the membrane vibration due to the
charges on the membrane oscillating in the incoming electromagnetic
emission.40–42 The membrane vibration thus produces an acoustic
wave propagating through the intracellular substance. Such a theory
may be verified using the EIS a dispersion for the membrane vibration
and c dispersion for the intracellular acoustic wave. Also, these

measurements can be a part of a future advance control loop, since cell
activation also involves in the cell viability.38,39 However, to measure
the high frequency c dispersion, a more advanced technology should
be considered instead of the impedance analyzer, which will be dis-
cussed later in this paper.

Therefore, when the cells and media are treated by the CAPJ, the
frequency response of impedance and permittivity will change accord-
ingly. To fit the updated signals, some of the equivalent circuit param-
eters have to be changed. When these two results agree, the modified
parameters along with the permittivity dispersion will provide the
information to estimate the electrochemical process behind this signal
shift. Note that, during the interaction with CAPJ, different patterns of
the a and b dispersion should be expected, due to the kHz discharge
frequency of CAPJ and the radio frequency of plasma oscillation.

III. PRELIMINARY IMPEDANCE SPECTROSCOPY
IN MODEL PREDICTIVE CONTROL

Despite the standard procedure of EIS measurement introduced
above, the equivalent circuit and analysis routine included in CAPJ
optimization control can be simplified. This is due to the omittance of
detailed species analysis in the media and the need to directly correlate
the cell viability with the impedance spectrum as a feedback signal for
the control loop.20 Moreover, in such a case, the CAPJ treatment win-
dow is always between two neighbor EIS measurement periods.
Therefore, such a setup can simplify the equivalent circuit that the
ZCAPJ at the top of the circuit can be removed.

A preliminary EIS measurement setup for the SACAPJ is shown
in Fig. 4. An Agilent/HP 43961A RF impedance test kit with an HP
16092A fixture is used for the measurement. To avoid electrochemical
contamination, the electrodes immersed in the media have to be noble
metal. Two platinum (99.9% purity) pins are immersed in the media
during the measurement with the other ends connected to the fixture.
Figure 5 shows the resulting connection between the cell viability and
the impedance spectrum of a CAPJ treating U87MG (brain tumor
cancer cells) at a sinusoidal applied voltage of 8.4 kV pk–pk and the
helium flow rate at 8.8 LPM. The detailed CAPJ schematic can be
found in Fig. 1. Two significant peaks can be identified. One is located
at around 300MHz and the other one is at 549MHz. For this example,
we focus on the 549MHz peak which is adequate for the

FIG. 3. An equivalent circuit of the cell-media combination. FIG. 4. Impedance measurement setup.
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demonstration. In Fig. 6, the peak increments at the end of treatment
are compared with the cell viabilities. A linear decrement is revealed in
this experiment that a lower impedance at 549MHz implies lower
U87MG viability. In addition, the EIS is measured at a higher applied
voltage again, which is shown in Fig. 7. At 9.6 kV, the impedance
decreases faster, which implies that the treatment time required for the
same cell viability is shorter compared with the 8.4 kV case. Then, a
simple adaptive trail is tested to control the impedance decrement
speed by varying the applied voltage. The impedance at 549MHz was
measured every 10 s with the control of the impedance decrement
speed. The desired impedance decrement speed value for this experi-
ment is 0.6 X/10 s. The minimum and maximum applied voltages
were set to 8.4 kV and 9. 8 kV. If the impedance decrement speed was
higher than the desired value, the applied voltage would be lowered by
0.4 kV. If the impedance decrement speed was lower than the desired
value, the applied voltage would be increased by 0.4 kV. Finally, the
CAPJ was programmed to stop automatically after it reaches the
impedance decrement point which was 7 X (it is about 40% of the
normalized viability).

The proposed EIS is utilized in MPC to adjust the parameters to
generate plasma, such as the plasma discharge voltage, treatment

duration, or the flow rate, in accordance with the actual cancer
response. The role of EIS is twofold: build data to construct a dynamic
model of the cancer cell population prior to CAPJ treatments and real-
time diagnostics to measure the actual cancer response in situ. The
overall structure of EIS–MPC is illustrated in Fig. 8.

In addition to the conventional MPC presented in Ref. 20, here
we present an MPLC framework, which focuses on learning aspects:
the empirical model of cancer cell response presented in Ref. 20 is
updated based on EIS measurements. The motivation is that it would
be more desirable if the adaptive plasma system learns the dynamic
characteristics of the particular cancer cell under treatment so that the
mathematical model can be refined as the treatment is repeated. This
provides a more accurate mathematical model that can be used to
adjust the prospective treatment plan accordingly.

In particular, the cancer cell responses to several treatment condi-
tions are modeled by a Gaussian Process (GP),43 which is statistical
modeling in machine learning that may account for the degree of con-
fidence in the learned model. Suppose that we have a set of training
data representing the cancer viability over time for various treatment
conditions. GP provides a tool to generalize these data to predict the
cancer viability at an arbitrary time instance for an arbitrary treatment
condition. Figure 9 illustrates the GP prediction for an experimental
result presented in Ref. 20, where the viability of U87MG is measured
multiple times after it is treated with CAPJ. To have the consistent
value of viability for several experiments, we normalize the cancer cell
viability under Cold Atmospheric Plasma (CAP) treatments with the
initial cancer cell viability just before the CAP exposure. The red
curves in Fig. 9 present the corresponding mean and uncertainty

FIG. 5. Impedance spectrum of a plasma jet (8.4 kV) treatment on U87MG cells
where the treatment times are shown in blue and red represent the impedance
before and after the treatment.

FIG. 6. The impedance increments at 549 MHz measured after a 0-230s treatment
(8.4 kV applied voltage) corresponding to the cell viability measured 72 hours later.

FIG. 7. The temporal evolution of the 549 MHz peak increments with applied volt-
age variation and an adaptive control trail.

FIG. 8. MPLC framework.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 063501 (2020); doi: 10.1063/5.0003528 27, 063501-5

Published under license by AIP Publishing

https://scitation.org/journal/php


predicted by GP with respect to the time after treatment for each of
the two treatment durations. They are illustrated against four experi-
mental data in Ref. 20. As shown in Fig. 9(a), the case without any
CAP treatments has cancer cell viabilities boost up to 6, while in Fig.
9(b), the CAP treatment reduces such viabilities down to 1.5 with GP
generalization.

Suppose that we are planning two consecutive CAPJ treatments to
reduce the cancer viability up to a prescribed desired ratio. The first
treatment can be determined based on the empirical model, i.e., we can
select the treatment duration to reduce the cancer cell viability as desired.
The actual cancer cell response to the first CAPJ may not be identical to
the GP prediction, as the characteristics of cancer used to generate the
empirical model might differ from cancer under treatments.

The EIS diagnostics provides cancer cell response for the particu-
lar cancer cells treated by CAPJ, which generates additional data that

can be used to update the GP model. Then, the next treatment can be
scheduled based on the GP model revised according to the actual
response.

Figure 10 illustrates simulation results to reduce the cancer viabil-
ity into 13% of the initial value through two CAP treatments over
48 h. The cell viability ratio defined in Fig. 10 is the ratio of normalized
cell viability at any given time between the experimental group and
control group that

r tð Þ ¼ pexperiment tð Þ
pcontrol tð Þ

; t 2 0; 48½ �

where pexperiment and pcontrol are the data picked from one of our previ-
ous publication where many different cases are tested.20 Specifically,
the pexperiment and pcontrol of 180 s treatment time are shown in Figs.
9(b) and 9(a).

More specifically, the treatment objective for two treatments is
illustrated by a red dashed curve, and the red solid curve corresponds
to an ideal case of MPC where the predicted model is perfect.
However, when there are errors in prediction, the actual response
derives from it, as shown by the green curves. Finally, the proposed
MPLC learns the dynamic characteristics of the actual cancer response
after the first treatment, and the second treatment is determined by
the learned model. Consequently, the cancer cell response after the
second treatment, shown by black solid curves, closely resembles the
ideal case.

This shows that the proposed MPLC achieves the treatment goal,
while successfully compensating the discrepancy between the actual
cancer response and the predicted response. This should be distin-
guished from the conventional MPC of Ref. 20, where the treatment
objective is adjusted periodically based on the actual response without
any learning. As such, it required multiple treatments to achieve the
goal. Here, in the proposed MPLC, the learning process after the first
treatment enables us to achieve the objective at the second treatment.

FIG. 9. Gaussian process regression results of U87MG for the applied voltage
U ¼ 6:32 kV with a treatment time of (a) 0 s and (b) 180 s.

FIG. 10. Model predictive learning control for the plasma treatments of U87MG.
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This approach utilizes all of the available data to tailor CAP par-
ticularly to the cancer cells under treatments. Furthermore, the sto-
chastic Bayesian learning of GP gauges the level of confidence when
fusing information, thereby providing safe and robust learning that is
not erroneously disturbed by noisy data.

Generally, EIS-MPLC control can be more powerful than
simply working with cell viability. The spectrum in Fig. 4 is
merely a part of b dispersion introduced in Sec. II. If the MPC
algorithm includes the a and c dispersion along with an EIS
equivalent circuit, more information can be collected from the
spectrum including the cell membrane behavior, the ion cloud
around the membrane, and even certain molecules such as
DNA, protein, and amino acid. Each of these EIS readings can
be potentially a feedback signal to make a SACAPJ target a spe-
cific biomedical requirement. However, to achieve a higher fre-
quency for the c dispersion, another hardware should be
considered to replace the impedance analyzer, which is dis-
cussed in Sec. IV.

IV. REAL-TIME PERMITTIVITY-IMPEDANCE
MEASUREMENT FOR A HIGHER FREQUENCY RANGE

As introduced in Eq. (1), one can acquire real-time imped-
ance based on the measurement of target permittivity.
Unfortunately, commercially available impedance analyzers are
usually unable to reach a frequency higher than 10GHz.
Therefore, an alternative setup is required to enable the EIS-based
MPC for intracellular detection. One of the well-developed

methods is using an open resonator of microwave usually works
for a frequency above 30 GHz and even up to a couple of hundreds
GHz, which is known as the Fabry–P�erot Resonator (FPR) intro-
duced in Fig. 11. Therefore, for a detailed measurement of c disper-
sion, the FPR can be an effective replacement of an impedance
analyzer used in the EIS hardware. Typical hardware of the FPR
includes a concave mirror on the top and a flat mirror below to
perform as an open resonator. Two waveguides are located in the
middle of the concave mirror and are connected to a Vector
Network Analyzer (VNA). One of the waveguides feeds the
Gaussian beam, which will then resonate between the mirrors and
be collected by the other waveguide.44–46

The parameters measured in real-time by VNA can be S11 and
S21, which are two common concepts in two-port networks. S11 is
the ratio of the power reflected by the system to the power input,
while S21 is the ratio of the power transmitted through the system
to the power input. To acquire the permittivity, we have to mea-
sure the resonance frequency from either S11 or S21 (both of them
provide the same resonance frequency peaks) before and after
placing the sample. Therefore, only one of them needs to be mea-
sured and in the following example, we show the permittivity
results by measuring S11.

An example of FPR measurement is shown in Fig. 12. Three pairs
of S11 peaks can be found at around 94, 95, and 96GHz in Fig. 12(a).
For each pair, the existence of a sample shifts the peaks to the left with
a distance depending on the frequency. The main equation to solve for
permittivity is Eq. (15) numerically

FIG. 11. A typical schematic of the Fabry–P�erot resonator for permittivity measurement and the hardware of the example experiment.
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n�1tan nkt � arctan
t
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¼ �tan kd � arctan
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0
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1
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� arctan

t
erz0

� �2
64

3
75; (15)

where n is the refractive index that n ¼ ffiffiffiffi
er
p

, k is the wavenumber
as a function of the resonance frequency f, and z0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d þ t=erð Þ R� d � t=erð Þ

p
:45,46 Other parameters in the equation

such as t, d, and R are the geometry of the sample and resonator
marked in Fig. 11. However, since the results are extremely sensitive to
d and f, the user has to compute the exact d based on Eq. (16) rather
than measure it,45,46

f ¼ c
2d

qþ 1þ 2pþ l þ 1
p

arctan

ffiffiffiffiffiffiffiffiffiffiffiffi
d

R� d

r !" #
; (16)

where p, l, and q are the TEM resonance mode that is denoted as
TEMp,l,q. In this work, p and l are all zero. First, input the measured d

and f from S11 when there is no sample to Eq. (16), this gives a q value.
Since q has to be an integer, substituting the rounded q back to Eq.
(16) will result in the exact d value. Figure 12(b) shows the mode num-
ber q for these resonance peaks. Finally, solving Eq. (15) with the exact
d and f from S11 measured with the sample, multiple solutions of per-
mittivity are acquired. In Fig. 12(c), four solutions for each peak are
found from 0 to 7. The deviations of these solutions among peaks are
limited, which indicates that the accuracy is reliable. However, to
determine which permittivity value is for the real sample, either a mea-
surement repeat with a different sample thickness or gross information
of the permittivity range is required.

For any well-designed measurement techniques, the sample
should not be altered by the measurement. In this case, the reso-
nating microwave power applied to the sample should be low
enough to avoid altering the sample. Although the VNA output
power is not enough to heat the sample, computing the loss tan-
gent for the system is a necessary double-check. The loss tangent is
the tangent of dielectric loss angle in a complex plane. The real

FIG. 12. An example of Fabry–P�erot resonator results. (a) The S11 signals of the open resonator; (b) the axial mode numbers; (c) the multiple solutions of sample permittivity;
(d) the loss tangent values.
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part is the dielectric loss and the imaginary part is the ideal lossless
term in one of the Maxwell equations considering the dielectric
relaxation r�H ¼ jxe0E þ ðr� xe00ÞE, where r is the conduc-
tivity and H and E are the magnetic and electric field. Therefore,
the loss tangent is a dimensionless ratio of the loss over lossless.
For an FPR, the loss tangent values tan(d) are computed based on
the equation45,46

tan dð Þ ¼ 2nkt d þ tDð Þ Q�1d � Q�1l

� �
� 2nktD� Dsin nkt � arctan

t
nz0

� �� �	 
�1
; (17)

where Qd is the quality factor with the sample placed. Also,

Ql ¼ Q0
2ðtDþdÞ
DðDþ1Þ, whereQ0 is the quality factor of the resonator without

a sample, and the equation

D¼n2 n2cos2 nkt�arctan t
nz0

� �� �
þsin2 nkt�arctan t

nz0

� �� �	 
�1
;

(18)

provides the parameter D, in which, the quality factor of the micro-
wave resonator can be found. Figure 12(d) shows the resulting loss
tangents. Based on that, the power loss, in other words, the power
absorbed by the sample can be thus computed as

Ploss ¼ P0 � P0exp �dktð Þ; (19)

where d is the tangent angle and Ploss and P0 are the power absorbed
by the sample and the power output from the VNA, respectively.

Overall, when applying the FPR on EIS, the cell-media target will
be placed on the flat mirror in the FPR. The real-time permittivity can
be measured, and the impedance can thus be computed using Eq. (1).

In addition to the typical design of FPR shown above, some varia-
tions can also be considered for the EIS-SACAPJ setup. One example
is the Gaussian beam scanning array (GBSA), which is an electronic
beam scanning device able to sweep the beam over the cell-culture
dish for in vitro works and tissues for clinical applications. The GBSA
is similar to the military-use radar such as the active electronically
scanned array (AESA) widely used on naval vessels and jet fighters in
the present days. Therefore, the advantage of GBSA is to sweep the tar-
get in real-time with spatial resolution, such as the wells in a cell cul-
ture plate. As shown in Fig. 13, in the GBSA setup, the feeding
waveguide array is fixed on the left while the receiving one locates on
the right, while the Gaussian beam can still be reflected on the flat mir-
ror in the middle and holding the sample.

The feed waveguide array includes multiple waveguide emitters,
and each of them emits the beam with a phase shift. A main bright
fringe of the resulting interfered beams can thus be manipulated by
the phase shift. As shown in Fig. 14, a flat mirror is located at the bot-
tom x¼ 0 to reflect the Gaussian beam emitted from an antenna array
including five emitters in a row with a 1mm gap between. Each emit-
ter emits a Gaussian beam based on the following equations:47

E x; zð Þ ¼
W0

WB
exp �

x � x0ð Þ2

W2
B
� jpz

k
�
jp x � x0ð Þ2

kRB
þ ju

" #
; (20)

u ¼ arctan
kz

pW2
0

� �
þ Du; (21)

WB ¼W0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kz

pW2
0

� �2
s

; (22)

RB ¼ z þ p2W4
0

zk2
; (23)

where WB is the beam radius, RB is the beam wavefront curvature
radius, k is the wavelength, u is the phase with the first term at the
right-hand side representing the Gouy phase, Du is the phase differ-
ence between emitters,W0 is the beam waist radius at the emitter loca-
tion, x0 is the emitter location, and x and z are the coordinates. The
Gaussian beams shown in Fig. 14 are setup at 200GHz with a 10 dB
gain and W0 ¼ 3mm. From Figs. 14(a)–14(e), all five emitters emit
Gaussian beams toward the flat mirror at the same angle but with a
phase shift of �0.1125p. The resulting interfered electric field is
depicted in Fig. 14(f) that a bright fringe hits on the mirror at around
z¼ 0.09 m and reflected by the mirror. From Figs. 14(g)–14(l), the
phase difference is varied from �0.075p to 0.1125p, and the resulting
reflection point also moves to 0.12 m. Figure 14 indicates that the
interfered beam can sweep over a centimeter-scale sample by manipu-
lating the phase difference as expected.

Therefore, in the EIS-biomedical applications, the cell-media tar-
get can be placed on the flat mirror, and the GBSA setups can sweep
the beam over the plate and measure the impedance in each well. Note
that the beam width is proportional to the wavelength. To achieve an
impedance spectrum at a lower frequency but keeping the spatial reso-
lution, concave mirrors can be used to focus the beam as an intermedi-
ate stage between the emitter array and the sample. Overall, the
advantage of GBSA variation of FPR compared with the vertical setup
is obvious, that a GBSA scans an area of cell-culture dish or tissue with
spatial resolution in an instant while the traditional FPR setup requires
mechanical structures to move the sample.

V. CONCLUSIONS

In this work, we summarized the future potential of replacing the
MTT test with EIS real-time measurement in the MPC method to
achieve a SACAPJ optimization. Rather than collecting the parameters

FIG. 13. A typical setup of a Gaussian beam scanning array.
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FIG. 14. Manipulating the bright fringe of five interfering Gaussian beams. (a)–(e) The electric field of each antenna is located at z¼ 0 with a 1mm gap between and a phase
difference of �0.1125p; (f) the resulting interfered beam; (g)–(l) the resulting interfered beams with the same geometry but the phase difference are �0.075p, �0.0375p, 0,
0.0375p, 0.075p, and 0.1125p accordingly.
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of plasma jet and non-biomedical targets as feedback signals,21,48 we
correlate the EIS signal in the b dispersion range with cell viability
directly as a feedback signal. In the example of treating U87MG, a
lower impedance at 549MHz represented lower cell viability, and it
had been proved that such impedance decrement can be manipulated
by the applied voltage in a control loop. Also, we discussed a more
advanced MPLC method based on GP as an upgrade version of the
previous MPC. As an example, the simulation shows a successful
approach of the cell viability from the no-control case to the ideal
response. Therefore, the potential to achieve a periodic SACAPJ con-
trol by using the learning based MPC algorithm coupling with EIS is
revealed.

Moreover, we also discussed the possibility of using the equiva-
lent circuit, a and c dispersion in the EIS measurement to make the
SACAPJ targeting the cell membrane behavior, molecules in the bulk
media for an in vitro experiment, and even an acoustic wave in a cell,
which can explain the cell activation process. To reach such a high-
frequency measurement, we suggest replacing the impedance analyzer
with FPR and even GBSA to achieve a real-time quick scan for cell cul-
ture plates with a spatial resolution for wells. A real model of FPR has
been tested and proved that the FPR works for measuring permittivity
and impedance. A 2D GBSA model with beam reflection is also tested
in simulation. An actual model of it will be built as the next step of this
work. Both the FPR and the electronically scanning array are well-
developed technology. Therefore, the combination of this hardware
for an actual adaptive plasma cancer treatment can be expected in the
near future.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
(Grant No. 1747760).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A.
Fridman, Plasma Process. Polym. 5, 503 (2008).

2G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman, A.
Gutsol, and A. Brooks, Plasma Chemistry and Plasma Processing 26, 425
(2006).

3M. Laroussi, IEEE Trans. Plasma Sci. 24, 1188 (1996).
4M. Keidar, Plasma Sources Sci. Technol. 24, 033001 (2015).
5M. Keidar, D. Yan, and J. H. Sherman, Cold Plasma Cancer Therapy (Morgan
& Claypool Publishers, 2019).

6M. Keidar and I. Beilis, Plasma Engineering: Applications from Aerospace to
Bio and Nanotechnology (Academic Press, 2013).

7A. Fridman, A. Alexander, A. Lawrence, F. Routledge, L. A. Kennedy, and P.
Square, Plasma Physics and Engineering (CRC Press, 2004).

8M. Keidar, R. Walk, A. Shashurin, P. Srinivasan, A. Sandler, S. Dasgupta, R.
Ravi, R. Guerrero-Preston, and B. Trink, Br. J. Cancer 105, 1295 (2011).

9M. Keidar, A. Shashurin, O. Volotskova, M. A. Stepp, P. Srinivasan, A.
Sandler, and B. Trink, Phys. Plasmas 20, 057101 (2013).

10L. Lin, Y. Lyu, B. Trink, J. Canady, and M. Keidar, J. Appl. Phys. 125, 153301
(2019).

11L. Lin, D. Yan, E. Gjika, J. H. Sherman, and M. Keidar, ACS Appl. Mater.
Interfaces 11, 30621 (2019).

12S. A. Norberg, E. Johnsen, and M. J. Kushner, J. Appl. Phys. 118, 013301
(2015).

13N. Mericam-Bourdet, M. Laroussi, A. Begum, and E. Karakas, J. Phys. D 42,
055207 (2009).

14L. Lin and M. Keidar, Phys. Plasmas 23, 083529 (2016).
15G. Uchida, A. Nakajima, T. Ito, K. Takenaka, T. Kawasaki, K. Koga, M.
Shiratani, and Y. Setsuhara, J. Appl. Phys. 120, 203302 (2016).

16D. Breden and L. L. Raja, Plasma Sources Sci. Technol. 23, 065020 (2014).
17M. Keidar, D. Yan, I. I. Beilis, B. Trink, and J. H. Sherman, Trends Biotechnol.
36, 586 (2018).

18E. Gjika, S. Pal-Ghosh, A. Tang, M. Kirshner, G. Tadvalkar, J. Canady,
M. A. Stepp, and M. Keidar, ACS Appl. Mater. Interfaces 10, 9269
(2018).

19E. Gjika, S. Pal-Ghosh, L. Lin, G. Tadvalkar, Z. Chen, C. Yoing, J.
Canady, J. Sherman, M. A. Stepp, and M. Keidar, Clin. Plasma Med. 9,
16 (2018).

20Y. Lyu, L. Lin, E. Gjika, T. Lee, and M. Keidar, J. Phys. D 52, 185202 (2019).
21A. Mesbah and D. B. Graves, J. Phys. D 52, 30LT02 (2019).
22M. Witman, D. Gidon, D. B. Graves, B. Smit, and A. Mesbah, Plasma Sources
Sci. Technol. 28, 095019 (2019).

23H. Sch€attler and U. Ledzewicz, Optimal Control for Mathematical Models of
Cancer Therapies (Springer, Berlin, 2015).

24E. T. Whittaker, A History of the Theories of Aether and Electricity from the Age
of Descartes to the Close of the Nineteenth Century (Longmans, Green and
Company, 1910).

25A. Thomasset, Lyon Med. 28, 107 (1962).
26H. P. Schwan and C. F. Kay, Circ. Res. 4, 664 (1956).
27H. P. Schwan and C. F. Kay, Ann. N. Y. Acad. Sci. 65, 1007 (1957).
28H. P. Schwan and G. M. Pierson, Am. J. Phys. Med. 33, 371 (1954).
29H. P. Schwan and G. M. Pierson, Am. J. Phys. Med. 34, 425 (1955).
30U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. G�omez,
B. L. Heitmann, L. Kent-Smith, J.-C. Melchior, M. Pirlich, H. Scharfetter, A.
M. W. J. Schols, and C. Pichard, Clin. Nutr. 23, 1430 (2004).

31I. O. K. Owino and O. A. Sadik, Electroanalysis 17, 2101 (2005).
32R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, B. Wolf, and K.
Stegbauer, Biosens. Bioelectron. 12, 29 (1997).

33V. F. Lvovich, Impedance Spectroscopy Applications to Electrochemical and
Dielectric Phenomena (John Wiley & Sons, New Jersey, 2012).

34M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy (John
Wiley & Sons, New Jersey, 2008).

35A. J. Brad and L. R. Faulkner, Electrochemical Methods Fundamentals and
Applications (John Wiley & Sons, New York, 1980).

36V. F. Lvovich and M. F. Smiechowski, Electrochim. Acta 53, 7375 (2008).
37H. P. Schwan, Adv. Biol. Med. Phys. 5, 147 (1957).
38D. Yan, W. Xu, X. Yao, L. Lin, J. H. Sherman, and M. Keidar, Sci. Rep. 8, 15418
(2018).

39D. Yan, L. Lin, W. Xu, and N. Nourmohammadi, J. Phys. D 52, 445202 (2019).
40N. N. Kositsky, A. I. Nizhelska, and G. V. Ponezha, No Place to Hide 3, 1
(2001).

41V. M. Kontorovich and A. M. Glutsyuk, Sov. Phys. JETP 14, 852 (1962).
42J. Xu, X. Jiang, N. Fang, E. Georget, and R. Abdeddaim, Sci. Rep. 5, 10678
(2015).

43K. Williams and C. Rasmussen, Gaussian Processes for Machine Learning (MIT
Press, Cambridge, MA, 2006).

44A. L. Cullen and P. K. Yu, Proc. R. Soc. London Ser. A 325, 493 (1971).
45T. M. Hirvonen, P. Vainikainen, A. Lozowski, A. V. Raisanen, and B. L.
Tangent, IEEE Trans. Instrum. Meas. 45, 780 (1996).

46J. J. Choi and W. B. Seo, Int. J. Infrared Millimeter Waves 22, 1837 (2001).
47R. Paschotta, “Article on Gaussian beams,” Encyclopedia of Laser Physics and
Technology (Wiley-VCH, 2008).

48D. Gidon, X. Pei, A. D. Bonzanini, D. B. Graves, A. Mesbah, and S. Member,
IEEE Trans. Radiat. Plasma Med. Sci. 3, 597 (2019).

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 27, 063501 (2020); doi: 10.1063/5.0003528 27, 063501-11

Published under license by AIP Publishing

https://doi.org/10.1002/ppap.200700154
https://doi.org/10.1109/27.533129
https://doi.org/10.1088/0963-0252/24/3/033001
https://doi.org/10.1038/bjc.2011.386
https://doi.org/10.1063/1.4801516
https://doi.org/10.1063/1.5086177
https://doi.org/10.1021/acsami.9b10620
https://doi.org/10.1021/acsami.9b10620
https://doi.org/10.1063/1.4923345
https://doi.org/10.1088/0022-3727/42/5/055207
https://doi.org/10.1063/1.4961924
https://doi.org/10.1063/1.4968568
https://doi.org/10.1088/0963-0252/23/6/065020
https://doi.org/10.1016/j.tibtech.2017.06.013
https://doi.org/10.1021/acsami.7b18653
https://doi.org/10.1016/j.cpme.2017.12.026
https://doi.org/10.1088/1361-6463/ab061d
https://doi.org/10.1088/1361-6463/ab1f3f
https://doi.org/10.1088/1361-6595/ab3c15
https://doi.org/10.1088/1361-6595/ab3c15
https://doi.org/10.1161/01.RES.4.6.664
https://doi.org/10.1111/j.1749-6632.1957.tb36701.x
https://doi.org/10.1016/j.clnu.2004.09.012
https://doi.org/10.1002/elan.200503371
https://doi.org/10.1016/0956-5663(96)89087-7
https://doi.org/10.1016/j.electacta.2007.12.014
https://doi.org/10.1016/B978-1-4832-3111-2.50008-0
https://doi.org/10.1038/s41598-018-33914-w
https://doi.org/10.1088/1361-6463/ab36d4
https://doi.org/10.1038/srep10678
https://doi.org/10.1098/rspa.1971.0181
https://doi.org/10.1109/19.516996
https://doi.org/10.1023/A:1015083819566
https://doi.org/10.1109/TRPMS.2019.2910220
https://scitation.org/journal/php

	s1
	s2
	d1
	d2
	f1
	d3
	d4
	d5
	d6
	d7
	d8
	d9
	d10
	d11
	d12
	d13
	f2
	d14
	s3
	f3
	f4
	f5
	f6
	f7
	f8
	s3
	f9
	f10
	s4
	d15
	f11
	d16
	f12
	d17
	d18
	d19
	d20
	d21
	d22
	d23
	s5
	f13
	f14
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48

