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In this paper we establish the interpolatory model reduction framework for optimal approximation
of MIMO dynamical systems with respect to the J{, norm over a finite-time horizon, denoted
as the H,(tr) norm. Using the underlying inner product space, we derive the interpolatory first-
order necessary optimality conditions for approximation in the 3(,(t;) norm. Then, we develop an
algorithm, which yields a locally optimal reduced model that satisfies the established interpolation-
based optimality conditions. We test the algorithm on various numerical examples to illustrate its
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1. Introduction

Simulation, design, and control of dynamical systems play an
important role in numerous scientific and industrial tasks such as
signal propagation in the nervous system (Kellems, Roos, Xiao, &
Cox, 2009); the synthesis of interconnect (Bond & Daniel, 2007)
and semiconductor devices (Hess & Benner, 2014); large-scale
inverse problems, (De Sturler et al., 2015; Druskin, Simoncini,
& Zaslavsky, 2013; Lieberman, Willcox, & Ghattas, 2010); and
prediction of major weather events (Antoulas, 2005). The need for
detailed models due to the increasing demand for greater resolu-
tion leads to large-scale dynamical systems, posing tremendous
computational difficulties when applied in numerical simulations.
In order to overcome these challenges, we perform model reduc-
tion where we replace the large-scale dynamics with high-fidelity
reduced representations.

Consider the linear time-invariant dynamical system:

X(t) = Ax(t) + Bu(t), x(0)=0,

t (1.1)
y(t) = Cx(t) =/ h(t — 7)u(t)dr,
0

where A € R™", B € R™™, and C € RP*" are constant matrices;
the variable x(t) € R" denotes the internal variables, u(t) € R™
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denotes the control inputs, and y(t) € RP denotes the outputs;
and h(t) = CeA'B is the impulse response of the full model. The
length of the internal variable x(t), i.e., n, is called the order of the
full model that we would like to reduce. Model reduction achieves
this by replacing the original model with a lower dimensional
one:

x:(t) = Arx,(t) + Byu(t), x.(0)=0,

¢ (1.2)
v (t) = Cx.(t) = / h,(t — 7)u(r)dr,
0

where as in (1.1), h.(t) = C.e*B, is the impulse response of
the reduced model, and A, € R™", B, € R™™, and C, € RP*’
with r « n. The goal is that the output of the reduced model,
y(t), approximates the true output, y(t), of the original system
accurately in an appropriate norm.

For the linear dynamical systems we consider here, a plethora
of methods exists for producing high-fidelity/optimal reduced
models, such as balanced truncation (Moore, 1981; Mullis &
Roberts, 1976) and its variants, optimal Hankel norm approxima-
tion (Glover, 1984), and the Iterative Rational Krylov Algorithm
(IRKA) (Gugercin, Beattie, & Antoulas, 2008) and its variants;
see Antoulas (2005) and Baur, Benner, and Feng (2014) for further
references. These methods usually focus on constructing high-
quality reduced models over an infinite time horizon. However, in
various settings, we might either have access to simulations over
a finite horizon or can only simulate the system under investiga-
tion for a finite horizon such as in the case of unstable dynamical
systems. Therefore, in those situations we are interested in the
behavior of the dynamical system over a finite time interval [0, 7]
where t; < oo, and we need the reduced model to be accurate
only in the interval of interest.
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Time-limited  balanced truncation (Gawronski & Juang,
1990; Gugercin & Antoulas, 2003; Kiirschner, 2018; Redmann &
Kiirschner, 2017) and Proper Orthogonal Decomposition (POD)
(Holmes, Lumley, & Berkooz, 1996) are two common frameworks
to create reduced models on a finite horizon. For time-limited
balanced truncation, Gugercin and Antoulas (2003) establishes
an upper bound for the 3., error between the full and reduced
models; Redmann and Kiirschner (2017) provides an 3, error
bound.

In this paper, we explore optimal model reduction over a finite
time horizon. We use a time-limited version of the J{, norm, de-
noted by H;(tf), to quantify the model reduction error. Optimality
requires a parametrization of the reduced model. We will work
with the time-domain representation of the dynamical system to
derive the optimality conditions. Specifically, we represent the
impulse response of the reduced dynamical system using the
modal decomposition, i.e.,

.
hi(t) = Ce"'B, = ) _etr]. (1.3)
i=1

where A;’s are the eigenvalues of A,, and ¢; € CP*!,r; ¢ C™,
In other words, the impulse response is expressed as a sum of r
rank-1 p x m matrices. To simplify the presentation, we assume
that A;’s, the reduced order poles, are simple. The representation
(1.3) is nothing but a state-space transformation on h.(t) =
C,e™B, using the eigenvectors of A,. Using the parametrization
of the reduced model in (1.3), we derive interpolatory optimality
conditions in the #,(t;) norm and implement a model reduction
algorithm that satisfies these optimality conditions.

The advantage of the interpolation framework we will develop
is that we do not require the reduced-model to be obtained
via projection, as usually assumed in model reduction (Antoulas,
2005). Indeed, one observation we will make is that unlike in the
infinite-horizon %, approximation problem, the optimal reduced
model in the finite-horizon case is not necessarily given by a
projection and thus a projection-based approach will not be able
to satisfy the optimality conditions. Therefore, by treating the
poles and residues in (1.3) as the parameters and directly working
with them, we obtain a reduced model to satisfy the optimality
conditions exactly.

The rest of the paper is organized as follows: In Section 2 we
briefly review optimal 3, model reduction in the infinite horizon
case. The main results, including the new optimality conditions
for finite horizon, are established in Section 3 followed by nu-
merical examples in Section 4. The papers ends with conclusions
and future work in Section 5.

2. H,-optimal model reduction: The infinite horizon case

Model reduction with respect to the X, norm in the
infinite horizon case has been studied extensively; see, for ex-
amples, Anic, Beattie, Gugercin, and Antoulas (2013), Baratchart,
Cardelli, and Olivi (1991), Bryson and Carrier (1990), Castagnotto
and Lohmann (2018), Fulcheri and Olivi (1998), Gugercin et al.
(2008), Halevi (1992), Hyland and Bernstein (1985), Lepschy,
Mian, Pinato, and Viaro (1991), Meier and Luenberger (1967),
Spanos, Milman, and Mingori (1992), Vuillemin, Poussot-Vassal,
and Alazard (2014), Wilson (1970),Breiten, Beattie, and Gugercin
(2015), Bunse-Gerstner, Kubaliriska, Vossen, and Wilczek (2010),
Panzer, Jaensch, Wolf, and Lohmann (2013), van Dooren, Gallivan,
and Absil (2008) and Yan and Lam (1999) and the references
therein. In this section, we briefly recall these results as they
will help to highlight the similarities to and differences from the
finite-horizon case that we are interested in.

2.1. H, norm and 3, error measure

The error analysis for model reduction of linear dynamical
systems can be conducted either in the frequency domain or
in the time domain. Therefore, we define the H, norm in each
domain.

Definition 2.1. Let h(t) and g(t) be the impulse responses of two
asymptotically stable! linear dynamical systems with real state-
space realizations. The 7, inner product (-, -) 5, and the 3(; norm
I - Ilsc, are

(h.g),, = /O Tr ((h(0)g(t) dt.

oo
Ihlsc, = / Ih3dt,
0

respectively, where Tr(-) denotes the trace and | - ||r denotes the
Frobenius norm of a matrix.

To define the 3(; norm in the frequency domain, let Y(s), U(s),
and H(s) denote the Laplace transforms of the output y(t), the
input u(t), and the impulse response h(t) = CeMB in (1.1).
Then, taking the Laplace transform of the convolution integral
in (1.1), we obtain Y(s) = H(s)U(s), where H(s) = C(sI —
A)~'B is called the transfer function of (1.1). Let {1, p2, ..., pn}
denote the eigenvalues of A, assumed simple. Then, similar to
the parametrization of the reduced model h.(t) in (1.3), the
full-model impulse response can be equivalently written as

n n T
cib;

h(t)= ) effc;b! with H(s)= Y ——, (2.1)

where ¢; € CP and b; € €™, fori = 1,...,n. This is called

the pole-residue form where p;’'s are the poles of the (rational)
transfer function H(s) with the corresponding rank-1 residues
Cib;r.

Definition 2.2. Let H(s) and G(s) denote the transfer functions
of two asymptotically stable dynamical systems with real state-
space realizations. The 3, inner product (-, -) 5, and the 3(; norm

I - Ilsc, are
1 ©
(G, H)g, = o Tr(G(—1w)H' (10))dw
—00
-l o0
IHll5, == E/;oo [H(iw)|7de,
respectively.

Similar to H(s), let H,(s) = C.(sl, — A;)"'B. denote the
transfer function of the reduced model. Then, the relevance and
importance of the 3, norm in the model reduction become clear
by noting that

1Y = ¥rlliee = IIH—=Hrllac, [lull,, (2.2)

i.e., the L, norm of the output error y(t) — y,(t) due to model
reduction is bounded by the H, norm of error transfer function
relative to the L, norm of the input u(t); see, e.g., Antoulas,
Beattie, and Gugercin (2010), for a proof. Therefore, to guarantee
that the reduced model output y,(t) is close to the original one
y(t), one might look for a reduced model that minimizes the 3,
error norm.

T we will call h(t) = CeA'B asymptotically stable if all the eigenvalues of A
have negative real parts. We will call h(t) stable when A has some semi-simple
eigenvalues on the imaginary axis in addition to those with negative real parts.
Otherwise, we call h(t) unstable.
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2.2. Interpolatory conditions for optimal 3(; model reduction

Given a reduced order r, the goal is to construct a reduced
order model whose transfer function H,(s) minimizes the
error norm ||H — H; || ,. Since this is a non-convex optimization
problem, the usual, numerically feasible, approach is to find a
reduced model that satisfies the necessary conditions for 3(; op-
timality. These conditions can be formulated in terms of Sylvester
equations (Hyland & Bernstein, 1985; Wilson, 1970) or interpola-
tion (Gugercin et al., 2008; Meier & Luenberger, 1967). These two
frameworks are equivalent (Gugercin et al., 2008). In this paper,
we will focus on the interpolation framework.

Theorem 2.1. Let

.
=)y eur]
k=1 k=1
be the best rth order approximation of an asymptotically stable
linear dynamical system H(s) with respect to the 3(; norm. Then,
fork=1,2,...,r1,

GH(—) = GH (=),

H(=2A)re = He(—=A)re, (23)
GH (—)r = GH (=L o)r,
where H'(s) denotes the derivative of H(s) with respect to s.

For more details on Theorem 2.1, see Gugercin et al. (2008)
and Antoulas et al. (2010). This result states that the transfer
function of the optimal H, approximation to H(s) is a (tangen-
tial) Hermite interpolant where the interpolation points are the
mirror images of the reduced-order poles {A;}, and the tangential
directions are given by the corresponding residues {(er}. Since
the optimality conditions depend on the reduced-model to be
computed, the solution requires a nonlinear iteration. The Itera-
tive Rational Krylov Algorithm (IRKA) (Gugercin et al., 2008) and
its variants such as Beattie and Gugercin (2009, 2012), Bunse-
Gerstner et al. (2010) and Castagnotto and Lohmann (2018) use
these interpolation based optimality conditions to produce an
interpolatory, locally X, optimal reduced model. The next section
will extend this framework to the finite-time interval case.

3. H(tr) optimal model reduction on a finite horizon

In this section, we present the main theoretical results of
the paper i.e,, the interpolatory H,(tf) optimality conditions, and
discuss their implications.

3.1. H,(tr) norm on a finite-time horizon

It is immediately clear from the time-domain definition of
the (infinite-horizon) 3, norm how to define the finite-horizon
version:

Definition 3.1. Let h(t) and g(t) denote the impulse responses
of two dynamical systems with real state-space realizations. For
a finite-time horizon [0, t], the %z(tf)z inner product (-, Vaey(tp)
and H;(tf) norm || - ll 3¢,0t) are defined as

f
(h. )50y = / TH((h(e)) gt ),
0

2 Even though the term J(, is mostly associated with a measure in the
frequency domain, following Goyal and Redmann (2017) and Redmann and
Kiirschner (2017) we are using the notation (,(t;) here as well to denote the
error measure specifically formulated in the time domain. Our main reason is
to keep the connection to the infinite horizon problem where the measure in
the frequency- and time-domains are equivalent. And more importantly, as in
the regular H, case, the optimality conditions will still appear as interpolation
conditions in the frequency domain.

iy
/ ()] 2dt.
0

3.2. Finite horizon interpolation-based conditions H(tf) optimal
model reduction

Ihllsc,6) =

The problem we are interested in is as follows: Given a dy-
namical system with impulse response h(t) (or equivalently with
transfer function H(s)) and a reduced order r, find the reduced
model with the impulse response

.
=) eiur]. (3.1)
i=1

such that |h — hr||9{2([f) is minimized. As in the regular 3, case,
this is a non-convex optimization problem and we will focus
on local minimizers. Using the parametrization (3.1), we will
derive interpolation-based necessary conditions for optimality.
The main result is given by Theorem 3.1. However, we need
many supplementary results, Lemmas 3.2-3.3, to reach this final
conclusion. It is immediately clear that, the 3,(t;)-error, denoted
by g, satisfies

J=I|h- hr||ic2(rf)
z(hs hr)?fz([f) + ”hr”ifz([f)v

where the inner product (h, hr>g{2([f) is real since h(t) and h,(t)
are real. Finding the first-order necessary conditions for optimal
H,(tr) model reduction will require computing the gradient of the
error expression (3.2) with respect to the optimization variables.
Since the reduced model, as described by the impulse response
in h,(t), is parametrized by the reduced order poles {A;}, and the
residue directions {¢;} and {r;}, we will be computing the gradient
of the error with respect to these variables. Since the first term in
the error (3.2), i.e., || h]| 3o(tf)» is a constant, we will be focusing on
the remaining two terms only. First, in the next lemma, we will
formulate these two last terms in terms of {};}, {¢;} and {r;}.

Lemma 3.2. Let h(t) = Y /', e%’c;b/ and h,(t) = Y i, ']
be, respectively, the impulse responses of the full and reduced models

(3.2)
= ||h||29f2([f) -

as described in (2.1) and (3.1). Then,
l+/oj)tf -1
(h,hy) s, = Z ZeTqur, , (3.3)
Ai + pj
j=1 i=1

and

, r )» (A2t _ 1
I 15e,0) = ;;‘ Y Mt G4

Proof. Both results follow from the definition of the 3,(tr) inner
product. First consider

i
(0, hy)sey) = Tr (/ hr(f)Th(t)dt> :
0

Substitute h(t) = Y7 ¢;bfe”" and hy(t)
this formula to obtain

n
(h,hy)se,0) = Tr / Z(er”f > eiblentdt
j=1

= Y., &irlet into

ZZre c]bT/ eitaldy

i=1 j=1
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Computing the integral and using the fact that Tr(A;A;) =
Tr(AzA;) for two matrices A; and A, of appropriate sizes, we
obtain

(Ait+pilts _ 1

j— T Te
(h, By ) s = Tr ZZ” cib; ri + o

j=1 i=1

— Z Z e ri———

Jj=1 i=1

e( 1+P])tf 1
A+ o

’

which proves (3.3). Then, (3.4) follows directly by replacing h(t)
with h,(t) in this derivation.

For infinite time horizon, Theorem 2.1 tells us that a locally
H, optimal reduced transfer function is a tangential Hermite
interpolant of the original transfer function at the mirror images
of the reduced poles. We will show that in the finite horizon
case, even though Hermite tangential interpolation is still the
necessary conditions for optimality, what is being interpolated
and what the interpolant is are different.

Theorem 3.1. Let H(s) = C(sI — A)"'B, with A € R™", B € R™™,
and C € RP*", be the transfer function of the full order model with

the pole-residue representation H(s) = Z? 1 ;b; as in (2.1), where
c; € CP, b e C",and p; € C fori = 1, , . For a finite-time

horizon [0, t], define

G(s) = —e (sl — A)~'ePTB 4 H(s). (35)

Let

H(s)—C(sl—A)_lB—Xr:ﬂ (3.6)
r — 4 T T r — s— )\i °

i=1
be the transfer function of the best rth order approximation of H(s)
with respect to the 3(,(t;) norm where A, € R™', B, € R™",

CeRP LieCP,rieC™, and Aje C fori=1,...,r. Define
G(s) = —e (s, — A,) e B, + H,(s). (3.7)
Then, fork=1,2,...,r,
6G(—1k) = £,Gr (1), (38)
G(—Ary = G(—Ar)ry, and (3.9)
GG (=i = G (—A)rk. (3.10)

The next lemma will be used in proving Theorem 3.1.

Lemma 3.3. Let G(s) and G,(s) be as defined in (3.5) and (3.7),
respectively. Then,

(Ak+ojtr
o ek — 1
—Xk) cib 3.11
k Z ! j )\k + Pj ( )
n .
e — 1)etetaly 41
Gl(—p) = _chbf(f( Kkt )= 1 +1 (3.12)
j:l (Ar + Pj)
e(kkﬁ—kj 1
er , and (3.13)
)\l + )»]
(tr(hk + A) — 1)t 41
—h) = yr r( . 3.14
) Z G TP (3.14)
Proof. Recall the definition of G(s) = —e™s¥C(sI — A)~'eMYB +

H(s). Note that we assume that the eigenvalues of A are simple.
Therefore, A7 is also diagonalizable by the eigenvectors of A.
Using this fact and the pole-zero residue decomposition of H(s) =

cjb!
C(sI—A)~ ]B_Z] 1= p , we obtain

G(s) = — ’“fC(sI —A) "B + H(s)
sfch b’ ey +ic (3.15)
J J j s—pj .
S+pj)ff n
=Y L e
S—pj e S—pj
(—=s+pj)t
7€ =1
= Z ¢ (3.16)
] —5+Pj
eutolly _ q
Thus, G(—A) = YL 1cjbf7 which proves (3.11). To

Ak + 0
prove (3.12), we first differentiate (3.16) with respect to s to
obtain

(=s+py t e(=St+oty _ 1

= Xn:obT (s = pe
— (s—n)

Plugging in s = —Ay in this last expression yields the desired
result (3.12). The proofs of (3.12) and (3.14) follow analogously.

Proof of Theorem 3.1. As mentioned above, let J denote the
H,(ty) error norm square, i.e.,

J=|h- hr”zg{z([f)
208, Br ey + I By

The expressions for (h, ;) 5,(4) and ||hr||2%2(t) in terms of the
optimization variables {A.}, {ry}, and {£}, for k = 1,2,...,r,
were already derived in Lemma 3.2. To make the gradient compu-
tations with respect to the kth parameter more clear, we separate
the kth term from these expressions. For example, we write
(h, hr)_%z(tf in (3.3) as

Ak+pj o 1

echrk
Z k*J A+ pj

+ Z Z ¢ cjbjri———

1 i=1
= i#k

2
= ”h”}(z(tf) -

(h, ?fz(tf

e()‘1+/0) )tf —1

Ai + pj

Following the same procedure for |/h we obtain

ey

ektolty _ q

tf n
J= h(t) h(t)dt — 2 eb'r
/(; () hie) Zk”k A+ pj

j=1

+ Z Z ¢ eb/ri———

1 i=1
= i#k

(2)\k)ff -1
e
+ Zﬁekrﬁrk

e()w‘H’) L7 1

Ai + pj

k
(hit+hedty 1
e
+ gyriri——
Z k1 A+ Ax

i=1
l;ék

+Z€ lr T

j=1
J#k

r eitAty

+ ZZlTlr r,i)\ "y

j=1 i=1
J#ki#k

e()\k+)\j )tf -1

Ai A

(3.17)
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To compute the gradient of the cost function § we perturb the
cost functional with respect to the residue directions, i.e., £, —
£ + AL, and ry — 1 + Ary:

9= / ! h(t)"h(t)dt
0

(M("’P')tf —1
T T e’ J
2( E (ek Aek) Cjbj (1 k Al k)

j71 Ak + 0
eitoy _ 1
+ b ri———
> Y donnt
j=1 i=1
ik
. I e(2kk)tf -1
+ (€ + ALy) (€ + ALy )(ry + Ary) (g + Ark)T
k
r GitMty _ 1
e
+ Y W+ A+ Ar) T ——————
;,(k (K k)T P
ik
r (Ak+25)tr
e J 1
&+ AL Lr(r + Ar)——M
+J:Zl( Kkt k) 1](k+ k) )hi+)»j
j#k
A.+)\.J)tf 1
+ o {; r
121 Z IEE
rk itk

Then, collecting the terms that are multiplied by A€, and Ary,
we obtain

(Ak+pj)tf -1
V. d=— cib
Tk Z J J )\" +pj
A[(+A})tf -1
+ 2¢f & r
Z i
(}Lk+/71)ff 1
Vi d = — cib r
L Z ] ] )\-k+pj k

ety _ q

rg.
Ak + )\j

n
+2 ) 4r]
j=1

Setting V;,J = 0 and V, d = 0, and using Lemma 3.3, mainly
(3.11) and (3.13), yield
£.G(—1i) = 4G (—),
G(—A)ri = G (=Ap)ry,
which proves (3.8) and (3.9). To prove (3.10), we differentiate J in
(3.17) with respect to the kth pole XA;. Note that we have written
J in such a way to isolate the terms that depend on XAy from the

ones that do not. Thus, many of the terms in (3.17) have a zero
derivative and we obtain:

Pty _ q

te(n (oAt
ZET Z be k + p5)

— > I
3?~k (A + 0)? (Ak + 0j)
t )\. )\. k (hi+Ag)tr (MitAte 1
+ 20! Zz” Ak e I
(Ai + Ak )? (A 4 A2
(3.18)

The first term in (3.18) corresponds to the derivative of the
second term in (3.17) and the second term in (3.18) corresponds
to the derivative of the last four terms in (3.17). We rewrite (3.18)
to obtain

ag

% = 2Ky + 2K,

3.19
B (3.19)

where
(tr(x — el i 4 q
Ki= e Z e "+p(fi +)e) Ll o (3.20)
k T Pj
(tr (A + Ak) — 1)t )i 41
Kz:z{<Ze pr e+ f(;) +k)) ). (3.21)
i k

Lemma 3.3, specifically (3.12) and (3.14), show that the expres-
sions in the parentheses in (3.20) and (3.21) are, respectively,

d
—G/(—X¢) and —GL(—Xg). If 99 =0, then
Ak

GG (=) = LLGL.(— Ty,
which completes the proof. O

We note that the interval of interest is problem dependent and
the choice of the interval, i.e., the choice of t, may depend on the
model. However, these optimality conditions hold for any choice
of tr > 0.

Remark 3.2. In the infinite-horizon case, if H.(s) is the best H,
approximation to H(s), then H,(s) interpolates H(s). However, in
the finite-horizon case, the interpolant is G.(s), and the interpo-
lated function is G(s); thus H,(s) does not interpolate H(s). To give
more intuition about these resulting interpolation conditions,
consider the time-limited function g(t) such that g(t) = h(t)
when t < t; and g(t) = 0 when t > t;. A direct calculation
shows that G(s) is the Laplace transform of g(t). Similarly let g,(t)
denote the time-limited version of h,(t). Then its Laplace trans-
form is G(s). Therefore, the optimality conditions (3.8)-(3.10)
correspond to optimal interpolation of G(s) (Laplace transform of
the time-limited function g(t)) by G.(s) (Laplace transform of the
time limited function g, (t)). The fact that g(t) and g,(t) are both
time-limited is the precise reason why we cannot simply apply
H, optimal reduction to G(s). The method of Beattie and Gugercin
(2012), called TF-IRKA, does not require the original function to
be a rational function. Thus, in principle we can use TF-IRKA to
reduce G(s). However, the resulting reduced model is a rational
function without any structure. In our case, the reduced model
G,(s) needs to retain the same structure as G(s) so that we can
extract an H;(s). In other words, if we simply apply an 7(, optimal
algorithm to G(s), we would be approximating a finite horizon
model by an infinite horizon one and we cannot extract H;(s).
Therefore, a new algorithmic framework is needed as we discuss
in more detail in Section 3.3.

Remark 3.3. For an unstable dynamical system without purely
imaginary eigenvalues, one can work with the £, norm by de-
composing it into a stable and anti-stable system, and then obtain
an interpolatory reduced model based on this measure. However,
this solution requires destroying the causality of the underly-
ing dynamics (Magruder, Beattie, & Gugercin, 2010). This is not
the framework we are interested in here and we work with a
finite-time interval.

3.3. Implication of the interpolatory H,(t;) optimality conditions

Theorem 3.1 extends the interpolatory infinite-horizon 3(,
optimality conditions (2.3) to the finite-horizon case. Note that
in the case of asymptotically stable dynamical systems, if we let
tr — oo, we recover the infinite-horizon conditions (2.3).

The major difference from the regular X, problem is that
optimality no longer requires that the reduced model H,(s) tan-
gentially interpolate the full model H(s). Instead, the auxiliary
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reduced-order function G,(s) should be a tangential Hermite
interpolant to the auxiliary full-order function G(s). However,
the optimal interpolation points and the optimal tangential di-
rections still result from the pole-residue representation of the
reduced-order transfer function H,(s). This situation is similar
to the interpolatory optimality conditions for the frequency-
weighted 7(,-optimal model reduction problem in which one
tries to minimize a weighted %, norm in the frequency domain,
i.e, find H,(s) that minimizes |W(H — H,)|| 5, where W(s) repre-
sents a weighting function in the frequency domain. As Breiten
et al. (2015) showed, the optimality in the frequency-weighted
FH,-norm requires that a function of H,(s) tangentially interpolate
a function of H(s). Despite this conceptual similarity, the resulting
interpolation conditions are drastically different from what we
obtained here as one would expect due to the different measures.
For details, we refer the reader to Breiten et al. (2015).

As we pointed out in Section 2, in addition to the interpolatory
framework, one can represent the 3(; optimality conditions in
terms of Sylvester equations, leading to a projection framework
for the reduced model. This means that given the full-model
H(s) = C(sI — A)~'B, one constructs two bases V, W € R"*" with
VW = I, such that the reduced-order quantities are obtained via
projection, i.e.,

A =W'AV, B, =W'B, and C, =CV. (3.22)

In the infinite-horizon case, Wilson (1970) showed that the op-
timal 7, reduced model is indeed guaranteed to be obtained
via projection. Recently, Goyal and Redmann (2017) have estab-
lished the Sylvester-equation based optimality conditions for the
time-limited 3, model reduction problem; i.e., they extended
the Wilson framework to the time-limited (finite-horizon) 7(,
problem. Furthermore, they have developed a projection-based
IRKA-type numerical algorithm to construct the reduced models.
However, as the authors point out in Goyal and Redmann (2017),
even though their algorithm yields high-fidelity reduced models
in terms of the ,(t;) measure, the resulting reduced model
satisfies the optimality conditions only approximately. This is not
surprising in light of the optimality conditions we derived here.
Since the optimality requires that G,(s) should interpolate G(s) (as
opposed to H;(s) interpolating H(s)), unlike in the infinite-horizon
case, the reduced model in the finite-horizon case is not necessar-
ily given by a projection as in (3.22). Therefore, a projection-based
approach would satisfy the optimality conditions only approxi-
mately. This was also the case in Breiten et al. (2015) where even
though a projection-based IRKA-like algorithm produced high-
fidelity reduced models in the weighted norm, it satisfied the
optimality conditions approximately.

The advantage of the interpolation framework and the
parametrization (1.3) we consider here is that we do not require
the reduced-model to be obtained via projection. By treating
the poles and residues in (1.3) as the parameters and directly
working with them, we can obtain a reduced model to satisfy
the optimality conditions exactly. Even though the main focus of
this paper is the theoretical interpolatory framework and a robust
numerical algorithm will be fully considered in a future work, in
the next section we will discuss a basic numerical framework one
can develop using the interpolatory conditions.

Remark 3.4. The finite-horizon approximation problem for
discrete-time dynamical systems has been considered in Melchior,
Van Dooren, and Gallivan (2014). The derivation in Melchior et al.
(2014), however, allows the reduced-model quantities to vary
at every time-step, thus using a time-varying reduced model as
opposed to the time-invariant formulation considered here and
in Goyal and Redmann (2017). Allowing time-varying quantities

drastically simplifies the gradient computations, leading to a re-
currence relations for optimality. Therefore, the model reduction
problem for finite-horizon #, approximation for time-invariant
discrete-time dynamical systems is still an open question.

4. Numerical considerations

In this section, we briefly discuss a numerical framework to
construct a reduced model that satisfies the optimality conditions
(3.8)—(3.10). To make the presentation and discussion concise, we
will focus on the single-input/single-output (SISO) version only.
The complete numerical framework for the general case with
further details on the underlying optimization schemes will be
discussed in a separate work.

4.1. A descent-type algorithm for the single-input/single-output case

Let H(s) and H,(s) be SISO full- and reduced-model transfer
functions, respectively, i.e.,

Y

S—pi

~ ¢

T -1 i
H;(s) = cr(SIr —A) b = 'Zl: s— A
where A € R™ b,c € R", A, € R™™", and b,, ¢, € R". Note
that the residues ; and ¢; are scalar valued. The following result,
which is an immediate consequence of Theorem 3.1, summarizes
the optimality conditions for SISO systems.

H(s)=c'(sI—A)"'b = Z
i=1

)

Corollary 4.1. Given the SISO transfer functions H(s) and H,(s) as
defined in (4.1), define

G(s) = —e~*U¢T(s1 — A)"'e® b + H(s) and
Gi(s) = —e ¢l (sl — A;)"'eM b, + H,(s).

If H, is the best rth order approximation of H with respect to the
H(tr) norm, then

G(—21) = Gr(—2k), and G'(—Ax) = Gy(—Ax) (4.2)

where Ay for k = 1,2, ..., r are the poles of the reduced system
H,(s) as given in (4.1).

As stated before, the %,(t;) minimization problem is a non-
convex optimization problem and Corollary 4.1 gives the nec-
essary conditions for optimality when both poles and residues
are treated as variables. However, if the poles are fixed, we can
establish the necessary and sufficient optimality conditions for
the residues and find the global minimizer, the optimal residues,
by solving a linear system.

Corollary 4.2. Let H(s) and H.(s) be as given in (4.1), and G(s)
and G(s) as in (4.2). Assume the reduced poles {A;}]_; are fixed.
Then, H,(s) is the best rth order approximation of H(s) with respect
to the H,(tr) norm if and only if M = z, or equivalently, G(—Ay) =
G (—A), fork=1,2,....r, where ¢ = [¢1 ¢o --- ¢ 1T € C" is
the vector of residues; z € C" is the vector with entries

zj =T (-l —A)eATh —H(—),i=1,2,...,1;

and M € C™" is the matrix with entries

ety _ 1
Mjj= ——F—, for
Ai + )\.j
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Proof. Using the SISO counterparts for (3.3) and (3.4) and ap-
plying some algebraic manipulation, the cost functional J can be
written as

3= [Ihl5,.,) — 20" W+ ¢' M9,

where w € €™ has the entries

elpktrilly _ q
Wz—Zwkﬁ for i= ],2,...,7'.

Note that M is positive definite, p"M¢ = ||hr|| i) > 0, and
the cost function is quadratic in ¢. Thus the ( globa minimizer
is obtained by solving M¢ = z, which corresponds to rewriting
G(—A;) = G;(—Ag) for k=1,2,...,r in a compact way.

The result is analogous to the regular infinite-horizon
problem where the Lagrange optimality becomes necessary and
sufficient once the poles are fixed (Beattie & Gugercin, 2012;
Gaier, 1987). What is important here is that once the reduced
poles are fixed, the best residues can be computed directly by
solving an r x r linear system M¢ = z. This is the property that
we will exploit in the numerical scheme next.

4.1.1. FHIRKA: A numerical algorithm for 3,(t;) model reduction

Here we describe a numerical algorithm which produces a
reduced model that satisfies the necessary 3,(t) optimality con-
ditions upon convergence. Let A € C’ denote the vector of
reduced poles. Thus, the error J is a function of A and ¢. Since we
explicitly know the gradients of the cost function with respect
to A and ¢ (and indeed we can compute the Hessians as well),
one can (locally) minimize J using well established optimization
tools. However, as Corollary 4.2 shows, we can easily compute the
globally optimal ¢ for fixed A. Therefore, we will treat the reduced
poles A as the optimization parameter, and once A are updated
at the kth step of an optimization algorithm, we find/update the
corresponding optimal residues ¢ based on Corollary 4.2, and
then repeat the process. Similar strategies have been successfully
employed in the regular 3(, optimal approximation problem as
well; see Beattie and Gugercin (2009, 2012). In summary, we use
a quasi-Newton type optimization as A being the parameter and
in each optimization step, we update the residues, ¢, by solving
the r x r linear system M¢ = z as in Corollary 4.2. Since we
are enforcing interpolation at every step of the algorithm, yet
tackling the model reduction problem over a finite horizon, we
name this algorithm Finite Horizon IRKA, denoted by FHIRKA.
Unlike regular IRKA, FHIRKA is a descent algorithm, thus indeed
mimics (Beattie & Gugercin, 2009) more closely. Upon conver-
gence, the locally optimal reduced model satisfies the first-order
necessary conditions of Corollary 4.2.

4.2. Numerical results

In this section we compare the proposed algorithm FHIRKA
with Proper Orthogonal Decomposition (POD), Time-Limited Bal-
anced Truncation (TLBT), and the recently introduced H(t)-
based algorithm by Goyal and Redmann (GR) (Goyal & Redmann,
2017), as briefly discussed in Section 3.3.

We use three models: a heat model of order n = 197
(Chahlaoui & Van Dooren, 2002), a model of the International
Space Station 1R Module (ISS 1R) of order n = 270 (Gugercin,
Antoulas, & Bedrossian, 2001), and a toy unstable model of order
n = 402. The ISS 1R model has 3-inputs and 3-outputs. We focus
on the SISO subsystem from the first-input to the first-output.
We have created the unstable system such that it has 400 stable
poles and 2 unstable poles (positive real part).

For all three models, we choose t; = 1, first reduce the original
model using POD, GR or TLBT, and then use the resulting reduced

FHIRKA vs POD fora heat model
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r
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FHIRKA vs GR for a heat model
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{2 FHIRKA w/ GR Init
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Fig. 1. FHIRKA and other algorithms for the heat model.

model to initialize FHIRKA. Thus, we are trying to investigate
how these different initializations affect the final reduced model
via FHIRKA and how much improvement one might expect. The
results are shown in Figs. 1-3, where we show the 3;,(t;) approx-
imation error for different values of r, the order of the reduced
model. All three initializations are used for the heat model (Fig. 1)
where the order is reduced from r = 2 to r = 10 with increments
of one. For some r values, certain initializations are excluded
(e.g., the GR initialization for r = 6) since the algorithm either
did not converge or produced poor approximations. However, this
happened only rarely.

For the ISS model (Fig. 2), we use TLBT and GR initializations
since POD approximations were very poor and are excluded. In
this case, we reduce the order from r = 2 to r = 14 with
increments of 2. For the unstable model (Fig. 3), we use POD
and GR initializations; for this model our implementation of TLBT
produced poor results and is avoided. In this case, we reduce the
order from r = 2 to r = 12 with increments of 2. The first
observation is that, since FHIRKA is a descent-method and drives
the initialization to a local minimizer, it improves the accuracy of
the reduced model for all three initializations as expected. The
improvements could be dramatic. For example, FHIRKA is able
to outperform POD as much as by an order of magnitude, see,
for example, Fig. 1, the r = 4 and r = 5 cases. While FHIRKA
improves TLBT and GR initialization as well, the improvements
for the heat model are not as significant. However, for the ISS
model, FHIRKA is able to improve the TLBT performance as much
as 50%; see, e.g., Fig. 2, the r = 8 case. The best improvement
of the GR initialization has occurred for the unstable model. For
example, for r = 8, for the unstable model, FHIRKA improved the
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Fig. 2. FHIRKA and other algorithms for the ISS model.
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Fig. 3. FHIRKA and other algorithms for the unstable model.
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Fig. 4. FHIRKA and POD for the ISS model.

reduced model by more than 40%. Gains were significantly better
for POD, especially for larger r values.

Finally, in Fig. 4, we compare the error in the impulse re-
sponses due to POD and FHIRKA for the ISS model. For both
methods, POD and FHIRKA the reduced model was of order r =
14. As we can see from the graph, FHIRKA clearly outperforms
POD on the time interval [0, 1].

Overall, as expected, FHIRKA yields a better approximation
compared to the other algorithms for each model. We find that GR
provided the best initialization for FHIRKA. This is not surprising
since GR produces a reduced-model that approximately satisfies
the #,(tr) optimality conditions.

As we stated above, the numerical issues will be fully in-
vestigated in a future work where we will develop a robust
interpolatory ¥ (tf)-descent algorithm for MIMO systems. We
will not only study better initialization techniques in terms of
speed and accuracy, but also make the algorithm numerically
more efficient by using approximation techniques for the ma-
trix exponential eAY appearing in the Hy(ty) setting. We will
also investigate the MIMO version of Corollary 4.2. In the MIMO
case, even for fixed poles, one cannot simply find the globally
optimal residue directions by solving a linear system, since the
problem is no longer quadratic in these variables. In the regular
H, case, finding the optimal residue directions for given poles
required solving a nonlinear least-squares problem (Beattie &
Gugercin, 2012). We anticipate a similar formulation here and
will investigate the corresponding numerical implications.

5. Conclusions and future work

We established interpolatory H,(t;)-optimality conditions for
model reduction of MIMO dynamical systems over a finite hori-
zon. Even though the optimal interpolation points and tangential
directions are still determined by the reduced model, we showed
that unlike the regular 3, problem, a modified reduced-transfer
function should interpolate a modified full-order transfer func-
tion. For the special case of SISO models, we have studied a
numerical algorithm and illustrated that it performs effectively.

As in the regular 3,-problem, establishing equivalency be-
tween the Sylvester-equation based H,(t;)-optimality conditions
of Goyal and Redmann (2017) and the interpolation-based condi-
tions we developed here will be an interesting direction to pur-
sue. Furthermore, extensions to bilinear and quadratic-bilinear
problems will be crucial.
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