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Key Points:

¢ Roughness effects in non-kinematic overland flow can be approximated using a kine-
matic wave approximation

¢ The sensitivity of hydrological predictions to the depth-velocity scaling exponents
closing the friction slope is small

« Parameterizing the ‘scale’ of roughness remains a key source of uncertainty
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Abstract

Parameterizing the effects of surface roughness on flow resistance remains a ma-
jor challenge in modeling overland flow using physics-based descriptions such as the Saint
Venant equations (SVE). This challenge has prompted the development of a large num-
ber of roughness schemes relating the properties of a rough surface, the bulk velocity and
resistance, yet it is often unclear which of these schemes should be used to represent a
given land surface, particularly on heterogeneous surfaces. Since it is often necessary to
calibrate any given roughness scheme to flow on a given surface, modelers need to un-
derstand the sensitivity of their predictions to the choice of roughness scheme, post cal-
ibration. Here, we focus on hillslope-scale predictions made with the SVE: the water bal-
ance partitioning between runoff and infiltration, the hillslope hydrograph, and the dis-
charge velocity. We develop an approach to calibrate roughness schemes to each other,
by undertaking the calibration under equilibrium flow conditions and imposing the kine-
matic wave approximation at the outlet. This approach yields analytical relationships
between the parameters of two roughness schemes applied to the same hillslope and dis-
charge. We apply this approach to a sensitivity analysis of hydrological predictions re-
sulting from the choice of five commonly used roughness schemes. The results suggest
that, once calibrated, there is minimal prediction sensitivity to the choice of scheme across
a wide range of rainfall conditions. Operationally, these results mean that the param-
eterization of any selected roughness scheme is more important for predicting the hy-
drological behavior than the selection of a particular scheme.

1 Introduction

Overland flow is ubiquitous in locations with low soil permeability, such as moun-
tainous, arid, urban or agricultural landscapes (Descroix, Viramontes, Estrada, Barrios,
& Asseline, 2007; Dunne, 1983; Li, Sivapalan, Tian, & Harman, 2014). Overland flow
occurs at the expense of infiltration and is responsible for soil erosion and flash flood-
ing (Abrahams, Parsons, & Wainwright, 1994; Bracken, Cox, & Shannon, 2008). The oc-
currence, depth, velocity, and time evolution of overland flow during and after storms
is therefore relevant to land managers, practitioners, scientists, and engineers (Cantén
et al., 2011; Hallema, Moussa, Sun, & McNulty, 2016). In dryland environments, over-
land flow occurs on patchily-vegetated landscapes with spatially varying infiltration prop-
erties, roughness and slopes.

The most general physical equations with which to represent flow in such environ-
ments are the Saint Venant (or shallow water) equations (SVE). These equations com-
bine the continuity equation with the conservation of momentum, and are shown here
in their one-dimensional form for illustration:

oh 0 .

Q‘F%(Uh)—]?—l, (1)
U dU ok Ulp—i)
§+U%+g%+g(5f750)+T—0, (2)

where h is the water depth at location x and time ¢, U is the depth-averaged velocity,
S, and Sy are the bed- and friction- slopes, and g is the gravitational acceleration. The
boundary conditions are rainfall p and infiltration losses ¢ that can vary with z and t¢.

The SVE do not form a closed system of equations, and users must specify a clo-
sure model for the friction slope Sy, which represents the net effects of bed and other
shear stresses (e.g. presence of obstructions) on the flow. The closure model takes the
form of a resistance formulation (colloquially, a ‘roughness scheme’) that describes Sy
in terms of the modeled flow variables (i.e. h and U), subject to constraints based on
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the genesis of frictional resistance to flow. Roughness schemes must be defined even if
the full SVE is simplified to the dynamic or kinematic wave equations.

Resistance formulations for overland flow capture the effects of two sources of fric-
tion: (i) friction imposed by shear created when the flow traverses the land surface (known
as bed friction) and (ii) friction produced when solid bodies such as soil, rocks, vegeta-
tion stems and leaves obstruct or protrude into the flow. Because these solid bodies may
be present across some or all of the water column, they are often referred to as distributed
roughness elements. Early work in hydraulics developed numerous resistance formula-
tions to describe bed shear stresses (Gauckler, 1867; Manning, Griffith, Pigot, & Vernon-
Harcourt, 1890), which have been elaborated on and extended to distributed roughness
elements by subsequent studies of the flow boundary layer (e.g. Brutsaert, 2005; Cheng
& Nguyen, 2010; Katul, Poggi, & Ridolfi, 2011; Kirstetter et al., 2016; Miigler et al., 2011;
Wang, Huai, Thompson, & Katul, 2015). A subset of these schemes is summarized in
Table 1, and their derivation is reviewed in supporting information Text S1. Note that
these schemes are presented in their one-dimensional form for simplicity, but implemented
in two-dimensions in the model presented here.

Despite the differing sources of friction addressed by the roughness schemes, the
forms of the resistance equations in Table 1 share a number of common features. For ex-
ample, all of the equations can be represented as a dimensionless Froude number (Fr? ~
%) that depends either on the roughness properties of the surface, the bulk or elemen-
tal Reynolds number (Re ~ Uh/v, where v is the kinematic viscosity, and where h can
be replaced by an element-based lengthscale where appropriate), or both (see support-
ing information Text S1). As such, these resistance schemes are inherently power-law ex-
pressions linking U to h via an exponent and a scaling coefficient, whose function, loosely,
is to set the magnitude of frictional resistance (such as n in Manning’s equation). The
exponents are independent of any calibration, and their impacts on resistance vary be-
tween roughness schemes. Even after the scaling parameters are calibrated, different rough-
ness schemes may result in different predictions because their exponents differ.

The purpose of this technical note is to quantify the consequences of selecting dif-
ferent roughness schemes for flow prediction on a synthetic dryland hillslope, in which
vegetation cover is generally patchy but can vary from uniformly absent to completely
vegetated. Such a hillslope provides an example of a landscape on which the ‘best’ choice
of roughness scheme is ambiguous. This ambiguity arises from the sparse, patchy dis-
tribution of vegetation, and the shallow but disturbed nature of the flow. We address
two questions:

(i) How can different roughness schemes be simply calibrated against each other on bipha-
sic, heterogeneous landscapes, to facilitate inter-comparison of predictions? and

(ii) Following such calibration, how sensitive are the hydrological predictions made on
these landscapes to the selection of a roughness scheme?

Answering these basic methodological questions offers guidance regarding the likely
sensitivity of predictions to the choice of roughness scheme.

2 Methods
2.1 A framework for cross-comparison

“!Despite the common non-dimensional scaling that lies behind the roughness
schemes (see supporting information Text S1), the derived resistance equations embed
distinct ways to conceptualize a rough surface, and distinct parameterizations of the

el Text added.



Table 1.

and friction factor f, as well as the resulting conveyance equation, where « is a general resis-

Summary of the relations between the dimensionless Froude number Fr?=U?/gSsh

tance parameter. To compare to the published forms, Sy = So, which is the kinematic wave

approximation to the momentum balance (Equation 2) in the SVE.

Name Resistance equation Conveyance equation References

Bed resistance equations

Darcy-Weisbach Fr? = ? U= éhl/QS(%/Z Brutsaert (2005)
a= ,/é Cea, Legout, Darboux, Esteves,
and Nord (2014)
Poisseuille Fr? = % U= éhQSo Brutsaert (2005)
a= %” Kirstetter et al. (2016)
Manning Fr? = ’;12/; U= éh2/3S§/2 Brutsaert (2005)
a=n Smith, Cox, and Bracken (2007)
Transitional / r? = % U= éhSi/Q Brutsaert (2005)
Mixed-flow o =g Horton (1938)
Distributed drag equations
Cylinder array Fr? = Z&:ﬁg U= é\/ So Cheng and Nguyen (2010)
a= QQC(‘lI"_Z) Tanino and Nepf (2008)
Poggi Fr? = B% exp (B}—Ti) U= éhl/QSé/Q Katul et al. (2011)

o=

He
g XP (262LC

Depth-dependent ~ Fr? = # U= éhSi/Q Miigler et al. (2011)
ns59no -
Manning o = noht/? Jain, Kothyari, and Raju (2004)
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surface features. In order to ask whether predictions are sensitive to the choice of a
scheme, the predictions made using different schemes need to be placed within a com-
mon framework to enable cross-comparison. Here, we develop such a framework via an
analytical calibration procedure.

Cross-comparison of schemes is facilitated by the similarities in their mathemat-
ical form when expressed in terms of the kinematic conveyance equation (the third col-
umn in Table 1) relating the flow velocity to the flow depth, the bed slope, and a range
of other parameters, which can be lumped together as a single factor « (Brutsaert, 2005;
Lighthill & Whitham, 1955).

1
= —_p™mS"
U=_h"s]. (3)

where a and m are generalized coefficients describing the surface roughness and flow regime,
respectively, discussed in greater detail below.

The units and physical interpretation of « are scheme-specific, but in general, a
increases with increasing surface roughness. The flow regime (laminar, transitional, tur-
bulent), which sets the value of b in the generalized f ~ ae’ expression, emerges in Equa-
tion 3 as m. Figure 1 illustrates how surface roughness a and flow regime m affect the
relation between U and h for a fixed hillslope gradient, .S,.

To compare predictions made by the schemes, the values of « used in each scheme
must be chosen to minimize the differences in their predictions for a common situation.
If one scheme is treated as a reference, then this selection problem is essentially one of
calibration. To enable the use of an analytical framework, we assume that the conveyance
equation above applies at hillslope scales, even on the potentially complex hillslopes con-
sidered later. With this assumption, the calibration problem admits analytical solutions
for homogeneous hillslopes, if flow conditions are calibrated to each other at the hills-
lope outlet (as outlined in Section 2.2). We then consider how this method can be adapted
to patchily vegetated slopes, assuming that there is a known resistance equation that ap-
plies to bare sites on those slopes. We outline this method in Section 2.3. With the «
values selected to minimize disagreement between schemes, remaining differences in flow
predictions can be attributed to the unique physics implied by each resistance scheme,
which alters the relationship between flow velocity and depth (for example, the distinc-
tions seen between the curves in Figure 1 panel A).

“OWe use a coupled Saint Venant - Richards equation model to evaluate the dif-
ferences in predicted hillslope-scale hydrology associated with different roughness schemes
<6 <Tfollowing calibration of their roughness coefficients to each other (Section 2.4). We
undertake this evaluation for a wide and realistic range of storm and hillslope scenar-
ios.

2.2 Calibration strategy for homogeneous slopes

We start with the problem of determining a roughness parameterization that will
relate two different roughness schemes for the same rain intensity on a common slope.
To proceed to an analytical solution, we consider the idealized situation of a hillslope
exposed to constant rainfall p on which infiltration occurs at a constant rate given by
the hydraulic conductivity K.

€5 OC: A-eeuplec
<6 ST aftertheir
T OC: keinematie
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velocity, U (cm/s)
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Figure 1. Illustration of the independent roles of the selection of a roughness scheme (m) and
its parameterization («) on the predicted kinematic relation between velocity and depth. "':;7@

illustrates how the selection of a roughness scheme implies a U — h scaling relation for each

roughness scheme, independent of the value of « (for each scheme, o has been calibrated to

preserve flow properties between schemes at the outlet, as described in Section 2.2). “* Conversely,

(B) shows Darcy Weisbach flow on landscapes with two different values of a.

Under steady-state conditions, the kinematic conveyance equations in Table 1 spec-
ify the relationships between discharge, velocity and stage. Additionally, at the hillslope
outlet, discharge must be balanced by hillslope-scale rainfall inputs, such that on a per-
unit-hillslope width basis:

qO:Uh:L(p_Ks)a (4)

where L is the hillslope length and g, is the flow rate at the outlet per unit width. We
now consider that two different conveyance equations could be used to describe this flow:

1
— mi gm
U1 Oélhl So (5)
Uy = — hpe g (6)
2= Qo 2 o

Given that our interest is in representing hillslope-scale hydrological responses (which
are evaluated at the hillslope outlet), we specify that the flow variables at the outlet should
be conserved between the schemes, such that U; = Us and hy = hs at the outflow point.

Firstly, an expression for the flow depth at the outlet in the first scheme can be writ-
ten as a function of the hillslope discharge ¢,:

=g (7)
= o015, Mhy ™ (8)
Rearranging:
I = (angyS; ™) mt D, (9)
Substituting Equation 9 into Equation 5:
1
Ur = -5 (ang, 8, )™/, (10)
which simplifies to:
S gma 1/(mi1+1)
Uy - (aq) . (11)
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Because «a; is known, U; in Equation 11 is also known. The same logic means that the
outlet velocity Us in the second roughness scheme can be written in the same form, and
rearranged to isolate the roughness term as:

55245
Qo = Um2+1 . (12)
2

At this point, we require the outlet velocities to be equal between the two schemes, and
combine Equations 11 and 12 to obtain an analytic expression for as in terms of the scal-
ing exponents of the roughness expressions (i.e. m; and ms), the equilibrium discharge
¢o, and the roughness parameter of the first scheme «;:

ag = [a;n2+15(7)]2(m1+1)—n1(m2+1)q(7)n2—m1:| 1/(m1+1). (13)

cl

This approach effectively calibrates the two schemes to each other at the outlet,
for a given hillslope and rainfall rate. The calibration quantifies an as that produces equiv-
alent flow at the outlet to the reference scheme with a;, for a given set of storm and land-
scape parameters. The same result is obtained if the derivation proceeds by requiring
h1 = hs at the outlet, as expected given the constraint that g, is the same for both schemes.

The dependence of Equation 13 on slope length and rainfall rate (via g,) “*

flects the fact that the calibrated as absorbs differences in prediction that arise from dif-
ferences in m and 7 between the schemes, and thus depends on the h and U associated
with equilibrium flow. The calibrated as is therefore not an independent description of
the surface roughness, but rather, a parameterization that is adjusted for the magnitude
of the flow and the differences in resistance that emerge between roughness schemes for
that flow.

re-

Because the schemes are forced to agree at the outlet, differences in predicted U
and h values will emerge at other locations on the hillslope. Thus, this calibration ap-
proach is appropriate for evaluating differences in hillslope-average flow properties af-
ter adjusting the roughness parameters “* (@) to minimize those differences under equi-
librium flow conditions. Differences between schemes during unsteady conditions or at
other locations on the hillslope are not minimized by this approach. “° However, the
analytic tractability of the approach renders it attractive, as it requires no additional
model runs to calibrate as. An alternative calibration approach would be to conduct

multiple model runs to achieve near-exact agreement over one assessment metric (e.g.

infiltration fraction), and assess the quality of the match over a different set of assess-
ment metrics (e.g. hydrograph NRMSE, ¢,;s. and U, ); however, such an approach
would require multiple model runs for storm and hillslope case, which would be com-
putationally more demanding and lacks theoretical underpinning.

<l oc:
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179 2.3 Calibration strategy for patchy hillslopes

180 We now extend the calibration strategy from homogeneous hillslopes (described in
181 the previous section), to patchy landscapes, addressing the additional complexity of flow
182 processes on these landscapes. To simplify the process, we consider a hillslope that can
183 be represented as a binary mosaic of vegetated and bare soil areas ““(see Figure 2). In-
184 filtration rates are assumed to be low in bare areas due to the formation of surface crusts
185 (Assouline, 2004; Assouline et al., 2015) and higher under vegetation cover due to root
186 activity and protection of the soil surface against rain-splash by the canopy (Thompson,
187 Harman, Heine, & Katul, 2010). Roughness characteristics are similarly determined by
188 whether the surface is bare or vegetated. To further simplify the approach, we assume
189 that the bare sites are impermeable and have known roughness. °" The spatial pattern

190 of bare and vegetated sites is described by the vegetation cover fraction ¢y and a char-

101 acteristic length-scale o describing the spatial correlation of the patches (see supporting

102 information Figure S1 for a summary of the methods used to generate the vegetation

103 patterns).

104 While the impermeable bare soil areas are always sources of runoff, the vegetated
195 patches may function as runoff sources or sinks, depending on the values of p and K.

196 This requires adjustment to the calibration approach, “'which is achieved by separately
107 considering 3 cases: p greater than, approximately equal to, and less than K,. ““Because
108 the heterogeneous land surfaces are two-dimensional, the calibration approach uses a

199 one-dimensional approximation, with the vegetation fields summarized by one-dimen-

200 sional statistics (e.g. vegetation fraction and characteristic patch length). Lastly, inter-

201 ception losses by the vegetation have been ignored here but could be readily accommo-

202 dated by adjusting p.

203 2.3.1 Case 1: Rainfall intensity greater than hydraulic conductivity
208 In this case, the entire hillslope is a runoff source. Vegetated patches generate runoff
205 at the rate p — K, and bare soil areas generate runoff at the rate p. For the purpose
206 of predicting hillslope-average outcomes, we can treat the hillslope as a homogeneous sur-
207 face, provided that we adjust the discharge at the outlet g, to account for the different
208 surface types. To do this, we approximate g, as:

4o = LIp(1 = ¢v) + (p — Ks)odv], (14)
209 and Equation 13 is otherwise unchanged.
210 2.3.2 Case 2: Rainfall intensity less than hydraulic conductivity
am In this situation, runoff is generated on the bare soil patches, but the vegetated patches
212 act as sinks into which some or all of the runoff infiltrates. The effect of the vegetated
213 areas acting as sinks is that the fraction of the hillslope generating runoff is reduced to
214 a maximum of 1—¢y . In the most extreme case, only the patches that are immediately
215 adjacent to the hillslope outlet generate runoff (the so-called ‘directly connected areas’

216 (Alley & Veenhuis, 1983; Booth & Jackson, 1997; Lee & Heaney, 2003; Leopold, 1968)).

6 OC: Text added.
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To account for this, we consider the behavior of runoff generated by an individual
representative bare soil patch. We apply the calibration approach at the bottom bound-
ary of this patch. Thus, ¢, in Equation 13 is replaced with:

Go = Lyp. (15)

where L is the mean along-slope length of the bare soil areas.

2.3.3 Case 3: Rainfall intensity equal to hydraulic conductivity

For the situation where p = K, either patch or hillslope-scale calibration approaches
could be used. Patch-scale calibration would be expected to produce better results for
outcomes related to runoff generation from individual bare soil patches, for example, the
shape of the the rising limb of the hydrograph, when transient dynamics associated with
individual patch responses might dominate. Hillslope-scale calibration would be expected
to produce better results close to the equilibrium conditions of the whole hillslope.

2.4 Testing the homogeneous calibration approach

One clear limitation of the calibration approach adopted here is that it assumes
steady-state, kinematic flow conditions. These assumptions may not be valid during the
unsteady conditions that often prevail during individual rainstorms®*
pled Saint Venant equation (SVE) - Richards equations model to explore the effects of
unsteady, non-kinematic flow; specifically, we compared the hillslope-scale hydrological

so we used a cou-

predictions made using five different roughness schemes. “>The model couples the 2D
SVE solver used by Bradford and Katopodes (2001) to the 1D Richards equation solver
developed by Celia, Bouloutas, and Zarba (1990) *(see supporting information Text
S2 for model details, soil parameters, and validation simulations). “* To enable inter-

comparison, we designated Manning’s equation with n=0.1 as a ‘reference scheme’,

and calibrated the other four schemes to it, using the homogeneous hillslope approach

outlined in Section 3.2. We then assessed the disagreement between predictions made
using the calibrated (non-Manning) and reference (Manning) schemes. The roughness
schemes tested were the cylinder array, Darcy-Weisbach, transitional and laminar schemes
listed in Table 1. We note that although the laminar Poiseuille equation lacks a free pa-
rameter, flume studies of laminar flow over natural surfaces have observed « values rang-
ing 6-40 times the Poiseuille coefficient, « = 3v/g (Dunkerley, 2001; Pan, Ma, Wain-
wright, & Shangguan, 2016), presumably due to variations in the bed configuration and
inundation depths.

To assess the viability of Equation 13 across a range of scenarios, we chose two rep-
resentative hillslope gradients (S, = 0.01 and 0.1) and five effective rainfall intensities
(p—Ks=1,2,3,4,4.9 cm/hr; with p = 5 cm/hr and K = 0.1, 1.0, 2.0, 3.0, 4.0 cm/hr),
as summarized in Table 2. To avoid unsteady infiltration behavior, we assumed that the
soil was initially saturated with ¢ = K, provided there was sufficient water at the sur-
face to supply this infiltration rate. We used the coupled Saint Venant - Richards equa-
tion model to simulate a 30 minute rainstorm for all of the parameter combinations listed
in Table 2. For each simulation, the model predicts the two-dimensional overland flow

cl OC: Text added.
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Table 2. Parameters for the SVE model simulations, including both homogeneous and patchy
hillslope. Where multiple parameters are listed, the cases were run factorially to explore all pa-
rameter combinations. For laminar, transitional, Darcy-Weisbach and cylinder array schemes,

a2 values were obtained with the calibration approach outlined in Section 2.3, using Manning’s
equation with n = 0.1 as the reference scheme for vegetated areas. For bare soil areas in the

patchy hillslopes, Manning’s equation with n = 0.03 was applied for all simulations.

Variable Symbol  Values

All simulations
Slope gradient (%) So 1%, 10%
Roughness scheme m Laminar, Transitional, Manning,
Darcy-Weisbach, Cylinder Array
Domain size Ly, Ly 50m x 25 m

Storm duration tr 30 minutes

Homogeneous hillslope simulations
Hydraulic conductivity K, 0.1, 1, 2, 3, 4 cm/hr
Rainfall intensity D 5 cm/hr

Patchy hillslope simulations

Hydraulic conductivity (vegetated) K, 3 cm/hr

Rainfall intensity P 1.5, 3.0, 4.5 cm/hr
Vegetation fraction ov 0.2, 0.5, 0.8
Standard deviation of the spatial kernel o 1,5

depth and velocity, the runoff hydrograph, and a map of the cumulative infiltration depth.
Hydrological outcomes were compared between roughness schemes using four error as-
sessment metrics, as described in Section 2.6. “ Anticipating that this range of scenar-

ios will produce non-kinematic flow conditions, we assessed (i) the ’kinematic-ness’ of

the flow (that is, how well the flow fields are described by the kinematic wave approx-
imation), and (ii) whether non-kinematic flow conditions are correlated with larger
calibration errors (see supporting information Text S3).

2.5 Testing the calibration approach for patchy hillslopes

To test the calibration method on patchy hillslopes, we generated a variety of syn-
thetic vegetation patterns “‘on a 50 x 25 m gridded domain, following the approach
outlined in Crompton, Sytsma, and Thompson (2019). “* We created multiple pat-
terns spanning a range of vegetation fractions (¢y ) and patch correlation lengthscales
(0), as detailed in Table 2 “®and illustrated in supporting information Figure S1.

c4d
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We parameterized the Saint Venant - Richards equation model by treating all bare
soil areas as impermeable, with fixed roughness described by Manning’s equation with
n= 0.03. As in the homogeneous simulations, the reference roughness scheme for all veg-
etated patches was Manning’s equation with n = 0.1. For each combination of rough-
ness scheme and hillslope parameters (slope, ¢y, and rainfall intensity), we obtained as
from Equation 13, using the hillslope-scale g, for all p > K cases and the patch-scale
qo for all p < K cases. We ran the model for factorial combinations of the rainfall in-
tensities, patterns of vegetation cover, and hillslope gradients listed in Table 2. Illustra-
tive model results from the Saint Venant - Richards equation model are presented in Fig-
ure 2, showing a vegetation pattern (panel A), cumulative infiltration depth (panel B)
and maximum overland flow velocity (panel C).

As a robustness check ', we ran the same simulations with the converse calibra-
tion approach, where hillslope-scale calibration was replaced by patch-scale, or vice versa
(note that the hillslope-scale approach is not viable where p(1 — ¢v ) + (p — K)oy <
0). Comparison between the results obtained with patch- and hillslope-scale approaches
are included in supporting information “°Figures S3-S5, which compare the performance
of the patch and hillslope-scale matching approaches. For each rainfall scenario, a larger
range of calibration errors is observed for patch-scale matching, which we attribute to
our estimation of the ’characteristic’ lengthscale as the hillslope-mean bare soil patch
length.

ot 2
(2, 3 3]

Figure 2. Domain set-up and computed outcomes. (A) map of the spatially random veg-

cm/s

etation field with ¢y = 0.5 and o = 5 (green circles indicate vegetated 0.5x0.5 m cells). (B)
Infiltration map and (C) maximum overland flow velocity resulting from a 30 min duration storm

with intensity p = 1.5 cm/hour.
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2.6 Metrics to evaluate the sensitivity to scheme selection

To assess the sensitivity of hydrological predictions to the choice of a roughness scheme
post calibration, we developed four quantitative metrics. For each of these metrics, we
computed the (1i[T(\r(311(:(3C3§ between model simulations “parameterized with the refer-
ence scheme (Manning’s equation) and “*those parameterized with the calibrated schemes.

These metrics were:

1. The hillslope-averaged water balance partitioning, as measured by the infiltration
fraction IF, the ratio of the hillslope mean infiltration depth to the rainfall depth.

2. The maximum overland flow velocity, Up,qz.

3. The rising time of the hillslope hydrograph, “'#,,.. estimated as the time at which
the hydrograph reached 80% of the maximum discharge obtained from the refer-
ence simulation.

4. The hydrograph shape, “>computed as a normalized root mean squared error
(NRMSE), where the normalizing factor is the maximum discharge from the
reference simulation.

“3We refer to these differences in hydrological predictions made using different
roughness schemes as ‘calibration errors’

c4

3 Results
3.1 Homogeneous hillslopes

The homogeneous hillslope cases ““were used to to assess the effectiveness of the
analytical calibration approach in preserving hillslope-scale hydrological behavior “°(as
quantified by the error metrics listed in Section 2.6) across different roughness schemes.
“"The calibration errors are presented in Figure 3, which summarizes the differences in
infiltration fraction IF', hydrograph characteristics, and Up,,, between ““the calibrated
simulations and the reference Manning’s equation simulations.

Numerical instabilities occurred in laminar simulations with K < 1.0 ¢cm/hr, and
these simulations were therefore not used in the analysis. ““These instabilities are in-
herent to the numerical scheme used for solution, which does not use additional sta-
bilizing techniques such as adding diffusion (Zarmehi, Tavakoli, & Rahimpour, 2011).
There are systematic differences in the errors across roughness schemes: the Darcy-Weisbach
and transitional formulations are most similar to the Manning predictions following cal-
ibration, and the laminar and cylinder array schemes are most different. This pattern
reflects variation in the differences between each conveyance equation’s m exponent and

3 Text added.
¢4 OC: usingthe
5 Text added.
¢l OC: Text added.
2 OC: nermaki

3 Text added.
¢4 OC: Differ

ch o0C: pmwd@—d—lﬁ%
6 OC: Text added.
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Manning’s equation (m = 2/3). These differences are larger for the laminar (m = 2)
and cylinder array (m = 0) schemes than for the Darcy-Weisbach (m = 1/2) and tran-
sitional (m = 1) schemes. However, the practical implications for prediction differences
are small: “'the standard deviation of the prediction differences is 1.1% for IF, 2.3%
for Unyuw, 6.1% for t,;,. and 3.4% for the hydrograph NRMSE. Hydrograph NRMSE
reflect the different shapes of the hydrographs (e.g., Figure 3, Panels E and F), which
are unlikely to be important in practical applications. The results suggest that Equa-
tion 13 provides “''an effective means to parameterize different roughness schemes to
represent equivalent flow conditions, allowing for objective inter-comparison “'“and as-
sessment of the discrepancy between the physics implicit to each roughness scheme.

and as-

To estimate the differences in prediction between the most disparate schemes, we
also undertook a pairwise comparison between all schemes. We note, however, that all
simulations are calibrated to Manning’s equation, so this pairwise comparison does not
represent the errors that would be generated by direct calibration of the compared schemes
to each other. Supporting information Table S4 displays the mean pairwise calibration
error for each assessment metric, with the range of values in parentheses. The predic-
tion differences are, unsurprisingly, greatest for the comparison between cylinder array
and laminar schemes.

To assess whether the differences in prediction were statistically significant, we used
the Wilcoxon signed-rank test of the null hypothesis that the mean difference in predicted
hydrological outcomes between two schemes is equal to 0. For each possible pairwise com-
bination of roughness schemes, and for the 4 hydrological assessment metrics, we obtained
p-values less than 0.02, and therefore conclude that the sensitivity of the results to the
choice of roughness scheme is statistically significant.

3.2 Patchy hillslopes

Differences in predictions between the reference and calibrated simulations for patchy
hillslopes reflect errors associated with the adaptation of the homogeneous calibration
procedure to patchy hillslopes, in addition to those arising from the calibration proce-
dure itself. Further, on patchy hillslopes, departures from kinematic conditions at patchy
boundaries potentially add an additional source of error. The fraction of the hillslope
held in common between all cases (the bare sites), however, acts to reduce the magni-
tude of the differences between cases. The resulting differences between reference and
calibrated simulations are shown in Figure 4, which summarizes the differences in I'F,
Upaz and hydrograph characteristics for all cases. The hillslope-scale calibration approach
was used for the p = 3.0 and 4.5 cm/hr rainfall cases, and the patch-scale approach was
used for the p = 1.5 cm/hr cases. ”

The paired simulations show close agreement: ““the standard deviation of the pre-
diction differences are 1.1% for IF, 2.3% for U,,4., 6.0% for the hydrograph NRMSE,
and 3.3% for t,;s. In absolute units and grouped by scheme, the median U,,,, dif-

ferences range from -0.3 cm/s (cylinder array) to 0.3 cm/s (laminar), and the median
trise errors range from -0.2 min (cylinder array) to 0.6 min (laminar). The hydrograph

IO menbi
12 0C: Text added.
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Figure 3. °*Box-plots show the differences between each of the non-Manning roughness scheme

simulations (cylinder array, CA; Darcy-Weisbach, DW; transitional, T; and laminar, L) and its

paired Manning simulation: (A) the infiltration fraction I'F', (B) the maximum velocity U,qz, (C)

the hydrograph rising time #,s., and (D) the NRMSE between hydrographs. “*Panels (E) and (F)

show the simulation hydrographs with the largest NRMSE and differences t,ise, respectively : (E)
Ks = 4.0 cm/hr and S, = 0.01, and (F) Ks = 2.0 cm/hr and S, = 0.01.

NRMSE are again larger than the other metrics, due to the differently shaped hydro-
graphs. Overall, these errors are comparable to those produced on homogeneous slopes,

and suggests that the additional sources of error in these simulations are compensated

for by the use of identical roughness schemes for bare soil sites. The results shown in Fig-
ure 4 suggest that the sensitivity of hydrological predictions to the choice of roughness
scheme for vegetated surfaces is small, provided the roughness parameters are appropri-
ately calibrated. Similarly to the homogeneous hillslopes, the disagreement between schemes
is greatest where the difference between the m exponents in the conveyance equations

is largest.

As with the homogeneous hillslopes, we undertook a pairwise comparison between
all schemes. Supporting information Table S5 displays the mean pairwise calibration er-
ror for each assessment metric, with the range of values in parentheses, again showing
the greatest differences between cylinder array and laminar schemes.

We used the Wilcoxon signed-rank test for each of the 4 hydrological metrics and
the 10 possible pairwise scheme combinations. We obtained p-values less than 1x17°
for all cases, indicating statistically significant sensitivity of the results to the choice of
roughness scheme.

4 Discussion and Conclusions

The results demonstrate the efficacy of a simple kinematic framework to calibrate
roughness schemes against each other in order to represent a common flow environment
for the case of shallow, rainfall-induced overland flow on natural hillslopes. The key value
of the approach is that by imposing kinematic assumptions, calibration can be achieved
analytically for both homogeneous or patchily vegetated hillslopes, as demonstrated by
comparison of numerical simulations that have been analytically calibrated to represent
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Figure 4. Box-plots show the differences between each of the non-Manning roughness scheme
simulations (cylinder array, CA; Darcy-Weisbach, DW; transitional, T; and laminar, L) and its
paired Manning simulation: (A) the infiltration fraction IF, (B) the maximum velocity Umaaz,
(C) the hydrograph rising time trise, and (D) the NRMSE between hydrographs.
Panels (E) and (F) show the simulation hydrographs with the largest NRMSE and
difference in t¢,;s., respectively.

equivalent flow conditions. The calibrated equations make highly comparable hydrologic
predictions for the same hillslope and storm conditions, regardless of the specific rough-
ness schemes selected. This suggests that SVE flow predictions are more sensitive to the
value of the roughness coefficient v than to differences in the functional form of the re-
sistance equation, provided the schemes are calibrated to a common flow condition, pro-
duced by the same rainfall forcing on the same hillslope. This agreement is likely a con-
sequence of the relatively constrained range of velocity and depth values that arise dur-
ing rain-induced shallow overland flow. Thus, these results should not be extrapolated
to situations with deeper or more variable flow regimes. Similarly, the model results pre-
sented here assume that the Saint Venant - Richards equation model adequately repre-
sents overland flow dynamics, and that the features of the flow that were omitted - in-
cluding explicit treatment of emergent roughness elements and microtopography - would
not significantly alter the findings. This assumption seems reasonable in light of the agree-
ment between our modeling findings and the experimental results obtained by Cea et

al. (2014), who compared high resolution flow simulations with experimental flow data
generated on 1x1 m plaster moulds. Like us, they found strong agreement between flow
predictions made with different roughness schemes, once those schemes were calibrated.

The hydrological outcomes predicted by the different roughness schemes, as reported
in Figures 3 and 4, are not indistinguishable. The differences in predictions, however,
are smaller or comparable to measurement uncertainties reported in empirical hydrolog-
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ical studies, including in estimated rainfall rates (e.g. rain gauge under-catch results in
systematic under-estimates in the range 5-16%, McMillan, Krueger, & Freer, 2012); in
flow velocities (e.g. on the order of 3.0 cm/s using Large Scale Particle Image Velocime-
try, Cea et al., 2014, larger than the calibration errors associated with velocities here);
and in discharge data (e.g. approximate uncertainty in runoff derived from stage mea-
surements at plot scales range from 10-20%, Krueger et al., 2009; Turnbull, Wainwright,
& Brazier, 2010). Thus, the selection of a roughness scheme is unlikely to produce er-
rors that could be readily distinguished from experimental noise. We note that uncer-
tainties associated with field observations are rarely quantified in the literature (Brazier,
Krueger, & Wainwright, 2014; Turnbull et al., 2010), precluding a more comprehensive
analysis.

This study has presented an analytic approach by which to parameterize different
roughness schemes to represent common hillslope surface conditions. We have shown that
the kinematic wave approximation provides a suitable framework for calibrating rough-
ness parameters, as evidenced by the close agreement between the various schemes in
the simulation results. With a common representation of the surface roughness (via pa-
rameterization of «) important hydrological outcomes, including the water balance par-
titioning, flow velocity and runoff hydrograph, display only minor sensitivity to the se-
lection of a roughness scheme. Consequently, choosing the correct roughness scheme ap-
pears less significant than correctly parameterizing any selected scheme. Despite this prac-
tical implication, the results here do not assist in determining the correct roughness value
for a given scheme. Thus, roughness parameterization remains an open question, sub-
ject to ongoing research.
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