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Abstract14

Parameterizing the effects of surface roughness on flow resistance remains a ma-15

jor challenge in modeling overland flow using physics-based descriptions such as the Saint16

Venant equations (SVE). This challenge has prompted the development of a large num-17

ber of roughness schemes relating the properties of a rough surface, the bulk velocity and18

resistance, yet it is often unclear which of these schemes should be used to represent a19

given land surface, particularly on heterogeneous surfaces. Since it is often necessary to20

calibrate any given roughness scheme to flow on a given surface, modelers need to un-21

derstand the sensitivity of their predictions to the choice of roughness scheme, post cal-22

ibration. Here, we focus on hillslope-scale predictions made with the SVE: the water bal-23

ance partitioning between runoff and infiltration, the hillslope hydrograph, and the dis-24

charge velocity. We develop an approach to calibrate roughness schemes to each other,25

by undertaking the calibration under equilibrium flow conditions and imposing the kine-26

matic wave approximation at the outlet. This approach yields analytical relationships27

between the parameters of two roughness schemes applied to the same hillslope and dis-28

charge. We apply this approach to a sensitivity analysis of hydrological predictions re-29

sulting from the choice of five commonly used roughness schemes. The results suggest30

that, once calibrated, there is minimal prediction sensitivity to the choice of scheme across31

a wide range of rainfall conditions. Operationally, these results mean that the param-32

eterization of any selected roughness scheme is more important for predicting the hy-33

drological behavior than the selection of a particular scheme.34

1 Introduction35

Overland flow is ubiquitous in locations with low soil permeability, such as moun-36

tainous, arid, urban or agricultural landscapes (Descroix, Viramontes, Estrada, Barrios,37

& Asseline, 2007; Dunne, 1983; Li, Sivapalan, Tian, & Harman, 2014). Overland flow38

occurs at the expense of infiltration and is responsible for soil erosion and flash flood-39

ing (Abrahams, Parsons, & Wainwright, 1994; Bracken, Cox, & Shannon, 2008). The oc-40

currence, depth, velocity, and time evolution of overland flow during and after storms41

is therefore relevant to land managers, practitioners, scientists, and engineers (Cantón42

et al., 2011; Hallema, Moussa, Sun, & McNulty, 2016). In dryland environments, over-43

land flow occurs on patchily-vegetated landscapes with spatially varying infiltration prop-44

erties, roughness and slopes.45

The most general physical equations with which to represent flow in such environ-
ments are the Saint Venant (or shallow water) equations (SVE). These equations com-
bine the continuity equation with the conservation of momentum, and are shown here
in their one-dimensional form for illustration:

∂h

∂t
+

∂

∂x
(Uh) = p− i, (1)

∂U

∂t
+ U

∂U

∂x
+ g

∂h

∂x
+ g(Sf − So) +

U(p− i)

h
= 0, (2)

where h is the water depth at location x and time t, U is the depth-averaged velocity,46

So and Sf are the bed- and friction- slopes, and g is the gravitational acceleration. The47

boundary conditions are rainfall p and infiltration losses i that can vary with x and t.48

The SVE do not form a closed system of equations, and users must specify a clo-49

sure model for the friction slope Sf , which represents the net effects of bed and other50

shear stresses (e.g. presence of obstructions) on the flow. The closure model takes the51

form of a resistance formulation (colloquially, a ‘roughness scheme’) that describes Sf52

in terms of the modeled flow variables (i.e. h and U), subject to constraints based on53

–2–



manuscript submitted to Water Resources Research

the genesis of frictional resistance to flow. Roughness schemes must be defined even if54

the full SVE is simplified to the dynamic or kinematic wave equations.55

Resistance formulations for overland flow capture the effects of two sources of fric-56

tion: (i) friction imposed by shear created when the flow traverses the land surface (known57

as bed friction) and (ii) friction produced when solid bodies such as soil, rocks, vegeta-58

tion stems and leaves obstruct or protrude into the flow. Because these solid bodies may59

be present across some or all of the water column, they are often referred to as distributed60

roughness elements. Early work in hydraulics developed numerous resistance formula-61

tions to describe bed shear stresses (Gauckler, 1867; Manning, Griffith, Pigot, & Vernon-62

Harcourt, 1890), which have been elaborated on and extended to distributed roughness63

elements by subsequent studies of the flow boundary layer (e.g. Brutsaert, 2005; Cheng64

& Nguyen, 2010; Katul, Poggi, & Ridolfi, 2011; Kirstetter et al., 2016; Mügler et al., 2011;65

Wang, Huai, Thompson, & Katul, 2015). A subset of these schemes is summarized in66

Table 1, and their derivation is reviewed in supporting information Text S1. Note that67

these schemes are presented in their one-dimensional form for simplicity, but implemented68

in two-dimensions in the model presented here.69

Despite the differing sources of friction addressed by the roughness schemes, the70

forms of the resistance equations in Table 1 share a number of common features. For ex-71

ample, all of the equations can be represented as a dimensionless Froude number (Fr2 ∼72

U2

ghSf
) that depends either on the roughness properties of the surface, the bulk or elemen-73

tal Reynolds number (Re ∼ Uh/ν, where ν is the kinematic viscosity, and where h can74

be replaced by an element-based lengthscale where appropriate), or both (see support-75

ing information Text S1). As such, these resistance schemes are inherently power-law ex-76

pressions linking U to h via an exponent and a scaling coefficient, whose function, loosely,77

is to set the magnitude of frictional resistance (such as n in Manning’s equation). The78

exponents are independent of any calibration, and their impacts on resistance vary be-79

tween roughness schemes. Even after the scaling parameters are calibrated, different rough-80

ness schemes may result in different predictions because their exponents differ.81

The purpose of this technical note is to quantify the consequences of selecting dif-82

ferent roughness schemes for flow prediction on a synthetic dryland hillslope, in which83

vegetation cover is generally patchy but can vary from uniformly absent to completely84

vegetated. Such a hillslope provides an example of a landscape on which the ‘best’ choice85

of roughness scheme is ambiguous. This ambiguity arises from the sparse, patchy dis-86

tribution of vegetation, and the shallow but disturbed nature of the flow. We address87

two questions:88

(i) How can different roughness schemes be simply calibrated against each other on bipha-89

sic, heterogeneous landscapes, to facilitate inter-comparison of predictions? and90

(ii) Following such calibration, how sensitive are the hydrological predictions made on91

these landscapes to the selection of a roughness scheme?92

Answering these basic methodological questions offers guidance regarding the likely93

sensitivity of predictions to the choice of roughness scheme.94

2 Methods95

2.1 A framework for cross-comparison96

c1Despite the common non-dimensional scaling that lies behind the roughness97

schemes (see supporting information Text S1), the derived resistance equations embed98

distinct ways to conceptualize a rough surface, and distinct parameterizations of the99

c1 Text added.
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Table 1. Summary of the relations between the dimensionless Froude number Fr2=U2/gSfh

and friction factor f , as well as the resulting conveyance equation, where α is a general resis-

tance parameter. To compare to the published forms, Sf = So, which is the kinematic wave

approximation to the momentum balance (Equation 2) in the SVE.

Name Resistance equation Conveyance equation References

Bed resistance equations

Darcy-Weisbach Fr2 = 8
f

U = 1
α
h1/2S

1/2
o Brutsaert (2005)

α =
√

f
8g

Cea, Legout, Darboux, Esteves,

and Nord (2014)

Poisseuille Fr2 = Uh
3ν

U = 1
α
h2So Brutsaert (2005)

α = 3ν
g

Kirstetter et al. (2016)

Manning Fr2 = h1/3

n2g
U = 1

α
h2/3S

1/2
o Brutsaert (2005)

α = n Smith, Cox, and Bracken (2007)

Transitional / Fr2 = 8
aε

U = 1
α
hS

1/2
o Brutsaert (2005)

Mixed-flow α = aε
8g

Horton (1938)

Distributed drag equations

Cylinder array Fr2 = 2(1−φ)
CdµDh

U = 1
α

√
So Cheng and Nguyen (2010)

α =
√

CdµD
2g(1−φ) Tanino and Nepf (2008)

Poggi Fr2 = 1
β2 exp

( −Hc
β2Lc

)
U = 1

α
h1/2S

1/2
o Katul et al. (2011)

α =
√
β
g

exp
(

Hc
2β2Lc

)
Depth-dependent

Manning

Fr2 = h

n2
ogh

2/3
o

U = 1
α
hS

1/2
o

α = noh
1/3
o

Mügler et al. (2011)

Jain, Kothyari, and Raju (2004)
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surface features. In order to ask whether predictions are sensitive to the choice of a100

scheme, the predictions made using different schemes need to be placed within a com-101

mon framework to enable cross-comparison. Here, we develop such a framework via an102

analytical calibration procedure.103

Cross-comparison of schemes is facilitated by the similarities in their mathemat-104

ical form when expressed in terms of the kinematic conveyance equation (the third col-105

umn in Table 1) relating the flow velocity to the flow depth, the bed slope, and a range106

of other parameters, which can be lumped together as a single factor α (Brutsaert, 2005;107

Lighthill & Whitham, 1955).108

U =
1

α
hmSηo . (3)109

where α and m are generalized coefficients describing the surface roughness and flow regime,110

respectively, discussed in greater detail below.111

The units and physical interpretation of α are scheme-specific, but in general, α112

increases with increasing surface roughness. The flow regime (laminar, transitional, tur-113

bulent), which sets the value of b in the generalized f ∼ aεb expression, emerges in Equa-114

tion 3 as m. Figure 1 illustrates how surface roughness α and flow regime m affect the115

relation between U and h for a fixed hillslope gradient, So.116

To compare predictions made by the schemes, the values of α used in each scheme117

must be chosen to minimize the differences in their predictions for a common situation.118

If one scheme is treated as a reference, then this selection problem is essentially one of119

calibration. To enable the use of an analytical framework, we assume that the conveyance120

equation above applies at hillslope scales, even on the potentially complex hillslopes con-121

sidered later. With this assumption, the calibration problem admits analytical solutions122

for homogeneous hillslopes, if flow conditions are calibrated to each other at the hills-123

lope outlet (as outlined in Section 2.2). We then consider how this method can be adapted124

to patchily vegetated slopes, assuming that there is a known resistance equation that ap-125

plies to bare sites on those slopes. We outline this method in Section 2.3. With the α126

values selected to minimize disagreement between schemes, remaining differences in flow127

predictions can be attributed to the unique physics implied by each resistance scheme,128

which alters the relationship between flow velocity and depth (for example, the distinc-129

tions seen between the curves in Figure 1 panel A).130

c5We use a coupled Saint Venant - Richards equation model to evaluate the dif-131

ferences in predicted hillslope-scale hydrology associated with different roughness schemes132

c6 c7following calibration of their roughness coefficients to each other (Section 2.4). We133

undertake this evaluation for a wide and realistic range of storm and hillslope scenar-134

ios.135

2.2 Calibration strategy for homogeneous slopes136

We start with the problem of determining a roughness parameterization that will137

relate two different roughness schemes for the same rain intensity on a common slope.138

To proceed to an analytical solution, we consider the idealized situation of a hillslope139

exposed to constant rainfall p on which infiltration occurs at a constant rate given by140

the hydraulic conductivity Ks.141

c5 OC: A coupled Saint Venant - Richards equation model is then used
c6 ST: after their
c7 OC: kinematic conveyance equations have been calibrated to reference flow conditions
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Figure 1. Illustration of the independent roles of the selection of a roughness scheme (m) and

its parameterization (α) on the predicted kinematic relation between velocity and depth. c3 (A)

illustrates how the selection of a roughness scheme implies a U − h scaling relation for each

roughness scheme, independent of the value of α (for each scheme, α has been calibrated to

preserve flow properties between schemes at the outlet, as described in Section 2.2). c4 Conversely,

(B) shows Darcy Weisbach flow on landscapes with two different values of α.

Under steady-state conditions, the kinematic conveyance equations in Table 1 spec-
ify the relationships between discharge, velocity and stage. Additionally, at the hillslope
outlet, discharge must be balanced by hillslope-scale rainfall inputs, such that on a per-
unit-hillslope width basis:

qo = Uh = L(p−Ks), (4)

where L is the hillslope length and qo is the flow rate at the outlet per unit width. We
now consider that two different conveyance equations could be used to describe this flow:

U1 =
1

α1
hm1
1 Sη1o (5)

U2 =
1

α2
hm2
2 Sη2o (6)

Given that our interest is in representing hillslope-scale hydrological responses (which142

are evaluated at the hillslope outlet), we specify that the flow variables at the outlet should143

be conserved between the schemes, such that U1 = U2 and h1 = h2 at the outflow point.144

Firstly, an expression for the flow depth at the outlet in the first scheme can be writ-
ten as a function of the hillslope discharge qo:

h1 =
qo
U1

(7)

= qoα1S
−η1
o h−m1

1 . (8)

Rearranging:
h1 = (α1qoS

−η1
o )1/(m1+1). (9)

Substituting Equation 9 into Equation 5:

U1 =
1

α1
Sη1o (α1qoS

−η1
o )m1/(m1+1), (10)

which simplifies to:145

U1 =

(
Sη1o q

m1
o

α1

)1/(m1+1)

. (11)
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Because α1 is known, U1 in Equation 11 is also known. The same logic means that the146

outlet velocity U2 in the second roughness scheme can be written in the same form, and147

rearranged to isolate the roughness term α2:148

α2 =
Sη2o q

m2
o

Um2+1
2

. (12)

At this point, we require the outlet velocities to be equal between the two schemes, and149

combine Equations 11 and 12 to obtain an analytic expression for α2 in terms of the scal-150

ing exponents of the roughness expressions (i.e. m1 and m2), the equilibrium discharge151

qo, and the roughness parameter of the first scheme α1:152

α2 =
[
αm2+1
1 Sη2(m1+1)−η1(m2+1)

o qm2−m1
o

]1/(m1+1)
. (13)

c1
153

This approach effectively calibrates the two schemes to each other at the outlet,154

for a given hillslope and rainfall rate. The calibration quantifies an α2 that produces equiv-155

alent flow at the outlet to the reference scheme with α1, for a given set of storm and land-156

scape parameters. The same result is obtained if the derivation proceeds by requiring157

h1 = h2 at the outlet, as expected given the constraint that qo is the same for both schemes.158

The dependence of Equation 13 on slope length and rainfall rate (via qo)
c2 c3re-159

flects the fact that the calibrated α2 absorbs differences in prediction that arise from dif-160

ferences in m and η between the schemes, and thus depends on the h and U associated161

with equilibrium flow. The calibrated α2 is therefore not an independent description of162

the surface roughness, but rather, a parameterization that is adjusted for the magnitude163

of the flow and the differences in resistance that emerge between roughness schemes for164

that flow.165

Because the schemes are forced to agree at the outlet, differences in predicted U166

and h values will emerge at other locations on the hillslope. Thus, this calibration ap-167

proach is appropriate for evaluating differences in hillslope-average flow properties af-168

ter adjusting the roughness parameters c4(α) to minimize those differences under equi-169

librium flow conditions. Differences between schemes during unsteady conditions or at170

other locations on the hillslope are not minimized by this approach. c5 However, the171

analytic tractability of the approach renders it attractive, as it requires no additional172

model runs to calibrate α2. An alternative calibration approach would be to conduct173

multiple model runs to achieve near-exact agreement over one assessment metric (e.g.174

infiltration fraction), and assess the quality of the match over a different set of assess-175

ment metrics (e.g. hydrograph NRMSE, trise and Umax); however, such an approach176

would require multiple model runs for storm and hillslope case, which would be com-177

putationally more demanding and lacks theoretical underpinning.178

c1 OC: The same result is obtained if the derivation proceeds by requiring h1 = h2 at the outlet, as

expected given the constraint that qo is the same for both schemes.
c2 ST: implicitly accounts for
c3 ST: Text added.
c4 OC: Text added.
c5 OC: However, the analytic tractability of the approach renders it attractive relative to other optimiza-

tion approaches for α2 that would require multiple model runs.
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2.3 Calibration strategy for patchy hillslopes179

We now extend the calibration strategy from homogeneous hillslopes (described in180

the previous section), to patchy landscapes, addressing the additional complexity of flow181

processes on these landscapes. To simplify the process, we consider a hillslope that can182

be represented as a binary mosaic of vegetated and bare soil areas c6(see Figure 2). In-183

filtration rates are assumed to be low in bare areas due to the formation of surface crusts184

(Assouline, 2004; Assouline et al., 2015) and higher under vegetation cover due to root185

activity and protection of the soil surface against rain-splash by the canopy (Thompson,186

Harman, Heine, & Katul, 2010). Roughness characteristics are similarly determined by187

whether the surface is bare or vegetated. To further simplify the approach, we assume188

that the bare sites are impermeable and have known roughness. c7The spatial pattern189

of bare and vegetated sites is described by the vegetation cover fraction φV and a char-190

acteristic length-scale σ describing the spatial correlation of the patches (see supporting191

information Figure S1 for a summary of the methods used to generate the vegetation192

patterns).193

While the impermeable bare soil areas are always sources of runoff, the vegetated194

patches may function as runoff sources or sinks, depending on the values of p and Ks.195

This requires adjustment to the calibration approach, c1which is achieved by separately196

considering 3 cases: p greater than, approximately equal to, and less than Ks.
c2Because197

the heterogeneous land surfaces are two-dimensional, the calibration approach uses a198

one-dimensional approximation, with the vegetation fields summarized by one-dimen-199

sional statistics (e.g. vegetation fraction and characteristic patch length). Lastly, inter-200

ception losses by the vegetation have been ignored here but could be readily accommo-201

dated by adjusting p.202

2.3.1 Case 1: Rainfall intensity greater than hydraulic conductivity203

In this case, the entire hillslope is a runoff source. Vegetated patches generate runoff204

at the rate p − Ks, and bare soil areas generate runoff at the rate p. For the purpose205

of predicting hillslope-average outcomes, we can treat the hillslope as a homogeneous sur-206

face, provided that we adjust the discharge at the outlet qo to account for the different207

surface types. To do this, we approximate qo as:208

qo = L[p(1 − φV ) + (p−Ks)φV ], (14)

and Equation 13 is otherwise unchanged.209

2.3.2 Case 2: Rainfall intensity less than hydraulic conductivity210

In this situation, runoff is generated on the bare soil patches, but the vegetated patches211

act as sinks into which some or all of the runoff infiltrates. The effect of the vegetated212

areas acting as sinks is that the fraction of the hillslope generating runoff is reduced to213

a maximum of 1−φV . In the most extreme case, only the patches that are immediately214

adjacent to the hillslope outlet generate runoff (the so-called ‘directly connected areas’215

(Alley & Veenhuis, 1983; Booth & Jackson, 1997; Lee & Heaney, 2003; Leopold, 1968)).216

c6 OC: Text added.
c7 OC: The proportion of bare and vegetated sites is described by the vegetation cover fraction φV and

the characteristic length-scale of the bare patches, LB , describing the spatial correlation of the patches.
c1 OC: which we approach
c2 OC: Although the heterogeneous land surface is two-dimensional, the calibration approach uses a one-

dimensional approximation.

–8–



manuscript submitted to Water Resources Research

To account for this, we consider the behavior of runoff generated by an individual
representative bare soil patch. We apply the calibration approach at the bottom bound-
ary of this patch. Thus, qo in Equation 13 is replaced with:

qo = Lbp. (15)

where Lb is the mean along-slope length of the bare soil areas.217

2.3.3 Case 3: Rainfall intensity equal to hydraulic conductivity218

For the situation where p = Ks, either patch or hillslope-scale calibration approaches219

could be used. Patch-scale calibration would be expected to produce better results for220

outcomes related to runoff generation from individual bare soil patches, for example, the221

shape of the the rising limb of the hydrograph, when transient dynamics associated with222

individual patch responses might dominate. Hillslope-scale calibration would be expected223

to produce better results close to the equilibrium conditions of the whole hillslope.224

2.4 Testing the homogeneous calibration approach225

One clear limitation of the calibration approach adopted here is that it assumes226

steady-state, kinematic flow conditions. These assumptions may not be valid during the227

unsteady conditions that often prevail during individual rainstormsc1 so we used a cou-228

pled Saint Venant equation (SVE) - Richards equations model to explore the effects of229

unsteady, non-kinematic flow; specifically, we compared the hillslope-scale hydrological230

predictions made using five different roughness schemes. c2The model couples the 2D231

SVE solver used by Bradford and Katopodes (2001) to the 1D Richards equation solver232

developed by Celia, Bouloutas, and Zarba (1990) c3(see supporting information Text233

S2 for model details, soil parameters, and validation simulations). c4 To enable inter-234

comparison, we designated Manning’s equation with n=0.1 as a ‘reference scheme’,235

and calibrated the other four schemes to it, using the homogeneous hillslope approach236

outlined in Section 3.2. We then assessed the disagreement between predictions made237

using the calibrated (non-Manning) and reference (Manning) schemes. The roughness238

schemes tested were the cylinder array, Darcy-Weisbach, transitional and laminar schemes239

listed in Table 1. We note that although the laminar Poiseuille equation lacks a free pa-240

rameter, flume studies of laminar flow over natural surfaces have observed α values rang-241

ing 6-40 times the Poiseuille coefficient, α = 3ν/g (Dunkerley, 2001; Pan, Ma, Wain-242

wright, & Shangguan, 2016), presumably due to variations in the bed configuration and243

inundation depths.244

To assess the viability of Equation 13 across a range of scenarios, we chose two rep-245

resentative hillslope gradients (So = 0.01 and 0.1) and five effective rainfall intensities246

(p−Ks = 1, 2, 3, 4, 4.9 cm/hr; with p = 5 cm/hr and Ks = 0.1, 1.0, 2.0, 3.0, 4.0 cm/hr),247

as summarized in Table 2. To avoid unsteady infiltration behavior, we assumed that the248

soil was initially saturated with i = Ks, provided there was sufficient water at the sur-249

face to supply this infiltration rate. We used the coupled Saint Venant - Richards equa-250

tion model to simulate a 30 minute rainstorm for all of the parameter combinations listed251

in Table 2. For each simulation, the model predicts the two-dimensional overland flow252

c1 OC: Text added.
c2 OC: We addressed this with a model that
c3 Model details, soil parameters, and validation simulations are presented in supporting information Text

S1.
c4 OC: We used this coupled Saint Venant equation - Richards equation model to assess the disagree-

ment between hillslope-scale hydrological predictions made using a reference roughness scheme - specifically

Manning’s equation with n = 0.1 - and four other schemes calibrated to this reference condition using the

homogeneous hillslope approach outlined in Section 3.2
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Table 2. Parameters for the SVE model simulations, including both homogeneous and patchy

hillslope. Where multiple parameters are listed, the cases were run factorially to explore all pa-

rameter combinations. For laminar, transitional, Darcy-Weisbach and cylinder array schemes,

α2 values were obtained with the calibration approach outlined in Section 2.3, using Manning’s

equation with n = 0.1 as the reference scheme for vegetated areas. For bare soil areas in the

patchy hillslopes, Manning’s equation with n = 0.03 was applied for all simulations.

Variable Symbol Values

All simulations

Slope gradient (%) So 1%, 10%

Roughness scheme m Laminar, Transitional, Manning,

Darcy-Weisbach, Cylinder Array

Domain size Lx, Ly 50 m × 25 m

Storm duration tr 30 minutes

Homogeneous hillslope simulations

Hydraulic conductivity Ks 0.1, 1, 2, 3, 4 cm/hr

Rainfall intensity p 5 cm/hr

Patchy hillslope simulations

Hydraulic conductivity (vegetated) Ks 3 cm/hr

Rainfall intensity p 1.5, 3.0, 4.5 cm/hr

Vegetation fraction φV 0.2, 0.5, 0.8

Standard deviation of the spatial kernel σ 1, 5

depth and velocity, the runoff hydrograph, and a map of the cumulative infiltration depth.253

Hydrological outcomes were compared between roughness schemes using four error as-254

sessment metrics, as described in Section 2.6. c5Anticipating that this range of scenar-255

ios will produce non-kinematic flow conditions, we assessed (i) the ’kinematic-ness’ of256

the flow (that is, how well the flow fields are described by the kinematic wave approx-257

imation), and (ii) whether non-kinematic flow conditions are correlated with larger258

calibration errors (see supporting information Text S3).259

2.5 Testing the calibration approach for patchy hillslopes260

To test the calibration method on patchy hillslopes, we generated a variety of syn-261

thetic vegetation patterns c1on a 50 × 25 m gridded domain, following the approach262

outlined in Crompton, Sytsma, and Thompson (2019). c2 We created multiple pat-263

terns spanning a range of vegetation fractions (φV ) and patch correlation lengthscales264

(σ), as detailed in Table 2 c3and illustrated in supporting information Figure S1.265

c4
266

c5 OC: Text added.
c1 OC: Text added.
c2 OC: Text added.
c3 OC: Text added.
c4 OC: on a 50 × 25 m gridded domain consisting of 0.5 × 0.5 m grid cells. To generate the patterns,

we drew a random number from a uniform distribution (0,1) for each grid cell. We prescribed a vegetation
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We parameterized the Saint Venant - Richards equation model by treating all bare267

soil areas as impermeable, with fixed roughness described by Manning’s equation with268

n= 0.03. As in the homogeneous simulations, the reference roughness scheme for all veg-269

etated patches was Manning’s equation with n = 0.1. For each combination of rough-270

ness scheme and hillslope parameters (slope, φV , and rainfall intensity), we obtained α2271

from Equation 13, using the hillslope-scale qo for all p ≥ Ks cases and the patch-scale272

qo for all p < Ks cases. We ran the model for factorial combinations of the rainfall in-273

tensities, patterns of vegetation cover, and hillslope gradients listed in Table 2. Illustra-274

tive model results from the Saint Venant - Richards equation model are presented in Fig-275

ure 2, showing a vegetation pattern (panel A), cumulative infiltration depth (panel B)276

and maximum overland flow velocity (panel C).277

As a robustness check c1, we ran the same simulations with the converse calibra-278

tion approach, where hillslope-scale calibration was replaced by patch-scale, or vice versa279

(note that the hillslope-scale approach is not viable where p(1 − φV ) + (p−Ks)φV <280

0). Comparison between the results obtained with patch- and hillslope-scale approaches281

are included in supporting information c2Figures S3-S5, which compare the performance282

of the patch and hillslope-scale matching approaches. For each rainfall scenario, a larger283

range of calibration errors is observed for patch-scale matching, which we attribute to284

our estimation of the ’characteristic’ lengthscale as the hillslope-mean bare soil patch285

length.286

Figure 2. Domain set-up and computed outcomes. (A) map of the spatially random veg-

etation field with φV = 0.5 and σ = 5 (green circles indicate vegetated 0.5×0.5 m cells). (B)

Infiltration map and (C) maximum overland flow velocity resulting from a 30 min duration storm

with intensity p = 1.5 cm/hour.

fraction as φV , and classified cells as vegetated (1) or bare (0) around this value. The resulting binary

domain was convolved with a symmetrical bivariate Gaussian kernel with standard deviation σ scipy. We

again binarized the results around a value selected to preserve φV . The use of the symmetrical kernel results

in isotropic patterns, in which there is no systematic bias in patch properties associated with direction. We

created multiple patterns spanning a range of values in φV and σ, as illustrated in Figure 3 and detailed in

Table 3. To provide a more intuitive summary of patch length-scales, we computed the mean, along-slope

patch lengths of the vegetated and bare sites, Lv and Lb, obtaining values in the range 2.5-30 m.
c1 OC: on our reasoning in developing the calibration approach for patchy landscapes
c2 OC: Text S3.
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2.6 Metrics to evaluate the sensitivity to scheme selection287

To assess the sensitivity of hydrological predictions to the choice of a roughness scheme288

post calibration, we developed four quantitative metrics. For each of these metrics, we289

computed the differencec3s between model simulations c4parameterized with the refer-290

ence scheme (Manning’s equation) and c5those parameterized with the calibrated schemes.291

These metrics were:292

1. The hillslope-averaged water balance partitioning, as measured by the infiltration293

fraction IF , the ratio of the hillslope mean infiltration depth to the rainfall depth.294

2. The maximum overland flow velocity, Umax.295

3. The rising time of the hillslope hydrograph, c1trise estimated as the time at which296

the hydrograph reached 80% of the maximum discharge obtained from the refer-297

ence simulation.298

4. The hydrograph shape, c2computed as a normalized root mean squared error299

(NRMSE), where the normalizing factor is the maximum discharge from the300

reference simulation.301

c3We refer to these differences in hydrological predictions made using different302

roughness schemes as ‘calibration errors’303

c4
304

3 Results305

3.1 Homogeneous hillslopes306

The homogeneous hillslope cases c5were used to to assess the effectiveness of the307

analytical calibration approach in preserving hillslope-scale hydrological behavior c6(as308

quantified by the error metrics listed in Section 2.6) across different roughness schemes.309

c7The calibration errors are presented in Figure 3, which summarizes the differences in310

infiltration fraction IF , hydrograph characteristics, and Umax between c8the calibrated311

simulations and the reference Manning’s equation simulations.312

Numerical instabilities occurred in laminar simulations with Ks ≤ 1.0 cm/hr, and313

these simulations were therefore not used in the analysis. c9These instabilities are in-314

herent to the numerical scheme used for solution, which does not use additional sta-315

bilizing techniques such as adding diffusion (Zarmehi, Tavakoli, & Rahimpour, 2011).316

There are systematic differences in the errors across roughness schemes: the Darcy-Weisbach317

and transitional formulations are most similar to the Manning predictions following cal-318

ibration, and the laminar and cylinder array schemes are most different. This pattern319

reflects variation in the differences between each conveyance equation’s m exponent and320

c3 Text added.
c4 OC: using the
c5 Text added.
c1 OC: Text added.
c2 OC: normalized by the maximum discharge from the reference simulation.
c3 Text added.
c4 OC: Differences in univariate metrics between schemes were computed as simple differences, and differ-

ences in the hydrographs were computed as a normalized root mean squared error (NRMSE).
c5 OC: provide a means
c6 OC: Text added.
c7 OC: Error metrics measuring differences in this behavior are presented in Figure
c8 OC: the calibrated and reference Manning’s equation simulations
c9 OC: Text added.
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Manning’s equation (m = 2/3). These differences are larger for the laminar (m = 2)321

and cylinder array (m = 0) schemes than for the Darcy-Weisbach (m = 1/2) and tran-322

sitional (m = 1) schemes. However, the practical implications for prediction differences323

are small: c10the standard deviation of the prediction differences is 1.1% for IF , 2.3%324

for Umax, 6.1% for trise and 3.4% for the hydrograph NRMSE. Hydrograph NRMSE325

reflect the different shapes of the hydrographs (e.g., Figure 3, Panels E and F), which326

are unlikely to be important in practical applications. The results suggest that Equa-327

tion 13 provides c11an effective means to parameterize different roughness schemes to328

represent equivalent flow conditions, allowing for objective inter-comparison c12and as-329

sessment of the discrepancy between the physics implicit to each roughness scheme.330

To estimate the differences in prediction between the most disparate schemes, we331

also undertook a pairwise comparison between all schemes. We note, however, that all332

simulations are calibrated to Manning’s equation, so this pairwise comparison does not333

represent the errors that would be generated by direct calibration of the compared schemes334

to each other. Supporting information Table S4 displays the mean pairwise calibration335

error for each assessment metric, with the range of values in parentheses. The predic-336

tion differences are, unsurprisingly, greatest for the comparison between cylinder array337

and laminar schemes.338

To assess whether the differences in prediction were statistically significant, we used339

the Wilcoxon signed-rank test of the null hypothesis that the mean difference in predicted340

hydrological outcomes between two schemes is equal to 0. For each possible pairwise com-341

bination of roughness schemes, and for the 4 hydrological assessment metrics, we obtained342

p-values less than 0.02, and therefore conclude that the sensitivity of the results to the343

choice of roughness scheme is statistically significant.344

3.2 Patchy hillslopes345

Differences in predictions between the reference and calibrated simulations for patchy346

hillslopes reflect errors associated with the adaptation of the homogeneous calibration347

procedure to patchy hillslopes, in addition to those arising from the calibration proce-348

dure itself. Further, on patchy hillslopes, departures from kinematic conditions at patchy349

boundaries potentially add an additional source of error. The fraction of the hillslope350

held in common between all cases (the bare sites), however, acts to reduce the magni-351

tude of the differences between cases. The resulting differences between reference and352

calibrated simulations are shown in Figure 4, which summarizes the differences in IF ,353

Umax and hydrograph characteristics for all cases. The hillslope-scale calibration approach354

was used for the p = 3.0 and 4.5 cm/hr rainfall cases, and the patch-scale approach was355

used for the p = 1.5 cm/hr cases. c5
356

The paired simulations show close agreement: c6the standard deviation of the pre-357

diction differences are 1.1% for IF , 2.3% for Umax, 6.0% for the hydrograph NRMSE,358

and 3.3% for trise. In absolute units and grouped by scheme, the median Umax dif-359

ferences range from -0.3 cm/s (cylinder array) to 0.3 cm/s (laminar), and the median360

trise errors range from -0.2 min (cylinder array) to 0.6 min (laminar). The hydrograph361

c10 OC: simulations differ by less than 6% for IF and 2% for Umax in all cases. The hydrograph rising

times differ by less than 9.1% in all cases, and the hydrograph NRMSE are less than 14%.
c11 OC: a viable
c12 OC: Text added.
c5 OC: Numerical instabilities affected the laminar simulations with 20% vegetation cover and p ≥ 3

cm/hr, and these simulations were excluded from the analysis.
c6 OC: the IF differences are less than 4.3%, and the Umax differences are less than 7.4% (1.7 cm/hr in

absolute units). The differences in trise are less than 3.4 minutes in all cases. The hydrograph NRMSE are

less than 12% across schemes, and less than 4% for the Darcy-Weisbach and transitional schemes
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Figure 3. c3Box-plots show the differences between each of the non-Manning roughness scheme

simulations (cylinder array, CA; Darcy-Weisbach, DW; transitional, T; and laminar, L) and its

paired Manning simulation: (A) the infiltration fraction IF , (B) the maximum velocity Umax, (C)

the hydrograph rising time trise, and (D) the NRMSE between hydrographs. c4Panels (E) and (F)

show the simulation hydrographs with the largest NRMSE and differences trise, respectively : (E)

Ks = 4.0 cm/hr and So = 0.01, and (F) Ks = 2.0 cm/hr and So = 0.01.

NRMSE are again larger than the other metrics, due to the differently shaped hydro-362

graphs. Overall, these errors are comparable to those produced on homogeneous slopes,363

and suggests that the additional sources of error in these simulations are compensated364

for by the use of identical roughness schemes for bare soil sites. The results shown in Fig-365

ure 4 suggest that the sensitivity of hydrological predictions to the choice of roughness366

scheme for vegetated surfaces is small, provided the roughness parameters are appropri-367

ately calibrated. Similarly to the homogeneous hillslopes, the disagreement between schemes368

is greatest where the difference between the m exponents in the conveyance equations369

is largest.370

As with the homogeneous hillslopes, we undertook a pairwise comparison between371

all schemes. Supporting information Table S5 displays the mean pairwise calibration er-372

ror for each assessment metric, with the range of values in parentheses, again showing373

the greatest differences between cylinder array and laminar schemes.374

We used the Wilcoxon signed-rank test for each of the 4 hydrological metrics and375

the 10 possible pairwise scheme combinations. We obtained p-values less than 1×1−5
376

for all cases, indicating statistically significant sensitivity of the results to the choice of377

roughness scheme.378

4 Discussion and Conclusions379

The results demonstrate the efficacy of a simple kinematic framework to calibrate380

roughness schemes against each other in order to represent a common flow environment381

for the case of shallow, rainfall-induced overland flow on natural hillslopes. The key value382

of the approach is that by imposing kinematic assumptions, calibration can be achieved383

analytically for both homogeneous or patchily vegetated hillslopes, as demonstrated by384

comparison of numerical simulations that have been analytically calibrated to represent385
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Figure 4. Box-plots show the differences between each of the non-Manning roughness scheme

simulations (cylinder array, CA; Darcy-Weisbach, DW; transitional, T; and laminar, L) and its

paired Manning simulation: (A) the infiltration fraction IF , (B) the maximum velocity Umax,

(C) the hydrograph rising time trise, and (D) the NRMSE between hydrographs.

Panels (E) and (F) show the simulation hydrographs with the largest NRMSE and
difference in trise, respectively.

equivalent flow conditions. The calibrated equations make highly comparable hydrologic386

predictions for the same hillslope and storm conditions, regardless of the specific rough-387

ness schemes selected. This suggests that SVE flow predictions are more sensitive to the388

value of the roughness coefficient α than to differences in the functional form of the re-389

sistance equation, provided the schemes are calibrated to a common flow condition, pro-390

duced by the same rainfall forcing on the same hillslope. This agreement is likely a con-391

sequence of the relatively constrained range of velocity and depth values that arise dur-392

ing rain-induced shallow overland flow. Thus, these results should not be extrapolated393

to situations with deeper or more variable flow regimes. Similarly, the model results pre-394

sented here assume that the Saint Venant - Richards equation model adequately repre-395

sents overland flow dynamics, and that the features of the flow that were omitted - in-396

cluding explicit treatment of emergent roughness elements and microtopography - would397

not significantly alter the findings. This assumption seems reasonable in light of the agree-398

ment between our modeling findings and the experimental results obtained by Cea et399

al. (2014), who compared high resolution flow simulations with experimental flow data400

generated on 1×1 m plaster moulds. Like us, they found strong agreement between flow401

predictions made with different roughness schemes, once those schemes were calibrated.402

The hydrological outcomes predicted by the different roughness schemes, as reported403

in Figures 3 and 4, are not indistinguishable. The differences in predictions, however,404

are smaller or comparable to measurement uncertainties reported in empirical hydrolog-405
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ical studies, including in estimated rainfall rates (e.g. rain gauge under-catch results in406

systematic under-estimates in the range 5–16%, McMillan, Krueger, & Freer, 2012); in407

flow velocities (e.g. on the order of 3.0 cm/s using Large Scale Particle Image Velocime-408

try, Cea et al., 2014, larger than the calibration errors associated with velocities here);409

and in discharge data (e.g. approximate uncertainty in runoff derived from stage mea-410

surements at plot scales range from 10–20%, Krueger et al., 2009; Turnbull, Wainwright,411

& Brazier, 2010). Thus, the selection of a roughness scheme is unlikely to produce er-412

rors that could be readily distinguished from experimental noise. We note that uncer-413

tainties associated with field observations are rarely quantified in the literature (Brazier,414

Krueger, & Wainwright, 2014; Turnbull et al., 2010), precluding a more comprehensive415

analysis.416

This study has presented an analytic approach by which to parameterize different417

roughness schemes to represent common hillslope surface conditions. We have shown that418

the kinematic wave approximation provides a suitable framework for calibrating rough-419

ness parameters, as evidenced by the close agreement between the various schemes in420

the simulation results. With a common representation of the surface roughness (via pa-421

rameterization of α) important hydrological outcomes, including the water balance par-422

titioning, flow velocity and runoff hydrograph, display only minor sensitivity to the se-423

lection of a roughness scheme. Consequently, choosing the correct roughness scheme ap-424

pears less significant than correctly parameterizing any selected scheme. Despite this prac-425

tical implication, the results here do not assist in determining the correct roughness value426

for a given scheme. Thus, roughness parameterization remains an open question, sub-427

ject to ongoing research.428
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