This article was downloaded by: [74.69.163.68] On: 08 November 2020, At: 21:29
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Applied Analytics

INFORMS JOURNAL ON
APPLIED ANALYTICS

Publication details, including instructions for authors and subscription information:
http:// pubsonline.informs.org

Analytics and Bikes: Riding Tandem with Motivate to
Improve Mobility

Daniel Freund, Shane G. Henderson, Eoin O’ Mahony, David B. Shmoys

To cite this article:
Daniel Freund, Shane G. Henderson, Eoin O’ Mahony, David B. Shmoys (2019) Analytics and Bikes: Riding Tandem with Motivate
to Improve Mobility. INFORMS Journal on Applied Analytics 49(5):310-323. https://doi.org/ 10.1287/inte.2019.1005

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/ PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright 2019, INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http:// www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/inte.2019.1005
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

S.

http://pubsonline.informs.org/journal/inte

INFORMS JOURNAL ON APPLIED ANALYTICS
Vol. 49, No. 5, September—October 2019, pp. 310-323
ISSN 0092-2102 (print), ISSN 1526-551X (online)

Analytics and Bikes: Riding Tandem with Motivate to

Improve Mobility

Daniel Freund,® Shane G. Henderson,® Eoin O’Mahony,® David B. Shmoys¢

2Sloan School of Management, MIT, Cambridge, Massachusetts 02142; P School of Operations Research and Information Engineering,
Cornell University, Ithaca, New York 14850; ¢ Uber Technologies Inc., San Francisco, California 94103; d Department of Computer Science,
Cornell University, Ithaca, New York 14850

Contact: dfreund@lyft.com,
dbs10@cornell.edu (DBS)

http://orcid.org/0000-0001-8039-9805 (DF); sgh9@cornell.edu (SGH); eoin@uber.com (EO);

https://doi.org/10.1287/inte.2019.1005

Copyright: © 2019 INFORMS

Abstract. Bike-sharing systems are now ubiquitous across the United States. We have
worked with Motivate, the operator of the systems in, for example, New York, Chicago,
and San Francisco, to both innovate a data-driven approach to managing their day-to-day
operations and provide insight on several central issues in the design of its systems. This
work required the development of a number of new optimization models, characterization
of their mathematical structure, and use of this insight in designing algorithms to solve
them. Here, we focus on two particularly high-impact projects: an initiative to improve the
allocation of docks to stations and the creation of an incentive scheme to crowdsource
rebalancing. Both of these projects have been fully implemented to improve the perfor-
mance of Motivate’s systems across the country; for example, the Bike Angels program in
New York City yields a system-wide improvement comparable with that obtained through
Motivate’s traditional rebalancing efforts at far less financial and environmental cost.
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Introduction
Bike-sharing systems have transformed the urban
landscape throughout the world. In the United States,
the largest such systems are operated by our industry
partner, Motivate. These include Citi Bike in New
York, Divvy in Chicago, and Ford GoBike in the Bay
Area. In 2017, users in these three bike-sharing sys-
tems accounted for more than 70% of the 35 million
trips facilitated by bike-sharing systems across the
country (National Association of City Transportation
Officials 2018). In contrast, there were only 320,000
trips in bike-sharing systems nationwide in 2010.
Our work is focused on station-based bike-sharing
systems, in which there are a specified number of
finite capacity stations. The capacity of the station is
given by the number of docks at it. Each dock can
either be full or empty depending on whether it
contains a bike. Whereas the availability of full docks
allows riders to rent a bike from a station, the avail-
ability of empty docks allows bikes to be returned.
Because systems allow riders to rent a bike at any
station (that has a bike available) within the system
and return it at any other (that has an empty dock),
the availability of both empty and full docks is nec-
essary for the system to work successfully. The spatial
flexibility of renting and returning bikes anywhere in
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the service area makes bike sharing a sustainable
transportation alternative for tourists and commuters
alike. Yet, to successfully provide this alternative to
commuters, bike-sharing systems need to handle the
asymmetry of “tidal” commuter flows: in the morning,
riders overwhelmingly rent bikes in residential areas
(causing stockouts because of stations having no bikes)
and return bikes in commercial areas (causing stockouts
at stations at which all docks are full). Operators alle-
viate the effects of the tidal commuter flows through
rebalancing; that is, they typically deploy box trucks
or vans to move bikes from full to empty stations.
This form of motorized rebalancing constitutes a large
operational cost, and our work with Motivate has aimed
at reducing the need for it.

Contribution
Below, we quote Jay Walder, the former chief exec-
utive officer (CEO) of Motivate:

The work with Cornell was, in my mind, really about
giving us an analytical foundation to be able to make
some of the decisions that were most critical to what
we are doing. (Motivate 2018)

We describe here how our collaboration with Moti-
vate helped the company become an industry leader in
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the use of analytics. Our collaboration started originally
on the tactical level, aimed at the development of tools
that improve the operational efficiency of existing re-
balancing methods. Later on, we also introduced new
ideas to Motivate’s strategic vision for tackling im-
balance. We focus here on two of these projects aimed
at reducing the need for motorized rebalancing.

In the first project, we aimed at reallocating capacity
among stations; in other words, we tried to identify
opportunities in moving docks from stations where
they were underutilized to stations where additional
capacity would improve service quality for riders. Our
work set up an optimization problem and identified
sufficient mathematical structure to develop compu-
tationally efficient algorithms for its solution. The sec-
ond project set up an incentive program, prominently
advertised as Bike Angels, to crowdsource rebalancing
through the user base. Rather than trying to help with
rebalancing, both projects helped Motivate change
the system design in a way that reduces the need for
rebalancing in the first place. They have been fully
implemented, and Motivate’s systems and its users
benefit from these advances. Both of these strategic
projects as well as the earlier tactical ones relied on the
same data-driven approach. See Freund (2018) for a
full account of these innovations.

On a scientific level, our work has combined a wide
array of different operations research (OR) tools; it
involved innovations in stochastic modeling, data
analysis, developing discrete optimization formulations
(built on the stochastic models), and designing algorithms
capable of efficiently solving them. This paper summa-
rizes these contributions and details their impact.

Our work with Motivate builds on the idea of user
dissatisfaction functions (UDFs), which were first
defined by Raviv and Kolka (2013). Given a planning
period, UDFs map the number of bikes and docks at a
station (that is, its capacity and its inventory level) to
the expected number of stockouts during the plan-
ning period. Computing this expectation requires a
stochastic model of demand that captures the arrival
of users with (or without) bikes wanting to return (or
rent) bikes at a station, and it requires data analysis to
fit the parameters of the model. When stations are
empty or full, demand is censored, because the op-
erator does not observe realized stockouts. In our
work, we developed a decensoring method that es-
timates time-dependent demand for arrivals and
returns at each location (O’Mahony and Shmoys 2015).
Furthermore, we developed a novel numerically stable
method (O’Mahony 2015) to compute UDFs based on
the so-called Poisson equation for continuous time
Markov chains.

For the first project, to (re-)allocate dock capacity,
we design a nonlinear integer program (IP) that treats
the inventory level and the capacity at each station as

variables and optimizes the allocation of capacity and
inventory across the entire system. For this IP, we
derived discrete convexity properties, especially
multimodularity as we discuss below, using sample
path arguments that then allowed us to develop an
efficient algorithm to solve it. Our algorithm not only
solves the IP to optimality but also, advanced our
understanding of constrained optimization for dis-
crete convex problems (Freund et al. 2018b). Our al-
gorithm works as follows. We start from an initial
assignment of docks to stations and first identify
the optimal allocation of bikes to stations through a
simple integer linear program (for which the linear
relaxation is guaranteed to have an optimal solution
that is integer). Then, in each iteration, we determine
the reallocation of at most one bike and at most one
dock that most improves the objective function. This
continues until there is no move that improves the
objective. The proof of correctness relies on two ele-
ments: first, showing that, for any realization of de-
mand, the UDF at each station has a property known
as multimodularity and second, showing that this
structure is sufficient to guarantee that the algorithm
always finds an optimal solution to the system-wide
allocation problem. Motivate completed a pilot in New
York City to reallocate dock capacity. The flexibility
inherent in the integer programming formulation
allowed Motivate to specify a restricted set of moves
compatible with the physical space constraints of the
station locations, and subject to this refinement, the
docks moved in the pilot were the ones specified by
the optimal solution computed by our tools. Based on
usage data collected after the pilot, we designed a
UDF-based method to estimate the impact of reallo-
cated dock capacity. The estimated impact of the pilot
along with our analytical tools have led Motivate to
adopt the principle of moving dock capacity, with
over 200 docks moved so far in its systems nation-
wide. Though these moves were also informed by
solutions to the IP, other considerations (for example,
agreement from the associated Department of Trans-
portation) also played a role. Our methodology is now
used by Motivate in analyses run twice a year to
identify additional potential moves, and it also in-
forms the allocation of new capacity added to the
system (Press Office New York City Hall 2018).

For the second project, to design an incentive scheme,
the goal is to reward customers for rides that drive the
system toward desirable configurations: that is, in-
centivizing customers to align their rides with desir-
able outcomes. But which rides should be incentivized?
Again, UDFs play a central role. We explain how UDFs
are used and discuss the marginal benefits of making
the incentives dynamic in time in response to real-time
demand in contrast to static policies that set them in
advance.
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Related Work

Since bike sharing became popular in the early 2010s,
the OR community has embraced it as a new and
interesting application of study. We refer the reader
to extensive literature reviews in de Chardon et al.
(2016), Freund (2018), and Freund et al. (2018a). Most
important for our work are the contributions of Raviv
and Kolka (2013), Parikh and Ukkusuri (2015), and
Schuijbroek et al. (2017). Preliminary versions of our
own contributions described here have previously
appeared as O'Mahony and Shmoys (2015), O’'Mahony
et al. (2016), Chung et al. (2018), and Freund et al.
(2018b), and a brief announcement of the last one
is given as an extended abstract in Caro and Tang
(2018); the extended abstract is similar to our pre-
sentation of the capacity reallocation project here.

Imbalance, Rebalancing, and User
Dissatisfaction Functions
You're better than this @DivvyBikes. Two stations com-

pletely full in West Town/Fulton Market. First time I've
had to seek out a third. (Ross 2017)

@CitiBikeNYC Why are your guys removing bikes from
Madison square park at 2:30? People will need them to
get home at 5. (McCloskey 2015)

The efficient operation of bike-sharing systems
involves subtleties with respect to both the modeling
and the prediction of demand. This is exemplified
by the two tweets above complaining about opposite
rebalancing actions in two different situations: the first
complains about not picking up bikes at full stations,
whereas the second complains about the opposite.
Depending on the exact nature of demand at a station,
it might or might not be optimal to leave a station full
rather than remove bikes through rebalancing opera-
tions. In systems with hundreds of stations, the demand
patterns of which change over time, distinguishing
between these scenarios (and quantifying the differ-
ence) necessarily requires data-driven support systems.

Estimating Unsatisfied Demand via User
Dissatisfaction Functions

UDFs underlie almost all of our work with Motivate.
These functions provide an inventory model that
maps for each station and any planning horizon that
station’s capacity (i.e., the maximum number of bikes
that can be present at that station) and an initial
number of bikes at that station at the start of the
planning horizon to the expected number of stockouts
over the course of the horizon. A planning horizon
can be an arbitrary time interval; in our context, it
usually spans either a full day (e.g., from 6 am to mid-
night; when allocating capacity) or 9-15 hours from the
present point in time (when planning rebalancing).
Each UDF is based on a stochastic process from

which we sample a sequence of customers arriving to
rent or return bikes at that station over the given
planning horizon. Then, for every user in the sampled
sequence who arrives to rent a bike, the number of
bikes (the inventory) decreases by one; for every user
who arrives to return a bike, it increases by one.
However, when no bikes are available and the next
user in the sampled sequence is one who attempts to
rent a bike, then we record a dissatisfied user; we
similarly record a dissatisfied user when the number
of bikes is equal to the station’s capacity and the next
user in the sequence attempts to return a bike. Inboth
cases, we assume that the dissatisfied customer leaves
without a rental/return, and therefore, the number of
bikes remains at zero in the first case and at the station’s
capacity in the second case. The UDF is then defined
as the expected number of dissatisfied users over the
course of the planning horizon. The expectation is
taken over the sampled sequences (for a fixed sequence,
the number of dissatisfied users is deterministic);
Appendices A and B include a more formal mathe-
matical definition for how the UDF is computed for a
single sampled sequence. Thus, to specify a UDF, we
must also give a stochastic model of user behavior with
respect to that station and planning horizon.

We model users wishing to rent bikes through in-
dependent nonhomogeneous Poisson processes, one
for each station. A user’s destination station is inde-
pendently selected from an origin-dependent distri-
bution, and biking times are independent (their dis-
tribution depends only on the origin/destination
station pair). With the added assumptions that “up-
stream” stations never run out of bikes and that no
trips begin and end at the same station, the splitting
and superposition properties of Poisson processes
then imply that the arrival process of users returning
bikes to a fixed station is also a nonhomogeneous
Poisson process that, in addition, is independent of
the arrival process of renters at that same station.
Moreover, it implies that these processes at different
stations are independent. In practice, upstream sta-
tions certainly do run out of bikes, but we make this
assumption, because simulation results (Jian et al.
2016) demonstrate that the resulting prescriptions re-
main extremely effective even when we relax the as-
sumption and because of the enormous mathematical
and computational simplification that it yields. In par-
ticular, it follows that a city-wide bike-sharing system
decomposes by station (i.e., we can compute UDFs for
each station in isolation). UDFs can thus be defined for
each station and time interval in isolation; they map the
initial number of bikes and empty docks at a station to
the (expected) number of out-of-stock events over the
course of the interval (O’Mahony 2015).

Our choice of objective function, the expected number
of out-of-stock events, reflects the subscription-based
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nature of most large bike-sharing systems, wherein
users pay once per year for a subscription and then
ride for free throughout the year. Retention of sub-
scribers is then the driving strategic principle behind a
successful bike-sharing operation, which explains why
we focus on this customer service-focused objective.
This objective also aligns with short-term users who
pay (e.g., a per ride fee). In the bike-sharing systems
on which we have worked, such day users contribute
a small fraction of rides.

To estimate the various parameters of, for example,
the underlying Poisson processes or the transition matrix
(of origin-dependent destination distributions), we use
a combination of maximum likelihood and specialized
decensoring techniques. Some sample UDFs are depic-
ted in Figure 1, where we only show the dependence
on the number of bikes and not the number of docks
for clarity.

Target Levels for Bikes

The plots of four different UDFs portrayed in Figure 1
show four very different functions; yet, all of them are
convex. This suggests that, in general, the expected
number of out-of-stock events may be a convex
function of the initial number of bikes at a station. It
is intuitive that the expected number of renters not
finding a bike should be convex (diminishing mar-
ginal returns) and decreasing in the number of bikes
available at the outset. It is also intuitive that the
expected number of riders unable to return a bike
because of full docks is also convex and increasing in
the number of bikes available at the outset. Sample
path arguments that use induction on the sequence of

Figure 1. (Color online) Sample UDFs at Four Different
Stations Show That the Optimal Level of Bikes at a Station
Can Vary Dramatically

UDF at Four Different Stations
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events at a fixed station establish that this intuition is
indeed correct. The convexity of the UDFs has sig-
nificant implications for Motivate’s operations. In
particular, the unique minimum at each station pro-
vides a natural target for rebalancing at a given point in
time. Motivate uses these target levels in a decision aid
that we developed to guide dispatchers over the course
of the day (see Figure 2). Figure 3 shows how these
minimizers vary over time in different neighborhoods;
noticeably, stations in the same neighborhood show
strong similarities, especially before and at the be-
ginning of each rush hour when the minimizers are
clustered either close to empty or close to full, mak-
ing rebalancing targets conceptually simple. In con-
trast, toward the end of each rush hour, larger dif-
ferences occur, and rebalancing relies more heavily on
analytics.

System-Wide Optimization for Bikes

Beyond using the UDFs for their minimizers at each
station, we can also use them to identify the optimal
allocation of all bikes system wide at each point in
time. Using the number of bikes at each station as
decision variables, we can formulate this as an opti-
mization problem: constraints dictate that the num-
ber of bikes at each station is bounded above by
the number of docks at that station, and the objective
is the expected number of system-wide stockouts:
that is, the sum of the values of the UDF over all
stations. See Appendices A and B for the mathematical
formulation.

Because the UDFs are convex, we can efficiently
solve the resulting IP (see Hochbaum 1994). The
optimal solutions are visualized for the morning rush
hour for different values of B, the total number of
bikes in the fleet, in Figure 4. The optimal objective
function values for different settings of B quantify the
cost impact of changing the fleet size (see Figure 5).

Allocating Capacity
Below, we quote Emily Gates, the former Director of
Operational Strategy at Motivate.

Cornell came up with a way to very simply measure
the impact of a dock’s availability on customers which
meant that we could move docks around and before
we moved them have a pretty good understanding of
the impact on individual customers every single day.
(Motivate 2018)

Through our multiyear effort to develop analytical
tools to aid Motivate’s operational decision making
with regard to rebalancing, we developed a deeper
understanding of the demand patterns that underlie
Motivate’s systems. Through this, we identified the
potential of reallocating capacity (docks) across sta-
tions. Specifically, we found in our analysis that docks
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Figure 2. The Screenshots Show Older Versions of the Developed Maps in New York City (Left Panel) and Washington, DC

(Right Panel)
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Note. The circles on the map indicate to dispatchers which stations should have bikes added (in blue) and which ones should have bikes removed
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were much more consistently utilized at some sta-
tions than at others (compare with Figure 6). Ina way,
this was not a surprising discovery. The sizing of
stations in Motivate’s systems was largely decided
on before the systems themselves launched: that is,
without prior observation of the actual demand
patterns. In this section, we describe the optimization
methods that ultimately led to Motivate reallocating
hundreds of docks to reduce stockouts. As indicated
earlier, these results were also described in the brief
announcement by Caro and Tang (2018).

Integer Programming Model

A natural approach to optimize over allocations of
docks is to extend the integer program for the system-
wide allocation of bikes. In contrast to the previous
formulation, the capacities at each station, denoted
by K;, are no longer treated as an input; instead, they
are additional decision variables. To avoid the opti-
mization model simply adding capacity everywhere,
we bound the number of docks used in a solution
(that is, >;K;) by the existing system-wide capacity.

Furthermore, our formulation also lends itself to
exploring the impact of an increased system-wide
capacity.

There are several questions, both technical and
practical, that need to be addressed to use this for-
mulation. First, from a technical perspective, it is not
a priori obvious that the resulting nonlinear IP can
be solved. In contrast to the optimization over bikes
only, the integrality property of this IP’s linear re-
laxation does not need to hold. Second, for practical
purposes, the optimal solution may involve more
reallocated docks than stakeholders would approve.
This could be because of political constraints (e.g.,
from the Department of Transportation) or because
of operational constraints (e.g., from Motivate). Our
algorithmic solution addressed both problems si-
multaneously as we explain next.

Gradient Descent Search: Local and Global Optima
Given the IP (see Appendix B), we can view the set
of feasible solutions as the different allocations of
bikes and docks to stations subject to both budget
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Figure 3. The Graphs Show the Optimal Number of Bikes to Position at Stations in Two New York City Regions as a Function

of the Time of Day
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Figure 4. The Maps Show the Optimal Allocations of B Bikes for the Morning Rush for Different Values of B
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shows B = 10,000.
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Figure 5. In the Graph, We Evaluate the Objective of the
System-wide Optimal Allocation of Bikes for Different Fleet
Sizes
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Note. Although a value of B = 11,046 is required to set all stations to
their target levels, the improvement beyond B = 10,000 is negligible.

constraints (for both bikes and docks) and bounds on
potential (dock) capacity of each station. We can then
define an undirected graph on the set of feasible so-
lutions by associating one node with each feasible
solution. The adjacency of nodes is defined as follows:
two nodes are adjacent if their respective allocations
differ by at most one dock and one bike being real-
located. A “local optimum” in this graph can then be

defined as a node with objective value no more than
that of each node adjacent to it. We can optimize over
this graph through an intuitive analogue, in a discrete
sense, of gradient descent algorithms: given a feasible
solution and its corresponding node in the graph, we
iteratively update to the best solution in the neigh-
borhood of the solution currently obtained. We can
prove that, if we start at a node corresponding to the
optimal bike allocation for the current dock allocation
and repeatedly update until we reach a local opti-
mum, then for any integer k, k such updates yield the
optimal solution among those obtainable by moving
at most k docks. This allows us to solve the integer
program with the additional constraint bounding the
number of docks moved.

The proof of this result relies on a more general
property of the user dissatisfaction functions called
multimodularity, which was introduced by Hajek
(1985); although the precise definition is somewhat
involved, one can view this property as a kind of
multidimensional diminishing returns property. For
example, consider a station for which the current
allocation is 10 empty docks and 10 full docks, and
consider the improvement gained by adding 1 full
dock (i.e., a bike and a dock). That improvement is at
least as much as is gained by adding a full dock to the
same station if it is already allocated 11 empty docks
and 10 full docks. An inductive proof over all sample

Figure 6. The Graphs Show the Minimum (Blue Stars) and Maximum (Red Pluses) Numbers of Docks Used at Two Stations in

New York City During the First Nine Months in 2017
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paths along the same lines as was used to establish
convexity just in the number of bikes can be used to
show that the UDFs are multimodular.

The intuition underlying the result that, in the kth
iteration, we find the best allocation obtainable by
moving at most k docks is based on a weaker state-
ment: that is, that without the constraint on the
number of docks moved, the local optimum found is
a global optimum. The proof of this statement is in-
structive and illustrative of the way in which we
exploit multimodularity. Suppose, for a contradic-
tion, that a local optimum is not a global optimum.
Then, find another feasible solution in the graph with
a better objective function value, and among all such
solutions, choose the feasible solution closest to the
local optimum in the graph (where “closest” is de-
fined with respect to the number of edges in the
shortest path between them); if there are multiple
such nodes that are equally close, choose one arbi-
trarily. Suppose that u is the node corresponding to
the local but not global solution and v is that closest
node just selected. The node v does not need to be a
global optimum either; it is simply a node that is
better than u. Consider the shortest path between
nodes 1 and v, and let w be the node adjacent to v that
is traversed in this path just before reaching v. By the
choice of v, the objective function value of w is worse
than it is for v; in other words, the local move made in
changing the solution at w to become v is an im-
proving one. However, the multimodularity property
allows us to argue that making the same change to
node u must yield at least as much improvement,
contradicting the local optimality of the feasible so-
lution corresponding to node u. The same ideas can
then be extended to guarantee that the solution that
we find in the k iterations is globally optimal when
restricting ourselves to moving at most k docks, even
though in that case, it is not in general true that local
optimality guarantees global optimality.

Best in k Ilterations

The discrete gradient descent algorithm that we de-
rived is significantly more efficient than relying on
general purpose integer optimization techniques.
Moreover, we were able to provide Motivate with a
complete package to run analyses from parameter es-
timation to visualizations of optimal solutions, partly
because we do not rely on general purpose IP solvers.
However, most importantly, the fact that k iterations
of the algorithm yield the best allocation that can
be obtained by moving at most k docks addresses
practical concerns about a larger number of docks
being moved than stakeholders will countenance. In
particular, we can run the algorithm for only k iter-
ations and thereby, obtain the solution that is optimal
for the additional constraint on movement of docks.

On a theoretical level, this result is of interest, because
it introduced a class of constrained optimization
problems to the discrete convexity literature that
previously had not been studied. In practice, we find
that the potential of reallocated capacity faces strong
diminishing returns. For example, in New York
City, most of the potential of reallocated capacity
can be realized through strategic reallocations of a
few hundred docks; yet, to achieve the actual optimal
allocation (without consideration of the constraint
on docks moved) would require moving thousands
of docks.

Algorithmic Efficiency

The simple search procedure of the gradient descent
algorithm, implemented with the appropriate data
structures, solves real instances to optimality within
minutes. A more fundamental change in terms of
efficiency is based on generalizing the structure of the
gradient descent procedure using so-called scaling
techniques; such techniques have long been in-
vestigated in the context of multimodularity and
other forms of discrete convexity (Murota 2003). The
gradient descent algorithm makes a unit bike/dock
change to the system in each iteration; instead, we can
consider a series of phases in which the algorithm
starts by making “big” gradient descent steps (by
changing bike/dock allocations for some integer ¢ in
units of 2¢ bikes/docks instead of one at a time), re-
peatedly finding a local optimum with respect to the
coarser step and using that result as an initial solution
with respect to the next level of refinement (say,
changing by 2¢7!). These ideas (Freund et al. 2018b)
lead to both empirical and (nontrivial) theoretical
improvements to the running time achieved by our
approach.

Robustness

In contrast to the daily rebalancing of bikes, the
physical reallocation of docks is a much more com-
plicated operational procedure, requiring special-
ized equipment. Dock reallocations should thus be
thought of (at most) on an annual basis. Because
demand is heavily affected by seasons, the realloca-
tions should be robust with respect to these seasonal
changes. Furthermore, many systems continue to
expand their footprint within a city, with such ex-
pansions having an impact (in complicated ways) on
the demand at existing stations. The number of sta-
tions in New York City, for example, has increased
from 330 to over 700 since 2015. Intuitively, it would
thus not be surprising if demand changed so much
that reallocations suggested based on 2015 demand
data had a negative impact on the system performance
with current demand. To gain confidence that this is
not the case, we evaluated the impact of reallocations
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(obtained by optimizing over the demand estimates
in one month) based on the demand estimates from
different months, years, and seasons. Despite the
strong seasonal effects on total demand, the analysis
(see Figure 7) showed that the improvement from
reallocated capacity is extremely robust. In particu-
lar, reallocations suggested based on data from
summer 2015 yield almost the same reduction in
stockouts when evaluated based on data from spring
or fall 2017.

In our collaboration, Motivate expressed concern
about an additional issue of robustness that was not
captured by our IP formulation: because the IP jointly
optimizes over allocations of bikes and docks, it ef-
fectively identifies the optimal allocation of docks
given perfectly allocated bikes. However, because
we had set out to reduce the need for motorized re-
balancing, assuming perfect rebalancing seems to
contradict that original goal. To ensure that our
recommendations would be robust under imperfect
rebalancing, we defined an objective that assumes no
rebalancing at all: in particular, we computed the
average number of out-of-stock events over infinitely
many days with absolutely no rebalancing (assum-
ing our demand estimates). In particular, in this ob-
jective, defined as the long-run average of the UDF, the
number of bikes at a station at the beginning of the day

Figure 7. The Estimated Improvement in the Objective as a
Function Docks Moved
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Notes. We optimize with respect to the objective with perfect re-
balancing and demand estimates from June 2015. In each iteration
of the algorithm, we compute the optimal reallocation of k docks.
To show the robustness of the improvement, we also evaluate the
objective of each allocation with respect to the long-run average
objective (c™) with demand estimates from (1) June 2015, (2) April
2017, and (3) October 2017.

is not a decision variable, but it is instead induced by the
demand at that station.

Because the long-run average of the UDF is a dif-
ferent objective, it would not be surprising if optimal
solutions for our original IP (evaluated with the
normal UDF) fared badly with regard to it. Indeed,
it is easy to artificially construct distributions for
which optimizing with respect to one of the objectives
gives bad solutions when evaluating with the other.
However, we do not find this behavior on real data.
Indeed, when optimizing for one objective, we obtain
a near-optimal solution for the other. Interestingly,
this is not because of the optimal solutions for the
different objectives being very similar. Rather, it
seems to result from the objective functions being flat
in the direction of the other optimal solution. In
particular, the optimal solutions (in the two regimes)
perform, in either regime, significantly better than the
current allocation (see Figure 7), despite being about
two-thirds as far away from each other (in L; distance)
as they are from the current allocation. Intuitively,
one might expect such behavior in a system with very
strong antipodal demand patterns in the morning
and evening. Consider, for example, a station with
unlimited demand for rentals in the morning (and
no demand for returns) and unlimited demand for
returns (and no demand for rentals) in the evening.
Each added dock (with a bike in the model with
rebalancing) at such a station reduces both objectives
by two: it enables an additional rental in the morning
and an additional return in the evening. Usually, this
is the most one can hope for when adding capacity.
Thus, stations where added capacity makes the larg-
est improvement are also the ones where the two ob-
jectives converge.

Implementation and Evaluation
In November 2017, Motivate launched a pilot project
in New York City that entailed the relocation of 34
docks. As part of the pilot, three stations had docks
added, and three stations had docks removed. Based
on the realized demand observed after the realloca-
tion of docks, we were able to do a counterfactual
analysis: for the three stations at which the capacity
was increased, we computed, for weekdays in April
2018, the number of stockouts that would have oc-
curred with the same demand that was realized but
without the additional capacity: that is, the reduction
in stockouts that was owing to reallocated capacity.
This analysis depended only on data and not on
distributional assumptions on the demand. To mea-
sure the cost (in terms of additional stockouts), we
then did the same analysis with our fitted stochastic
models for the stations at which docks were removed.
In our analysis (see Figure 8), we found that the
average reduction in stockouts per reallocated dock
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came to about 1.42 per day. In particular, at stations
with increased capacity, additional docks reduced
stockouts on average by 1.5 per dock per day, and at
stations with reduced capacity, we estimated an in-
crease in stockouts of about 0.08 per dock per day. With
average service quality kept constant, Motivate would
thus be able to rebalance 1.42 fewer bikes (per dock
reallocated) every day, saving tens of thousands of
dollars with only a tiny fraction of docks moved. Mo-
tivate has since deployed the same optimization ap-
proach in its other systems to guide the reallocation
of hundreds of docks while continuously monitoring
the resulting impact on out-of-stock events. Comparing
that impact (on stockouts) with that of rebalancing
and taking into account the cost of both rebalancing
of bikes and reallocations of docks, the cost of mov-
ing docks generally pays off in as little as two to
five weeks.

Bike Angels

One natural approach to modulate demand for a
bike-sharing system would be to adopt a framework of
dynamic pricing and by doing so, provide a means to
circumvent the need for rebalancing. This approach
has been adopted (with both great effect and public
derision) in the related realm of ride sharing. For Mo-
tivate, such an option is not feasible, because its sys-
tems are obliged (by its city partners) to offer customers
annual subscription plans; these plans effectively offer
customers all you can ride for a low price. For example,
in New York City, an annual plan costs only a little
more than a one-month pass for the Metropolitan
Transportation Authority. In 2015, we suggested to
Motivate that, despite the annual plans, systems could
modulate demand by providing incentives to encour-
age rides that are beneficial for system balance.

Figure 8. The Graph Illustrates Reductions (Circles) and
Increases (Triangles) in Out-of-Stock Events at Stations
with Capacity Changes Evaluated on Each Weekday in
One Month
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The proposed incentive program was based on a
map that labels each station as being in one of three
different classes: neutral, return, or rent. Given that
map, customers would receive points for trips un-
dertaken from rent stations to either neutral or return
stations and for trips from neutral stations to return
stations (where trips from rent to return stations re-
ceive double points). As such, the setup involved two
major design decisions: how to label each station at
a given point in time and what rewards customers
should receive for the collected points; we focus on
the former.

In the first trial of an incentive program, we used
fixed labels for each station in each rush period: that
is, we decided up front on the neutral/return/rent
label for each station and kept those labels fixed
throughout the rush period; we used the same la-
beling for each weekday. In terms of user experience,
there is an obvious advantage to such static labels:
customers can plan on the same trip getting them the
same number of points every day. In terms of effi-
ciency, however, setting labels up front comes at
a cost: given the randomness in daily usage, the pro-
gram sometimes awarded points for trips that failed to
improve the system balance.

To quantify potential failures in efficiency, we need
ametric to evaluate the impact of each rental and each
return. For ease of exposition, we restrict attention to
returns. To derive such a metric, we compute for each
incentivized return the change that it caused in the
UDF for the return station: that is, the difference
between the value of the UDF before and after the
return. In essence, we compute the discrete deriva-
tive of the UDF at the station with respect to one
additional bike (see Figure 9). One can show through
a sample path argument that this difference is always
bounded between —1 (worst possible: the return in-
creased the number of future out-of-stock events
by 1) and 1 (best possible: the return decreased the
number of future out-of-stock events by 1). Figure 10
visualizes the computed changes for both rentals and
returns incentivized by the static program. We find
there that (1) most incentives, by far, were given for
rentals/returns that have positive impact and (2) a
nontrivial portion of incentives went to rentals/
returns that have no positive or even a strictly negative
impact.

Because the discrete derivatives can be computed
inreal time, we could also use them to guide decisions
on where/when to incentivize; in particular, this
would guarantee that incentives are given if and only
if the rental/return reduces the expected number of
future out-of-stock events. However, setting the la-
bels in real time comes at a cost in terms of user ex-
perience: because the status of a ride is not de-
termined even at the time of the rental, the user must
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Figure 9. The Graph Shows Discrete Derivatives for Each
of the Four UDFs in Figure 1
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make decisions without knowledge of whether any
particular return will be rewarded. As such, it is
natural to investigate the tradeoff between efficiency
on the one hand and predictability of incentives on the
other hand.

In our study (Chung et al. 2018), we used the data
set from the static program to investigate the fre-
quency of relabeling needed to maintain near-perfect
efficiency. With that data, relabeling stations every
15 minutes suffices to ensure that exactly the right
rentals/returns are incentivized. As one further in-
creases the length of the time intervals, the efficiency

Figure 10. The Histogram Shows Discrete Derivatives of
the UDFs for Rewarded Rentals and Returns in the Static
Incentive Program
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Note. Most rewards are justified, because they are to the right of zero;
however, a nontrivial portion of the rewards causes the system balance
to degrade.

Figure 11. A Scatterplot Depicts the Set of Incentivized
Rentals and Returns by the Static Program for a Limited
Period During Afternoon Commutes
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indicated by blue crosses.

degrades smoothly. For example, relabeling every
60 minutes retains more than 97.5% efficiency (see
Figure 11). This led Motivate to adopt an incentive
scheme in which the discrete derivatives of the UDFs,
updated on a quarter-hourly basis, dictate whether a
station is incentivized.

Our work with Motivate originally proposed in-
centives, set up the analytics for the first pilots,
identified inefficiencies with the static scheme, and
informed the design of today’s program. The impact
of the Bike Angels program on service quality in New
York City now matches that of motorized rebalancing
but at a much lower financial and environmental cost;
furthermore, Motivate has also launched Bike Angels
in its Ford GoBike program in the San Francisco Bay
area and its Capital Bikeshare program in the Wash-
ington, DC metropolitan area.

Conclusion
Below, we quote Jay Walder, the former CEO of
Motivate.

So much of our decision-making was happening with
intuition and the work with Cornell frankly was the
foundation of this pivot for this company from an
operating company working with intuition to an oper-
ating company working with data. (Motivate 2018)

Our work with Motivate introduced UDFs through-
out its enterprise. UDFs now inform the system design
with respect to station sizes, they guide dispatchers
in deciding how to route vans and box trucks to reba-
lance bikes, and they power the Bike Angel incentive
programs in New York City and elsewhere.
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However, our work with Motivate extends well
beyond these projects highlighted in this paper, be-
cause there are a multitude of opportunities to opti-
mize operations. For example, a subtle extension of
the sample path arguments used to establish UDFs
for single-station performance is at the core of a model
that determines an optimal allocation of “trikes” that
have been used for nonmotorized midrush-hour re-
balancing (see Figure 12); as a consequence, the prob-
lem reduces to finding a minimum cost matching of
cardinality k in bipartite graphs (which can be easily
solved). Furthermore, integer programming models
were used to run pilot studies for optimized overnight
truck routing for rebalancing given time-limited ca-
pacity to move bikes with a handful of trucks (Freund
2018, chapter 6). Finally, optimization models were
used in the allocation of valets to staff corrals, where
targeted stations had, in effect, expanded surge ca-
pacity during the day (see Figure 13).

Having a single measure across Motivate’s opera-
tions in New York City allows the company to quan-
tify the relative impact on service through apple-to-
apple comparisons. Furthermore, many of these
methods have been exported from New York City to
their other systems nationwide, putting Motivate’s op-
erations across the country on a sophisticated ana-
lytical footing.

Bike Angels and the dock reallocation efforts use
UDFs in particularly creative ways to not only im-
prove customer access to the system but also, save
costs for Motivate. In addition, they do so in an en-
vironmentally sustainable way. Conservative esti-
mates on these costs show that using vehicular bal-
ancing to achieve the same effect of even just Bike
Angels in New York City would cost over $1,000,000
per year and create an additional 500 tons of CO,
emissions per year. The extent to which Bike Angels
has become part of popular culture in New York City
is reflected in a short documentary cleverly titled
“The Point of a Ride” (Gerard 2018), which premiered

Figure 12. The Picture Shows a Trike that Citi Bike Uses to
Transport up to Five Bikes in New York City

0=
s

Figure 13. The Picture Illustrates Part of a Staffed Corral in
New York City

Note. By using all physical space available, Citi Bike can extend its
the capacity far beyond the number of docks.

at the 2018 Bicycle Film Festival in New York, and
news stories (NPR 2018) about individual successful
Bike Angels participants. Finally, these efforts gave
rise to intriguing mathematical challenges, which led
to the development of new algorithmic results with
potential applications beyond bike sharing.
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Appendix A. User Dissatisfaction Functions

Denote a sequence of arriving customers as Xj, ..., Xr,
where X;€{-1,1} denotes a customer returning a bike if
X; = 1and a customer renting a bike if X; = —1. We model a
station with capacity K and by bikes at the beginning of the
planning horizon (before Xj,...,Xr arrive) as having b,
bikes after the arrival of customer f, where

by = min{max{0, b;_1 + X;}, K}.

The minimum and maximum in the formulation ensure
that the number of bikes is always between zero and K. For
example, if customer t wants to rent a bike (i.e., X; = 1),
but the station is empty (i.e., b;—1 = 0), then customer ¢
cannot rent a bike, and the number of bikes remains at 0
(i.e., by = 0). Given that we define dissatisfied customers
as ones who leave without a rental /return, we can then write
the number of dissatisfied customers among X, ..., Xr,
denoted by c(by, K), as the number of indices f such that b; =
bi-1 (i-e., thenumber of customers who unsuccessfully rent/
return a bike and thus leave the number of bikes unaltered).
The number of dissatisfied customers is then always a
function of by and K as well as the sequence Xj, ..., X7. We
assume that a distribution of sequences is estimated through
decensoring techniques (O’Mahony and Shmoys 2015);
with arrivals given by Poisson arrival rates, we can then
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compute, for given by and K, analytically the expected
number of dissatisfied customers over all sequences of
arrivals (O’Mahony 2015).

Appendix B. Optimization Formulations

Denote the number of docks at station i by K;, the number
of bikes by (a decision variable) b;, the UDF by ¢;(b;, K;), and
the total number of bikes available by (an input parame-
ter) B. Then, the nonlinear integer program discussed in the
paper is

minimize Zci(bi/ K;)
b 7
s.t. Zb, <B,
Vi 0< b; <K;.

The first constraint ensures that the total number of bikes
used is no larger than the number of bikes available; the sec-
ond constraint ensures that the number of bikes placed at a
station does not exceed the number of docks at that station.

When we discuss the system-wide optimization for
bikes, the value K; giving the number of docks at station i is
viewed as a fixed input parameter. Later, when dock moves
are considered, K; becomes a decision variable in addition
to b;, and the formulation is augmented with a constraint
on the number of available docks. In that case, we can
denote the current number of docks at each station i as K;,
which allows us to also write the constraint

> IKi = Kyl <2k

to ensure that, at most, k docks are moved. Here, the co-
efficient of 2 on the right side is needed because a dock
moved from i to j decreases the number of docks atiby 1,
and it increases the number of docks at j by 1 (that is, the
1-norm distance, sometimes called the Manhattan metric,
between two solutions with one dock moved evaluates to 2).

References

Caro F, Tang CS (2018) The 3rd poms applied research challenge 2018
awards. Production Oper. Management 27(12):2339-2349.

Chung H, Freund D, Shmoys DB (2018) Bike angels: An analysis of
Citi Bike’s incentive program. Zegura EW, ed. Proc. 1st ACM
SIGCAS Conf. Comput. Sustainable Soc. (Association for Com-
puting Machinery, New York), 1-9.

de Chardon CM, Caruso G, Thomas I (2016) Bike-share rebalancing
strategies, patterns, and purpose. J. Transport Geography 55(July):
22-39.

Freund D (2018) Models and algorithms for transportation in the
sharing economy. PhD thesis, Cornell University, Ithaca, NY.

Freund D, Henderson SG, Shmoys DB (2018a) Bikesharing. Hu M, ed.
Sharing Economy: Making Supply Meet Demand (Springer Nature
Switzerland AG, Cham, Switzerland), 435-459.

Freund D, Henderson SG, Shmoys DB (2018b) Minimizing multi-
modular functions and allocating capacity in bike-sharing systems.
Accessed August 19, 2019, https://arxiv.org/abs/1611.09304v3.

Gerard P (2018) The point of a ride. Accessed August 19, 2019,
https: //www.youtube.com/watch?v=HWZyfvN7Vg8.

Hajek B (1985) Extremal splittings of point processes. Math. Oper.
Res. 10(4):543-556.

Hochbaum DS (1994) Lower and upper bounds for the allocation
problem and other nonlinear optimization problems. Math. Oper.
Res. 19(2):390-409.

Jian N, Freund D, Wiberg HM, Henderson SG (2016) Simulation
optimization for a large-scale bike-sharing system. Roeder T,
Frazier PI, Szechtman R, Zhou E, eds. Proc. 2016 Winter Simu-
lation Conf. (IEEE Press, Washington, DC), 602-613.

McCloskey JA (2015) Tweet about Citi Bike. Accessed August 19, 2019,
https: // twitter.com/JohnAMcCloskey /status /641680160811524097.

Motivate (2018) Motivate commentary on work with Cornell.
Accessed August 19, 2019, https: //www.youtube.com/watch?
v=_iXjZvXHQul.

Murota K (2003) Discrete Convex Analysis (SIAM, Philadelphia).

National Association of City Transportation Officials (2018) Bike
share in the U.S.: 2017. Accessed August 19, 2019, https://
nacto.org/bike-share-statistics-2017/.

NPR (2018) Citi Bike Angel keeps wheels turning for other bike-share
users. NPR Morning Edition, September 11 2018. Accessed August
19, 2019, https://www.npr.org/2018/09/11/646567194 / citi
-bike-angel-keeps-wheels-turning-for-other-bike-share-users.

O’Mahony E (2015) Smarter tools for (Citi)bike sharing. PhD thesis,
Cornell University, Ithaca, NY.

O’Mahony E, Shmoys DB (2015) Data analysis and optimization for
(Citi) bike sharing. Bonet B, Koenig S, eds. Proc. 29th AAAI Conf.
Artificial Intelligence (The AAAI Press, Palo Alto, CA), 687-694.

O’Mahony E, Henderson SG, Shmoys DB (2016) (Citi)bike sharing.
Working paper.

Parikh P, Ukkusuri S (2015) Estimation of optimal inventory levels
at stations of a bicycle sharing system. Proc. TRB 94th Annual
Meeting, National Academies, Washington, DC.

Press Office New York City Hall (2018) Mayor de Blasio announces
that in advance of L train disruption, Citi Bike will increase
coverage in many of its busiest areas. Accessed August 19, 2019,
https: //wwwl.nyc.gov /office-of-the-mayor/news/332-18 /mayor
-de-blasio-that-advance-I-train-disruption-citi-bike-will-increase
-coverage.

Raviv T, Kolka O (2013) Optimal inventory management of a bike-
sharing station. IIE Trans. 45(10):1077-1093.

Ross JA (2017) Tweet about Divvy. Accessed August 19, 2019, https: //
twitter.com/JeremyAdamRoss /status /918323581477679105.
Schuijbroek J, Hampshire R, van Hoeve W] (2017) Inventory reba-
lancing and vehicle routing in bike sharing systems. Eur. ]. Oper.

Res. 257(3):992-1004.

Daniel Freund is an assistant professor of operations
management in the Sloan School of Management at the
Massachusetts Institute of Technology. His research fo-
cuses on complex decision-making problems in the shar-
ing economy. He received an MS and a PhD in applied
mathematics from Cornell University and a BSc in mathe-
matics from the University of Warwick. He is the recipient
of the 2018 George B. Dantzig Dissertation Award.

Shane G. Henderson is a professor in the School of Op-
erations Research and Information Engineering at Cornell
University. He has previously held positions at the Uni-
versity of Michigan and the University of Auckland. He is
the editor-in-chief of Stochastic Systems. He has served as
chair of the INFORMS Applied Probability Society and as
simulation area editor for Operations Research. He is an
INFORMS Fellow. His research interests include discrete
event simulation, simulation optimization, emergency ser-
vices planning, and transportation.

Eoin O’'Mahony is a senior data science manager at Uber.
He leads the matching science group in Marketplace, which is
responsible for matching supply with demand across Uber’s
marketplaces. For his work with Motivate he received the
INFORMS Dantzig Dissertation Award in 2016 and the


https://arxiv.org/abs/1611.09304v3
https://www.youtube.com/watch?v=HWZyfvN7Vg8
https://twitter.com/JohnAMcCloskey/status/641680160811524097
https://www.youtube.com/watch?v=_iXjZvXHQuI
https://www.youtube.com/watch?v=_iXjZvXHQuI
https://nacto.org/bike-share-statistics-2017/
https://nacto.org/bike-share-statistics-2017/
https://www.npr.org/2018/09/11/646567194/citi-bike-angel-keeps-wheels-turning-for-other-bike-share-users
https://www.npr.org/2018/09/11/646567194/citi-bike-angel-keeps-wheels-turning-for-other-bike-share-users
https://www1.nyc.gov/office-of-the-mayor/news/332-18/mayor-de-blasio-that-advance-l-train-disruption-citi-bike-will-increase-coverage
https://www1.nyc.gov/office-of-the-mayor/news/332-18/mayor-de-blasio-that-advance-l-train-disruption-citi-bike-will-increase-coverage
https://www1.nyc.gov/office-of-the-mayor/news/332-18/mayor-de-blasio-that-advance-l-train-disruption-citi-bike-will-increase-coverage
https://twitter.com/JeremyAdamRoss/status/918323581477679105
https://twitter.com/JeremyAdamRoss/status/918323581477679105

Freund et al.: Bike-Sharing Analytics

INFORMS Journal on Applied Analytics, 2019, vol. 49, no. 5, pp. 310-323, © 2019 INFORMS 323

INFORMS Doing Good with Good OR prize in 2014. He
holds a PhD and an MS in computer science from Cornell
University and a BSc in computer science from the Uni-
versity College Cork, Ireland.

David B. Shmoys is the Laibe/ Acheson Professor at Cornell
University in the School of Operations Research and In-
formation Engineering. His research interests include
algorithms for optimization problems, with applications

including scheduling, inventory theory, network design,
computational sustainability, and mobility in the sharing
economy. He is a Fellow of INFORMS, the Association of
Computing Machinery (ACM), and the Society for In-
dustrial and Applied Mathematics (SIAM) and was a
National Science Foundation Presidential Young Investi-
gator. He is currently an area editor for optimization for
Operations Research.



	Analytics and Bikes: Riding Tandem with Motivate to Improve Mobility
	Introduction
	Imbalance, Rebalancing, and User Dissatisfaction Functions
	Allocating Capacity
	Bike Angels
	Conclusion


