
This article was downloaded by: [74.69.163.68] On: 08 November 2020, At: 21:44
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Mathematics of Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Budgeted Prize-Collecting Traveling Salesman and
Minimum Spanning Tree Problems
Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, David P. Williamson

To cite this article:
Alice Paul, Daniel Freund, Aaron Ferber, David B. Shmoys, David P. Williamson (2020) Budgeted Prize-Collecting
Traveling Salesman and Minimum Spanning Tree Problems. Mathematics of Operations Research 45(2):576-590. https://
doi.org/10.1287/moor.2019.1002

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2019, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/moor.2019.1002
https://doi.org/10.1287/moor.2019.1002
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


MATHEMATICS OF OPERATIONS RESEARCH
Vol. 45, No. 2, May 2020, pp. 576–590

http://pubsonline.informs.org/journal/moor ISSN 0364-765X (print), ISSN 1526-5471 (online)

Budgeted Prize-Collecting Traveling Salesman and Minimum
Spanning Tree Problems
Alice Paul,a Daniel Freund,b Aaron Ferber,c David B. Shmoys,c David P. Williamsonc

aData Science Initiative, Brown University, Providence, Rhode Island 02912; b Sloan School of Management, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02142; cOperations Research and Information Engineering, Cornell University, Ithaca,
New York 14850
Contact: alice_paul@brown.edu (AP); df365@cornell.edu, http://orcid.org/0000-0001-8039-9805 (DF); amf272@cornell.edu (AF);
dbs10@cornell.edu (DBS); davidpwilliamson@cornell.edu (DPW)

Received: October 6, 2017
Revised: July 19, 2018; December 3, 2018
Accepted: February 16, 2019
Published Online in Articles in Advance:
December 6, 2019

MSC2000 Subject Classification: Primary:
68W25; secondary: 05C85
OR/MS Subject Classification: Primary:
networks/graphs/traveling salesman; secondary:
analysis of algorithms

https://doi.org/10.1287/moor.2019.1002

Copyright: © 2019 INFORMS

Abstract. We consider constrained versions of the prize-collecting traveling salesman and
the prize-collecting minimum spanning tree problems. The goal is to maximize the number
of vertices in the returned tour/tree subject to a bound on the tour/tree cost. Rooted variants
of the problems have the additional constraint that a given vertex, the root, must be con-
tained in the tour/tree.We present a 2-approximation algorithm for the rooted and unrooted
versions of both the tree and tour variants. The algorithm is based on a parameterized
primal–dual approach. It relies on first finding a threshold value for the dual variable
corresponding to the budget constraint in the primal and then carefully constructing a
tour/tree that is, in a precise sense, just within budget. We improve upon the best-known
guarantee of 2 + ε for the rooted and unrooted tour versions and 3 + ε for the rooted and
unrooted tree versions. Our analysis extends to the setting with weighted vertices, in
which we want to maximize the total weight of vertices in the tour/tree. Interestingly
enough, the algorithm and analysis for the rooted case and the unrooted case are almost
identical.
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Communication Foundations [Grants CCF-1522054, CCF-1526067, and CCF-1740822] Division
of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1537394], and Division of
Mathematical Sciences [Grant DMS-1839346]; the Air Force Office of Scientific Research; and a
National Defense Science and Engineering Graduate fellowship.

Keywords: approximation algorithms • traveling salesman problem • constrained optimization

1. Introduction
In the classical traveling salesman problem (TSP), we are given an undirected graph G � (V,E) with edge costs
ce ≥ 0 for all e ∈ E. The goal is to construct a tour visiting all vertices in the graph while minimizing the cost of
edges in the tour. If, however, we are given a bound on the cost of the tour, then we may not be able to visit all
vertices. In particular, suppose that we are given a budget D ≥ 0. In the budgeted prize-collecting traveling
salesman problem, a feasible tour is a multiset of edges F such that (a) F is a tour on a subset S ⊆ V and (b) the
cost of the edges in F is at most D. The goal is to find a feasible tour F that maximizes |S|, the number of
vertices visited. Here, we do not require the graph to be complete and allow a tour to visit nodes more than
once. Similarly, in the budgeted prize-collecting minimum spanning tree (MST) problem, a feasible tree is a set of
edges T such that (a) T specifies a tree spanning a subset S ⊆ V and (b) the cost of the edges in T is at most D.
Again, the goal is to find a feasible tree T that maximizes |S|. For either problem, we may consider the rooted
versions, in which we are also given a vertex r with the added constraint that it must be contained in the
returned solution. We say the problem is unrooted if there is no root r given.

The budgeted version of the traveling salesman problem arises naturally in many routing problems that
have a distance or time constraint. For example, a bike-share system may have bike stations located around a
city that need repair. Throughout the day, the system operator wants to route a repairman over his work
period while maximizing the number of stations that receive maintenance. [In fact, this precise question
emerged from our ongoing work with NYC Bike Share (Freund et al. [11]).] We can represent this problem as a
budgeted prize-collecting traveling salesman problem. Furthermore, we can also capture the setting in which
stations have varying importance; we discuss in Section 8 how to extend our algorithm to a setting in which
vertices have weights and the goal is to maximize the weight of vertices visited. In Section 9, we apply our
algorithm to such instances using Citi Bike data in New York City. The budgeted version of the minimum
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spanning tree also arises in a range of applications, including telecommunication network design problems in
which an infrastructure budget is weighed against the number of customers served.

In this paper, we present a parameterized primal–dual algorithm that achieves an approximation guarantee
of 2 for all the problems mentioned above, including both the rooted and unrooted versions. The algorithm is
based on a primal–dual subroutine that uses a linear programming (LP) relaxation of the problem. First, we
search for a “good” value for the dual variable corresponding to the budget constraint in the primal. Having
set this variable, we can then increase the other dual variables and form a forest of edges whose corresponding
dual constraint is tight. For the tour problem, we then choose a tree in this forest and carefully prune it so that
doubling this tree forms a tour that, in a precise sense, will be just within budget. For the tree problem, we
prune edges such that the tree itself is just within budget. Last, we show that either our constructed tour/tree
is within a factor of 2 of optimal or we recurse on a smaller subgraph.

1.1. Literature Review
There have been many prize-collecting variants of both the TSP and the MST problem that seek to balance the
number of vertices in the tree or tour with the cost of edges used. Johnson et al. [16] characterize four main
variants of prize-collecting MST problems: the Goemans and Williamson [14] minimization problem that
minimizes the cost of edges plus a penalty for vertices not in the tree (this is the traditional prize-collecting
objective), the net worth maximization problem that maximizes the weight of vertices in the tree minus the
cost of used edges, the quota problem that minimizes the cost of a tree containing at least Q vertices, and,
finally, the budget problem that maximizes the number of vertices in the tree subject to the cost of the tree
being at most D. All of the variants above can be extended to a corresponding TSP version that constructs a
tour rather than a tree.

Our algorithm is most similar to that of Garg [13], who presents a 2-approximation algorithm for the quota
problem for MSTs, improving upon the previous results of Garg [12], Arya and Ramesh [2], and Blum et al. [4].
Johnson et al. [16] observe that a 2-approximation algorithm for the quota problem yields a (3 + ε)-
approximation algorithm for the corresponding unrooted budget problem. To our knowledge, this was the
previously best-known guarantee for the unrooted MST variant. Prior to Garg’s [12] result, Levin [18] proved a
(4 + ε)-approximation algorithm. Our 2-approximation algorithm for the budgeted prize-collecting MST problem
thus improves upon the best known approximation ratio for the unrooted version. Though the rooted version is
mentioned by Johnson et al. [16], to the best of our knowledge, no guarantee for it was known prior to this work.
From a technical perspective, the main distinction between our work and that of Garg [13] lies in how we find
the threshold value for the dual variable. Furthermore, our overall proof relies on more precise accounting.

For the Goemans and Williamson [14] minimization problem for MSTs, Archer et al. [1] obtain a (2 − ε)-
approximation guarantee, improving upon the long-standing bound of 2 obtained by Goemans and
Williamson [14] in 1995. Furthermore, Archer et al. [1] successfully applied this algorithm to telecommuni-
cation network problems. Dilkina and Gomes [8] also study a variant of the problem in the context of wildlife
conservation using mixed-integer programming. Last, Feigenbaum et al. [9] show the net worth maximization
problem for MSTs is NP-hard to approximate within any constant.

To the best of our knowledge, the previous best approximation guarantee for the rooted and unrooted
budgeted prize-collecting TSP arises from a special case of a result by Chekuri et al. [6]. Their work provides a
(2 + ε)-approximation algorithm with running-time exponential in O(1/ε2) for the more general orienteering
problem, in which the goal is to find an s − t path, where s and t are given, with bounded cost that maximizes
the number of vertices visited on the path. By setting s � t � r, this then yields a (2 + ε)-approximation al-
gorithm for the rooted budgeted prize-collecting TSP. For the unrooted case, one can iterate over all possible
nodes as roots. In contrast, as we show in Section 8, our approach to the unrooted version does not rely on
iterating over all possible roots. The orienteering problem itself has attracted much attention within the
combinatorial optimization community, with other variants studied by Vidyarthi and Shukla [21], Chekuri
and Korula [6], Chen and Har-Peled [7], Chekuri and Pál [5], and Gupta et al. [15].

There exist other adaptations of prize-collecting problems not discussed above. Specifically, Ausiello et al. [3]
present a 2-approximation algorithm for an online variant of the quota problem for the TSP. Frederickson and
Wittman [10] study the so-called traveling repairmen problem, in which each vertex can be visited only within
a specific time window and the goal is to either maximize the number of vertices visited within a certain time
period or to minimize the time visiting all vertices. They give constant-factor approximation algorithms for
both variations. Last, Nagarajan and Ravi [19] study the problem of minimizing the number of tours to cover
all vertices subject to each tour having bounded distance. They give a 2-approximation algorithm for tree
metric distances.
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This paper is structured as follows. In Section 2, we present the LP relaxation for the rooted version of the
budgeted prize-collecting traveling salesman problem. In Section 3, we use this LP relaxation to develop a
primal–dual subroutine that will inform our decisions. In Section 4, we use this subroutine to present an
outline of the entire parameterized primal–dual algorithm and the proof of its approximation ratio, providing
some intuition behind what type of tour will be near optimal. In Section 5, we prove an upper bound on the
size of an optimal solution. Then, in Section 6, we show how to set the dual variable corresponding to the
budget constraint, and in Section 7, we show how to construct our proposed tour that is within a factor of 2 of
optimal. For ease of presentation, we present these results for the rooted version of the budgeted prize-
collecting traveling salesman problem with unit weights and show how the analysis extends to the weighted
case and the MST version in Section 8. In Section 8, we also show how our algorithm tackles the unrooted
versions of the two problems without having to run the rooted version on all possible roots. Last, we present
computational experiments in Section 9.

2. LP Formulation
As mentioned, we present our result in terms of the rooted budgeted prize-collecting traveling salesman problem.
In this version of the problem, there is the added constraint that the returned tour must contain a root node
r ∈ V. However, in Section 8, we show that our algorithm (and analysis) directly extends to the unrooted case
with a few minor changes.

For each S ⊆ V, let zS ∈ {0, 1} be a variable representing whether the vertices in S are the ones on which the
tour is constructed; for each edge e ∈ E, we let xe ∈ Z+ be a variable representing how many copies of e to
include in the tour. Then, the following is a linear programming relaxation for the rooted budgeted prize-
collecting traveling salesman problem:

maximize
∑

S⊆V:r∈S
|S|zS

subject to
∑

e:e∈δ(S)
xe ≥ 2

∑
T:S⊊T

zT ∀S⊊V,

∑
e∈E

cexe ≤ D,

∑
S⊆V

zS ≤ 1,

zS, xe ≥ 0.

The first constraint states that if the tour visits the vertices in a subset T and S⊊T, then we must have at least
two edges across the cut S. The dual of this linear program is given by the following:

minimize λ1D + λ2

subject to 2
∑

T:T⊊S
yT

( )
+ λ2 ≥ |S| ∀S ⊆ V : r ∈ S,

2
∑

T:T⊊S
yT

( )
+ λ2 ≥ 0 ∀S ⊆ V : r /∈ S,

∑
S:e∈δ(S)

yS ≤ λ1ce ∀e ∈ E,

λ1, λ2, yS ≥ 0.

In order to construct a tour, we rely on a primal–dual subroutine that returns a tree containing the root. We
first note that if we find λ1 ≥ 0 and yS ≥ 0 that satisfy the dual constraint for every edge, then we can always
set λ2 to be the maximum of 0 and maxS⊆V:r∈S[|S| − (2∑T:T⊊ S yT)] so that we have a feasible dual solution.
Suppose that we first set the value of λ1. The primal–dual subroutine uses this value to construct a full dual
solution and corresponding tree containing r. Doubling this tree to form a tour may or may not be feasible
with respect to the budget constraint. In particular, small values of λ1 will produce tours that violate the
budget, and large values of λ1 will produce tours that are far from optimal. Therefore, we need to adjust λ1 to
find a feasible solution with bounded approximation ratio. We first describe the primal–dual subroutine before
presenting our overall algorithm.
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3. Primal–Dual Subroutine
The primal–dual subroutine for fixed λ1 returns a tree containing the root and is similar to the 2-approxi-
mation algorithm for the prize-collecting traveling salesman problem without a budget constraint presented
by Goemans and Williamson [14]. Similarly to Goemans and Williamson [14], we define a potential of a set S
as a function of the dual variables of the strict subsets of S.

Definition 1. For any subset S ⊆ V, we define the potential of S to be

π(S) :� |S| − 2
∑

T:T⊊S
yT

( )
.

Definition 2. A subset S ⊆ V is neutral if 2
∑

T:T⊆S yT � |S|, in other words, if yS � 1
2π(S).

At the beginning of the primal–dual subroutine, we set all yS to be 0 and set the collection of active sets to be
all singleton nodes. Furthermore, we set T � ∅. Then, in each iteration, we increase yS corresponding to all
S ⊆ V in the collection of active sets until either a dual constraint for an edge between two sets becomes tight
or a set becomes neutral. If an edge becomes tight between two subsets S1 and S2, we add the edge to T and
replace both S1 and S2 in the collection of active sets by S1 ∪ S2. We remark that the potential of this new set S
is then equal to

π(S) � π(S1) + π(S2) − 2yS1 − 2yS2 .

If, instead, a set becomes neutral, we mark it inactive and remove it from the collection of active sets. Once there are
no more active sets, we prune inactive sets of degree 0 or 1 that do not contain the root and return the remaining set
of edges T (see Algorithm 1 and Figure 1). Pruned subsets of degree 0 correspond to components that did not
reach the root. While this algorithm is similar to the algorithm of Goemans and Williamson [14], keeping the
root component active is useful for our analysis and for the extension to the unrooted case in Section 8.

Algorithm 1 (Primal–Dual Algorithm [PD(λ1)])
procedure PD(λ1 ≥ 0)

yS ← 0, T ← {}.
mark the subset {i} as active for all i ∈ V.
while there exists an active subset do

raise yS uniformly for all active subsets S until either
if an active set S becomes neutral then

mark S as inactive.
else if the dual constraint for edge e between S1 and S2 becomes tight then

T ← T ∪ {e}.
mark S � S1 ∪ S2 as active, remove S1 and S2 from the active subsets.

end if
end while
T′ ← T.
while there exists a set S marked inactive such that |δ(S) ∩ T′|< 2 and r /∈ S do

remove all edges with at least one endpoint in S from T′.
end while
return T′

end procedure

Because sets are removed from the set of active subsets when an incident edge becomes tight, the dual
constraint for every edge will remain satisfied throughout the subroutine. Thus, λ1 and y satisfy the dual
constraints for every edge, and we can extend them to a feasible dual solution (y, λ1, λ2). Furthermore, by
construction, the dual constraint of every e ∈ T is tight, and the edges in the set T form a forest throughout the
subroutine. This implies that, after the pruning phase, T′ is a tree containing r. Finally, beyond being part of a
feasible solution, the construction of y also guarantees that 6, defined to be the collection of all sets active in
some iteration throughout the subroutine, is laminar. This includes sets that are active even for a period of
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length zero (i.e., yS � 0). Indeed, each set in 6, other than singletons, is the union of two disjoint other sets in 6.
We define 6+ � 6 ∪ {V}, which is also laminar.

4. Main Result
In this section, we give an outline of how the parameterized primal–dual algorithm uses the primal–dual
subroutine described in the previous section to construct a feasible tour with bounded approximation guarantee.
Assume that we have run the primal–dual subroutine with value λ1 to find a feasible dual solution (y, λ1, λ2),
where we may not know the actual value of λ2. The subroutine also returns a tree of tight edges containing r.
Our algorithm adjusts λ1 so that this tree has cost very close to 1

2D. In particular, the algorithm searches over
possible values of λ1 to find a threshold value such that PD(λ−

1 ) returns T
′ with cost ≥ 1

2D and PD(λ+
1 ) returns

T′ with cost < 1
2D. Here, x− � x − ε and x+ � x + ε, where ε is arbitrarily small. Last, the algorithm prunes T′ =

PD(λ−
1 ) until doubling the resulting tree is a feasible solution. See Algorithm 2.

Algorithm 2 (Overview of the Algorithm)

1. Find λ1 such that PD(λ−
1 ) returns T

′ with cost ≥ 1
2D and PD(λ+

1 ) returns T
′ with cost < 1

2D. See Section 6.
2. Prune T′ = PD(λ−

1 ) to form a tree TA with cost ≤ 1
2D such that either TA has cost � 1

2D or there exists an
edge e ∈ T′ such that TA ∪ {e} has cost > 1

2D. See Sections 6 and 7.
3. Double TA and return the shortcut tour.

The potentials outputted by the subroutine PD(λ1) help us give an upper bound on the size of an optimal
solution and a lower bound on the size of our returned solution in order to provide an overall approximation
guarantee. Let O� be the subset of vertices visited by an optimal tour and F� be the edges in that tour.
Furthermore, let O be the minimal set in 6+ that contains O�. Because V ∈ 6+, such a set always exists. In
Section 5, we prove the following bound on the size of O�.

Theorem 1. O�
⃒⃒ ⃒⃒ ≤ λ1D + π(O).

In Sections 6 and 7, we explicitly show how to find the threshold value λ1 and how to construct the tree TA of tight
edges on a subset SA such that r ∈ SA and cost

∑
e∈TA ce ≤ 1

2D. Doubling the edges in TA and shortcutting produces a
tour on SA that has length at most D. Furthermore, if the cost of TA is <1

2D, we show that we can find an incident
edge ē ∈ T such that adding ē to TA creates a tree T̄ on a subset S̄with cost

∑
e∈T̄ ce > 1

2D. In other words, adding one
more edge to TA makes doubling it infeasible. If instead the cost of TA is equal to 1

2D, then we simply let T̄ � TA and
S̄ � SA. Let Q be the maximum potential set in 6+ containing S̄. In Section 7, we prove the following bound on
|SA|.
Theorem 2. |SA|> 1

2λ1D + π(Q) − 1.

Thus, the parameterized primal–dual algorithm can find a feasible tour on a subset SA, where |SA| is bounded
using the potential π(Q). If π(Q) is large, this implies that we have found a large subset our tour can visit. For
example, if π(Q) ≥ λ2, then |SA| ≥ 1

2λ1D + λ2 ≥ |O∗|, by the feasibility of the dual solution. However, the value
of λ2 is unknown. Therefore, we use the potentials to bound the solution. In particular, suppose that
π(Q) ≥ π(O); then

|SA| + 1>
1
2

λ1D + π(O)[ ] ≥ 1
2
O�
⃒⃒ ⃒⃒

.

Figure 1. Pruning the forest T to find the tree T′ containing r. Dashed circles represent subsets that were marked inactive, and
dashed lines represent pruned edges.
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We may assume without loss of generality (w.l.o.g.) that |O�| is even, because we can always make a copy of
each vertex that has an edge of cost zero incident to the original. Hence, the above implies that if π(Q) ≥ π(O),
then |SA| ≥ 1

2 |O�|.
However, it may be the case that π(Q)<π(O). Therefore, the parameterized primal–dual algorithm finds the

maximal set in 6+ with potential strictly greater than π(Q) that contains the root r and recurses on the graph
induced by this set, returning the largest feasible tour found. If π(Q)<π(O), then O must be a subset of the set
we recurse on. Because the subset on which we recurse does not contain S̄, by definition of Q as the maximum
potential set containing S̄, we recurse on a strict subgraph of G, implying that we eventually reach the case that
π(O) ≤ π(Q) and |SA| ≥ 1

2O
�, yielding the 2-approximation guarantee. Finally, because we recurse on a strict

subgraph of G, we call the subroutine at most O(n) times.

Theorem 3. The parameterized primal–dual algorithm is a 2-approximation for the rooted budgeted prize-collecting
traveling salesman problem.

5. Upper Bound
In this section, we provide the proof of Theorem 1 for any fixed λ1. Recall that O is the minimal set in 6+ that
contains the optimal subset O�, and F� is an optimal tour on O�. Assume that we have run the primal–dual
subroutine with value λ1 to obtain a dual solution (y, λ1, λ2). Theorem 1 states that |O∗| ≤ λ1D + π(O). The proof
relies on the feasibility of the dual solution along with the following lemma.

Lemma 1. For any S ⊆ V, (2∑T:T⊆S yT) ≤ |S|.
Proof. Any set S can be partitioned into maximal disjoint laminar subsets S1,S2, . . . , Sc ∈ 6. Therefore,

2
∑
T:T⊆S

yT � 2
∑c
i�1

∑
T:T⊆Si

yT ≤ ∑c
i�1

|Si| � |S|,

where the inequality comes from the fact that neutral subsets are marked inactive. □

Proof of Theorem 1. We first note that we can partition the power set of O into subsets of O −O� and subsets that
contain vertices in O�:

2
∑

T:T⊊O
yT � 2

∑
T:T⊆O−O�

yT + 2
∑
T:T⊊O
T∩O� ��∅

yT. (1)

Thus,

|O| � 2
∑

T:T⊊O
yT + π(O)

� 2
∑

T:T⊆O−O�

yT + 2
∑
T:T⊊O
T∩O� ��∅

yT + π(O) ≤ O −O�
⃒⃒ ⃒⃒ + 2

∑
T:T⊊O
T∩O� ��∅

yT + π(O),

where the first line holds by the definition of potentials, the second by Equation (1), and the last by Lemma 1.
Rearranging, we get

|O�| ≤ 2
∑
T:T⊊O
T∩O� ��∅

yT + π(O) ≤ ∑
e∈F�

∑
T:e∈δ(T)

yT + π(O)

≤ λ1
∑
e∈F�

ce + π(O) ≤ λ1D + π(O).

The second line holds because F� is a tour on O�, and so, by the minimality of O, each subset T with yT > 0 that
contains a subset of O� has at least two edges in its cut δ(T). The third line holds by the dual feasibility of
(y, λ1, λ2), and the last line holds by the primal feasibility of F�. □

6. Setting λ1
We now turn our attention to finding λ1 and constructing a feasible tour. Our goal is to set λ1 for the
primal–dual subroutine so as to find a tree containing the root with cost very close to 1

2D and such that the set
of spanned vertices has high potential. Note that λ1 controls the cost of the edges, and as λ1 increases, edges
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become more expensive, yielding smaller connected components in the primal–dual subroutine. In particular,
for λ1 � 0, all edges go tight immediately, and for λ1 >n/(2mine:ce > 0 ce), all vertices go neutral before a single
nonzero edge goes tight. If edges go tight and/or subsets go neutral at the same time, we break ties in some
order. As discussed later, this ordering is important because it changes the outputted tree T′.

If a minimum spanning tree on G has cost ≤ 1
2D, then we double this tree to get a feasible and optimal tour.

Otherwise, suppose that we have found values λl and λr (λl <λr) such that PD(λ+
l ) returns T′ with cost ≥ 1

2D
and PD(λ−

r ) returns T′ with cost < 1
2D. Here, x− � x − ε and x+ � x + ε, where ε is arbitrarily small.

Lemma 2. In polynomial time, we can find a threshold value λ1 such that PD(λ−
1 ) returns T

′ with cost ≥ 1
2D and PD(λ+

1 )
returns T′ with cost < 1

2D.

Proof. We refer to an edge going tight during the primal–dual subroutine as an edge event, andwe refer to a subset
going neutral as a subset event. We prove the result by induction. Assume we have values λl and λr such that, for
some k, the first k ≥ 0 events are the samewhen running the subroutine for any λ1 between λ+

l and λ−
r . Furthermore,

assume that for each subset S, we can find values αS and βS such that at the end of the first k events, yS � λ1αS + βS
for any λ1 between λ+

l and λ−
r . Note that this is trivially true for the base case with λl and λr defined above and

k � 0 because all y values will be zero.
To find the next event to occur, we need to find the time after the kth event that each subset will go neutral and

each edge will go tight. Observe that an active set S will go neutral at time

1
2
|S| −∑

T⊆S
yT � 1

2
|S| −∑

T⊆S
λ1αT + βT
[ ]

,

an edge with exactly one endpoint in an active component will go tight at time

λ1ce −
∑

T:e∈δ(T)
yT � λ1ce −

∑
T:e∈δ(T)

λ1αT + βT
[ ]

,

and an edge with both endpoints in different active components will go tight at time 1
2 the above amount. The

minimum of these values determines the next event to occur. Because all of these times are affine in λ1, we can
divide the interval between λ+

l and λ−
r into smaller subintervals such that the first k + 1 events are identical on

these subintervals. Note that if more than two events tie, some events are degenerate in that those events do
not occur next in any subinterval. See Figure 2.

Considering these subintervals, we either identify a threshold point λ1 or we identify a subinterval between λ̂l
and λ̂r such that PD(λ̂+

l ) returns T
′ with cost ≥ 1

2D and PD(λ̂−
r ) returns T

′ with cost < 1
2D. Furthermore, because the

time of the (k + 1)th event is an affine function in λ1, we can add this function to the affine function yS for each active
set S to get the new affine function for this y value, updating the α’s and β’s accordingly. Thus, the inductive
hypothesis holds, and eventually we find such a threshold point. □

We use this threshold point λ1 to understand the subroutine PD(λ1). In particular, we will show that if the
subroutine breaks event ties in one way, then the returned tree is the same as PD(λ−

1 ), and if the subroutine breaks
ties another way, then the resulting tree is the same as PD(λ+

1 ). Consider running the subroutine for λ+
1 and λ−

1
and comparing event by event. We let y+ correspond to the y variables when running PD(λ+

1 ) and let y− correspond
to the y variables when running PD(λ−

1 ). The following lemma shows that the two routines look nearly identical.

Lemma 3. Throughout the two subroutines, the following two properties hold:
• All active components in (V,T) are the same except for infinitesimal time.
• For all S ⊆ V, the difference between y+S and y−S is infinitesimal.
Here, infinitesimal means that the time or difference goes to zero as ε → 0.

Figure 2. Finding the subintervals between λl and λr where the time of the next event is in bold.
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Proof. At the start of the subroutines, the properties hold because all y+ and y− variables are zero. Now assume that
they hold at some time t into the subroutines. As argued above, the next event to occur depends on the minimum of
functions linear in λ1. Furthermore, because the current active components are the same, the possible subset and edge
events are the same.

In particular, the time for each subset to go neutral in PD(λ+
1 ) is

1
2 |S| −

∑
T⊆S y+T , which is infinitesimally different

from the time for that subset to go neutral in PD(λ−
1 ). Similarly, the time for each edge to go tight is at most

infinitesimally different between the two subroutines. Therefore, the next event to occur is different between the
two subroutines only if two events occur at the same time for PD(λ1).

If the next event is the same for the two subroutines, then the active components remain the same, and we raise
all active components by amounts differing by an infinitesimal amount. Therefore, the inductive properties
continues to hold. Otherwise, suppose the next event is different. We consider four cases:

1. Subset X goes neutral for PD(λ−
1 ), and subset Y goes neutral for PD(λ+

1 ).
2. Edge e goes tight for PD(λ−

1 ), and edge f goes tight for PD(λ+
1 ).

3. Edge e goes tight for PD(λ−
1 ), and subset X goes neutral for PD(λ+

1 ).
4. Subset X goes neutral for PD(λ−

1 ), and edge e goes tight for PD(λ+
1 ).

In the first case, the times for both X and Y to go neutral must be infinitesimally different and the other subset
goes neutral in infinitesimal time after the first. Therefore, once both X and Y are neutral, the difference of the
amounts by which we have raised the y variables in PD(λ−

1 ) and in PD(λ+
1 ) is infinitesimally small, and the current

active components are the same. Thus, the two inductive properties continue to hold.
Similarly for the second case, if e and f are not between the same two components, the other edge goes tight in

infinitesimal time after, and the inductive properties continue to hold. Otherwise, e and f are between the same
components. Thus, when e goes tight, f is no longer eligible to go tight, but the newly merged active component is
the same for both subroutines. Again, the inductive properties continue to hold.

In the third case, if edge e has an endpoint in an active component that is not X, then e goes tight in infinitesimal
time after X goes neutral for PD(λ+

1 ) and the components remain the same, maintaining the inductive properties.
Otherwise, one endpoint of e must be in X and the other endpoint of e is in an inactive component Y, and right
after e goes tight for PD(λ−

1 ), the newly merged subset has infinitesimally little potential left and goes inactive in
infinitesimal time thereafter. Furthermore, if in the future any active component merges with X or Y in PD(λ+

1 ),
then the edge e will immediately go tight after, maintaining that the active components stay the same. Again,
this maintains the inductive properties.

Last, note that the time for a subset to go neutral has a negative slope in λ1, and the time for an edge to go tight
has a positive slope in λ1. Because λ+

1 >λ−
1 and the y variables vary by an infinitesimally small amount, the fourth

case cannot occur. In all cases, the inductive properties continue to hold, and the lemma holds. □

The proof of Lemma 3 exactly exhibits the differences between the two subroutines: subsets that are neutral
and marked inactive in PD(λ+

1 ) but have infinitesimally small potential in PD(λ−
1 ), pairs of edges that went

tight between the same components, and edges in PD(λ−
1 ) that do not exist in PD(λ+

1 ). However, for the last
case, these edges are between inactive components and components with infinitesimally small potential such
that the merged component immediately goes inactive and that merged component remains untouched for the
rest of the subroutine. Therefore, these edges are not pruned in PD(λ−

1 ) if and only if the inactive component
contains the root. We summarize these structural differences in the following corollary.

Corollary 1. The only differences in the outputted trees T′ of PD(λ+
1 ) and PD(λ−

1 ) occur from the following:
1. a subset X and edge e that go tight at the same time in PD(λ1) such that in PD(λ+

1 ), X is marked inactive (and e
may or may not go tight), but in PD(λ−

1 ), e goes tight before X can go inactive so neither are pruned, or
2. a pair of edges e and f between the same components that go tight at the same time in PD(λ1) such that e goes tight

first for PD(λ+
1 ) but f goes tight first for PD(λ−

1 ).

Assume that we run PD(λ1), breaking event ties to behave the same as PD(λ+
1 ). Then, PD(λ1) returns T′ with

cost < 1
2D. However, we can think about reversing these ties one by one. In particular, consider breaking the

first i ties according to PD(λ−
1 ) and then the rest by PD(λ+

1 ). By Lemma 3, reversing these ties only changes the
y variables by an infinitesimally small amount. The only difference occurs when entering the pruning phase.

Thus, eventually we find the smallest i such that breaking the first i ties according to PD(λ−
1 ) returns T

′ with
cost ≥ 1

2D. In other words, either we have identified a neutral subset X such that r /∈ X and marking X active
rather than inactive changes T′ to have cost ≥ 1

2D, or we have identified two edges e and f that tie such that
adding e instead of f changes T′ to have cost ≥ 1

2D. From here on, we assume that we always run PD(λ1)
according to these tie-breaking rules.
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7. Constructing a Tour
Continuing from the previous section, let y be the dual variables at the end of running PD(λ1) with the above
tie-breaking rules, let T′ be the set of edges after the pruning phase, and let 6 be defined as before. Last, let
π(S) be the potential of S ⊆ V given y. By construction, the tree returned by PD(λ1) has cost ≥ 1

2D. Recall from
Section 6 that either

1. there exists a neutral subset X ∈ 6 such that r /∈ X and if X is marked inactive, then the pruned tree will
have cost < 1

2D, or
2. there exist tight edges e ∈ T and f /∈ T such that if we swap e with f in T, then the pruned tree will have

cost < 1
2D.

In the first case, when X is marked inactive, then a path of neutral subsets N1,N2, . . . ,Np � X is pruned,
yielding a component S1 containing the root r with cost < 1

2D. Similarly, in the second case, edge e prevented
some neutral subsets N1,N2, . . . ,Np from being pruned that had degree > 1. However, by removing e and
replacing it with f , these subsets are pruned, and we are left with component S1 containing r with cost < 1

2D.
See Figure 3, (a) and (b).

For both cases, we use this threshold event to produce a tree TA on a subset of vertices SA with r ∈ SA
and cost ≤ 1

2D. In doing so, we also find another tree T̄ on a subset of vertices S̄ containing SA of cost ≥ 1
2D

such that |SA| ≥ |S̄| − 1. Then, doubling TA yields a feasible tour FA that visits at most one node less than there
are in S̄. The tree T̄ will be helpful later in obtaining a lower bound for |SA|.

We start by setting TA to be the edges in T′ that span S1. By construction, these edges have cost < 1
2D. We

then try to grow TA as much as possible along the path from S1 to N1,N2, . . . ,Np. First, suppose that we can
add this full path and the edges in T′ that span each Ni to TA without exceeding cost 1

2D. Then, we set TA to be
this expanded tree and SA � S1 ∪N1 ∪ . . . ∪Np. In other words, TA is equal to T′ at the end of PD(λ1).
Furthermore, we set T̄ � TA. By construction, the cost of T̄ is equal to 1

2D, and |SA| � |S̄|.
Otherwise, we continue to add N1, N2, . . . to our tree until we reach a set X̄ ∈ {N1,N2, . . . ,Np} such that

adding the edges in T′ that span X̄ in T′ to TA implies that
∑

e∈TA ce >
1
2D. In other words, we cannot add this

whole subset to our tree without going over budget. Let e � (u, v) be the edge that connects X̄ to TA in T′. If
adding e to TA already brings the cost of TA strictly over 1

2D, then we stop growing TA and set T̄ � TA ∪ {e}.
Otherwise, we add e to TA and run a procedure pick(X̄, v,TA) that picks a subset of the edges in T′ spanning X̄
including v.

Specifically, the procedure pick(X,w,TA) adds to TA a set of edges in T′ that span a subset of component X
including w. We denote by X1,X2 ∈ 6 the two components that merged to form X, and by e′ � (u, v) the edge
that connects X1 and X2 in T′. Without loss of generality, u,w ∈ X1, v ∈ X2. Furthermore, let T′

1 and T′
2 be the

edges in T′ with both endpoints in X1 and X2, respectively. See Figure 4.
If the total cost of edges in TA ∪ T′

1 is greater than 1
2D, then we know we should only add edges in this

subtree to TA, and we recursively invoke pick(X1,w,TA). If, instead, the total cost of edges in TA ∪ T′
1 ∪ {e′} is

less than 1
2D, then we can feasibly add e′ and all edges in T′

1 without violating the budget. Thus, the procedure
adds all these edges to TA and recursively invokes pick(X2, v,TA) to pick the remaining edges in T′

2. Finally, if
the cost of edges in TA ∪ T′

1 is less than or equal to 1
2D but greater than 1

2D − ce′ , then we cannot quite make it to
T′
2 without going over budget. In this case, the procedure adds all edges in T′

1 to TA and sets T̄ � TA ∪ {e′}. See
Algorithm 3.

At the end of the procedure, we produce a tree TA of cost ≤ 1
2D that spans a subset SA with r ∈ SA along with

a tree T̄ of cost ≥ 1
2D that spans a subset S̄, where |S̄| ≤ |SA| + 1. Furthermore, if |S̄| � |SA| + 1, then T̄ has cost

> 1
2D. We will use T̄ to prove a bound on |S̄|, which in turn will give a bound on |SA|.

Figure 3. Neutral subsets pruned in each case to yield component S1 with cost < 1
2D. The subset S1 may itself be neutral but

not pruned.
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Algorithm 3 (Pick Routine [pick(X ,w,TA)])
procedure pick(X,w,TA)

let X1,X2 be the two components that merged on edge e′ � (u, v) to form X
(w.l.o.g. w,u ∈ X1 and v ∈ X2)
let T′

i be the edges in T′ such that both endpoints are in Xi for i � 1, 2
if the cost of TA ∪ T′

1 is ≥ 1
2D then

call pick(X1,w,TA)
else if the cost of TA ∪ T′

1 ∪ {e′} is < 1
2D then

TA � TA ∪ T′
1 ∪ {e′}, and call pick(X2,w,TA)

else if the cost of TA ∪ T′
1 ∪ {e′} is >1

2D then
TA � TA ∪ T′

1, T̄ � TA ∪ {e}
else

TA � TA ∪ T′
1 ∪ {e}, T̄ � TA

end if
end procedure

Let Q ∈ 6+ be the maximum potential subset containing S̄. Our goal is to prove Theorem 2, which states that

|SA| ≥ 1
2
λ1D + π(Q) − 1.

Our proof relies, informally speaking, on the vertex v̄ at which the pick routine stopped. We define v̄ as the
(unique) vertex in S̄ that has fewer edges incident in T̄ than it does in T′. Though many vertices in the graph
have fewer incident edges in T̄ than in T′, the definition of the pick routine, combined with the charac-
terization in Figure 3, (a) and (b), guarantees that only one of them is in S̄. Furthermore, if |S̄|> |SA|, then v̄ is
exactly the one node in S̄ that is not in SA. Before proving Theorem 2, we first state the following useful lemma,
the proof of which we delay to the end of the section as it closely resembles that of Goemans and Williamson
[14] for the prize-collecting Steiner tree problem.

Lemma 4. ∑
e∈T̄

∑
S:e∈δ(S)

yS ≤ 2
∑

T:T∩S̄��∅
v̄ /∈ T

yT. (2)

Proof of Theorem 2. By construction of T̄, vertices in Q − S̄ are either (i) in a single set N ⊂ Q − S̄ that denotes the
union of pruned subsets and setsNi inQ that were not reached by the pick procedure (see Figure 1) or (ii) in the set
X̄ ∈ {N1,N2, . . . ,Np} set on which we started our pick routine. Thus, we may partition Q � N ∪ (X̄ − S̄) ∪ S̄. Notice
that N is a union of neutral subsets and thus is itself neutral; that is, with SN denoting the set of all subsets of N,

|N| � 2
∑

T:T∈6N

yT.

Similarly, let 6X be all subsets in 6 that are subsets of X̄ and contain vertices in X̄ − S̄. We may partition the
subsets of X̄ into sets that contain nodes in X̄ − S̄ and sets that do not. We then find (because X̄ is neutral)

|X̄| � 2
∑

T:T∈6X

yT + 2
∑

T:T⊆X̄∩S̄
yT ≤ 2

∑
T:T∈6X

yT + X̄ ∩ S̄
⃒⃒⃒ ⃒⃒⃒

,

where the inequality follows by Lemma 1. Thus, |X̄ − S̄| ≤ 2
∑

T:T∈6X yT.

Figure 4. Illustration of the pick procedure.
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The definition of v̄ guarantees that any subset in 6 that contains vertices in S̄ and X̄ − S̄ also contains v̄.
Therefore, subsets T that intersect with S̄ but do not contain v̄ are neither in 6N nor in 6X. It follows that

|Q| � 2
∑

T:T⊆Q
yT + π(Q) ≥ 2

∑
T:T∩S̄��∅
v̄ /∈ T

yT + 2
∑

T:T∈6N

yT + 2
∑

T:T∈6X

yT + π(Q)

≥ 2
∑

T:T∩S̄ ��∅
v̄ /∈ T

yT + |N| + X̄ − S̄
⃒⃒⃒ ⃒⃒⃒ + π(Q) � 2

∑
T:T∩S̄ ��∅
v̄ /∈ T

yT + Q − S̄
⃒⃒⃒ ⃒⃒⃒ + π(Q).

Rearranging,

S̄
⃒⃒⃒ ⃒⃒⃒ ≥ 2

∑
T:T∩S̄��∅
v̄ /∈ T

yT + π(Q) ≥ ∑
e∈T̄

∑
S:e∈δ(S)

yS + π(Q) � λ1 ·
∑
e∈T̄

ce + π Q( ).

The second inequality follows from Lemma 4, whereas the final equality is due to the fact that the dual con-
straints are tight for all edges obtained by the primal–dual subroutine. If |S̄| � |SA|, this completes the proof
of the theorem. Otherwise, suppose that |S̄| � |SA| + 1. Then,

∑
e∈T̄ ce > 1

2D, and the asserted inequality still
holds. □

Proof of Lemma 4. Consider a single iteration of the algorithm, and let # be the current set of components C such
that |δ(C) ∩ T̄| ≥ 1. In other words, these are the components incident to edges in T̄. We can partition # into active
components #A and inactive components #I. Furthermore, let Cv̄ be the component that contains v̄. We first show
that active components are not incident to too many edges in T̄ on average.

Starting with the graph (V, T̄), we consider the graph obtained by shrinking each component in # to a single
vertex and removing all vertices not in a component in #. The remaining edges are a subset of T̄ and form a tree
on #. Furthermore, the degree of each vertex v in this tree is dv � |δ(C) ∩ T̄|, where C is the corresponding
component. We set R to be the set of vertices corresponding to components in #A and set B be the set of vertices
corresponding to components in #I . Because the edges in T̄ form a tree on #,∑

v∈R
dv +

∑
v∈B

dv ≤ 2|R| + 2|B| − 2.

Let C be an inactive component such that |δ(C) ∩ T̄| � 1 and r /∈ C. Note that |δ(C) ∩ T′|> 1, where T′ is the set of
all tight edges returned by the subroutine, because otherwise C would have been pruned. Therefore, the other
component incident to C was not chosen to be part of T̄. This implies that either C is X̄ or C is some X1
encountered during the picking procedure such that we chose only vertices in X1 and not X2. In either case,
v̄ ∈ C.

If Cv̄ ∈ #I, then this and the component containing the root are the only possible components in B with
degree equal to 1 and

∑
v∈B dv ≥ 2|B| − 2. In other words,∑

C∈#A

|δ(C) ∩ T̄| � ∑
v∈R

dv ≤ 2|R| � 2|#A| . (3)

Otherwise, Cv̄ ∈ #A, and the component containing the root is the only possible vertex in B with degree less
than 2. Thus,

∑
v∈B dv ≥ 2|B| − 1. This implies that∑

C∈#A

δ(C) ∩ T̄
⃒⃒⃒ ⃒⃒⃒ ≤ 2|R| − 1 � 2|#A| − 1. (4)

We now prove the main claim in Equation (2) using a proof by induction. At the start of the algorithm, the left-
hand side (LHS) and right-hand side (RHS) are both equal to 0. On each iteration, let #A be the set of active
components C such that |δ(C) ∩ T̄| ≥ 1, and let Cv̄ be the component containing v̄. Suppose that we raise yCi by ε
for every active component Ci. The LHS of the claim is raised by

∑
C∈#A |δ(C) ∩ T̄|ε. If Cv̄ ∈ #I , then the RHS is

raised by exactly 2|#A|ε. By Equation (3), the LHS is less than or equal to RHS. If, on the other hand, Cv̄ ∈ #A,
then the RHS is raised by exactly 2(|#A| − 1)ε. By Equation (4), the LHS is less than or equal to RHS. In both
cases, the inductive statement continues to hold. □

8. Extensions
In this section, we extend the algorithm and its analysis in three different directions. First, we show that the 2-
approximation extends to the version of the problem in which each vertex has a weight associated to it and the
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goal is to maximize the combined weight of the nodes that are part of the tour. Second, we show that our
results also hold when the goal is to return a tree rather than a tour. Last, we show that the algorithm, in a
natural way, also gives a 2-approximation for the unrooted problem. The usual approach to show that an
approximation algorithm for a rooted problem also gives an approximation for the unrooted would be to
iterate over all possible roots and take the best solution. Here, we show that the analysis for the rooted case
also applies directly to the unrooted case.

8.1. Weights
Suppose that each vertex v is associated with an integer weight pv ≥ 0 and the goal is to find a feasible tour F
that visits a subset S ⊆ V to maximize

∑
v∈S pv. We can imagine transforming this problem to an equivalent

unweighted version by creating copies of each vertex v with zero-cost edges to v. Then in the primal–dual
subroutine, all these added edges go tight instantaneously, yielding a weighted “cluster” with potential equal
to pv. Thus, we do not even need to perform the transformation and can actually just begin the algorithm with
these weighted clusters as our initial active sets with potential equal to the weight of v. All proofs continue to
hold through the equivalence to the unweighted version.

Theorem 4. The parameterized primal–dual algorithm is a 2-approximation for the rooted budgeted prize-collecting traveling
salesman problem with weights.

8.2. Trees
Second, we discuss the extension of the algorithm to the rooted budgeted prize-collecting minimum spanning
tree problem. The corresponding linear programming relaxation for the budgeted prize-collecting minimum
spanning tree problem is as follows:

maximize
∑

S⊆V:r∈V
|S|zS

subject to
∑

e:e∈δ(S)
xe ≥

∑
T:S⊊T

zT ∀S⊊V,

∑
e∈E

cexe ≤ D,

∑
S⊆V

zS ≤ 1,

zS, xe ≥ 0.

The only difference is the removal of the factor of 2 from the first constraint, which changes the dual constraint
associated with each subset S to become∑

T:T⊊S
yT + λ2 ≥ |S| ∀S ⊆ V : r ∈ S,

∑
T:T⊊ S

yT + λ2 ≥ 0 ∀S ⊆ V : r /∈ S.

Based on this change, we redefine the potential of a set to be

π(S) � |S| − ∑
T:T⊊S

yT,

and a set to be neutral if
∑

T:T⊆S yT � |S|. Given these new definitions, the primal–dual subroutine runs exactly
as it did before. Last, we set the threshold value λ1 such that the tree returned by PD(λ−

1 ) has cost ≥ D and the
tree returned by PD(λ+

1 ) has cost <D. We then run the pick procedure to find a tree just within budget D. It is
easily verified that all proofs continue to hold for this variant.

Theorem 5. The parameterized primal–dual algorithm is a 2-approximation for the rooted budgeted prize-collecting
minimum spanning tree problem.

8.3. Unrooted
The most intuitive way to think about the unrooted version is to think of considering every possible com-
ponent in T as a possible tour, not just the component containing the root. With that interpretation, one can
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summarize our results for the unrooted case as follows: the linear program then captures the objective by
summing over all subsets S ⊆ V, and the dual has the constraint (2∑T:T⊊S yT) + λ2 ≥ |S| for every S ⊆ V, rather
than just ones containing the root. The definitions of potentials and neutral remain exactly the same, and the
only difference in the algorithm is that we prune all sets S that are marked inactive and have |δ(S) ∩ T′| � 1.
Each remaining component corresponds to a potential tour. Finally, instead of recursing only on the subset
containing the root, we now recurse on all maximal subsets with potential >π(Q). Because 6 is a laminar
family, we recurse on disjoint sets of vertices, so the set of graphs on which we recurse is also a laminar
family, and we call the subroutine O(n) times.

The statements and proofs of the upper bound in Theorem 1 and the lower bound in Theorem 2 remain
unchanged. The statements of Lemma 3 and Lemma 4 also continue to hold true, but the proof of Lemma 4
changes a little bit. After establishing

∑
v∈R dv +∑

v∈B dv ≤ 2|R| + 2|B| − 2, we let C be any inactive component
such that |δ(C) ∩ T̄| � 1. As before, we know that v̄ ∈ C. However, if Cv̄ ∈ #I, then Cv̄ is the only possible
component in B with degree 1 and

∑
v∈B dv ≥ 2|B| − 1; thus, we get the stronger inequality∑

C∈#A

δ(C) ∩ T̄
⃒⃒⃒ ⃒⃒⃒ � ∑

v∈R
dv ≤ 2|R| − 1 � 2|#A| − 1.

Similarly, if instead Cv̄ ∈ #A, then all vertices in B have degree at least 2 and
∑

v∈B dv ≥ 2|B|, implying that∑
C∈#A

δ(C) ∩ T̄
⃒⃒⃒ ⃒⃒⃒ ≤ 2|R| − 2 � 2 #A

⃒⃒ ⃒⃒ − 2,

which is again a stronger inequality. The rest of the proof remains the same.

9. Computational Experiments
In this section, we complete computational experiments in order to better understand the performance of our
algorithm in practice. The primal–dual algorithm as detailed in this paper was implemented in C++11 using
binary search to find λ1. The experiments were conducted on a Dell R620 with two Intel 2.70 GHz eight-core
processors and 96 GB of RAM.

The first set of graphs we used for the experiments was the 37 symmetric TSP instances with at most 400
nodes in the TSPLIB data set (Reinelt [20]). The second set of graphs was 37 weighted instances constructed
using the Citi Bike network of bike-sharing stations in New York City. Each instance corresponds to a week of
usage data at these stations, and the weight of a vertex corresponds to the number of broken docks at that
station during that week. The number of broken docks was estimated from usage data with a probabilistic method
similar to that of Kaspi et al. [17]. Details about both types of constructed instances are given in Table 1.
Throughout this section, we consider only the unrooted case.

For each test graph G, we first found an upper bound on the cost of a tour by computing 2 times the cost of a
minimum spanning tree in G. We then set the budget for our tour to be f � 25%, 50%, or 75% of this upper
bound. We denote by W the total weight of the vertices; for TSPLIB instances, this is the number of vertices.
After finding our solution of weight A, we computed an upper bound on the weight of visited vertices,
U � min(λ1D +maxS∈6 π(S),W), and recorded the percentage optimality gap as 100 × (U − A)/U. Results are
given in Table 2. The column headed “% weight” gives the percentage of the total weight W captured by the
constructed tour, and the one headed “% budget” gives the percentage of the distance budget used after
shortcutting the tree.

We report several interesting structural results. First, the average time seems to be heavily influenced by the
number of edges; the bike instances were quicker to complete even though the average number of nodes was
higher. However, the average time does not seem to grow with the budget (and hence with the size of the
computed solution) because most of the time is spent finding λ1. The average optimality gap, on the other
hand, does improve with the budget. This is likely because for larger budgets, the upper bound is given by W,
rather than λ1D +maxS∈6 π(S). Also of interest is that maxS∈6 π(S) contributed little to our upper bound U. As

Table 1. Graph statistics for both groups of graphs averaged over all instances.

Instance type |V| |E| Total vertex weight

TSPLIB 158.14 15,658.43 158.14
Bike 319.54 4634.77 1,302.51

Paul et al.: Budgeted Prize-Collecting TSP and MST Problem
588 Mathematics of Operations Research, 2020, vol. 45, no. 2, pp. 576–590, © 2019 INFORMS



a result, our optimality gaps depend mostly on the value of λ1, rather than the potentials, and may be far from
tight. However, the fact that, on average, we use only around two-thirds of the distance budget implies that
the solutions could be improved as well. To ensure that we use a larger part of the budget, we ran further
experiments on the Citi Bike instances. In these, we ran binary search over possible virtual budgets in the input
until finding one for which the resulting tour used at least 90% of the actual budget. This significantly reduced
our optimality gaps, as shown in Table 3.

10. Conclusion and Future Work
In this paper, we provide 2-approximation algorithms for the rooted and unrooted budgeted prize-collecting
traveling salesman problem and prize-collecting minimum spanning tree problem that have at their base a classic
primal–dual approach. The key insights are to use constructed potentials to evaluate feasible subsets of
vertices to visit and to identify the structure of a good tour. In particular, we construct a tree that closely follows
the structure of the laminar collection of subsets with positive dual value. Furthermore, we ensure this tree is just
within budget in that adding one extra edge, and doubling the tree in the case of the tour, violates the budget.

An obvious open question seeks to improve the approximation guarantee or prove that the current
guarantee is the best possible. Specifically, it would be interesting to know whether a (3/2)-approximation
algorithm is possible given that that is the current best guarantee for the unconstrained traveling salesman
problem. Another interesting direction is to investigate whether the number of recursions, currently bounded
by O(n), can be reduced or eliminated altogether by inferring more from the potentials.
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