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ABSTRACT
With the rise of malware targeting industrial control systems, re-
searchers need more tools to develop a better understanding of the
networks under attack, the potential behavior of malware, and de-
sign possible defenses. One of the most important protocols used in
practice today is IEC 104, which is used to monitor and control the
Power Grid of several countries, as well as to monitor and control
other critical infrastructures such as gas, oil, and water systems. In
this paper we present our preliminary results in implementing the
IEC 104 industrial protocol standard in Python and integrate it to a
network emulation tool supported by Mininet.

CCS CONCEPTS
•Computingmethodologies→ Simulation environments; Sim-
ulation tools; • Security and privacy→ Domain-specific security
and privacy architectures; • Networks→ Cyber-physical networks.
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1 INTRODUCTION
Many critical infrastructures, such as power systems, have existed
for over a century; however, it is only in the past two decades that
remote monitoring and control of these systems migrated from
serial communications to IP compatible networks, supporting vari-
ous industrial control protocols such as IEC 60870-5-104 (IEC 104),
DNP 3.0, Modbus/TCP, ICCP, and IEC 61850. Some protocols focus
on substation automation (IEC 61850), others on communications
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between control centers (ICCP), and others on remote monitoring
and control of large-scale systems (IEC 104 or DNP 3.0).

Critical infrastructures are also at an increased risk of cyberat-
tacks. In particular, the power grid has not only received significant
attention in academia [1, 2, 19] but has also been the subject of real-
world cyberattacks, such as Ukraine’s 2015 and 2016 blackouts [23].

One of the particular industrial protocols targeted by Indus-
troyer (also known as Crashoverride), the malware related to the
Ukraine2016 cyber attacks, was IEC 104. However, we found few
tools supporting this protocol, and even if they support it, their
support is partial and unable to dissect all types of packets in the
protocol entirely (e.g., the IEC 104 packet dissector of Wireshark is
not able to correctly parse some of the packets we have obtained
from real-world power systems).

We propose a new network emulation framework to support
experimentation with IEC 104 networks to address this concern.
Our goal is to use our framework to teach engineers about IEC 104
networks, help security engineers test their solutions, and help mal-
ware analysts run industrial malware in our framework to evaluate
new malware dynamically. This paper summarizes our first efforts
to achieve these goals.

In particular, our contributions are as follows: (1) we develop a
new implementation of IEC 104 and deploy it in a highly modular
and flexible network emulation software (Mininet). (2) To illustrate
how researchers can use our framework to study malware, we de-
velop a proof-of-concept malware that uses IEC 104 to open the cir-
cuit breakers in RTUs. Finally, (3) to illustrate how researchers can
develop defenses using our framework, we develop a simple cluster-
ing algorithm using deep-packet inspection features from IEC 104
to detect anomalies and test in our system. Our solution is available
to the public at https://github.com/Cyphysecurity/NEFICS.

The current state of our research is in preliminary work, so there
are some limitations. The most significant limitation of our study
is the crude power system under consideration in this paper. We
plan to study how to integrate our network emulation tool to more
robust power system simulation tools such as PowerWorld in future
work.

The rest of the document is organized as follows: in section 2
we present some related works to our research, in section 3 we
describe the IEC 104 protocol and showcase some relevant items of
this protocol, in section 4 we present our framework design con-
siderations and approach, in section 5 we discuss and demonstrate
our proof-of-concept malware running against the framework, in
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section 6 we present a second use case involving deep packet in-
spection defenses, finally, we present our conclusions and future
work considerations.

2 RELATEDWORK
The need to implement realistic and scalable experimental plat-
forms with different capabilities has increased significantly in the
past decade. In particular, previous work has focused on creating
power grid testbeds through simulators, hardware, hybrid platforms
(integrating hardware and software).

Table 1: Communication Protocols used in Smart Grid
Testbeds [5].

Protocols Percentage
DNP3.0 22%
C37.118 22 %
IEC 61850 20%
Modbus 18%
OPC UA 6%
FIPA 4%

OPC DA 2%
Others 3%

Themost comprehensive surveywe found on smart grid testbeds [5]
shows many diverse interests, such as demand response, distributed
energy resources, energy storage, electric transportation, advanced
metering infrastructure, distribution grid management, Network
communications, Wide-Area situational awareness, and Cyber-
Security. The prevailing trend shows that 40% of testbeds have
centered in these two last areas.

Cyber-Security is a field that has drawn particular interest since
the infamous attacks against Ukraine’s power grid. In 2015, during
Christmas eve, hackers compromised the Supervisory Control and
Data Acquisition (SCADA) system of the energy distribution sys-
tems and successfully disrupted the electricity supply. Following
that attack, in 2016, attackers used the virus Industroyer to perform
a similar attack using legacy protocol IEC 104 (section 3) to execute
their command injection attacks on the communication network.
Events extensively analyzed on [4] and [18].

However, few testbeds offer implementations for IEC 104, which
was used by Industroyer to perform its attack. As Table 1 shows,
a big percent of testbeds support DNP3.0 and C37.118 (22% each),
followed by IEC 61850 (20%) and Modbus(18%), but not one of them
supports IEC 104 [5].

Therefore, the primary goal of this study is to propose a frame-
work that uses power grid simulation (as explained in 4.5) and
emulating a network communication (based on SDN as described
in 4.3) to fill that gap.

Some simulation software frameworks, such as Mosaik [17], sim-
ulate various scenarios in large-scale smart grids. According to
the smart grid network topology, its core function is to create a
communication framework among the network endpoints. With
this communication framework, all the components, including the
control centers and Remote Terminal Unit (RTU), can exchange the
control commands and the measurement data in the corresponding

physical control system events. Mosaik configures TCP socket con-
nections for the simulated power grid components to connect to
Mosaik modules. However, it does not emulate the configurations
in the network layers of the OSI model. Thus, there are no set-
ting options for users to set industrial protocols and other network
configurations.

On the other hand, as a co-simulation framework, Mosaik re-
quires other established simulators (e.g., Matlab Simulink) to model
the smart grid components. To access these models, it provides APIs
to connect to the external power grid simulator. In contrast, our
framework integrates the smart grid models as built-in components
and creates a seamless design between the physical control system
and the communication network.

3 IEC 104 DESCRIPTION
Aswementioned before, one of themost recent cyberattacks against
power grid systems occurred in 2016 in Ukraine, where attackers
issued control commands via the IEC 104 protocol to cause a power
outage that affected more than 200,000 consumers [15].

The International Electrotechnical Commission (IEC) originally
developed IEC 104 in 1995 in its original version, IEC 60870-5-101
(IEC 101). Then, in 2000, it was extended to IEC 104. It is widely
used in Europe and Asia to monitor and control large geographical
areas. IEC 104 encapsulates telecontrol messages into Application
Protocol Data Units (APDUs) over TCP/IP using port 2404, as shown
in Fig. 1.

Figure 1: IEC 104 APDU Octets Structure

The contents of this TCP payload have one or more APDUs.
The Application Protocol Control Information (APCI) is the
first part of an APDU, which acts as the header of the message.
The Application Service Data Unit (ASDU) is the second part
and carries the sensor values and control messages between the
controlled station (e.g., Remote Terminal Unit (RTU)) and the
control station (e.g., SCADA systems).

There are three types of APDUs:
• I-Format APDUs carry sensor and control data between
endpoints.

• S-Format APDUs acknowledge after a specific (but config-
urable) number of I-format APDUs received.



• U-Format APDUs provide three connection control func-
tions: start transmission (STARTDT act/con), stop transmis-
sion (STOPDT act/con) and keep-live connection request
(TESTFR act/con).

An ASDU is a I-Format APDUs that comprised of a data unit
identifier (DUI) and an information object (IO), as shown in Fig. 1.
DUIs always maintain the same structure for all types of ASDUs,
while the structures of IOs vary for different types of ASDUs. DUIs
involve "what" type of data or command is being sent (type ID) and
"why" it was sent (cause of transmission). Each IO is in correspon-
dence with a specific field device, and the device has a unique ID
known as the Information Object Address (IOA). IOs encapsulate
the actual measurement data values or control commands within
their IOAs.

For instance, figure 2a shows an example of an ASDU for mea-
surement data. Marked in red boxes, the field "Value" stores the
measurement value of 42105.3 (voltage) in the address of 1002 using
type M_ME_TF_1 (36). In contrast, figure 2b shows an ASDU for
commands, C_SC_NA_1 (45), where the field "SCO" specify the type
of change to ‘Execute’ in a cicuit-breaker that in this case is to set it
to be ‘On’ for the address 101. Another type of measurement data
are status values for switches and circuit breakers in a substation,
such as ASDU type 3, M_DP_NA_1. Figure 2c shows an example of
the status of the circuit breaker corresponding to the address 101
where ‘DPI’ (Double Point Information) indicate its status.

In our simulation scenario, we use ON to determine the cir-
cuit breaker’s state as “OPEN”, and OFF to determine the state as
“CLOSED”. Some IOs also include the timestamps and inconsequen-
tial quality flags when reporting the data.

A common use of IEC 104 is to perform Automated Generation
Control (AGC) to the generation units in a Generation plant. In
Fig. 3, we show the process AGC extracted from a reference dataset
captured from a real-world smart grid. The AGC process works so
that the SCADA control center sends an expected amount of power
generation command in ASDU type 50, C_SE_NB_1, (represented by
the red square symbol in the figure) to one of the power generators
based on the real-time global load analysis. The power generator
acknowledges and confirms with the received expected power value
(represented by the blue triangle in the figure). Each exchange of
AGC requests and confirmations finishes within milliseconds.

In summary, IEC 104 is a comprehensive protocol for monitoring
and controlling communications between control centre (SCADA)
and substations (RTU) in power grids, which allows to know the
current status of the grid and change their operation points as well
as the topology of the network.

4 FRAMEWORK
4.1 Power systems overview
The primary purpose of a power grid is to supply the energy that
users demand. However, because of energy in high amounts is not
feasible to store it; the power of electricity must be consumed as
it is generated. Therefore, power grids are systems that demand
coordination between supervision and control, where SCADAs
system performed an import role. However, SCADA systems are
the central target for an attack.

(a)

(b)

(c)

Figure 2: (a) Voltage measurement using ASDU type 36. (b)
Command data using ASDU type 45 for opening a circuit
breaker. (c) Status measurement using ASDU type 3 for a cir-
cuit breaker.

Figure 3: Example of an AGC command operation from a
real-world smart grid dataset. Command data ASDU type 50.
The time series view of the field device reacts to the set point
control command in a prompt manner.



A complete power grid comprises three parts: generation, trans-
mission, and distribution, Fig. 4. In generation are the power plants
and the substations that increase the voltage to transmission level.
In transmission, there are mainly the power lines and intermedia
substations that help to keep the voltage level during the long jour-
ney to the load. Finally, the distribution systems are the substation
that decreases the voltage to consumption level and distributes the
electricity between end-users.

Figure 4: Power Grid Anatomy

SCADAs system is in charge of supervising and controlling the
operation of the power grid (generation, transmission, and dis-
tribution) within acceptable levels for the elements in the power
grid. However, the power grid operation is still a complex task that
required human decisions in cases of contingency. SCADA are sys-
tems whose inputs on one side are measurements (such as voltage,
currents values, and breaker positions) and output the operation
state of the system. On the other hand, inputs are commands that
produce topology change actions over the system as input. Fig. 5
shows a representation of this concept.

A RTU is an electronic device that interfaces the power grid
with the SCADA. These devices collect the measurements in the
substations (such as voltage, currents values, and breaker positions)
and send to SCADA. Besides, they execute the commands from
the SCADA. All the communication between SCADA and RTU is
carrying out under severals standards among them the standard
IEC 104 [6].

Figure 5: SCADA’s role in Power Grid. Concept representa-
tion

4.2 IEC 104 Implementation
We use Python to implement our RTU simulation, using SCAPY
packet manipulation tools for computer networks [3] to build the

packets. The simulator has three modules: Parse Module (PM), the
Communication Module (CM), and the Actuator Module (AM). The
PM is the main core of the simulator and is in charge of packing
and unpacking IEC 104 packets. It receives the floating value of
current and voltage, or integer value for the breaker status from
the substation, and encapsulated in an IEC 104 packet, either ASDU
Type 36 or 3, then give to the CM for transmission. On the other
hand, it unpacks the IEC 104 command packets received from the
SCADA and passes the command to AM for its execution. The CM
contains the state machine rules that determine the RTU behavior,
define in [6]. The AM is where the voltage, current, and Req calcu-
lations perform along with commands executions. Fig. 6 illustrates
the general concept of the RTU simulator. We plan to release the
RTU simulator as open-source in the future once we complete the
protocol implementation.

Figure 6: RTU simulator. Modular concept.

4.3 Network Emulation
Regarding the network emulation, there are two main elements
in the simulation of our scenario. First, we need to recreate the
network behavior of the power grid as a communications channel
between its components. Also, we need to simulate the physical
properties of the system. Since several components comprise these
systems, and these components are communicating with each other,
we need a mechanism to synchronize the physical state of the sys-
tem upon any changes produced by logical commands. Because
these components are not in the same endpoint, the different com-
ponents must execute this physical synchronization via a different
communications channel.

To be able to adjust the number of endpoints dynamically, we
implement our solution under a software-defined network (SDN)
environment, using an existing rapid prototyping network emulator
called “Mininet.”[20] Therefore, we implement simulated endpoints
mimicking the behavior of both the SCADA and RTU endpoints and
deploy these endpoints within different Mininet nodes, as shown
in Fig. 7. This implementation provides an isolated network in
which the different components of the simulated power grid can
communicate with each other using the IEC 104 protocol.

Furthermore, each RTU must account for any interaction be-
tween the SCADA and other RTUs in the system. Thus, if the
SCADA sends a command that alters the current state of any RTU
in the system, the others must reflect this change as well. While
a set of equations that describe the entire behavior of the system
can model this, the scalability and distributed nature of the system
would be lost in this type of model. Therefore, we decided to break



Mininet

RTU 1 RTU 2 RTU 3 RTU NSCADA

SDN Switch

Figure 7: Deployment schema. Eachmininet node simulates
a component of the power grid. The communication be-
tween nodes flows through a mininet SDN switch.

down the model into single components that run within each RTU.
Each component receives data from neighboring components and
feeds back its results, making each RTU into a semi-autonomous
mini-system. Moreover, the totality of the data exchange between
the nodes fully describes the entire system.

To exchange information, the RTUs establish a secondary com-
munications channel using a non-standard protocol to exchange
these messages. We implemented this secondary channel using
a UDP protocol. We decided on this because of the nature of the
messages the RTUs are exchanging. Since the states are frequently
updating, a missing packet will not adversely affect the simula-
tion, as the polling frequency of the IEC 104 is much slower than
the physical message exchange frequency. To establish a pseudo-
directionality for the messages, these carry sender and receiver IDs
corresponding to the IDs of each RTU. During the instantiation of
each RTU, the IDs of the “physical neighbors” are provided to them
so they can exchange messages with them and determine the state
of their sub-system. As a result, if any RTU in the system executes
a command sent by the SCADA, the resulting state is synchronized
with the remaining RTUs far quicker than the next polling from the
IEC 104. Thus, the next update received by the SCADA will reflect
the changes made by the command that was issued before.

Because the data exchange between the different endpoints in
the system only needs raw values (integers and floats) to determine
the simulation status, we propose a simple protocol to exchange
these messages based on the APDU ID of the endpoints. Our custom
protocol packet holds the sender ID, receiver ID, and message ID
as integers, and four slots for data (two integers, two floats), for a
total of 28 bytes. Since our physical model is rather simple, we do
not need to exchange overly-complicated packets. The message ID
determines the kind of data and associates a particular data slot to
the value. The endpoints run the data exchange in a continuous
loop that updates each RTU’s current status, resulting in multiple
data exchanges per second. Following this raw data exchange, each
RTU packs the IEC 104 I-frames –in a separate execution thread–
with the status data at regular 1-second intervals, using our SCAPY-
based IEC 104 module, after which it sends this data to the SCADA
server using a standard TCP socket.

4.4 Supporting DPI Efforts
We want our framework to support the development of new Deep-
Packet Inspection (DPI) defenses. In order to do this we design our
system to support:

(1) Parsing: Parse the network traffic capture under IEC 104
protocol. We wrote parsers (in Python) for IEC 104 traffic
(section 4.2) since the on-shelf parser such as Pyshark cannot
dissect layers correctly. For this project, we write extra APIs
to extract fields and to perform computation based on the
parsed data.

(2) Preprocessing: Clean the parsed and restructured data ex-
tracted from network traffic capture, such as the physical
measurement of power grid field devices.

4.5 Power Grid Simulation Scenario
Since our proposal’s primary purpose is to analyze the cyber-
security component in power grids, we used a simple power system
model shown in Fig 8. This kind of model allows fast power flow cal-
culation along with sudden changes in topology. We used a resistive
model. i.e., negligible capacitive, inductive effects, and not transient
effect (stable state only) with no electrical failures (no protection
elements). The grid is a radial topology that connects the generation
side to the load side through two transmission substations (TS), in-
cluding a generation and load substations (GS and LS). The system
is a 500 kV grid that feeds a 3 GW load through a transmission line
of 3 circuits, each circuit with a maximum loading capacity of 1000
MW (SIL), according to [12]. The line is 300 miles long, divided
into three sections of 100 miles modeled as an equivalent resistance
(Req) of 3 equal parallel resistance controlled by circuit-breakers.
There is a circuit-breaker per line-circuit, located in each TS, in
order to model the topology changes during the control operations.
The circuit-breakers are the actuators that an attacker’s main goal
is to gain access and control over them to disconnect the load (pro-
duce a blackout in the system - case 4 Fig. 9). Last but not least,
there is a RTU as the sensor unit per substation to supervised cur-
rents, voltages, and breaker’s status and deliver commands from
Supervisory Control and Data Acquisition (SCADA) to the grid. All
communications between SCADA and RTU are under the protocol
IEC 104 (section 3), where we use three types of IEC 104 packets:
(2) measurement and (1) command packets, Table 2. There is one
SCADA server that supervises and controls the system, which rep-
resents the Control Center. The SCADA is an external element in
the system, which means that there is no electrical connection with
the power grid, located in a remote place connected to the RTUs
via ethernet.

To compute the power flow, we used Ohm’s law to calculate
voltages and currents, Equation 1, in every substation. When a sub-
station detects a topology change in the system, it will perform the
following operations: first, compute its Req, Equation 2, according
to its local circuit-breaker status (open or close), then calculate
voltages and currents base on the information received by it closest
neighbors. Finally it will report its new values to its neighbors,
section 4.3.

𝑉 = 𝐼𝑅 (1)

1
𝑅𝑒𝑞

=
1
𝑅1

+ 1
𝑅2

+ 1
𝑅3

(2)

An attacker could disrupt the system’s regular operation by tak-
ing control of the circuit-breaker of any substation. By changing its



Figure 8: 500 kV, 3 GW power grid example used as a test
case.

topology an attacker could lead the system to an unsafe state. Since
the loading condition remains unchanged, and the grid is under
maximum capacity, any unexpected change, e.g., a cyber-attacker,
would put the system under stress conditions. There are three possi-
ble scenarios in our test case represented in the topological changes
depicted in Fig. 9. Case 1 is the system in regular operation. Case 2
to 4 are the possibles scenarios resulting from an attack. Case 2 and
3 are scenarios where an attacker opens one and two of the line
transmission circuits, respectively, leaving the grid under stress
conditions, i.e., increasing the Req of the whole system; As conse-
quence, the generator have to compensate the losses by producing
more energy even more than its nominal capacity. Case 4 is the
worst-case scenario, and the foremost goal of an attacker; produces
a blackout, i.e., opening the three-line circuits and disconnecting
the load from the grid.

515 kV
500 kV

3 GW

4.5 Ω

523.36 kV
500 kV

3 GW

6.75 Ω

546.81 kV
500 kV

3 GW

13.53 Ω

Vs
0 kV

3 GW

Case 1 Case 2

Case 3 Case 4

Figure 9: Possible topological changes due to cyber-attack in
the power grid test case.

ASDU Type Data Source
36 Short floating point Voltage & current values RTU
3 Double-point Breaker status RTU
45 Single command Open/close commands SCADA

Table 2: IEC104 packets used in the test case

4.6 Physical System
The typical design to simulate physical systems involves translating
all the different physical components into some non-linear system
described by several differential equations. After doing so, the sim-
ulation follows these equations to reflect the physical state of the
system. As with every solution, this approach has both advantages
and disadvantages. On the one hand, the simulator has complete
knowledge of every variable in the system, as the equations charac-
terize the system entirely. Moreover, as the simulator holds all the
variables, any response is given without any relevant delay. On the
other hand, the simulation is fixed to a specific scenario, 4.5, and
does not have any flexibility to scale up without a significant update
to the system’s equation model. Moreover, the fact that the model
describing the system is fixed means that all the information must
be processed in the same simulation process, regardless of how
many threads the simulator uses, which means a single end-point
simulating the whole system.

Taking these advantages and disadvantages into consideration,
we decided that our simulation should break apart the model into
simpler mini sub-models that can work autonomously, regardless
of the scenario’s topology. By building the simulator, we mean
to determine the simulation model of a single RTU and run it as
a stand-alone simulator in a single end-point. This way, we do
not need to know the topology beforehand, and the simulator can
accommodate different physical topologies without changing the
underlying model. However, the disadvantage comes with an added
delay, as we need some mechanism for the separate RTUs to ex-
change messages regarding their current state.

Our simpler model has each RTU in the system depending only
on its immediate neighbors’ information to determine its current
state. We simulate three different types of RTUs: a generation, a
transmission, and a load. The generation and load RTUs are static,
meaning that all the parameter definition takes place upon its in-
stantiation. The transmission RTUs are the system’s dynamic com-
ponents, which can receive commands from the SCADA service to
change their internal state. As their internal state is dynamic, they
need to calculate the internal currents and voltages, dependent on
the voltage input from the RTUs linked to the generation, and the
load observed from the RTUs linked to the final load.

As every RTU has a given ID, whenever the simulator instantiates
a new RTU, it needs its ID and the physical neighbors’ IDs linked to
this RTU. The first message that every RTU sends via this protocol is
a broadcast ’who-is’ message, similar to the ARP protocol’s behavior.
The actual simulation of the RTU will not begin until it knows the
IP address of every neighbor. In the limited tests we have made
so far, this handshake phase takes a few seconds to initiate the
system’s full simulation. After this phase, the message exchange



begins. The main values exchanged by the RTUs are voltage and
load.

5 USE-CASE 1: TESTING THE BEHAVIOR OF
MALWARE

In the literature, there are different types of cyberattacks for power
grids [13]. On one side, some attacks focus on damaging compo-
nents in the systems, such as damaging generation machines in
the Aurora case [22], while others attempt blackouts like the cy-
berattacks in Ukraine [18]. The blackouts that occurred in Ukraine
during 2015 and 2016 exposed several of the vulnerabilities in the
power grid operation. They also gave us insights on the practical
steps attackers will take to launch their attacks. For instance, in
2015, the attackers performed the blackout by obtaining remote
access to the SCADA system [9], while in 2016, the attacks were
automated with malware [14]. However, in both attacks, the main
goal of the attacker was to create power outages that affected a
hundred thousand customers for several hours. In this work we
implement a simulation of an attack similar to Industroyer [8], to
model the attacks that happened in Ukraine on December 2016.

5.1 Industroyer
On December 17, 2016, Ukraine’s power grid was affected by a
cyberattack, which caused, to an extent, a power outage in its
capital. A malware framework dubbed "Industroyer" is presumed
to be the cause of this cyberattack. Several components comprise
the malware framework: a backdoor component that allows the
attacker to control the components of the framework, a launcher
component used to execute the payloads, a wiper component that
renders the infected system inoperable, and four payloads designed
to interact with power grid substation systems via the standard
protocols IEC 101, IEC 104, and IEC 61850 [4].

Our focus revolves around the IEC 104, described in section 3.
The IEC 104 payload component of the malware framework uses
a configuration file to determine the attack’s properties. Within
this file, the attacker includes, among other properties, the target
RTU’s IP address, TCP port, ASDU address, the process to stop in
the infected system (SCADA service), and the IOA range.

Once the payload is running, its behavior is very straightforward:
it establishes a connection with the target RTU, initiates a data
transfer state, and sends a command to the target IOAs to cause
an outage. The entire attack uses the information contained in the
configuration file to ascertain the target’s parameters.

This design has one considerable disadvantage: the attacker
must have prior knowledge of the power grid s/he is attacking,
including RTU’s IP addresses, ASDU addresses, and IOA ID’s. This
disadvantage gives some validity to the claim that the attackers
launched a highly targeted attack, as they must have known details
of the target infrastructure beforehand.

5.2 Developing a new malware as a proof of
concept

A command injection attack happens when an unauthorized party
sends a command to an RTU. To execute this command injection
attack, we take some ideas from the behavior of Industroyer to
create malicious software that runs on a compromised device in

the SCADA network. From this compromised device, the malware
launches attacks in stages: The first stage corresponds to a recon-
naissance state in which it scans the network to identify any live
hosts and then identify which of those are RTUs. Following this
initial reconnaissance stage, the malware connects to the identi-
fied RTUs posing as a legitimate SCADA server, which allows the
malware to receive the polled measurements and status from all
the identified RTUs. The malware extracts and accounts for all the
IOAs present in each RTU by receiving the reported status data.
After gathering enough information from the RTUs to map out all
the circuit breakers in the system to each RTU, it executes the final
stage of the attack by sending commands to each RTU with a circuit
breaker that instructs the RTU to open the breakers, resulting in a
massive blackout.

We use a Python script to simulate our malware. The script
runs in an additional node in mininet representing the compro-
mised device. Once the execution starts, the script achieves live
hosts’ identification by sending ARP probes destined to each host in
the compromised machine’s subnet. Once identified, the malware
probes each live host with a stealth SYN scan (A half-open TCP
connection that closes the socket before the three-way handshake is
complete) for the specific TCP port 2404 designated for IEC104 com-
munications. If a live host is an RTU, the TCP socket will receive a
TCP SYN-ACK packet; otherwise, it will receive a TCP RST packet.
With this simple technique, the malware can ascertain whether a
particular endpoint is likely to be an RTU.

After this, the script opens a socket with each RTU and sends a
’STARTDT act’ packet, allowing the malware to receive the IEC104
polled measurements and states, looking for any RTUs that report a
type-3 ASDU, which corresponds to a circuit breaker. For each type-
3 ASDU, the malware uses the same scapy-based IEC 104 module to
extract the IOA corresponding to the particular circuit breaker the
RTU is reporting, mapping out which RTUs have circuit breakers
that could be compromised. After the malware finds no new circuit
breakers in the network, it sends a type 45 ASDU for each identified
breaker, instructing each corresponding RTU to open it. By doing
so, and because our simulated power grid is a radial circuit, the load
node is “physically disconnected,” causing a simulated blackout.

The authors in [11] also propose a series of interesting deception
attacks in an emulated power grid system. Although the assumed
adversary shares the ARP poisoning technique to obtain network
access in their and our attack scenarios, our attack design differs
from theirs in terms of the industrial protocol, the power grid
component, the threat model, and the consequences of the attack.

6 USE-CASE 2: DEVELOPING DPI DEFENSES
We focus on deep-packet inspection (DPI) of payload data units in
the application layer of IEC 104 packets, particularly the physical
device measurement values.

For our simulation, we consider two scenarios and collect the
network traffic captures for each scenario. As a baseline, we place
the initial capture during the regular operation of the system. The
regular operation is that the SCADA system receives the measure-
ments and status from the RTUs and sends commands provided
by the operator. Then we conduct the second capture when the
command injection attacks the system during the regular operation.



user@host :~/# python3 commander.py
[+] Using att -eth0
[+] Searching for live hosts in 10.0.0.0/24 ...

[!] 10.0.0.1 is alive.
[!] 10.0.0.2 is alive
[!] 10.0.0.3 is alive
[!] 10.0.0.4 is alive
[!] 10.0.0.5 is alive
[!] 10.0.0.6 is alive
[!] 10.0.0.7 is alive
[!] 10.0.0.8 is alive

[+] Scanning for RTUs ...
[!] Found RTU at 10.0.0.1
[!] Found RTU at 10.0.0.2
[!] Found RTU at 10.0.0.3
[!] Found RTU at 10.0.0.4
[!] Found RTU at 10.0.0.5
[!] Found RTU at 10.0.0.6
[!] Found RTU at 10.0.0.7

[+] Scanning complete !
[+] Probing RTUs ...

[!] RTU in 10.0.0.2 has breakers
[!] New breaker found in 10.0.0.2. IOA: 101
[!] New breaker found in 10.0.0.2. IOA: 103
[!] RTU in 10.0.0.3 has breakers
[!] New breaker found in 10.0.0.3. IOA: 101
[!] New breaker found in 10.0.0.3. IOA: 102
[!] New breaker found in 10.0.0.3. IOA: 103
[!] RTU in 10.0.0.4 has breakers
[!] New breaker found in 10.0.0.4. IOA: 101
[!] New breaker found in 10.0.0.4. IOA: 102
[!] New breaker found in 10.0.0.4. IOA: 103
[!] RTU in 10.0.0.5 has breakers
[!] New breaker found in 10.0.0.5. IOA: 101
[!] New breaker found in 10.0.0.5. IOA: 102
[!] RTU in 10.0.0.6 has breakers
[!] New breaker found in 10.0.0.6. IOA: 101
[!] New breaker found in 10.0.0.6. IOA: 103
[!] New breaker found in 10.0.0.2. IOA: 102
[!] New breaker found in 10.0.0.5. IOA: 103
[!] New breaker found in 10.0.0.6. IOA: 102

[+] Opening all breakers ...
[-] Opening breakers in 10.0.0.2 ...

[#] Opening IOA 101 ...
[#] Opening IOA 103 ...
[#] Opening IOA 102 ...

[-] Opening breakers in 10.0.0.3 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.4 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.5 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.6 ...
[#] Opening IOA 101 ...
[#] Opening IOA 103 ...
[#] Opening IOA 102 ...

[+] Done!
[+] Closing connections ...
[+] Bye!

Figure 10: Execution of the simulated malware performing
a command injection attack.

So the capture has mixed traffic traces in regular operation and
under the attack. As illustrated in previous sections, we propose
the attack scenario where the adversary uses a compromised device
to scan and communicate with the RTUs. With these two datasets,
we can measure and establish the baseline of normal operations,
and analyze the influences in physical devices’ measurements after
the attack.

6.1 Feature Selection
For each APDU in the network traffic, we pick the payload data
types as listed in Table 2 as categorical features and measurement
values as a numeric feature. We use one-hot encoding to create the
feature vectors, as shown in Table 3.

Table 3: Examples of Feature Vectors

type3 type36 type50 measurement

command data 0 0 1 0
voltage data 0 1 0 5200

6.2 Anomaly Detection
We apply clustering algorithms to detect abnormal traffic from
traffic capture. First, we train K-Means [10] and DBSCAN [7] algo-
rithms on the traffic captured without attacks. Since the clustering
result from both algorithms are similar, we present K-Means results
only in this section. First, we use the Silhouette score [16] and
Elbow method [21] to decide the number of clusters when using
K-Means, as shown in Figure 11c, Figure 11a, Figure 11d and Fig-
ure 11b. If the Silhouette coefficient on the x-axis value is greater
than 0.5, then it indicates that the data point is well matched to its
cluster and poorly matched to neighboring clusters. If most objects
have a high value, then the clustering configuration is appropriate.
If the majority of points have a low or negative value, then the
clustering configuration may have too many or too few clusters.
Elbow method can help us pick the cluster number at the elbow
position with the least imprecise cluster assignments. Therefore,
we conclude that 4 clusters are the best choice. In Figure 12a, we use
compressed feature components to visualize the clustering results
with principal component analysis (PCA). PCA compresses four fea-
ture components into two principal components and preserves 86%
variance of the original feature vector. Each cluster composition is
listed in Table 4.

Table 4: Cluster composition under regular operation

cluster 0 circuit breaker status
cluster 1 current measurement around 40000 amps
cluster 2 control command confirms the close of breakers
cluster 3 voltage measurement around 5200 volts

We then apply the same clustering algorithm on the traffic cap-
ture when the testbed is in the same operation configuration but
under attack. From Fig. 11d, we have a cluster 4 successfully group-
ing all the abnormal values of current and voltage when they sud-
denly change to negligible values, in Figure 12b. Comparing the
cluster groups in Figure 12a and Figure 12b, there is a new fifth
cluster in Figure 12b. This new cluster successfully aggregates all
the network traces containing the abrupt drop of the currents and
voltages to negligible values. This phenomenon happens because
the attacker opens all the circuit breakers in the transmission line.
So the measurements of the field devices all drop to close to zero
if the devices locate in the same transmission line as those circuit
breakers. The operators can further investigate all the data points
in cluster 4 to confirm the lines affected by the attack.

7 CONCLUSIONS AND FUTUREWORK
In this paper we implement the IEC 104 protocol and embed it in
a Mininet implementation. Our work is ongoing and we plan to
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Figure 11: Choosing the proper number of clusters with K-
Means.
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Figure 12: K-Means results in two situation with the identi-
cal testbed configuration

release it as open-source in the future once we have a complete
implementation of the protocol. We hope this software will help
other researchers experiment with this industrial protocol and de-
velop their own deep-packet inspection tools. With our framework,
we can test various attacks and capture network traffic. We also
illustrate how our framework can be used to implement simulated
attacks similar to Industroyer, and then used preliminary machine
learning techniques to detect this malware.

While our simulation of the power system is limited at this point,
we are looking into how to integrate our network emulation soft-
ware with high-fidelity power system simulators like PowerWorld,
where we can develop and deploy the dynamics of more complex
power systems. This integration will also help us in developing
more realistic and useful anomaly detection tools.
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