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We prove that there is a constant C' <6.614 such that every Boolean function of degree at
most d (as a polynomial over R) is a C-2%-junta, i.e., it depends on at most C-2¢ variables.
This improves the d-2¢~! upper bound of Nisan and Szegedy [Computational Complexity
4 (1994)].

The bound of C:2¢ is tight up to the constant C, since a read-once decision tree of depth
d depends on all 2¢ —1 variables. We slightly improve this lower bound by constructing,
for each positive integer d, a function of degree d with 3-2%7! — 2 relevant variables. A
similar construction was independently observed by Shinkar and Tal.

1. Introduction

The degree of a Boolean function f: {0,1}" — {0,1}, denoted deg(f), is
the degree of the unique multilinear polynomial in R[z1,...,x,]| that agrees
with f on all inputs from {0,1}". Minsky and Papert [4] initiated the study
of combinatorial and computational properties of Boolean functions based
on their representation by polynomials. We refer the reader to the excel-
lent book of O’Donnell [6] on analysis of Boolean functions, and surveys
[1,3] discussing relations between various complexity measures of Boolean
functions.

An input variable x; is relevant to f if x; appears in a monomial having
nonzero coefficient in the multilinear representation of f. Let R(f) denote
the number of relevant variables of f. Nisan and Szegedy [5] proved that
R(f)<deg(f)-2%&1,
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Let Ry denote the maximum of R(f) over Boolean functions f of degree
at most d, and let Cy = R42~%. By the result of Nisan and Szegedy, Cyy <d/2.
On the other hand, R;>2R;_1+1, since if f is a degree d—1 Boolean function
with Ry_q relevant variables, and g is a copy of f on disjoint variables, and
z is a new variable then zf + (1 —2z2)g is a degree d Boolean function with
exactly 2Rg_1+1 relevant variables. Thus Cj; > Cy_14+2~%, and so Cy>1-2"¢.
Since Cy is an increasing function of d it approaches a (possibly infinite) limit
c*>1.

In this paper we prove:

Theorem 1.1. There is a positive constant C' so that R(f)2~4¢(/) <C for
all Boolean functions f, and thus Cq < C' for all d > 0. In particular C* is
finite.

Throughout this paper we use [n] = {1,...,n} for the index set of the
variables to a Boolean function f. A mazonomial of f is a set S C[n] of size
deg(f) for which [[,.¢®; has a nonzero coeflicient in the multilinear repre-
sentation of f. A mazonomial hitting set is a subset H C [n] that intersects
every maxonomial. Let h(f) denote the minimum size of a maxonomial hit-
ting set for f, and let hy denote the maximum of h( f) over Boolean functions
of degree d. In Section 2 we prove:

Lemma 1.2. For every d>1, Cy—Cy_1 <hg2~%.
Through telescoping, this implies:
Corollary 1.3. For every d>0, Cy< Z?Zl h;i27°.
The next lemma, is a simple combination of previous results.

Lemma 1.4. For any Boolean function f, h(f) < deg(f)3, and so for all
i>1, hy <i®.

Proof. Nisan and Smolensky (see Lemma 6 of [1]) proved h; <deg(f)bs(f),
where bs(f) is the block sensitivity of f. Combining with bs(f) < deg(f)?
(proved by Tal [8], improving on bs(f) <2deg(f)? of Nisan and Szegedy [5])
yields h(f) <deg(f)*. 1

Using Lemma 1.4, the infinite sum in Corollary 1.3 converges, and The-
orem 1.1 follows.

Given that C* is finite, it is interesting to obtain upper and lower bounds
on C*. The bounds that we will show in this paper are 3/2 < C* < % <
6.614; we discuss these bounds in Section 3. (Recently, Wellens [9] refined
our argument to obtain an improved upper bound of C* <4.416.)
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Filmus and Ihringer [2] recently considered an analog of the parameter
R(f) for the family of level k slice functions, which are Boolean functions
whose domain is restricted to the set of inputs of Hamming weight exactly
k. They showed that, provided that min(k,n— k) is sufficiently large, every
level k slice function on n variables of degree at most d depends on at most
R4 variables. As a result, our improved upper bound on Ry applies also to
the number of relevant variables of slice functions.

Proof Overview

Similar to Nisan and Szegedy [5], we upper bound R(f) by assigning a weight
to each variable, and bounding the total weight of all variables. The weight
assigned to a variable by Nisan and Szegedy was its influence on f; the
novelty of our approach is to use a different weight function.

We assign to a variable z; of a Boolean function f a weight w;(f) that is
0 if f does not depend on z; and otherwise equals 2~ 9°2i(/) where deg;(f)
is the degree of the maximum degree monomial of f containing x;. We then
upper and lower bound the total weight W (f) of a degree d Boolean function
f. It follows from the definition that for a degree d Boolean function f,
W(f)>2"% R(f). Hence, to upper bound R(f) it suffices to upper bound
W (f). Let W4 be the maximum of W (f) among degree d Boolean functions
f. We prove that

Wy < hd2_d + Wy_q.

We show this by considering a minimum size maxonomial hitting set H
for a W(f) maximizing f. We argue that for such an f, all variables in H
have maximum degree d, and hence their total weight adds up to 27¢-|H]|.
Additionally, we show that the remaining variables have total weight at most
W4_1, by considering degree d—1 restrictions of f that are achieved by fixing
variables in H. See proof of Proposition 2.3 for more details.

Combining above with Lemma 1.4 we have shown that R(f) <
2d'2?:1 327" which readily implies R(f)<26-2%. However, the same argu-
ment as above also implies

d

R(f)y<2®- (We+ > i*27%).
i=k+1

Finally, plugging a bound of W) < k/2 which follows from previous works
and optimizing the right hand side, we obtain an improved bound of R(f) <
6.614-24.
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2. Proof of Lemma 1.2

For a variable z;, let deg;(f) be the maximum degree among all monomials
that contain x; and have nonzero coefficient in the multilinear representation
of f. Let w;(f):=0if z; is not relevant to f, and w;(f):=2"98:(f) otherwise.
Note that if x; is a relevant variable of the degree d function f, then w;(f)=
9—deg;(f) > 9—deg(f) —9—d

The weight of f, W (f), is defined to be Y w;(f), and Wy denotes the
maximum of W (f) over all Boolean functions f of degree at most d; this
maximum is well defined since, by the Nisan-Szegedy upper bound of Ry, it
is taken over a finite set of functions. A function f of degree at most d for
which Wy=W(f) is Wy-maximizing.

Lemma 1.2 will follow as an immediate consequence of W;=C, (Corol-
lary 2.2) and Wy <Wy_1 +hg2~? (Proposition 2.3).

Proposition 2.1. If f is Wi-maximizing, then every relevant variable of f
belongs to a degree d monomial.

Proof. Let the relevant variables of f be xz1,...,x,. Assume for contra-
diction that there are [ > 1 variables that do not belong to any degree d
monomial, and that these variables are x1,...,z;. We now construct a func-

tion g of degree at most d such that W (g) > W (f), contradicting that f is
Wg-maximizing. Let g be the n+ 1+ 1-variate function given by:

g(x1, .. Tpyig)
=Tt f(@1, o 2n) (1= Zpp1) fF(@ngty - o Tl Tigs - - - T

This function is Boolean since it is equal to f(Zpi1,.- s Tntl, Titty--->Tn)
if ©pq1141 =0 and to f(x1,...,2,) if 241 = 1. It clearly has no mono-
mials of degree larger than d+ 1. Since x; appears in no degree d mono-
mials of f for any i < I, f(z1,...,2,) and f(Tpi1,- s Tntl, Titly--->Tn)
have the same set of degree d monomials. Thus, the degree d + 1 mono-
mials of x,y;41f(x1,...,2,) cancel out the degree d + 1 monomials of
(1 — zpis1) f(®Tntt1s oo s Tty Tpg 1y - -, Tn), and g has degree at most d.
Furthermore, all of the degree d monomials involving x;1,...,2, appear
with the same coefficient in g as in f so w;(g) = w;(f) = 27¢ for all
ie{l+1,...,n}. Also, for each i €{1,...,l}, any monomial m=x;m’ contain-
ing x; gives rise to monomials 2, 12;m’ and —z,414iTp+sm’ in g and so
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wi(g):wn—o—i(g):%’wi(f). Thus we have:

n+l+1 l n
Wig) =Y wilg) = (wilg) + wari(e) + > wilg) + warir1(g)
i=1 i=1 i=l+1
! n
=Y wilf)+ D wilf) + watira(g)
=1 i=l+1

= V[_/'(f) + wnti+1(9) > W(f),

where the final inequality holds since ;41 is a relevant variable of g (which
is true since for any monomial m of f containing x1, mx, ;1 is a monomial
of g). Thus, g is a function of degree d with W (g) > W (f), which gives us
the desired contradiction to complete the proof. ]

Corollary 2.2. For all d>1, W;=Cjy.

Proof. For any function f of degree at most d, we have W (f)> R(f)2~%.
Thus Wy > Cy. If f is Wy-maximizing, then by Proposition 2.1, W(f) =
R(f)274<Cyt |

Therefore, to prove Lemma 1.2 it suffices to prove:
Proposition 2.3. W;—hg2 ¢<Wy_;.
Proof. Again, let f be Wi-maximizing. Let H be a maxonomial hitting set

for f of minimum size. Note that deg;(f) = d for all i € H, as otherwise
H —{i} would be a smaller maxonomial hitting set. Thus:

(1) W(f) =Y wi(f)=2"YH+>_ wi(f).
i i¢H
We will now show:

(2) > wif) < Waia,
igH

which, combined with equation (1), yields the desired conclusion W, <
27%hg4+Wy_1. We deduce equation (2) by bounding w;(f) by the average of
w;(f") over a collection of restrictions f' of f. We recall some definitions. A
partial assignment is a mapping «: [n] — {0,1, %}, and Fixed(«a) is the set
{i: a(i)€{0,1}}. For JC|[n], PA(J) is the set of partial assignments o with
Fixed(a) =J. The restriction of f by «a, f,, is the function on variable set
{z;: i€ [n]—Fixed(a)} obtained by setting z; =, for each i€ Fixed(«).

1 In a previous version of this paper, our proof that Wy < Cyq was erroneous; this has
been amended to its present form in this version. We thank Jake Lee Wellens for pointing
out the error in the previous version.
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Claim 2.4. For every JC|n| and i¢ J,
wi(f) <2770 N wi(fa).

a€PA(J)

Proof. Fix je€J and write f=(1—x;)fo+x;f1 where fy is the restriction
of f to ;=0 and f; is the restriction of f to z;=1.

We proceed by induction on |J|. We consider the base cases of |J| <1.
The |J| =0 case is trivial. Let us now consider the |J| =1 case where we
have J={j}.

e If fy does not depend on z;, then w;(f)=w;(f1)/2 < (w;i(fo)+wi(f1))/2.
e If f; does not depend on z;, then w;(f)=w;(fo)/2 < (w;i(fo)+wi(f1))/2.
e Suppose f; and fy both depend on z;.

— If deg;(fo) < deg;(f1), let m be a monomial containing z; of
degree deg;(f1) that appears in f;. Then z;m is a maxonomial
of f = xj(fo— fi) + fo. Therefore deg;(f) = 1+ deg;(f1). Thus
wi(f)=5wi(f1) < 5(wifo) +wi(f1))-

— If deg;(fo) > deg;(f1), then w;(fo) < w;(f1). It suffices that
w;i(f) <w;(fo), and this holds because each monomial that appears in
fo appears with the same coefficient in f=x;(f1 — fo)+ fo.

In every case, we have w;(f) <% (w;(fo) +wi(f1)), as desired.

For the induction step, assume |J| > 2. We start with w;(f) <

$(wi(fo)+w;(f1)), and apply the induction hypothesis separately to f; and
f1 with the set of variables J —{j}:

wilf) < ~(wi(fo) + wil 1))

2
1 _ _
<3 2111 Z | wi(fos) | + 2717 Z | wi(f1,8)
BEPA(J—{j}) BEPA(J—{j})
<2V S wi(f). 1
a€PA(J)

To complete the proofs of equations (2) and Proposition 2.3 apply
Claim 2.4 with J being a hitting set H of minimum size, and sum over
i€[n]—H to get:

> wilfh=2 Y Y wilfe)
i€[n]—H i€n]—H acPA(H)
=27 N W (fa) < Wa,
a€cPA(H)
where the last inequality follows since deg(f,) <d—1 for all « € PA(H). 1
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As noted earlier Corollary 2.2 and Proposition 2.3 combine to prove
Lemma 1.2.

3. Bounds on C*

Lemma 1.2 implies Cy < Zf 1 27'h;. Combining with Lemma 1.4 yields Cy <
Z 3277 and thus C* <2 327 which equals 26 (since >0 ( )2 i=2

for all j>0, and i*= ( )—1—6( )+z) As noted in the introduction, Rg>2%—1,
and so C* >1. We improve these bounds to:

3 * - 13545
Theorem 3.1. 5 <C* <552,

Proof. For the upper bound, Lemma 1.2 implies that for any positive inte-
ger d,

o0
C*<Cat+ Y 27'h
i=d+1
Using Cy<d/2 as proved by Nisan and Szegedy, we have

C*<m1n< —1—2 32~ )

i=d+1

The minimum occurs at the largest d for which d327%>1/2, which is 11.
Evaluating the right hand side for d=11 gives C* < 123054485 <6.614.

We lower bound C* by exhibiting, for each d, a function =j of degree
d with [(d) = 329 — 2 relevant variables. (A similar construction was found
independently by Shinkar and Tal [7].) It is more convenient to switch our
Boolean set to be {—1,1}.

We define Z4: {—1,1}¥ — {—1,1} as follows. 51: {—1,1} = {—1,1} is
the identity function, and for all d>1, = on [(d)=2I(d—1)+2 variables is
defined recursively by:

Ed(svtwf?gj) = S;tEd—l(f) + ° 2 'z
for all s,te{—1,1} and Z, 7€ {—1,1}4=D It is evident from the definition
that deg(=y) =1+deg(Z4—1), which is d by induction (as for the base case
d=1, =y is linear). It is easily checked that =y depends on all of its variables,

—

Za-1(Y)

and that =y4(s,t,7,7) equals s-=Z;_1(¥) if s =1t and equals s-=Z4_ 1(( ) if
s#t, and is therefore Boolean. |

Jake Wellens [9] recently refined the arguments of this paper to improve
the upper bound to C* <4.416.
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