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We prove that there is a constant C≤6.614 such that every Boolean function of degree at
most d (as a polynomial over R) is a C·2d-junta, i.e., it depends on at most C·2d variables.
This improves the d·2d−1 upper bound of Nisan and Szegedy [Computational Complexity
4 (1994)].

The bound of C·2d is tight up to the constant C, since a read-once decision tree of depth
d depends on all 2d−1 variables. We slightly improve this lower bound by constructing,
for each positive integer d, a function of degree d with 3 · 2d−1 − 2 relevant variables. A
similar construction was independently observed by Shinkar and Tal.

1. Introduction

The degree of a Boolean function f : {0,1}n → {0,1}, denoted deg(f), is
the degree of the unique multilinear polynomial in R[x1, . . . ,xn] that agrees
with f on all inputs from {0,1}n. Minsky and Papert [4] initiated the study
of combinatorial and computational properties of Boolean functions based
on their representation by polynomials. We refer the reader to the excel-
lent book of O’Donnell [6] on analysis of Boolean functions, and surveys
[1,3] discussing relations between various complexity measures of Boolean
functions.

An input variable xi is relevant to f if xi appears in a monomial having
nonzero coefficient in the multilinear representation of f . Let R(f) denote
the number of relevant variables of f . Nisan and Szegedy [5] proved that
R(f)≤deg(f) ·2deg(f)−1.
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Let Rd denote the maximum of R(f) over Boolean functions f of degree
at most d, and let Cd=Rd2

−d. By the result of Nisan and Szegedy, Cd≤d/2.
On the other hand, Rd≥2Rd−1+1, since if f is a degree d−1 Boolean function
with Rd−1 relevant variables, and g is a copy of f on disjoint variables, and
z is a new variable then zf + (1− z)g is a degree d Boolean function with
exactly 2Rd−1+1 relevant variables. Thus Cd≥Cd−1+2−d, and so Cd≥1−2−d.
Since Cd is an increasing function of d it approaches a (possibly infinite) limit
C∗≥1.

In this paper we prove:

Theorem 1.1. There is a positive constant C so that R(f)2−deg(f)≤C for
all Boolean functions f , and thus Cd ≤C for all d≥ 0. In particular C∗ is
finite.

Throughout this paper we use [n] = {1, . . . ,n} for the index set of the
variables to a Boolean function f . A maxonomial of f is a set S⊆ [n] of size
deg(f) for which

∏
i∈S xi has a nonzero coefficient in the multilinear repre-

sentation of f . A maxonomial hitting set is a subset H⊆ [n] that intersects
every maxonomial. Let h(f) denote the minimum size of a maxonomial hit-
ting set for f , and let hd denote the maximum of h(f) over Boolean functions
of degree d. In Section 2 we prove:

Lemma 1.2. For every d≥1, Cd−Cd−1≤hd2−d.

Through telescoping, this implies:

Corollary 1.3. For every d≥0, Cd≤
∑d

i=1hi2
−i.

The next lemma is a simple combination of previous results.

Lemma 1.4. For any Boolean function f , h(f) ≤ deg(f)3, and so for all
i≥1, hi≤ i3.

Proof. Nisan and Smolensky (see Lemma 6 of [1]) proved hi≤deg(f)bs(f),
where bs(f) is the block sensitivity of f . Combining with bs(f)≤ deg(f)2

(proved by Tal [8], improving on bs(f)≤2deg(f)2 of Nisan and Szegedy [5])
yields h(f)≤deg(f)3.

Using Lemma 1.4, the infinite sum in Corollary 1.3 converges, and The-
orem 1.1 follows.

Given that C∗ is finite, it is interesting to obtain upper and lower bounds
on C∗. The bounds that we will show in this paper are 3/2≤C∗≤ 13545

2048 ≤
6.614; we discuss these bounds in Section 3. (Recently, Wellens [9] refined
our argument to obtain an improved upper bound of C∗≤4.416.)
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Filmus and Ihringer [2] recently considered an analog of the parameter
R(f) for the family of level k slice functions, which are Boolean functions
whose domain is restricted to the set of inputs of Hamming weight exactly
k. They showed that, provided that min(k,n−k) is sufficiently large, every
level k slice function on n variables of degree at most d depends on at most
Rd variables. As a result, our improved upper bound on Rd applies also to
the number of relevant variables of slice functions.

Proof Overview

Similar to Nisan and Szegedy [5], we upper bound R(f) by assigning a weight
to each variable, and bounding the total weight of all variables. The weight
assigned to a variable by Nisan and Szegedy was its influence on f ; the
novelty of our approach is to use a different weight function.

We assign to a variable xi of a Boolean function f a weight wi(f) that is
0 if f does not depend on xi and otherwise equals 2−degi(f) where degi(f)
is the degree of the maximum degree monomial of f containing xi. We then
upper and lower bound the total weight W (f) of a degree d Boolean function
f . It follows from the definition that for a degree d Boolean function f ,
W (f)≥ 2−d ·R(f). Hence, to upper bound R(f) it suffices to upper bound
W (f). Let Wd be the maximum of W (f) among degree d Boolean functions
f . We prove that

Wd ≤ hd2−d +Wd−1.

We show this by considering a minimum size maxonomial hitting set H
for a W (f) maximizing f . We argue that for such an f , all variables in H
have maximum degree d, and hence their total weight adds up to 2−d · |H|.
Additionally, we show that the remaining variables have total weight at most
Wd−1, by considering degree d−1 restrictions of f that are achieved by fixing
variables in H. See proof of Proposition 2.3 for more details.

Combining above with Lemma 1.4 we have shown that R(f) ≤
2d ·
∑d

i=1 i
32−i, which readily implies R(f)≤26·2d. However, the same argu-

ment as above also implies

R(f) ≤ 2d · (Wk +

d∑
i=k+1

i32−i).

Finally, plugging a bound of Wk ≤ k/2 which follows from previous works
and optimizing the right hand side, we obtain an improved bound of R(f)≤
6.614 ·2d.
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2. Proof of Lemma 1.2

For a variable xi, let degi(f) be the maximum degree among all monomials
that contain xi and have nonzero coefficient in the multilinear representation
of f . Let wi(f) :=0 if xi is not relevant to f , and wi(f) :=2−degi(f) otherwise.
Note that if xi is a relevant variable of the degree d function f , then wi(f)=
2−degi(f)≥2−deg(f)=2−d.

The weight of f , W (f), is defined to be
∑

iwi(f), and Wd denotes the
maximum of W (f) over all Boolean functions f of degree at most d; this
maximum is well defined since, by the Nisan-Szegedy upper bound of Rd, it
is taken over a finite set of functions. A function f of degree at most d for
which Wd=W (f) is Wd-maximizing.

Lemma 1.2 will follow as an immediate consequence of Wd=Cd (Corol-
lary 2.2) and Wd≤Wd−1+hd2

−d (Proposition 2.3).

Proposition 2.1. If f is Wd-maximizing, then every relevant variable of f
belongs to a degree d monomial.

Proof. Let the relevant variables of f be x1, . . . ,xn. Assume for contra-
diction that there are l ≥ 1 variables that do not belong to any degree d
monomial, and that these variables are x1, . . . ,xl. We now construct a func-
tion g of degree at most d such that W (g)>W (f), contradicting that f is
Wd-maximizing. Let g be the n+ l+1-variate function given by:

g(x1, . . . , xn+l+1)

:= xn+l+1f(x1, . . . , xn) + (1− xn+l+1)f(xn+1, . . . , xn+l, xl+1, . . . , xn).

This function is Boolean since it is equal to f(xn+1, . . . ,xn+l,xl+1, . . . ,xn)
if xn+l+1 = 0 and to f(x1, . . . ,xn) if xn+l+1 = 1. It clearly has no mono-
mials of degree larger than d+ 1. Since xi appears in no degree d mono-
mials of f for any i ≤ l, f(x1, . . . ,xn) and f(xn+1, . . . ,xn+l,xl+1, . . . ,xn)
have the same set of degree d monomials. Thus, the degree d+ 1 mono-
mials of xn+l+1f(x1, . . . ,xn) cancel out the degree d + 1 monomials of
(1 − xn+l+1)f(xn+1, . . . ,xn+l,xl+1, . . . ,xn), and g has degree at most d.
Furthermore, all of the degree d monomials involving xl+1, . . . ,xn appear
with the same coefficient in g as in f so wi(g) = wi(f) = 2−d for all
i∈{l+1, . . . ,n}. Also, for each i∈{1, . . . , l}, any monomial m=xim

′ contain-
ing xi gives rise to monomials xn+l+1xim

′ and −xn+1+ixn+im
′ in g and so



AN ASYMPTOTICALLY TIGHT BOUND 241

wi(g)=wn+i(g)= 1
2wi(f). Thus we have:

W (g) =
n+l+1∑
i=1

wi(g) =
l∑

i=1

(wi(g) + wn+i(g)) +
n∑

i=l+1

wi(g) + wn+l+1(g)

=
l∑

i=1

wi(f) +
n∑

i=l+1

wi(f) + wn+l+1(g)

= W (f) + wn+l+1(g) > W (f),

where the final inequality holds since xn+l+1 is a relevant variable of g (which
is true since for any monomial m of f containing x1, mxn+l+1 is a monomial
of g). Thus, g is a function of degree d with W (g)>W (f), which gives us
the desired contradiction to complete the proof.

Corollary 2.2. For all d≥1, Wd=Cd.

Proof. For any function f of degree at most d, we have W (f)≥R(f)2−d.
Thus Wd ≥ Cd. If f is Wd-maximizing, then by Proposition 2.1, W (f) =
R(f)2−d≤Cd.1

Therefore, to prove Lemma 1.2 it suffices to prove:

Proposition 2.3. Wd−hd2−d≤Wd−1.

Proof. Again, let f be Wd-maximizing. Let H be a maxonomial hitting set
for f of minimum size. Note that degi(f) = d for all i ∈ H, as otherwise
H−{i} would be a smaller maxonomial hitting set. Thus:

(1) W (f) =
∑
i

wi(f) = 2−d|H|+
∑
i6∈H

wi(f).

We will now show:

(2)
∑
i6∈H

wi(f) ≤Wd−1,

which, combined with equation (1), yields the desired conclusion Wd ≤
2−dhd+Wd−1. We deduce equation (2) by bounding wi(f) by the average of
wi(f

′) over a collection of restrictions f ′ of f . We recall some definitions. A
partial assignment is a mapping α : [n]−→{0,1,∗}, and Fixed(α) is the set
{i : α(i)∈{0,1}}. For J⊆ [n], PA(J) is the set of partial assignments α with
Fixed(α) =J . The restriction of f by α, fα, is the function on variable set
{xi : i∈ [n]−Fixed(α)} obtained by setting xi=αi for each i∈Fixed(α).

1 In a previous version of this paper, our proof that Wd ≤Cd was erroneous; this has
been amended to its present form in this version. We thank Jake Lee Wellens for pointing
out the error in the previous version.
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Claim 2.4. For every J⊆ [n] and i /∈J ,

wi(f) ≤ 2−|J |
∑

α∈PA(J)

wi(fα).

Proof. Fix j∈J and write f =(1−xj)f0 +xjf1 where f0 is the restriction
of f to xj =0 and f1 is the restriction of f to xj =1.

We proceed by induction on |J |. We consider the base cases of |J | ≤ 1.
The |J |= 0 case is trivial. Let us now consider the |J |= 1 case where we
have J={j}.
• If f0 does not depend on xi, then wi(f)=wi(f1)/2≤(wi(f0)+wi(f1))/2.
• If f1 does not depend on xi, then wi(f)=wi(f0)/2≤(wi(f0)+wi(f1))/2.
• Suppose f1 and f0 both depend on xi.

– If degi(f0) < degi(f1), let m be a monomial containing xi of
degree degi(f1) that appears in f1. Then xjm is a maxonomial
of f = xj(f0 − f1) + f0. Therefore degi(f) = 1 + degi(f1). Thus
wi(f)= 1

2wi(f1)≤
1
2(wi(f0)+wi(f1)).

– If degi(f0) ≥ degi(f1), then wi(f0) ≤ wi(f1). It suffices that
wi(f)≤wi(f0), and this holds because each monomial that appears in
f0 appears with the same coefficient in f=xj(f1−f0)+f0.

In every case, we have wi(f)≤ 1
2(wi(f0)+wi(f1)), as desired.

For the induction step, assume |J | ≥ 2. We start with wi(f) ≤
1
2(wi(f0)+wi(f1)), and apply the induction hypothesis separately to f0 and
f1 with the set of variables J−{j}:

wi(f) ≤ 1

2
(wi(f0) + wi(f1))

≤ 1

2

21−|J |

 ∑
β∈PA(J−{j})

wi(f0,β)

+ 21−|J |

 ∑
β∈PA(J−{j})

wi(f1,β)


≤ 2−|J |

∑
α∈PA(J)

wi(fα).

To complete the proofs of equations (2) and Proposition 2.3 apply
Claim 2.4 with J being a hitting set H of minimum size, and sum over
i∈ [n]−H to get: ∑

i∈[n]−H

wi(f) ≤ 2−|H|
∑

i∈[n]−H

∑
α∈PA(H)

wi(fα)

= 2−|H|
∑

α∈PA(H)

W (fα) ≤Wd−1,

where the last inequality follows since deg(fα)≤d−1 for all α∈PA(H).
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As noted earlier Corollary 2.2 and Proposition 2.3 combine to prove
Lemma 1.2.

3. Bounds on C∗

Lemma 1.2 implies Cd≤
∑d

i=1 2−ihi. Combining with Lemma 1.4 yields Cd≤∑d
i=j i

32−i, and thus C∗≤
∑∞

i=1 i
32−i, which equals 26 (since

∑
i≥0
(
i
j

)
2−i=2

for all j≥0, and i3=6
(
i
3

)
+6
(
i
2

)
+i). As noted in the introduction, Rd≥2d−1,

and so C∗≥1. We improve these bounds to:

Theorem 3.1. 3
2≤C

∗≤ 13545
2048 .

Proof. For the upper bound, Lemma 1.2 implies that for any positive inte-
ger d,

C∗ ≤ Cd +
∞∑

i=d+1

2−ihi.

Using Cd≤d/2 as proved by Nisan and Szegedy, we have

C∗ ≤ min
d

(
d

2
+

∞∑
i=d+1

i32−i

)
.

The minimum occurs at the largest d for which d32−d>1/2, which is 11.
Evaluating the right hand side for d=11 gives C∗≤ 13545

2048 ≤6.614.
We lower bound C∗ by exhibiting, for each d, a function Ξd of degree

d with l(d) = 3
22d−2 relevant variables. (A similar construction was found

independently by Shinkar and Tal [7].) It is more convenient to switch our
Boolean set to be {−1,1}.

We define Ξd : {−1,1}l(d)→{−1,1} as follows. Ξ1 : {−1,1}→{−1,1} is
the identity function, and for all d>1, Ξd on l(d)=2l(d−1)+2 variables is
defined recursively by:

Ξd(s, t, ~x, ~y) =
s+ t

2
Ξd−1(~x) +

s− t
2

Ξd−1(~y)

for all s, t∈{−1,1} and ~x,~y∈{−1,1}l(d−1). It is evident from the definition
that deg(Ξd)=1+deg(Ξd−1), which is d by induction (as for the base case
d=1, Ξ1 is linear). It is easily checked that Ξd depends on all of its variables,

and that Ξd(s, t,~x,~y) equals s ·Ξd−1(~x) if s = t and equals s ·Ξd−1(~(y)) if
s 6= t, and is therefore Boolean.

Jake Wellens [9] recently refined the arguments of this paper to improve
the upper bound to C∗≤4.416.
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