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ABSTRACT

In this paper, we present the design of an experimental setup that validates the existence of complex non-minimum phase (CNMP) zeros in a flexure mechanism under
specific conditions. Using this setup, the dynamics of a lightly damped, nominally symmetric XY flexure mechanism comprising two double parallelogram flexure
modules (DPFM) is experimentally studied while varying the operating point and parametric asymmetry. While CNMP zeros have been reported in analytical studies,
a direct experimental validation of model-based prediction poses several challenges and is rare in the literature. The challenges addressed in the presented ex-
perimental setup design include isolating the specific dynamics of interest while minimizing extraneous dynamics, avoiding friction and backlash in the system to
offer clean and repeatable measurements, and employing simple and practical sensing and actuation methods. This experimental setup is used to obtain X direction
frequency response measurements and thereby record the presence or absence of CNMP zeros, while varying the Y direction operating point and the mass asymmetry
between two DPFMs. This experimental evidence of the existence of CNMP zeros under specific conditions agrees well with the previous model-based predictions.

1. Introduction and motivation

The objective of this paper is to provide an experimental validation
of the intriguing phenomenon of complex non-minimum phase (CNMP)
zeros previously modelled and predicted for a certain XY flexure me-
chanism [1,2]. Flexure mechanisms are commonly used as the bearing
stage in high-precision motion systems [3,4]. For a given choice of
sensor and actuator location in these motion systems, the input-output
transfer function is used as the basis for control system design to
achieve desired motion specifications such as speed of response or
bandwidth, disturbance and noise rejection, stability over range of
operation, etc.

Recent results in the dynamic modeling of flexible systems have
shown that CNMP zeros can appear in the input-output transfer func-
tion of such a system if it has at least one lower frequency mode fol-
lowed by two closely-spaced modes [1]. This was demonstrated using
the example of a certain representative XY flexure mechanism model
that employs two double parallelogram flexure modules (DPFM) as
building-blocks in a symmetric layout, which is shown in Fig. 1. The
vibration of the two secondary stages associated with two DPFM in this
case gives rise to two closely spaced modes. This particular XY flexure
mechanism model was employed simply as a means to systematically
investigate — theoretically in previous work [2] and experimentally in
this work — the phenomenon of CNMP zeros under varying conditions.
This XY flexure mechanism model was not intended to serve as the
bearing stage of a practical motion system for any given application.

* Corresponding author.
E-mail addresses: leqing@umich.edu (L. Cui), awtar@umich.edu (S. Awtar).

https://doi.org/10.1016/j.precisioneng.2019.08.002

The derived theoretical dynamic model for this mechanism demon-
strated that CNMP zeros can indeed arise in the X direction input-
output transfer function for predictable combinations of Y operating
point and mass parameter asymmetry between the two secondary
stages [2].

This appearance of CNMP zeros (i.e. a complex conjugate pair on
the right-hand side of the s-plane) is important to investigate because
such zeros are rare in flexible mechanical systems and are highly det-
rimental to control system performance [5-9]. Non-minimum phase
(NMP) zeros, including the particular case of CNMP zeros, impose a
tradeoff between close-loop bandwidth (which impacts speed of re-
sponse), stability robustness, and disturbance rejection (which impacts
position resolution) [1]. Typically, zeros in flexible mechanical systems
are complex conjugate pairs lying slightly to the left of the imaginary
axis in the s-plane, i.e. complex minimum phase (CMP), or on the real
axis of the s-plane (i.e. real minimum or non-minimum phase) [10-12].
The above-mentioned modeling work not only shows the existence of
CNMP zeros, but even more importantly predicts the specific para-
metric values (i.e. physical system design choices) for which these
CNMP zeros appear or can be eliminated over the entire operating
range of interest. While these theoretical findings are significant from
the perspective of physical design, dynamics and control of a flexure-
based motion system, in particular, and broadly relevant to flexible
systems in general, there remains a need to experimentally validate
these theoretical predictions, which is the primary focus of this paper.

From a design perspective, there are several factors that can
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Fig. 1. XY flexure mechanism model.

influence the existence of CNMP zeros in a flexure mechanism based
motion system. For example, a co-located sensor and actuator ar-
rangement [13] ensures no CNMP zeros, but that generally compro-
mises range of motion or end-point sensing [14]. Alternatively, multiple
points of sensing and actuation in any given motion direction can
eliminate CNMP zeros, but that decision also entails a consideration of
the motion stage size, weight, and cost constraints for a given appli-
cation [15-17]. A common good design practice is to employ a means
to mitigate the under-constraint associated with the secondary stages of
the DPFM [18-21]. When employed, this design option pushes out the
frequency of the closely spaced modes that can still lead to CNMP zeros
under certain conditions. Furthermore, there can be instances of CNMP
zeros that arise due to other closely spaced modes of the flexure me-
chanism, independent of the DPFM secondary stages. The inclusion of
adequate and appropriately located damping can also suppress or delay
the appearance of such zeros [1,22] but brings its own design chal-
lenges.

All these design considerations are available to the mechatronic
engineer who carefully weighs various tradeoffs while designing a
flexure-based motion system to meet specific motion requirements
under various practical constraints. In this paper, our goal is to eluci-
date a more comprehensive understanding of the system dynamics
(specifically CNMP zeros) via experimental validation, which in turn
can inform physical system design decisions in a deterministic manner.
In particular, this work experimentally confirms that CNMP zero can
indeed be eliminated via intentional parameter asymmetry, in-
dependent of any of the other design considerations listed above.

2. Background and literature review

In our investigation, CNMP zeros were first encountered in the ex-
perimental characterization of an XY flexure mechanism that was in-
tended for large range nanopositioning [23]. This observation led to a
theoretical investigation on why and when such zeros arise. This the-
oretical investigation predicted that a quartet of CMP-CNMP zeros ap-
pears in a lightly damped flexible system with one low frequency rigid
body mode and two closely spaced modes at a higher frequency if the
modal residues’ of these three modes, when listed in the order of fre-
quency, have alternating signs [1]. This quartet of zeros is symmetric
with respect to both the real and imaginary axes on the complex s-
plane, with a CMP zero pair to the left of the imaginary axis and a
CNMP zero pair to the right of the imaginary axis. To test this theory in
the context of flexure mechanisms, we selected a representative XY
flexure mechanism model that met the above conditions. This XY
flexure mechanism model, shown in Fig. 1, had two closely spaced
modes resulting from the symmetric layout of two DPFM as well as a

! When the input-output transfer function of a system is expressed as a
summation of the system's modes (often referred to as modal decomposition),
the coefficient of each respective mode is referred to as the modal residue.
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rigid body mode at a lower frequency. Furthermore, this layout allows
for investigating the X direction dynamics for different Y operating
points. Additionally, even though the layout is nominally symmetric, a
small intentional asymmetry was introduced between the masses of the
secondary stages of the two DPFM. Thus, this XY flexure mechanism
model allowed for the theoretical investigation into the existence of
CNMP zeros in the X direction dynamics for different values of Y op-
erating point and mass asymmetry. This investigation demonstrated
that for certain predictable combinations of Y operating point and mass
asymmetry, the condition of alternating signs of modal residues is met
and the NMP-CNMP zero quartet arises. Therefore, this XY flexure
mechanism model served as a useful means to investigate CNMP zeros;
however, this mechanism was not created to serve the bearing stage in
an actual motion system application.

For the theoretical modeling, the non-collocated transfer function
from the X direction force (F,4) on stage @ to the X direction dis-
placement (X;) of the motion stage (i.e. stage ®) was examined as a
function of the Y direction operating point (Y;,) of the motion stage
using a lumped-parameter model [2]. This model assumed five masses
labeled @ through ® in Fig. 1, with no rotation by design, resulting in
ten displacement coordinates in the XY plane. The Y displacements of
stages @ and ® were assumed to be constrained via appropriate bearings
(although rollers are schematically shown in Fig. 1, elastic flexures
were used in the actual fabricated hardware). It was shown that the
geometric non-linearity associated with arc-length conservation in in-
dividual flexure beams results in one independent kinematic relation
between the relative X and Y displacement coordinates if each paral-
lelogram, resulting in four such kinematic relations [2].

Therefore, the dynamics of the XY flexure mechanism model of
Fig. 1 could be modeled via four independent displacement coordinates
and resulted in four vibrational modes. The first mode represents a
“rigid-body” mode, where all the five stages oscillate with approxi-
mately the same magnitude and phase in the X direction. The second
mode, denoted as the Y-mode, is associated with the Y-direction oscil-
lation of stages ©®, @ and ®. Since the transfer function under study is
from the X direction force on stage @ (F,4) to the X direction dis-
placement of the motion stage (i.e. stage ©), the second mode is un-
observable in this transfer function. The third and fourth modes are
closely spaced modes and are associated with Y direction oscillations of
the secondary stages @ and ® of the two DPFMs, moving out-of-phase
and in-phase, respectively. The modal frequencies and modal residues
(magnitude and sign) of these two closely spaced modes were varied by
introducing an intentional parametric asymmetry (mass difference be-
tween stages @ and ®, given by Am,3 = my/m3—1) to simulate unin-
tentional real-life manufacturing tolerances and a potentially inten-
tional design variable. Since, for non-zero Y direction operating points
(Y3,) of the motion stage, the above-mentioned kinematic relations for
the four parallelograms lead to a coupling between the Y displacement
of the secondary stages @ and ® and the X displacement of the motion
stage. As a result, the third mode is observable in the X direction
transfer function for non-zero Y operating points irrespective of mass
asymmetry while the fourth mode is observable only for non-zero Y
operating points and non-zero mass asymmetry.

The first (i.e. rigid-body) mode along with the closely spaced third
and fourth modes create the conditions that are necessary for the ap-
pearance of CNMP zeros. The ability to vary the operating point (Y;,)
and the parametric asymmetry (Am,3) allows for specific predictable
combinations of operating point and parametric asymmetry that are
sufficient for the appearance of CNMP zeros. There are several note-
worthy outcomes of this previous modeling work. First, this model of a
simple but representative XY flexure mechanism is able to predict the
existence of CNMP zeroes in the X direction transfer function under
certain specific conditions. This opens the doors to developing a similar
understanding and predictability of CNMP zeros in more complex yet
practically useful XY flexure mechanisms [4,24]. Second, the analyti-
cally predicted CNMP zero map shows that one can intentionally choose
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a certain physical design asymmetry (e.g. Amp3 < 0) to entirely elim-
inate the CNMP zeros over the entire Y direction operating range,
thereby enabling better dynamic performance. This is an important
physical system design insight, which is otherwise not obvious. While
these previous results and predictions hold considerable promise for
dynamic performance, they are based on analytical modeling and nu-
merical simulations that make various assumptions. An experimental
validation of this model is of considerable value to corroborate the
theoretical understanding gained on the existence of CNMP zeros. Such
an experimental validation is the goal of this paper.

A detailed review of the literature on NMP zeros and more specifi-
cally CNMP zeros is previously covered in Refs. [1,2]. Tohyama [25]
presents CNMP zeros in the context of acoustics of a room but does not
cover any experimental measurements. There are only a few existing
references that focus on experimental measurements of CNMP zeros.
Among these, Loix et al. [26] experimentally confirmed CNMP zeros
predicted by numerical modeling for a non-collocated conservative
system — a single flexible beam with variable sensor location. Awtar
[27] predicted and experimentally corroborated CNMP zeros in the
non-collocated transfer function of a multi-spring multi-mass servo
system. These CNMP zeroes arose as a result of electromagnetic cou-
pling between the DC motor and tachometer in the servo system. For
flexure mechanisms, experimental validation of CNMP zeros under
varying conditions (operating point and parametric asymmetry) has not
been reported in the prior literature to the best of our knowledge. Such
an experimental validation poses unique challenges in the experimental
hardware setup design and obtaining reliable measurements, as listed
below:

1. An experimental validation requires that we create a hardware setup
that captures the XY flexure mechanism model of Fig. 1 and its in-
herent assumptions to produce the dynamics of interest, specifically
the lower frequency rigid-body mode (first mode in the model) and
two closely spaced modes (third and fourth modes in the model), all
of which are in-plane (XY) modes. In reality, there will always be
additional in-plane modes (e.g. rotational), out-of-plane modes,
distortion modes due to the compliance of the “supposedly rigid”
stages of the flexure mechanism, and modes associated with in-
dividual flexure beam dynamics. Therefore, the hardware setup has
to be designed such that any such extraneous modes occur at much
higher frequencies (quantified in Section 2.1) than the modes of in-
terest (modes 1, 3 and 4 modeled above). This is to ensure that these
extraneous modes have a negligible impact in the frequency range of
the modes of interest.

. As noted above, the CNMP zeros in the simple representative XY
flexure mechanism model are the result of interaction between the
two closely spaced modes, and a small but finite contribution from
the lower frequency “rigid-body” mode. Therefore, the hardware
setup has to be designed to have two closely spaced modes that are
well-separated (quantified in Section 2.1) from the “rigid-body”
mode modeled above as well as any other extraneous “rigid-body”
modes at lower frequencies.

. This experimental validation requires the detection of CNMP zeros
in the X direction frequency response function at various Y direction
operating points. The X direction bearing, sensor, and actuator
should be designed or selected to avoid non-linearities such as
friction and backlash so as to enable high resolution, repeatable and
reliable frequency response function measurements.

. The actuation method to establish the Y direction operating point
has to be such that it can provide a constant, purely Y direction force
that is free of friction and backlash. Also, the implementation of this
Y direction actuation should not impose any X direction constraints
on the motion stage so as to avoid altering the X direction system
dynamics under investigation. Finally, this Y direction actuation
should be capable of providing varying levels of Y direction force to
produce varying Y operating points in a simple and practical
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manner.

In this paper, we present an experimental hardware setup and as-
sociated measurements that addresses all of the above challenges via
several careful design considerations. The sources of extraneous dy-
namics are either eliminated or adequately separated from the dy-
namics of interest via appropriate structural design. Simple sensing and
actuation methods are selected to ensure reliability and repeatability in
measurement. The primary contribution of this work is a first-of-its-
kind experimental validation of CNMP zeros that have been previously
predicted under specific varying conditions by a theoretical model. This
experimental validation helps confirm that the geometric arc length
conservation in flexure beams indeed leads to coupling between mo-
tions in the X and Y directions. By validating the outcomes of the
previous theoretical model, the experimental results of this paper sup-
port the various modeling assumptions made, thereby justifying the use
of similar assumptions in future modeling efforts for other flexure
mechanisms. Most importantly, these experimental results help equip
the mechatronic engineer with the knowledge that CNMP zeros can not
only be predicted but also eliminated via simple physical design choices
such as intentional parametric asymmetry.

Even though the CNMP zeros experimentally investigated here arise
due to the closely spaces modes associated with the Y displacement of
the secondary stages of the two DPFM, such zeros can more generally
arise from any two closely spaced modes in a flexure mechanism. The
experimental hardware setup design and measurement methods pre-
sented in this paper are equally relevant and applicable to any such
scenario.

The rest of this paper is organized as follows. Section 3 covers the
detailed procedure of designing the experimental setup including the
evolution of the flexure mechanism geometry and the selection and
optimization of overall dimensions to achieve the desired dynamics
(mode shapes and frequencies). Section 4 describes the fabrication and
assembly of experimental set-up including selection and integration of
sensing and actuation methods. Section 5 presents the operation of the
experimental setup and the resulting measurements. These measure-
ments are compared with the model-based predictions, followed by a
discussion on the observations. Section 6 summarizes the key conclu-
sions and plans for future work.

3. Experimental setup: flexure mechanism geometry design

The goal here is to design an experimental setup that captures the
dynamics of interest of the simple representative XY flexure mechanism
(Fig. 1) in a systematic, step-by-step manner, specifically the two clo-
sely spaced modes (CSM) associated with Y direction oscillations of the
secondary stages @ and ® and the lower frequency “rigid-body” mode
where all of the five stages oscillate in phase in the X direction. At the
same time, it is desirable that any other modes (referred to as extra-
neous modes in this paper), which are to be expected in a physical
experimental set-up, remain “well-separated” from the modes of in-
terest. Following conventional practice, we define “well-separated” as
one decade of separation in the frequency domain. Specifically, we
consider a high frequency extraneous mode (wp) to be well-separated
w.r.t. the closely spaced modes (w, and w,, with w, > w,) when the
frequency separation of the former from the latter is more than 10 times
the frequency separation between the two CSM. Mathematically, this
may be stated as:

SEP,, = M > 10

wy/w, — 1 (€8]
where
o A@, @, 2

By definition, w, represents the mid-point of w, and w, on a log
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scale. Similarly, we want to make sure that the lower frequency rigid
body mode (w) is also well-separated from the CSM, and a similar
mathematical definition may be used:

wol/w; — 1
wy/wy, — 1

SEP, = > 10

3)

while we used the above definition of “well-separated” for the purpose
of designing our experimental set-up, in general “well-separated” is a
relative concept. Therefore, one can equally well use a slightly different
definition. Also, over the entire range of operating points and para-
metric asymmetry studied here, the closely spaced modes (w, and w,)
shift by small amounts. Given that these shifts are small, we only as-
sumed the nominal conditions (i.e. zero operating point and zero
asymmetry) in the experimental setup design phase when considering
SEP;, and SEP,. Furthermore, these separation indices are solely based
on the natural frequencies, which provide an initial guideline in the
early design phase. At a later phase in the design, we also consider the
contribution of a given mode, which depends on the sensor location.
For example, if a mode is unobservable at the sensor location, it has a
minor contribution at frequencies around wy, even if it does not satisfy
the above separation requirements.

As the first step in the design process, we replaced the roller bear-
ings shown in Fig. 1 with flexure bearings to eliminate friction and
backlash in the experimental setup. This also enables the setup to be
manufactured monolithically from a single flat metal plate, thereby
minimizing assembly and providing a common ground reference for
other components. An initial design iteration shown in Fig. 2a utilizes
four simple beam flexures to provide X direction bearing for stages ® and
®. A balance mass with the same mass value of the mover of the ac-
tuator (discussed in Section 4.2) is added on the opposite side of the
actuator to achieve the same mass (nominally) for stages @ and ®. The
reason to pursue this nominally balanced mass is to align the Center of

(a) Beam
Flexures Stage @ W
Stage @ Stage ® B
alance
T i //
Acuator 2 d [’/J ] Mass

o b

N/

%
ﬁ//\/f

A Uzzz

o

Stage @ Stage ®
Y
z X << =<
Minor DPFM
o
() L
’ 7?/:

[

% ,,,,,

i R

NN

NN

\

1] !
Frz2d 1
LA | WA F

7
7

Main DPFM

Precision Engineering 60 (2019) 167-177

Stiffness in the out-of-plane (Z) direction with the Center of Mass. This
helps increase the frequency of any “rigid-body” rotational modes
about the Y axis. But the drawback of the simple beam flexures as ar-
ranged in Fig. 2a is the limited travel range in the X direction due to
geometric over-constraint. To relieve this over-constraint, the simple
beam flexures were replaced by folded beam flexures as shown in Fig. 2b.

As the initial choice of dimensions for the main DPFMs in Fig. 2, we
used typical dimensions from a previous XY flexure mechanism design
[4]. Accordingly, the length of the DPFM's beams (L, in Fig. 2b) was set
at 47.5mm and thickness (T;) was set at 0.625 mm. The length of the
folded beam flexures (Lr in Fig. 2b) was set at 40 mm and the thickness
was set at 0.625 mm. Based on these beam dimensions, the masses of
the various moving stages were initially selected to be m; = 0.2kg,
my = msy = 0.04kg, and my; = ms = 0.8kg. These mass values were
simply a starting point and were subsequently iterated during the
modal analysis described below. An additional consideration in se-
lecting these various dimensions and masses was to achieve a practi-
cally viable desktop size experimental setup.

A modal analysis was conducted on the design of Fig. 2b using linear
finite elements analysis (FEA), with stage ® at the nominal operating
position (i.e., Y;, = 0). Even though previous non-linear analysis has
shown that the natural frequencies of the two CSM vary slightly with
the operating point [2], this variation is small enough for purpose of the
experimental setup design, where the primary goal is to achieve ade-
quate separation between the modes of interest and extraneous modes.
For the modal analysis FEA, tetrahedron solid elements were used.
Adaptive mesh sizing was employed with smaller size elements for the
beams and larger size for the stages.

The results of the modal analysis of the experimental set-up designs
(iterations Fig. 2b thorough Fig. 2d) are compiled in Table 1. The un-
shaded modes are those that correspond to the four modes of the XY
flexure mechanism of Fig. 1 and are therefore the modes of interest. The
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56

(b)

Fig. 3. Examples of extraneous modes in Fig. 2b: (a) III mode; (b) VII mode.

remaining modes (shaded) of the experimental setup design are extra-
neous modes, which are not of interest in the current investigation. For
the design of Fig. 2b, the first two modes are modes of interest. How-
ever, there are several extraneous modes (III through VI) before the
next modes of interest (CSM1 and CSM2) appear. For example, mode III
is an in-plane rotational mode as shown in Fig. 3a, while the mode VII is
an out-of-plane rotational mode as shown in Fig. 3b. The associated
separation indices are lower than desired: SEP,=5.2 and
SEP,, = 5.8.The reason for these multiple rotational modes appearing at
low frequencies is that the folded beam flexure has inadequate stiffness
in its bearing directions (e.g. Y translation, Z translation, Y rotation, Z
rotation, etc.) [28].

To improve the stiffness in these bearing directions, the folded beam
flexures in Fig. 2b are replaced with DPFMs as shown in Fig. 2c. DPFM
offer better stiffness characteristics without sacrificing the travel range
[28,29]. These additional DPFMs are denoted as “minor” DPFMs to
distinguish from the two previous DPFMs (denoted as the “main”
DPFMs). The beams of the minor DPFMs were initially designed with
the same dimensions as the beams in the main DPFM, with length (L)
set as 47.5mm and thickness (T5) set as 0.625 mm. Furthermore, to
reduce the frequencies of the two CSM and achieve desired SEP,, m;
was increased from 0.2 kg to 0.4 kg, and m, and m3 were increased from
0.04 kg to 0.06 kg.

The modal analysis results for Fig. 2c design show that the number
of extraneous modes between the modes of interest has reduced.
However, since the geometry of Fig. 2c¢ is not symmetric w.r.t to both
the X and Y axes, the flexure mechanism has an axis connecting the
grounds (denoted by U-axis in Fig. 2¢) with low rotational stiffness. In
fact, the extraneous out-of-plane modes III and IV are associated with
the rotation about the U-axis. The separation indices for this design are
SEP; = 6.2 and SEP;, = 2.6, which are still inadequate.

A logical improvement to Fig. 2¢ was to employ four minor DPFMs
to achieve symmetry w.r.t. both the X and Y axes. This resulted in the
design shown in Fig. 2d. The modal analysis results (Table 1) for this
design show that the rotational modes about the U-axis in Fig. 2c are
effectively eliminated. Moreover, all of the first four modes are also the
modes of interest, with separation indices of SEP; = 19.3 and
SEP;, = 4.2. 1t is clear that the latter needs to be further increased.
Moreover, the four closely spaced modes (from VII to X) are associated
with the oscillation of the secondary stages in the four minor DPFMs.
These extraneous closely spaced modes also need to be moved to higher
frequencies.

Modes V and VI of Fig. 2d design are shown in Fig. 4a and Fig. 4b,
respectively. For both these modes, stage ® is almost stationary, thus
separating the flexure mechanism symmetrically into two sides w.r.t.
stage @. Furthermore, each side rotates about a W-axis (parallel to the Y
direction), which represents the location where two minor DPFMs
connect to a main DPFM (see Figs. 2d, 4a and 4d). The frequencies of
these two modes are mainly determined by the dimensionsLs, L4, and Ls
(shown in Fig. 4d) as discussed next.
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L3 is the span of the inner parallelogram of the minor DPFM, which
affects the rotational stiffness about the W-axis. When L3 is small, the
rotational stiffness is dominated by the torsion stiffness of the in-
dividual beams. However, when L is increased, the rotational stiffness
is driven by the Z direction stiffness of the individual beams and the
span (L3) of the inner parallelogram. With the typical dimensions used
in this study (e.g., T> = 0.625 mm, out-of-plane heightH, = 25.4 mm,
L, = 47.5mm, and L3 = 20 mm), the torsional stiffness of a single beam
about W-axis is 1.099 (Nm/rad) at the tip [30]; in comparison, the
contribution to rotational stiffness by an individual beam due to its Z
direction stiffness along with a lever arm of 10 mm (i.e., half of L3) is
3.714 (N m/rad). Therefore, since increasing L3 helps increase the tor-
sional stiffness of the minor DPFM about the W-axis, it was increased
from 20 mm to 40 mm. But this also leads to a larger size (and therefore
heavier) secondary stage of the minor DPFM, which can reduce the
natural frequencies of the modes associated with the secondary stages
of the minor DPFMs. The selection of dimensions of the secondary stage
of the minor DPFM (i.e., L and L) is discussed later in this section.

L, and Ls affect the rotational inertia associated with the rotational
modes V and VI. The design objective is to minimize the mass of stage @
and have its center of mass center lie close to the W-axis such that one
can minimize the rotational inertia about the W-axis, thus increasing
the natural frequencies of the corresponding rotational modes. Given
other considerations of geometric layout, we chose L, = 85 mm and
Ls = 30 mm to be as small as possible.

Mode VII of Fig. 2d design is shown in Fig. 4c as an example of the
four closely spaced modes associated with the secondary stages of the
minor DPFMs. To increase the natural frequencies of these modes, one
can either increase the X direction stiffness of the minor beams (i.e.
reduce length L, and/or increase thickness T,) or lower the mass of the
minor secondary stages (i.e. reduce dimensions Le and L;). However,
there are tradeoffs in all these choices.

Increasing the X direction stiffness X direction of the minor DPFM
also increases the frequency of the “rigid-body” mode (i.e., mode I of
Fig. 2d design listed in Table 1) bringing it closer to the two CSM and
adversely impacting the SEP; index. This tradeoff was carefully ba-
lanced to create adequate frequency separation between the two CSM
and the “rigid-body” mode, as well as between the two CSM and the
higher frequency extraneous modes related to the secondary stages of
the minor DPFMs (e.g. mode VII of Fig. 2d design). By iteratively se-
lecting dimensions and checking the mode shapes and frequencies, we
chose L, = 47.5mm andT, = 1 mm.

Reducing L, results in a smaller span of the outer parallelogram of
the minor DPFM, thus lowering the rotational stiffness about the W-axis
and the natural frequencies of modes V and VI. The rotational stiffness
about the W-axis has a quadratic dependence on the inner span Lz as
well as the outer span L,. We chose L, = 80 mm, which is twice the
inner span L3, to ensure an adequately high rotational stiffness about
the W-axis to keep modes V and VI well-separate from the two CSM.

Reducing L¢ increases the in-plane bending compliance of the minor
DPFM secondary stages resulting in a lower translational stiffness of the
minor DPFM along the Y direction which can introduce additional ex-
traneous in-plane modes associated with the Y translation or Z rotation
of stages® and ®. One way to overcome the tradeoff between the mass
and stiffness of the minor secondary stages is to use a truss-like or
honey-comb structure. However, this proved to be unnecessary for the
present study. By simply iterating upon the dimensions, we were able to
achieve adequately high natural frequency of the minor stages in the X
direction (e.g. mode VII) as well as adequately high Y direction stiffness
of the minor DPFMs to avoid any extraneous in-plane modes at low
frequencies. In the final iteration, we chose Lg = 3 mm.

The final set of dimensions for Fig. 2d (Improved) design is listed in
Table 2. The modal analysis results for this design are listed in Table 1
alongside the results for Fig. 2d design with the initial set of dimen-
sions. As seen in this table, the separation indices for Fig. 2d (Improved)
design are SEP; = 19.8 and SEP;, = 24.5, which indicates a satisfactory
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Fig. 4. Extraneous modes of Fig. 2ddesign: (a) mode V, (b) mode VI, (c) mode VII, and (d) relevant dimensions of Fig. 2d design.

frequency separation. The first eight modes of this design are shown in
Fig. 5, and several observations are noted below.

should be theoretically unobservable in the frequency response
measurement of stage @ in the X direction.

2. Modes III and IV are the two closely spaced modes associated with
the oscillations of two main secondary stages (stages @ and ®).
Along with mode II, these are the modes of interest in this paper.

3. Mode V is an out-of-plane mode in the Z direction due to the

1. The rigid-body mode now appears as mode II due to increase in the
X direction stiffness of the minor DPFMs. However, since mode I is
associated with the Y direction oscillation of stages ©, ® and @, it

;:)l:il:l lanalysis results for experimental setup designs of Fig. 2. Modal frequency reported in Hz.
Mode
Order Freq. Description Freq. Description Freq. Description Freq. Description
I 15.2 “Rigid-body” 10.6 “Rigid-body” 14.8 “Rigid-body” 252 Y-mode
11 35.5 Y-model?! 29.7 Y-mode 29.7 Y-mode 33.1 “Rigid-body”
I 43.8 In-plane 449 Out-of-plane 83.0 CSM1 79.6 CSM1
v 46.5 In-plane 51.5 Out-of-plane 91.3 CSM2 85.6 CSM2
\% 54.1 In-plane 82.3 CSM1 123.8 Out-of-plane 235.1 Out-of-plane
V1 57.0 Out-of-plane 913 CSM2 128.0 Out-of-plane 237.8 In-plane
Vil 67.0 Out-of-plane 111.2 In-plane 143.6 In-plane 272.8 In-plane
VIII 103.4 CSM 1] 112.3 In-plane 144.2 In-plane 281.4 Out-of-plane
IX 116.1 CSM2[b 149.6 In-plane 144.8 In-plane 282.0 In-plane
X 187.5 Out-of-plane 159.1 Out-of-plane 145.6 In-plane 283.6 In-plane
SEP, 5.2 6.2 19.3 19.8
SEP), 5.8 2.6 42 24.5

Notes: The terminology (i.e., “Rigid-body” mode, Y-mode, CSM1, and CSM2) is defined in Section 1. Shaded boxes refer to the

extraneous modes.



L. Cui and S. Awtar

Table 2

Physical parameters of final Fig. 2d (Improved) design.
Name Symbol  Value  Unit
Plate height H 25.4 mm
Main DPFM beam length L; 47.5 mm
Main DPFM beam thickness T, 0.625 mm
Minor DPFM beam length Ly 47.5 mm
Minor DPFM beam thickness T, 1 mm
Span of the inner parallelogram, minor DPFM L3 40 mm
Intermediate stage dimension Ly 85 mm
Distance between motor coil's center of gravity and the  Ls 30 mm

minor DPFM's rotational axis
Minor DPFM's secondary stage dimensions Le 3 mm
L, 80 mm

Motion stage ®mass m; 0.4 kg
Secondary stages @ and ® mass my, ms 0.06 kg
Intermediate stages @ and ® mass my, ms 0.177 kg

increase in the mass of stage ®. Mode VI is an in-plane rotational
mode about the Z-axis due to the bending compliance of the sec-
ondary stages of the minor DPFMs. However, since modes V and VI
appear at frequencies around 235 Hz (almost 3 times higher than
mode IV), their contribution at the low frequencies is minor as de-
sired.

4. The four closely spaced modes associated with the X direction os-
cillation of the four minor secondary stages appear at around
280 Hz. One of these is mode VII, shown in Fig. 5. Compared to the
initial Fig. 2d design, these modal frequencies were increased by a
factor of two.

5. Mode VIII of Fig. 2d (Improved) design is the same as mode V of the
initial Fig. 2d design. The frequency of this mode increased from
123.8Hz to 281.4Hz. Additionally, mode VI mode of the
Fig. 2ddesign, is now mode XIII of Fig. 2d (Improved) design (not
shown in Fig. 5).

In summary, in Fig. 2d (Improved) design, there is a satisfactory
separation between the CSM modes of interest (i.e., modes III and IV)
and other modes, indicated by the high value of the separation indices:
SEP; = 19.8 and SEP, = 24.5. Therefore, Fig. 2d (Improved) design was
employed in the fabrication of the final experimental setup. Based on
this design process, the relevant system parameters are summarized in
the following table.

4. Experimental setup: hardware design
4.1. Hardware fabrication and assembly

Using the flexure mechanism geometry of Fig. 2d (Improved)
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design, the experimental setup hardware was fabricated and assembled
for testing, as shown in Fig. 6. The flexure mechanism along with the
reference ground frame were made monolithically from a 25.4-mm
thick AL6061-T651 plate using wire-electric discharge machining
(EDM), which offers a manufacturing tolerance of + 0.005mm. The
other components of the assembly were fabricated by traditional ma-
chining, including an adapter between the actuator mover and stage @,
the balance mass attached stage ® via another identical adapter, a
bridge connected to the ground frame to mount the capacitance probe,
and a flat target block for the capacitance probe connected to stage ®.
Four screws (and associated stands) were used to connect the ground
frame to the breadboard of an isolation table (Newport RS1000).

Tapped holes on the two secondary stages (stages @ and ®) were
used to attach small masses. The intended mass asymmetry between
stages ® and ®was achieved by adding masses with an incremental
value of 0.5g, which is 0.8% of the nominal mass of the secondary
stages (my, = m3z = 60g).

4.2. X direction actuation and sensing

The primary goal of this experimental setup is to measure X direc-
tion frequency response at different Y direction operating points (Y3,)
for different levels of mass asymmetry (Amy3). While the range of mo-
tion in the Y direction is large (to achieve a = 10% of L; variation in the
operating point), the range of motion for X direction can be small,
which makes the selection of actuator and sensor in this direction easy.
Using the beam dimensions of the minor DPFM, Aluminum as the
material, and a safety factor of two against yielding, we set the range of
motion in X direction as = 1 mm. A mechanical stop was incorporated
within the ground frame to prevent going over this X direction dis-
placement range.

Based on the stiffness expression for DPFM [4,14] and the dimen-
sions in Table 2, the stiffness of the experimental setup in the X di-
rection can be computed to be 65.4 N/mm. However, the experiment
did not require the flexure mechanism to be held at a non-zero dis-
placement in the X direction. Instead, the frequency response system
identification was conducted by sending a chirp sinusoid signal with
zero mean, corresponding to a nominally zero X position of stage @®. For
our experimental setup design, we selected a voice coil actuator from
BEI Kimco Magnetics (Model: LA24-20-000A, force constant: 11.12 N/
A, stroke: + 8.26 mm, peak force 111 N, continuous force: 26 N) for the
X direction actuation. This non-contact actuator is free of friction and
backlash and provided adequate force and stroke for the frequency
response measurements. An adapter was designed to provide connec-
tion between stage ® and the mover of the actuator. The stator of the
actuator was directly mounted on the ground frame via two X-direction
screws. Shims were used to set the radial gap to be 0.38 mm (or. 0.015”,

Il Mode (79.6 Hz)

IV Mode (85.6 Hz)

Red Colors Represent the Largest Displacement while Blue Colors Represent the Least

Fig. 5. Mode shapes of Fig. 2d (Improved) design.
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Fig. 6. Experimental setup.

per the data-sheet) between the stator and the mover of the actuator
while tightening these screws. These shims were removed after the
assembly.

A custom-built linear current amplifier based on the power op-amp
MP111 was used to drive the actuator in a current mode at a bandwidth
of 1kHz [4]. This bandwidth of the current mode is sufficiently high to
avoid any impact on the dynamics of interest, which is within 100 Hz.

For sensing the X displacement of stage @, a non-contact sensor is
desirable to avoid friction and backlash. Moreover, stage @ has dis-
placements in both the X and Y directions; therefore, the X direction
sensor should be able to accommodate large displacements in the Y
direction. The desired range of X direction measurement is less
than + 1 mm, as discussed above. Capacitance probes meet all these
requirements. Accordingly, a capacitance probe from Lion Precision
(Model: C23C, Driver: CPL290, Range: 2 mm; RMS resolution: 40 nm)
was chosen to measure the X direction displacement of stage ® w.r.t.
the ground frame. An elevated bridge that clears all the moving stages
was connected the ground frame via two screws. This bridge was used
to mount the capacitance probe in the X direction.

The overall sensing and actuation system was operated using
DSpace 1103 control system at a loop-rate of 5kHz. The sensor sam-
pling rate is the same as the loop-rate of the control system, resulting in
a Nyquist frequency of 2500 Hz, which is sufficient for the estimation of
the frequency response below 500 Hz (including the extraneous modes
shown as Table 1).

4.3. Y direction actuation: virtual pulley

For the XY mechanism shown in Fig. 1, the operating point is set by
applying a static Y direction force F;,. One of the challenges in applying
such a constant force on stage @ is that its position varies along both the
X and Y directions. During the frequency response measurement, stage
@ vibrates in the X direction with a small amplitude (~100 pm) in re-
sponse to an X direction excitation at stage @. Additionally, due to
cross-axis coupling, there can be an even smaller but finite Y direction
vibration at stage @in response to an X direction excitation [2]. The Y
direction actuation system has to accommodate these X and Y direction
displacements during an X direction frequency response measurement.

Furthermore, since this measurement has to be repeated at various Y
direction operating points with a range of = 5mm, the Y direction
actuation system has to be capable of providing the necessary force
(F1,) over this range and hold it constant at a given operating point.
Finally, the Y actuation system should not impose any geometric con-
straints on stage @ that can change the system dynamics.

A potential option is to employ a non-contact force actuator such as
a voice coil actuator or a moving magnetic actuator [31]. Apart from
cost consideration, there are several practical challenges with this op-
tion. First, to provide desirable Y direction displacement (i.e. operating
point), one needs to employ either closed loop position control in this
direction or drive the actuator in current mode with a careful calibra-
tion of current to force and force to displacement characteristics.
Second, these actuators are generally limited to a single axis (the ac-
tuation axis Y in this case), and do not allow off-axis X axis motions.
Furthermore, the mover of these actuators would have to be attached to
stage ©. But the added mass of this mover can negatively impact the
dynamics of the entire experimental setup.

To overcome all these challenges, we chose a relatively simpler
passive actuation method that utilizes an arrangement of cables to
change the direction of vertical force provided by hanging weights to
horizontal (i.e., Y direction) force on the motion stage. This arrange-
ment is referred to as a “virtual pulley” [14,32] and is different from a
traditional pulley, which also changes direction of force but introduces
uncertainty in the horizontal actuation force due to rolling and/or
sliding friction.

Fig. 7 shows a schematic of the virtual pulley employed in our ex-
perimental setup for Y direction actuation. The arrangement comprising
three cable segments: a long nominally horizontal segment, a vertical
segment, and a diagonal segment. All three segments are connected at a
common point. The other end of the horizontal segment is attached the
motion stage; the other end of the vertical segment is connected to a
hanging weight; and the other end of the diagonal segment is connected
to a rigid extension of the ground frame via the isolation table. This
cable arrangement converts the vertical force of the weight W to a
horizontal force F;, on the motion stage in the Y direction. These two
forces are simply related by the trigonometry of the cable arrangement
[32] as stated below.
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Fig. 7. Virtual pulley used for Y direction actuation.
F, = W(cos¢,-tanp, — sing,) (@)

In this manner, a constant Y direction force F;, (and resulting dis-
placement Y;,) is achieved by a known hanging weight, without the
need for any active force control. The horizontal section of the cable
was selected to be long enough (about 965 mm) so that it can absorb
small X direction displacements of stage 1 without impacting the F;,
force. Any small Y direction vibration of the motion stage is also easily
accommodated by the virtual pulley. The Y direction operating point is
varied simply by changing the weight W and keeping track of any
change in the cable arrangement trigonometry. The relevant angles are
measured by taking a picture of the YZ plane. For small displacements,
the virtual pulley provides the functionality of a frictionless pulley
because it eliminates any rolling or sliding interfaces and any associated
uncertainties.

For a given W, F;, is obtained from the above equation, and the
resulting Y7, is calculated based on the Y direction stiffness k, [4,14].

Yio = Flo/Zky
where
k, = ET;H/L{ = 3992 (N-m™)

The limitation of this actuation scheme is that the Y;, operating
point in the experimental setup is a derived quantity instead of an ex-
plicit position sensor such as linear encoder. Since we used calibrated
weights, the accuracy of the derived operating point Y7, is largely de-
termined by the error in measuring the relevant angles and the error in
estimating stiffness k,. To quantitatively analyze the effect of angle
measurement error, one can take a partial derivation of Eq. (4), while
assuming that the maximum error of each angle measurement is the
same (denoted as Ag).

0F, oFy, 0F, OF,
1dF) < 1229 dg | + 19224 | < (19291 4 1292)).00

el ! 9, : N el )
where
0F, _ sing,-tang, + cosp,  9F,
dp,  (cosg,-tang, —sing,)? dgp,

_ -1
(cosp,)* (cos g, tan @, — sing, )? 6)

Angles (p; = 1°, @, = 64°) were measured from a digital image of
side (YZ plane) view of the setup. With a maximum error of angle
measurement less than 0.5° (i.e., |Ap|<0.5°), one can derive |dFj,|/
F1o < 2.49%. Similarly, one can derive the error in estimating stiffness
ky:

dk, dk, dk,
ldky| < |==-dT| + |—-dH| + |—-dL|
oh O0H oL, ()
Assuming a manufacturing tolerance of = 0.005 mm for all in-plane
dimensions (wire-EDM) and plate thickness tolerance of 0.025mm
(accuracy and resolution of calipers used for direct measurement), as-

suming an exact value of elastic modulus (E = 69 GPa) and given the
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dimensions of our experimental setup (see Table 2), one can derive
|dky| /k, < 3.36%.

Substituting the relevant values, one can obtain [dY;.|/
Y1, < 5.85%. We deemed this level of error in estimatingY;, to be ac-
ceptable, because this error is static for the entire experiment (i.e., the
angles and dimensions are invariant for a given setup). The impact of
the error on experimental validation of model prediction is simply a
scaling factor associated with the vertical axis on the CNMP zero map of
Fig. 9. Such a scaling effect does not change the two main properties of
the map: (1) the directional behavior when varying the operating point
(i.e., CNMP zeros are observed only when Am,3 > 0); and (2) the shape
of the CNMP zero region (i.e., CNMP zeros are observed when Y7, is
larger than a certain Am,3; dependent value).

If the cable were infinitely stiff then the mass of the hanging weight
would contribute to the Y direction inertia of the motion stage, thereby
impacting the modal frequencies and shapes designed in Section 3. But
we intentionally used a long cable (horizontal and vertical segments)
with a small cross-section (1 x 7 strand construction, 0.012 in diameter)
made of 302SS, which resulted in a finite cable stiffness. This leads to
an additional low-frequency mode in the Y direction that serves to filter
out the impact of the hanging weight on the Y direction inertia of the
motion stage at the CSM frequencies of interest (~80-85 Hz). This Y-
direction mode is unobservable in the X-direction transfer function.

5. Experimental results and discussion

To conduct the experiment, the frequency response from the X di-
rection actuation force F,4 on stage @to the X direction displacement
(X7) of the motion stage (see Fig. 1) was examined. The system iden-
tification was conducted in an open loop architecture. A 0.05N chirp
sinusoid signal with frequency content from 0.1 Hz to 500 Hz was used
as the X actuator input force stage @. Compared to white noise signal, a
chirp signal leads to lower uncertainty error in the estimation of the
frequency response because it is more concentrated in the selected
frequency range. The time-domain response of X direction displacement
was collected. The frequency response was then obtained by comparing
the frequency spectrum of the input and output signals, using MATLAB
spectrum analysis with frequency-dependent resolution.

A comparison between model prediction and experimental result is
presented in Fig. 8, for a representative operating condition where mass
asymmetry (Amy3) is +10% and operating point (Y;,) is 8% of L;. The
damping ratios for the model were estimated from the experimental
results based on Rayleigh damping [33]. These estimated damping ra-
tios were 0.009 for the “rigid-body” mode (mode II, Table 1) and 0.004
for the closely spaced modes (modes III and IV, Table 1). The “rigid-
body” mode has a larger damping ratio since it is associated with the
oscillation of the entire flexure mechanism, which leads to a larger
amount of area exposed to the viscous air environment. The back
electromagnetic force (back EMF) of the voice coil actuator does not
contribute to the damping ratio of the “rigid-body” mode when the
drive amplifier operates in the current control mode.

Key observations from the experimental measurement are as fol-
lows. First, the first three modes (Y mode or Mode I is almost un-
observable) in the experimental results match well with the dynamic
model of the XY flexure mechanism. Furthermore, the change in the
frequencies of the CSM (modes III and IV) due to variation of the op-
erating point agrees with the model prediction (not shown in Fig. 8).
Second, the CSM (modes III and IV) are shown to be well-separated
from other modes, as expected from the experimental setup design
(Section 2). The first high order extraneous mode occurs at 210 Hz, with
a separation index of SEP; = 20.5, (experimental result matches FEA
model). Moreover, it can be seen from Fig. 8 that, the higher order
extraneous modes have a minor contribution on the dynamics of in-
terest at low frequency region as desired. Third, and most importantly,
CMP-CNMP zeros are observed exactly as predicted by the theoretical
model. In Fig. 8b, the 360° phase drop due to the existence of CMP-
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CNMP zeros is very clearly seen.

Results from multiple experimental measurements, one for each
combination of operating point (Y;, normalized w.r.t. beam length L;)
and parametric mass asymmetry (Am.3), were overlaid with the model
predictions [2] on a zero map (Fig. 9). The model predicts that CNMP
zeros should arise in the black regions of this zero map. Experimental
measurements were conducted over a two-variable grid spanning 150
operating conditions (10 values of Y7, and 15 values of Am,3). Note that
only half of the area was tested due to the symmetric properties of the
flexure mechanism and the CNMP zero map w.r.t. positive/negative Y
operating points. The squares indicate the conditions when the CMP-
CNMP zeros are present in the experimental frequency response. In
contrast, the solid circles indicate conditions when CMP-CNMP zeros
are absent, and instead the zeros are minimum phase. Lastly, the dashed
circle represents the specific operating condition presented in Fig. 8.

Fig. 9 shows that the experimental results match well with the
model prediction. It is experimentally confirmed that for the situation
of negative asymmetry (Am,3 < 0), the entire operating range is free of
CMP-CNMP zeros, as expected from the model. This is an important
experimental validation since the model prediction was non-obvious.
For Amy3 > 0, experimental findings largely agree with model predic-
tion of the CMP-CNMP zero region and confirm that CMP-CNMP zeros
appear only when the Y;, operating point is larger than a certain value.
Third, when the situation is nominally symmetric (Admy3 = 0), the

existence of CMP-CNMP zeros is sensitive to positive mass parameter
variation at large operating points (Y;, = 6-8%).

The slight mismatch between the experimental and predicted CMP-
CNMP regions in Fig. 9 can be attributed to the following factors.

1. The CNMP map compiled from the theoretical model was based on
the assumption of neglecting the damping [2]. However, as shown
in previous work [1], the presence of damping shifts the predicted
CMP-CNMP zero quartet to the left side of the complex plane and
the onset of CNMP zeros happens at larger operating points. In other
words, the presence of finite damping “delays” the system's transi-
tion from two pairs of minimum phase zeros to the CMP-CNMP zero
quartet. For example, in Fig. 9, for the operating point Y;, = 4% and
Amyz = 2%, the model predicted CMP-CNMP zeros are not observed
in the experiments.

. The second factor that impacts the experimental results is the in-
direct estimation of the operating point Y;,, which can have an error
of 5.85% as shown in Section 3.3. As noted before, this is scaling
error in the vertical axis of the CNMP map. While this error does not
change the fundamental attributes of the CNMP zero map, it can
produce the slight discrepancy seen between model-based predic-
tions and experimental measurements in Fig. 9. In hind-sight, to
reduce the estimation error in Y;,, a linear encoder could have been
used to explicitly measure the Y direction displacement of stage®
with respect to the ground frame.

6. Conclusions

We presented an experimental confirmation of the existence of
CNMP zeros, predicted by a previous theoretical model [1,2], under
specific conditions (operating point and parametric asymmetry) in a
certain XY flexure mechanism. This XY flexure mechanism exhibits a
low frequency rigid body mode and a pair of closely spaced modes at
higher frequency. This experimental validation is significant in that it
corroborates the various assumptions made in previous modeling of the
system dynamics. These assumptions include the importance of beam
arc-length conservation and the resulting non-linear coupling between
the X and Y direction displacements. The experiments also confirm that
this coupling varies slightly with the operating point and parametric
asymmetry, resulting in small changes in the modal residues (magni-
tude and signs) of the closely spaced modes. These changes are shown
to give rise to a CMP-CNMP zero quartet, as predicted by the theoretical
model.

From a mechatronic design stand-point, this experimental valida-
tion provides a better understanding of the system dynamics (specifi-
cally CNMP zeros), which in turn can inform physical system design
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decisions in a deterministic manner. We demonstrate that independent
of any other design considerations (e.g. collocation of sensor and ac-
tuator, slaving of secondary stages in DPFM, additional damping, etc.)
CNMP zeros can be eliminated via an intentional use of parametric
asymmetry. This simple yet non-obvious physical system design deci-
sion can lead to better control system design and performance of a
flexure-based motion stage.

Even though the CNMP zeros experimentally investigated here arise
due to the closely spaces modes associated with the Y displacement of
the secondary stages of the two DPFM, such zeros can more generally
arise from any two closely spaced modes in a flexure mechanism. The
experimental hardware setup design and measurement methods pre-
sented in this paper are equally relevant and applicable to any such
scenario.

This work also reveals several questions that currently under in-
vestigation. For example, the fact that negative mass asymmetry elim-
inates CNMP zeros while positive asymmetry does not (Fig. 9) is due to
the location of actuator at stage @ (Fig. 1). Had the actuator been lo-
cated at stage ©, the zero map of Fig. 9 would be flipped about its
vertical axis. Similarly, actuating at both stages ® and ® can potentially
eliminate the CNMP zeros but remains to be proven mathematically.
There remains a need for a more general modeling effort and resulting
design guidelines that relate the physical topology of a flexure me-
chanism along with sensor(s) and actuator(s) locations to the existence
of various types of zeros, including CNMP zeros.
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