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Abstract. The properties of density turbulence are important in estimating the angular
broadening of radio sources in the outer heliosphere and very local interstellar medium (VLISM).
We calculate the density variance, inner scale, correlation length of the velocity, and relative
density amplitude as a function of radial distance using plasma and magnetometer data from
the Voyager 2 spacecraft over the period 1977 to 2018. We apply three different techniques to
estimate the density turbulence amplitude, including an inner scale, using the Voyager 2 data.
Related analyses compare Voyager data determined turbulence amplitudes with results from the
density turbulence theories of Zank et al. [49, 50] and Bellamy et al. [6]. Theoretical predictions
and observations show strong similarities: both qualitatively and quantitatively. In addition, the
predicted turbulence amplitudes show radial trends similar to those observed. The numerical
prediction of the scattering angle uses a turbulence spectrum that includes an inner scale. The
numerical and analytic results are compared, and we find similar radial trends.

1. Introduction
An important observation of the Voyager missions was the detection of low-frequency radio waves
that are apparently generated in one or more of the regions where the solar wind interacts with
the interstellar medium [4, 18, 20, 26–28, 32, 33, 45]. Both Voyager 1 and 2 observed radio
events while they were separated by a distance of more than 40 AU [26, 28]. Existing theories
predict that the source of these radio events was at a very large distance, probably in the very
local interstellar medium [14, 17, 19, 27, 28, 47, 48]. Here, we use the definition of the very local
interstellar medium (VLISM) introduced by Zank [47].

The Voyager spacecraft regularly calibrates the magnetometer using roll maneuvers. It was
observed during these roll maneuvers that the intensity of the outer heliospheric radiation close
to 3 kHz is modulated. Later, Kurth [32], Gurnett et al. [27, 28], Cairns [12, 13], and Armstrong
et al. [4] interpreted this modulation in terms of the apparent size and direction to the radiation
source. However, 2 kHz radiation did not show this modulation which was interpreted by
Armstrong et al. [4] as meaning that the location of the source was exactly along the roll axis or
that the radiation was isotropic. Gurnett et al. [27] associated the global merged interaction
regions (GMIRs) with the radio emission observed by the Voyager 1 and 2 spacecraft, which then
yields a corresponding timing between a Forbush decrease observed in the heliosphere and the
subsequent turn-on of radiation. This raises the question of how the radio emission propagates
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to the Voyager spacecraft through and around the GMIRs, and associated shock moving up a
density ramp at the heliopause and beyond (e.g., the density depletion layer [16]). Radiation
generated close to either the electron plasma frequency fp or 2fp cannot propagate through the
enhanced density of a GMIR [5, 13, 15, 19, 23, 25].

All analyses of radiation generated near fp and 2fp in the solar wind between the corona and
1 AU demonstrate that scattering by density turbulence plays an important role in the angular
broadening, brightness temperature, and the direction of propagation [13, 30, 38, 39, 41]. Indeed,
the scattering of radio waves throughout the solar system and in any astrophysical plasmas is
strongly mediated by density irregularities, affecting the radio waves’ intensity, angular size,
direction, and temporal and spectral variability [14, 36, 38, 39]. Accordingly, the amplitudes and
spatial scales of density turbulence are important in estimating the angular broadening of radio
sources in the outer heliosphere or very local interstellar medium (VLISM) [4, 13, 14, 45].

Cairns [12, 13] argued that scattering by density irregularities in the outer heliosphere leads
to a significant angular broadening of the 2 - 3 kHz radiation and may also change the apparent
direction of the source. Cairns [13] found reasonable agreement of the angular broadening inferred
from roll maneuvers and a model that extrapolated the amplitude and the Kolmogorov properties
of density turbulence from within 1 AU to the outer heliosphere, ignored inner scale effects, and
reduced the scattering by a factor w = 0.01. However, the introduction of the factor w suggests
that these investigations did not account for some potentially important physical processes. For
instance, (i) the inner scale, which ensures that turbulence does not extend to infinitely small
spatial scales, has significant effects on radio wave scattering by density fluctuations [4, 14, 31, 38];
(ii) the radial dependence of the fluctuating density variance may be different outside and inside
1 AU [2]; and (iii) the density variance in the equatorial plane is nearly 16 times stronger than
in the polar regions [4, 22]. Note that various investigations [4, 22, 31] of angular broadening
of radio sources in the corona and solar wind use different definitions of the inner (dissipation)
scale.

Here, we extend the analysis of Cairns [13, 14] to address the three points described above.
Our paper is structured as follows. Section 2 presents a power spectral analysis to determine the
observed density turbulence amplitude, which includes the correlation length, and the inertial
range, and we introduce a definition of the inner scale as a function of wave number. Section 3
briefly describes the parabolic wave equation theory and the angular broadening of radio sources.
Section 4 presents the Voyager 2 data. Section 5 compares observations with analytic predictions,
and we conclude with a brief discussion in Section 6.

2. Theories to Estimate the Amplitude of Turbulence
We employ three different approaches to estimate the amplitude of density turbulence in the
heliosphere. For convenience, we identify them as model 1, model 2, and model 3. We briefly
describe the models in the following subsections.

2.1. Model 1 : Employing Theories by Coles et al. [22] and Lee and Jokipii [36]
Density turbulence can be modeled using a three dimensional isotropic spatial power spectrum
that has a power-law component, an exponential cutoff at an inner scale, and an amplitude that
varies with radial distance R [22, 36, 38, 39], according to

Sn(k,R) = 〈(δρ)2〉(k,R) = C2
N (R)k−α exp−(kli/2π)2 , (1)

where k denotes wave vector, |k| = k, and

〈(δρ)2〉(R) =

∫ kmax

kmin

d3k〈(δρ)2〉(k,R) ' k3〈(δρ)2〉(k,R). (2)
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Here 〈(δρ)2〉 is the fluctuating density variance, C2
N is the amplitude of the density turbulence,

li is the inner scale, and α = 11/3 corresponds to choosing the three dimensional Kolmogorov
spectrum. Equations (1) and (2) yield

C2
N (R) = kα−3〈(δρ)2〉(R) exp(kli/2π)2 . (3)

We assume here that the inner scale is a free parameter. Zank et al. [49] show that the density
variance 〈(δρ)2〉 behaves as a passive scalar in response to turbulent velocity fluctuations and
that the decay rate is governed by the velocity correlation length lu. On assuming a Kolmogorov
phenomenology, Zank et al. [49] show that the wave number spectrum for the density variance is
k−5/3 in the solar wind. The inertial range extends roughly over three decades and is bounded
by wave numbers corresponding to approximately l−1

u and l−1
i . A crude range of ∼ 10−2 − 10−3

separates lu and li in the solar wind, i.e. li/lu ∼ 10−2 − 10−3 (e.g. Bruno and Carbone [7]).
Coles et al. [22] and Ingale et al. [31] suggest that the inner scale arises from cyclotron damping,
and should be comparable to the thermal proton gyro-radius rpg = (mpvp)/(qpB). In modeling
the inner scale, we assume

li = βlu, (4)

provided βlu > rpg and β is chosen as 10−2. Otherwise, we take li ∼ rpg for a locally thermal
proton, specifically,

li = 2πrg =
2πmpvp
qpB

. (5)

Here mp and qp are the mass and charge of a proton, B is the magnetic field magnitude at R,

vp =
√

(KBTp)/mp is the proton thermal velocity, KB is the Boltzmann constant, and Tp is the
thermal proton temperature.

2.2. Model 2: Employing Zank et al. [49]’s Turbulence Transport Theory
The variance of isotropic density turbulence from Zank et al. [49] is

〈(δρ)2(R)〉 =

∫
Epdk⊥ ≈ Ep(k⊥)k⊥, (6)

where Ep is the variance of density fluctuations/wave number and k⊥ is a perpendicular wave
number.

Figure 1 shows the wave number ku⊥ that separates the energy-containing range and the inertial
range. Therefore, at ku⊥, we can equate the power spectrum distribution at the energy-containing
range and the inertial range [3], which yields

Ak−1
⊥ |ku⊥ = C2

Nk
−5/3
⊥ exp

[
−
(k⊥li

2π

)2]
k⊥
. (7)

By integrating over the power spectrum between the limits kinj to ku⊥ [3], we find

〈(δρ)2〉(R) =

∫ ku⊥

kinj

Ep(k⊥)dk⊥ = A

∫ ku⊥

kinj

k−1
⊥ dk⊥ = A ln

( ku⊥
kinj

)
. (8)

Equation (8) gives

A =
〈(δρ)2〉(R)

ln
(
ku⊥
kinj

) , (9)
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Figure 1. Density power spectrum in the energy containing range, the inertial range, and the
dissipation range as a function of wave number [46].

where kinj ∼ 1.07× 10−6.5 km−1 is the injection wave number for a solar rotation period and l⊥u
is the correlation length corresponding to velocity fluctuations in the perpendicular direction.
We set, l⊥u = (ku⊥)−1 (neglecting the term of 2π) where ku⊥ is the wave number that separates the
inertial range and the energy containing range. Similarly, the 3D spectrum equation (7) reduces
to

Ak−3
⊥ |ku⊥ = C2

Nk
−11/3
⊥ exp

[
−
(k⊥li

2π

)2]
k⊥
. (10)

Using ku⊥ = l⊥u
−1

along with equations (9) and (10), we get

C2
N (R) =

〈(δρ)2〉(R)l⊥u
−2/3

ln
(

1
kinj l⊥u

)
exp

[
−
(

li
2πl⊥u

)2] . (11)

Note that we use l⊥u = lu and ku⊥ = l−1
u for the subsequent analyses.

2.3. Model 3: Employing Bellamy et al. [6]’s semi-quantitative approach
Bellamy et al. [6] analysed the Voyager plasma density data to obtain power spectra, C2

N (R), and
spectral indices as a function of heliocentric radial distance R. In detail, they obtained yearly
averages of the temporal power spectrum by Fourier transforming carefully chosen time periods
of Voyager density data, averaging and smoothing the individual power spectra for each year,
and then fitting the result with a power-law. Associating the resulting spectrum Sn(f,Rav) for
each year with the average value of R, Rav, for Voyager 2 that year, they showed that

Sn(f,Rav) = C2
t (Rav)f

−βB(Rav), (12)
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to a good approximation in two ranges of f , where f is the frequency of the data. Bellamy
et al. [6] found that the density variance spectrum exhibited dual power-law characteristics: i)
the spectral index for frequencies higher than 10−4 Hz is close to Kolmogorov (−5/3 for 1D
spectrum) and ii) the spectral index for the 1D spectrum is ∼ −2 for the low frequency regime.
Writing Rav as R below for convenience, they also found that the indices remain nearly constant
with R for both the high and low frequency part of the spectrum until about 30 AU. However, the
high frequency spectral index approaches a value close to the Kraichnan value (3/2) beyond 30
AU. We employ here the index of the high frequency component of the density power spectrum.
Bellamy et al. [6] converted to the spatially varying wave number power spectrum for an assumed
constant solar wind speed vsw = 400 kms−1 by making the Taylor hypothesis whence

C2
N (R) = (2π)αv(1−α)

sw C2
t (R)〉, (13)

where α = βB [equation (12)] for all data.

3. The Parabolic Wave Equation (PWE) Formalism and Angular Broadening of
the Radio Source
Angular broadening due to the scattering of radio waves by density irregularities is calculated
by using the parabolic wave equation (PWE) theory [4, 14, 22, 34, 36, 38, 39]. We start with a
scalar field u of a locally planar electromagnetic field with wave number k where u is measured
in a plane perpendicular to the propagation direction z. We assume electromagnetic radiation
propagating along the z axis at a constant frequency (f = ω/2π) in a medium which varies on a
timescale longer than 1/f . The wave number k(z) of the radiation, which varies due to changes
in the plasma density with δρ� ρ0, can be expressed as

k(z) = k0(z)− 1

2k0

(2πfp0)2

c2

δρ

ρ0
, (14)

where λfs = c/f is the free-space wavelength, fp0 is the local steady state plasma frequency,

k0(z) = kfsn(z), kfs = 2π/λfs, n(z) = [1− f2
p0/f

2]1/2 is the refractive index, ρ0 is the spatially
varying and time stationary density, and δρ is the fluctuating turbulent density. Here, k0(z) does
not include the effects of density turbulence.

We use an infinite series of correlation functions or moments over the scalar field u that
contain the statistical information [14, 36]:

Γ1,1(z, k0, k1, s) = 〈u(z, k0, s)u
∗(z, k1, 0)〉, (15)

where Γ1,1(z, k0, k1, s) is the variance that describes the pulse broadening of the radiation, the
angle brackets denote an ensemble average of u, s is a position vector in the transverse plane,
k0 and k1 are the wave numbers, and for homogeneous density turbulence k1 = k0. We use the
notation of Lee and Jokipii [36], Lee [35], and Cairns [14].

The angular spectrum P (θ, k0) of the radiation can be expressed in terms of the Fourier
transformation of the spatial correlation function [14, 36] as

P (θθθ, k0) =
k2

0

4π2

∫
d2sΓ1,1(z, k0, k0, s)e

−k0·s, (16)

where θθθ is the angular wave vector of the radiation. The inverse Fourier transform of equation
(16) yields

Γ1,1(z, k0, k0, s) =

∫
d2θθθP (θ)eik0θθθ·s. (17)
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A Markov approximation can be used to reduce the scintillation problem in a simple way [36],
and eliminates the need to assume Gaussian statistics. The correlation functions Γ1,1(z, k0, k0, s)
in the Markov approximation for an homogeneous turbulent quantity (density fluctuation δρ) in
the transverse direction [14, 36] can be written as

∂Γ1,1

∂z
(z, k0, k0, s) = −r2

eλ
2
fs

1

(1− f2
p0/f

2)

[
A(z, 0−A(z, s))

]
Γ1,1, (18)

where f is the radio frequency (2 kHz or 3 kHz) and re is the classical electron radius. The
transverse correlation function A(z, s), meaning transverse to the propagation path, for the
density turbulence is [36]

A(z, s) = 2π

∫
d2qP3N (z, 0,−q) exp[iq · s], (19)

after applying a two-dimensional (2D) Fourier transformation [14]. P3N (z, kz,q) is the three-
dimensional density power spectrum and q denotes the wave vector transverse to the propagation
path. We set the transverse wave number kz = 0. Recall, we take z to be the propagation
direction of the radio wave. The location of the source is at z = 0 and the observer is at z = zob.

By employing a moment analysis of the PWE equation, which includes a spatially varying
local plasma frequency fp0(z) [14], coupled with the Markov approximation [14, 36], we obtain
the path integral of equation (18) as

Γ1,1(z, k0, k0, s) = exp

−r2
eλfs

2 ×
∫ zob

0
dz

2(
1− f2p0(z)

f2

) [A(z, 0)−A(z, s)]

. (20)

Expression (20) includes a spatially varying local plasma frequency fp0(z) [14] and the function
Γ1,1(z, k0, k0, s) describes the angular broadening. Equation (20) can be re-written as

Γ1,1(z, k0, k0, s) = exp [−Dφ(z, k0, s)/2] , (21)

and Dφ is known as the phase structure function.
We follow the theoretical model of Cairns [14] and include an inner scale in the 3D density

variance spectrum

P3N (q, 0, z) = C2
N (z)(q2)(−α

2
)exp

[
q

qi

]
, (22)

where qi = (li)
−1. Using equations (19), (20), and (22), we derive

Γ1,1(z, k0, k0, s)

= Γ1,1(z, 0) exp

[
− re2λfs

2s(α−2)4π2

∫
zob

0
dz

C2
N (z)(

1−
f2p0(z)

f2

) Γ(2−α
2

)22−α

Γ(α
2

)(α−2) q
(4−α)
i

]
. (23)

Previous analyses [14, 30, 34, 36, 38] show that the correlation function, and so via equation
(16) the angular distribution, becomes Gaussian for Gaussian distributed density turbulence,
with

P3N (θ, z) =
1

πθ2
SC

exp
[
−θ2/θ2

SC

]
, (24)
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with θ2
sc(z) = 〈θ2(z)〉. Equating equations (16) and (24) at the half power point and inserting

equation (23) for Γ1,1(k0, z), one finds [14] the mean-square scattering angle to be

θ2
SC(z) = π−2

4π2r2
e

∫
zob

0

dz
C2
N (z)λαfs(

1− f2p0(z)

f2

) Γ
(
2− α

2

)
22−α

Γ
(
α
2

)
(α− 2)

q
(4−α)
i


2

α−2

. (25)

The path length integral (25) can be converted easily to an integral over R from the source
Rso (when z = 0) to the observer Rob (when z = zob) and dz = −dR. Therefore, equation (25)
becomes

θ2
SC(R) = π−2

4π2r2
e

∫
Rso

Rob

dR
C2
N (R)λαfs(

1− f2p0(R)

f2

) Γ(2− α
2 )22−α

Γ(α2 )(α− 2)
q

(4−α)
i


2

α−2

. (26)

We numerically solve integral (26) for models of the density turbulence. In addition, we use the
analytic solution of Cairns [13]:

θ
5/3
SC (R′) = Bλ

11
3

[
2

A2R′
+

1

A3
log
(R′ −A
R′ +A

)]Rso
Rob

, (27)

after assuming fp(R
′) = fp1/R

′ in steady-state, where fp1 is the plasma frequency at 1 AU, R′ is
the heliocentric distance measured in AU, and A = fp1/f and B = 7.0× 10−12. In equation (27),
we assumed that the turbulence amplitude C2

N varies with R as

C2
N (R) = 3.9× 1015

( R
Rs

)−4.00
(meter)−20/3. (28)

Cairns [13] also included a quantity w that multiplies the amplitude factor 3.9 × 1015 in
equation (28). This is useful for comparing with the observations, with Cairns [13] requiring
w = 10−2 for approximate agreement with the predictions of Armstrong et al. [4]. Equation (27)
then takes the form

θSC = (w)0.6

[
Bλ

11
3

[
2

A2R′
+

1

A3
log
(R′ −A
R′ +A

)]Rso
Rob

]0.6

. (29)

4. Voyager Data in the Outer Heliosphere, Inner Heliosheath, and Very Local
Interstellar Medium
Figure 2 (from top to bottom) displays the solar wind density (ρ), the calculated variance of
the density fluctuation 〈ρ2〉, the calculated correlation length of the velocity fluctuations (lu),
the solar wind proton temperature (Ti), the solar wind speed (Vsw), and the magnetic field
magnitude (B) as a function of heliocentric distance. We calculate these quantities using 1-hour
resolution data from Voyager 2 over the period October 1, 1977 to December 31, 2018 using the
following steps [1, 2, 49, 50].

(i) We consider a sequence of 10 hour intervals of the solar wind density, the solar wind speed,
the solar wind temperature, and the magnetic field magnitude. We then calculate the mean
of the solar wind density, solar wind temperature, the magnetic field magnitude, and the
variance of the solar wind density in each 10 hour interval.
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Figure 2. From top to bottom, the density (ρ), fluctuating density variance 〈(δρ)2〉, velocity
correlation length (lu), proton temperature (Ti), solar wind speed (Vsw), and magnetic field
magnitude (B) as a function of radial distance (1 AU to 118 AU) obtained from Voyager 2 data
over the period – October 1, 1977 to December 31, 2018.

(ii) Similarly, to calculate the correlation length of the velocity fluctuations, we first calculate
the normalized auto-correlation function of solar wind speed as a function of time lag t. The
normalized auto-correlation function is 1 at zero time lag t, and decreases with increasing
time lag. Using Taylor’s hypothesis, the time lag is converted into the spatial lag x.

(iii) The correlation length is calculated by finding the spatial lag r where the normalized
auto-correlation function is 1/e of the maximum value. We note that we calculate the mean
of the solar wind parameters, the variance of the solar wind density, and the correlation
length only if the 10 hour interval contains at least five good data points. Otherwise, we
discard the entire interval, and move on to the next interval. We repeat the same process
until the end of each yearly Voyager 2 data set.

(iv) Finally, we smooth the data with 23 sequential 10 hour intervals, in which we apply a
constraint that the variance of the solar wind density 〈(δρ)2〉 must be smaller than the mean
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Figure 3. Comparisons between the observed and theoretical values of the fluctuating density
variance 〈(δρ)2〉 (left) and velocity correlation length lu (right) using Voyager 2 data and the
turbulence transport model of Zank et al. [49], Adhikari et al. [2], and Zank et al. [50].

of the squared solar wind density (ρ̄2), so as to avoid data associated with shocks or any
embedded structures within 10 hour intervals. If the data does not meet this condition, we
remove the entire row, and average the remaining data for each 10 hour intervals.

Voyager 1 (V1) crossed the heliospheric termination shock (HTS) in December 2004, and
Voyager 2 (V2) passed the HTS in August 2007 [42, 43]. V1 and V2 have since crossed the
heliopause (HP) and are now traveling through the very local interstellar medium (VLISM)
[29, 44]. Figure 2 shows that the HTS was crossed by V2 near 84 AU. Since the Voyager plasma
data after 118 AU is quite noisy, we only analyze data observed before December 31, 2018,
when V2 reached around 118 AU. Therefore, we assume that the radio source is located no
closer than Rso = 118 AU (i.e. in the VLISM) to numerically solve equation (26). We assume a
Kolmogorov-like density turbulence spectrum in the inner heliosheath (IHS) to proceed with our
analysis [11].

5. Observations vs Theoretical Predictions
Figure 3 compares the radial profiles of observed and theoretically predicted 〈(δρ)2〉 (left panel)
and lu (right panel) using V2 data and the turbulence transport model of Zank et al. [49, 50].
Here we followed the same steps as described in the previous section. However, we select data
over 20-hours for steps (i), (ii), (iii), and then smoothed over 10-hour intervals to make a better
comparison in step (iv). The left panel exhibits similar radial trends between the observed and
the theoretically predicted values. On the other hand, the right panel shows similarities between
observations and theoretical predictions of lu within 30 AU. However, the observed lu can be
larger and is more widely scattered beyond 30 AU, and the comparison is less good.

Figure 4 explores the variation of the inner scale as a function of R. We calculate the inner
scale/dissipation scale using equation (4) if βlu > rpg, otherwise we use equation (5). The
dissipation range (λd) is ∼ 2×103 km [24, 40] and the correlation length (λc) is ∼ 105 km [51] at 1
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Figure 4. The estimated inner or dissipation scale li (black dots · and blue dashes −−) as a
function of heliocentric distance in AU derived from β× lu and rpg and using V2 data and polyfits
to V2 data. We assume li = β× lu when βlu > rpg with β = 10−2, otherwise, li = 2π× rpg. Here,
the vertical cyan broken line shows the location of HTS.

AU. These observed values of the dissipation and correlation lengths yield the ratio λd/λc ∼ 10−2.
Therefore, we assume β = 10−2 in equation (4). On the other hand, we use li = 2π × rpg [i.e.
equation (5)] when βlu < rpg, as the inner scale li should be larger than rpg for thermal protons
[22, 31]. However, li according to Coles et al. [22] and Ingale et al. [31]’s definition is significantly
smaller than βlu at 1 AU.

In Figure 4, the black dots and broken blue lines display the radial variation of the calculated
inner scale derived from V2 data (black dots) and polyfits to the V2 data (blue dashes). We use
a second-order polynomial curve fit to estimate the characteristic radial profiles of lu, Ti, B, and
li. For convenience, we refer to the fit as a polyfit.

Figure 5 shows the radial variation of C2
N from 1 AU to 118 AU. We calculate C2

N by fitting
data and predictions of Figures 2 and 4 with model 1 [equation (3)] and model 2 [equation
(11)]. As for the previous figures, dots and broken lines present direct V2 data and polyfits,
respectively. Here, we use polyfits to 〈(δρ)2〉, lu, and li from Figure 4 to obtain the polyfits to
C2
N (R) for models 1 and 2. Figure 5 shows similar radial trends with a magnitude difference

between predictions of model 1 and model 2. Differences are due to the term
[
ln
(

1
kinj lu

)]−1

with kinj ∼ 1.07× 10−6.5 km−1 that appears in equation (11) unlike equation (3).
Figure 6 compares the turbulence amplitudes predicted by model 1 [equation (3)], model

2 [equation (11)] and model 3 [equation (13)] using the turbulence transport model results of
Zank et al. [49, 50] and Voyager data in the outer heliosphere (until 75 AU). We also compare
the above results of C2

N with analytic predictions by Cairns [13] that used equation (28). Here,
equation (28) does not include the w factor. Additionally, we compare predictions from Bellamy
et al. [6]. Turbulence downstream of the HTS is likely very different from that upstream, and
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Figure 5. Turbulence amplitude C2
N as a function of radial distance from 1 AU to 118 AU

derived from polyfits to V2 data [broken lines] and from V2 data itself [scattered dots]. Here the
red dots and lines correspond to model 1 and the black dots and lines to model 2. The cyan
vertical line indicates the location of the HTS.

almost certainly becomes more compressible [see e.g., Burlaga et al. [10] and Burlaga et al. [11]].
Hence, we do not use the turbulence transport model of Zank et al. [49, 50] in the IHS. Moreover,
we select the predictions over 1 – 75 AU as turbulence model 3’s predictions and results from
Bellamy et al. [6] are not available close to or after the HTS. Therefore, we separately include
this figure to show apparent similarities and dissimilarities between observed and theoretical C2

N
as a function of R.

The comparisons in Figure 6 show that predictions using the three turbulence amplitude
models have similar radial trends, but there are differences in magnitude (especially, within 10
AU). Figure 6 also shows that data-driven values of C2

N using model 1 (red plus signs) and model
3 (black crosses) are larger than the theoretical predictions of model 3 (blue asterisks) and the
results from Cairns [13] (green broken lines). Predictions of turbulence amplitude using model 2
and V2 data (blue asterisks) agree well with the results from Zank et al. [50] (magenta solid line).

Figure 7 shows the numerical predictions for the scattering angle θSC(R) using equation (26)
for density turbulence models that use the data in Figures 2, 4, and 6 for plasma quantities,
magnetic field, li(R), and C2

N (R) as well as the analytic model of Cairns [13] using equation (29)
that ignores inner scale effects and assumes a specific model for C2

N (R) (equation 28). Predictions
for θSC employ the turbulence amplitudes for model 1 using equation (3)) and model 2 using
equation (11). The figure also shows the apparent source sizes estimated by Cairns [13] from
observations of roll modulations of the observed radiation near 33 kHz at R ∼ 18AU [32] and
R ∼ 45− 48 AU [28].

Figure 7 shows that the predictions are much higher than the observed θSC when w = 1, but
that numerically and analytically predicted θSC(R) values become much closer to the observed
θSC for w = 0.01. An immediate interpretation for the larger numerical estimates for θSC(R)
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Figure 6. Comparison of predicted amplitudes C2
N using different models and V2 data from 1

AU to 75 AU. The red plus signs, the blue asterisks, and the black crosses present the V2 data
driven C2

N using model 1, model 2, and model 3, respectively. The broken green line presents
analytic predictions using equation (28) [13] whereas the magenta solid curve presents C2

N using
Zank et al. [50]’s predictions. The black squares with a solid line and orange triangles with a
solid line show C2

N from Bellamy et al. [6] for 192 s and 96 s resolutions, respectively.

from equation (26) is that the larger values of C2
N in the V2 data (Figure 6) yields larger values

of θSC(R). However, this qualitative argument does not include the inner scale effects included
in equation (26) via the term q4−α

i with li = q−1
i . Figure 8 demonstrates that the inner scale

effect reduces the predicted θSC(R) by a factor ≈ 2.2 using equation (26) for the same C2
N (R)

and comparing the predictions without inner scale effects (i.e., excluding q4−α
i in equation (27))

included and the analytic θSC from Cairns [13]. We also included w = 0.01 like [13] for all
predictions to reduce the value close to the observed θSC . Importantly, though inner scale effects
are thus quantitatively important as argued previously by Armstrong et al. [4], they are not
sufficient to bring the predicted and observed source sizes into close agreement.

Since the models in Figure 7 and 8 use Voyager density observations and theory appropriate
to the slow solar wind relatively close to the ecliptic plane, it is possible that out-of-the-ecliptic
effects are important. Specifically, the observations of radio waves by Gurnett et al. [28] were
taken during the declining phase of the solar cycle when the spacecraft apparently was in the
fast polar stream [8, 9, 37]. Moreover, more detailed consideration of the radio source region and
the radiation’s propagation to the observer [4, 19, 25] suggest that generation and propagation
close to the ecliptic plane are unlikely. Crucially, the density variance is much stronger in the
equatorial region than over the poles [4, 21], thereby yielding larger values of 〈(δρ)2〉, C2

N (R),
and so θSC(R). We find in this paper that inner scale effects and the best available models for
the near-eclipitc density turbulence yield scattering angles θSC that are much larger than those
observed for the 2-3 kHz radiation. This provides a strong argument that out-of-the-ecliptic
effects need to be incorporated complementing the earlier arguments of Armstrong et al. [4].
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Figure 7. Radial variation of the scattering angle θSC predicted by equation (26) for various
density turbulence models (curves) and estimates of the the observed source size (blue diamonds).
Here dotted lines show the results for w = 1 and solid lines with triangles show the results
for w = 0.01. The source is assumed to be at Rso = 118 AU and the frequency 3 kHz. The
predictions use model 1 (red lines), model 2 (black lines) with V2 data for lu, li, and 〈(δρ)2〉. The
magenta broken lines with squares and gray broken lines with squares present θSC for polyfits
to V2 data using model 1 and model 2, respectively. The brown dot-dashed lines and green
lines with triangles show the analytic predictions for θSC of Cairns [13] for w = 1 and w = 0.01,
respectively. The blue diamonds show the apparent source sizes from Cairns [13] using published
roll modulation data for radiation near 3 kHz around R ∼ 18AU [32] and R ∼ 45− 48AU [27].
The vertical broken cyan line is the same as Figures 4 and 5.

For now, though, like Cairns [13] we use a factor w = 0.01 to reduces θSC(R) to values that
are in reasonable accord with the observations shown Figure 7. In the future, we plan to develop
detailed models of polar density turbulence, evaluate the effect of latitudinal variations in detail,
and assess whether these effects produce an effective value of w ≈ 0.01 compared with in-ecliptic
density turbulence.

6. Conclusions
The results from the foregoing analysis can be summarized as follows:

• We used three approaches (i.e. models 1, 2, and 3) to model C2
N (R) and Voyager 2 data.

Predictions using models 1 and 2 show similar radial profiles from 1 AU to 118 AU, with a

difference in magnitudes (Figure 5) due to the presence of of the term
[
ln
(

1
kinj lu

)]−1
in

equation (11) of model 2. We then compared C2
N (R) from 1 AU to 75 AU in Figure 6 using

all three approaches together with the results derived from the turbulence transport models
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Figure 8. Radial variation of the scattering angle θSC predicted by using polyfits to V2 data
and equation (26) with (solid lines with triangles) and without (broken lines with squares) the

inner scale term (q4−α
i = l

−(4−α)
i ) for the density turbulence model 1 (red markers) and model 2

(black markers). The green broken line with triangles, blue solid diamonds, and vertical cyan
line are same as in Figure 7. Here all results for θSC are multiplied by w0.6 where w = 0.01.

of Zank et al. [49, 50], results from Bellamy et al. [6], and analytic predictions by Cairns
[13]. The predictions using various models and V2 data all have similar radial trends on
average, although with some quantitative differences. We also found that V2 data-driven
predictions are 1 to 2 orders of magnitude larger than analytic C2

N by Cairns [13].

• We extended the theoretical model for θSC(R) by including an inner scale li(R) for the
turbulence and providing theoretical models for li(R). The numerical results for θSC(R)
employed C2

N from Figure 5 and li from Figure 4. Figure 7 shows that predicted values of
θSC are much larger than the observed θSC , even with li included. This result indicates
that we need to incorporate some missing physics in the investigation. Like Cairns [13],
we introduced a factor w = 0.01 which allows us to a match the observations and models.
Figure 7 shows that predicted values of θSC(R) when multiplied by w0.6 agree reasonably
well with Voyager derived observations of the source size. We used V2 data for the slow
solar wind at the near-ecliptic plane, which cannot account for the factor w ≈ 0.01 required
to explain the observed radio source sizes.

• As a byproduct of the analysis, we found an important result about the scale at which
turbulent energy is injected. As illustrated in Figure 3 (left panel), the turbulence transport
model of Zank et al. [50] appears to describe the variance of the density fluctuations
〈(δρ)2〉 in the energy containing range quite well. To compute C2

N , we use equation (11),
which introduces the injection scale kinj . Since 〈(δρ)2〉 is modeled accurately, we can use
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the observed C2
N values to constrain kinj . In doing so, we find quantitatively that kinj

corresponds to the solar rotation period. This is a quantitative demonstration of the well-
known assumption that the largest scale injected into the turbulent energy of the solar wind
corresponds to solar rotation.

In future, we will address in detail latitudinal variations of the density turbulence. This will
include theoretical predictions for C2

N (R) and li(R) for the polar and fast solar wind, prediction
of θSC(R) as well as the scattering and propagation of the 2-3 kHz radio emissions.
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