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Modeling of Welded Joints in a
Pyramidal Truss Sandwich Panel
Using Beam and Shell Finite
Elements
Pyramidal truss sandwich panels (PTSPs) are widely used in engineering structures and
their face sheets and core parts are generally bonded by the welding process. A large
number of solid elements are usually required in the finite element (FE) model of a PTSP
with welded joints to obtain its accurate modal parameters. Ignoring welded joints of the
PTSP can save many degrees of freedom (DOFs), but significantly change its natural fre-
quencies. This study aims to accurately determine modal parameters of a PTSP with welded
joints with much fewer DOFs than those of its solid element model and to obtain its oper-
ational modal analysis results by avoiding missing its modes. Two novel methods that con-
sider welded joints as equivalent stiffness are proposed to create beam-shell element models
of the PTSP. The main step is to match stiffnesses of beam and shell elements of a welded
joint with those of its solid elements. Compared with the solid element model of the PTSP, its
proposed models provide almost the same levels of accuracy for natural frequencies and
mode shapes for the first 20 elastic modes, while reducing DOFs by about 98% for the
whole structure and 99% for each welded joint. The first 14 elastic modes of a PTSP speci-
men that were measured without missing any modes by synchronously capturing its two-
faced vibrations through use of a three-dimensional scanning laser vibrometer (SLV) and
a mirror experimentally validate its beam-shell element models created by the two proposed
methods. [DOI: 10.1115/1.4048792]

Keywords: finite element modeling, sandwich panel, pyramidal truss, welded joint, modal
parameters, operational modal analysis

1 Introduction
Sandwich panels are a type of composite structures and widely

used in commercial vehicles and aerospace and military industries.
A typical sandwich panel consists of two face sheets that provide
bending and in-plane shear stiffnesses, and a core part that carries
out-of-plane shear loads. According to types of core parts, sandwich
panels can be classified as foams, corrugations, honeycombs,
trusses, and so on. Compared with monolithic plate structures and
other types of sandwich panels, truss sandwich panels have lower
weights but higher stiffnesses and strengths [1,2]. Other physical
properties of truss sandwich panels, such as the energy absorption
capacity, the heat dissipation capability, and the heat transfer capa-
bility, have also been investigated by researchers [3,4].
In this study, modeling of a pyramidal truss sandwich panel

(PTSP) is discussed. Various methods used to fabricate PTSPs,
such as extrusion and electro-discharge machining [5], three-
dimensional (3D) printing [6,7], and interlocking and vacuum-
brazing [8,9], have been investigated. As shown in Fig. 1, the
core part of the PTSP studied in this work is first manufactured
by punching a perforated metallic sheet in a special air die. The
second step of this process is to bond face sheets and the pyramidal
truss core through the welding technique. As a result, pyramidal
unit cells are periodically arrayed in three dimensions. By applying
the above manufacturing process, the effect of temperature on mate-
rial properties is weakened since the truss core is kept as one piece

instead of being bonded together by single beams through the
welding process.
Solid elements are generally used in finite element (FE) models

of sandwich panels and their high accuracies in static and
dynamic analyses have been proved in many investigations. Yang
et al. [10] created solid element models of PTSPs to study effects
of viscoelastic layers on their vibration and damping performance.
Good agreement between numerical and experimental results is
reported by them. Li et al. [11] used solid elements to simulate sand-
wich panels with hourglass truss cores and obtained acceptable dif-
ferences between numerical and experimental results. However,
sandwich panels in above studies were mainly manufactured
through the hot press molding technology. In this investigation,
welded joints of the PTSP between its face sheets and truss core,
as shown in Fig. 2, are made by the welding process. For this
kind of sandwich panels, previous studies ignored welded joints
in their FE models [12,13]. However, dimensions of joints
between face sheets and the core part of a sandwich panel can
affect its static and dynamic characteristics [14,15]. Syam et al.
[14] designed some strut-based lattice structures and studied their
static and dynamic mechanical properties. They found that percent-
age differences between numerical and experimental results of
structural stiffnesses range from 0.8% to 26%. The error analysis
indicated that geometrical discrepancies of connecting nodes are
one of main reasons of these differences. Yang et al. [15] estab-
lished a solid element model to investigate modal properties of a
sandwich cylindrical panel and compared its simulation and exper-
imental results. A maximum error of 14.6% in natural frequencies
and loss of individual modes were reported in their work.
Based on above discussions, one can see that welded joints play

an important role in the modeling of sandwich panels. Shapes of
welded joints are generally irregular during the fabrication
process, but fillets are always used to simulate them in some
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fields, including fatigue assessment of welded joints [16] and flow
performance investigation of PTSPs [3]. As shown in Fig. 3, fillets
are created between the truss core and face sheets of the solid
element model of the PTSP in this work, and dense meshes are
applied to it to reduce errors caused by stress concentration when
solid elements are used. As a result, much longer computation
time and much larger computer memory are needed in the FE anal-
ysis, especially for relatively large and complicated structures.
One method to save time and memory in the FE analysis is to use

beam and shell elements to model a PTSP with welded joints, which
are much more efficient than solid elements, since the number of
degrees of freedom (DOFs) in a beam-shell element model is
much fewer than that in a solid element model. Some researchers
who focus on honeycomb-core sandwich panels usually use shell
elements in their FE models due to characteristics of core parts
[17,18]. However, Burlayenko and Sadowski [19] suggested that
shell elements that save computation time have less accuracy than
solid elements in the calculation of natural frequencies of foam-
filled honeycomb-core sandwich panels. Their results indicated
that natural frequencies were overestimated by 8–10% when shell
elements were used in FE models. Simplification of PTSPs is not
always as easy as that of honeycomb-core sandwich panels due to
the existence of beam members in core parts of the PTSPs. Some
researchers created FE models of PTSPs with shell elements in
face sheets and solid elements in truss cores to obtain enough accu-
racy [20,21], but DOFs of the FE models were not significantly
reduced. Yuan et al. [13] used beam and shell elements to build
FE models of PTSPs and analyzed their buckling behaviors. Zhou
and Li [22] detected damage of a PTSP based on its vibration char-
acteristics, and beam and shell elements were used in their FE
model of the PTSP. The FE model in their investigation was
remarkably simplified; however, local effects of welded joints on
the PTSP were not considered in their model. Xu and Deng [23]
investigated simplifications of FE models of spot-welded joints
and proposed several types of simplified joint models, including
the single-bar model, the spoke-bar model, and the multiple rigid-

bar model. Results of the structural stiffness of a joint showed
that these simplifications have great accuracy in loading conditions
of tension, torsion, and out-of-plane bending, but large errors for
in-plane bending and torsion. Most of the above studies focus on
static analysis of PTSPs, and more studies on dynamic analysis of
PTSPs modeled by beam and shell elements are needed and
modal tests of PTSPs need to be improved to resolve the missing
mode problem [15].
This work aims to accurately determine modal parameters,

including natural frequencies and mode shapes, of a PTSP with
welded joints with much fewer DOFs than those of its solid
element model and to improve accuracy of modal test results of a
PTSP specimen by avoiding the missing mode problem. Two
novel methods that consider the stiffness of welded joints created
by solid elements as equivalent stiffnesses of beam and shell ele-
ments are developed to significantly simplify the solid element
model. In these two methods, the equivalent stiffnesses are calcu-
lated by matching displacements of welded joints created by
beam and shell elements with those created by solid elements.
The equivalent stiffness of beam elements is simulated by adding
extra beam elements with corresponding cross-sectional dimen-
sions, while the equivalent stiffness of shell elements is simulated
by updating their Young’s modulus in one method and their thick-
ness in the other method. In operational modal analysis of the PTSP
specimen with simulated free boundary conditions, a speaker was
used to excite it and a 3D scanning laser vibrometer (SLV) was
used to measure its vibration. In order to synchronously capture
mode shapes of two face sheets of the specimen, vibration of the
backface of the specimen is measured through its image in a
mirror and combined with that of its frontface. Novelties of this
work are summarized as follows. First, the FE model of a PTSP
with welded joints is significantly simplified and its modal param-
eters are accurately obtained. Second, the missing mode problem
in the modal test of the PTSP is resolved by simultaneously measur-
ing vibrations of its two face sheets.
The remainder of this paper is organized as follows. In Sec. 2,

based on the directly simplified model of the PTSP created by
beam and shell elements with welded joints ignored, two novel
methods that consider effects of welded joints as equivalent stiff-
ness are proposed. Methodologies for calculating equivalent param-
eters of beam and shell elements are developed there. In Sec. 3,
modal parameters of the PTSP from the two proposed models and

Fig. 1 Manufacturing process of the core part of the PTSP studied in this work

Fig. 2 Components of the PTSP studied in this work with
welded joints made by the welding process

Fig. 3 Solid element model of the PTSP in this work with dense
meshes applied to welded joints
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the model that ignores welded joints are compared with those from
the solid element model to check accuracy of the two proposed
models. In Sec. 4, operational modal analysis of the PTSP specimen
is conducted by using a 3D SLV to validate modal parameters esti-
mated by the two proposed models and the experimental setup to
improve accuracy of experimental results is discussed. Some con-
clusions are presented in Sec. 5.

2 Methodology
The commercial finite element software ABAQUS is used in this

study to build FE models of the PTSP with welded joints. Solid ele-
ments C3D4 are used in the solid element model, and beam ele-
ments B33 and shell elements S4R are used in beam-shell
element models. Natural frequencies and mode shapes of PTSP
models with free boundary conditions are extracted through the
Lanczos approach [24]. Equal dimensions of welded joints are
assumed in numerical calculation.

2.1 Direct Simplification Method. As mentioned in Sec. 1,
direct simplification methods have been used to model sandwich
panels in some published works [12,13,19]. For the directly simpli-
fied beam-shell element model of the PTSP in this study that ignores
welded joints, its face sheets can be modeled by shell elements and
the truss core can be modeled by beam elements, as shown in Fig. 4.
Both material properties and dimensions of the directly simplified
model of the PTSP are kept the same as those of the solid
element model. Besides, a “tie” is used as the constraint between
beam and shell elements in the directly simplified model.

2.2 Equivalent Welded Joint Modeling Methods. Based on
the direct simplification method, two novel methods that consider
the stiffness of welded joints created by solid elements as equivalent
stiffnesses of beam and shell elements are proposed here. Modal
parameters, such as natural frequencies and mode shapes, of a struc-
ture are mainly determined by its mass and stiffness. The
approaches here mainly focus on predicting the equivalent stiffness
introduced by welded joints, since the mass of the beam-shell
element model of the PTSP can be easily matched with that of its
solid element model by updating its density. Material properties
or dimensions of beam and shell elements can be correspondingly
changed to satisfy the stiffness equivalence. Note that the equivalent
mass and stiffness of beam-shell element models of the PTSP are
not updated based on experimental data, but are updated based on
numerical analysis of its solid element model.
As shown in Fig. 5, a pyramidal truss unit of the solid element

model of the PTSP in this work basically consists of a part of a
thin face sheet, four beam members, and four fillets at a welded
joint. Some researchers have studied effects of fillets and different
types of joints on modal parameters of structures. Brown and Seu-
gling [25] studied a thin-walled structure with fillets and modeled a
fillet as a “bridge” plate to consider its in-plane effect on modal
parameters of the structure. He and Zhu [26] investigated thin-
walled beams with fillets and modeled both in-plane and
out-of-plane effects of the fillets by matching rotational displace-
ments of a half fillet from the curved beam theory and finite

element model, and matching area moments of inertia and torsional
displacements from the beam theory and finite element model,
respectively. He and Zhu [27] developed a novel method for accu-
rately predicting stiffnesses of tightened bolted connections in
beams using their contact area radii. Kim et al. [28] developed a
linear FE modeling method to accurately estimate modal parameters
of joined structures with riveted connections by simulating riveting
processes using their nonlinear FE models.
By separating beam members and the face sheet from the welded

joint at tangent sections and vertical sections in Fig. 5, the welded
joint can be solely analyzed to obtain its stiffness. A single
welded joint is shown in Fig. 6, where two orthogonal symmetrical
planes can be seen. A quarter of the welded joint with fixed bound-
aries on the symmetrical planes can be analyzed to obtain the stiff-
ness of the whole joint, since one can assume that there is no
deformation on the symmetrical planes.
The stiffness of the welded joint can be decomposed into two

parts: the stiffness of beam members and that of the welded
joint plate shown in Fig. 5. A beam with a fillet is compared with

Fig. 4 Directly simplified beam-shell element model of the PTSP
in Fig. 3: face sheets are created by shell elements, the truss core
is created by beam elements, and welded joints are ignored

Fig. 5 Components of a pyramidal truss unit of the solid
element model of the PTSP in this work, including a part of a
face sheet, four beam members, and four fillets at a welded
joint: (a) 3D view and (b) the right side view

Fig. 6 Single welded joint and its quarter part that is cut along
its two orthogonal symmetrical planes
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that without the fillet in Fig. 7. One can see that the existence of the
fillet makes the cross section of the beam variable and leads to its
larger equivalent cross-sectional dimensions than those of the cor-
responding beam without the fillet. Therefore, the equivalent stiff-
ness of the beam becomes larger when the effect of the fillet is
considered. Similarly, as shown in Fig. 8, the welded joint increases
the equivalent thickness of the plate due to the existence of the fillet
and leads to augmentation of the plate stiffness.
In this work, it is assumed that solid elements used in a welded

joint can be substituted by sloped beam elements that have the
same orientations and cross-sectional dimensions as original beam
members in the pyramidal truss unit in Fig. 5, vertical beam elements
that offer an extra stiffness, and shell elements that have the equiva-
lent bending stiffness to that of the original plate in the pyramidal
truss unit, as shown in Fig. 9. A pin is used to connect the sloped
beam and vertical beam, and a concentrated force F and a bending
moment M are applied at the pin point, as shown in Fig. 10. Since
cross sections of beam elements are rectangles, the equivalent stiff-
ness of vertical beam elements can be calculated under loading con-
ditions in two orthogonal planes referred to the in-plane and
out-of-plane, which are the plane formed by the sloped and vertical
beams and that perpendicular to it, respectively, as shown in
Fig. 10, and the equivalent stiffness of vertical beam elements can
be expressed as their cross-sectional dimensions. The predictive
modeling procedure for the equivalent out-of-plane stiffness, the
equivalent in-plane stiffness, and the equivalent bending stiffness
of the beam-shell element model of the welded joint is shown below.

2.2.1 Out-of-Plane Stiffness of Beam Elements. As shown in
Fig. 9, the sloped and vertical beams in the quarter welded joint
are referred to as beam 1 and beam 2, respectively. When F and
M are applied in the out-of-plane, force equilibria of the two
beams are shown in Fig. 11, where U1-V1 and U2-V2 are local

Cartesian coordinates of displacements for beams 1 and 2, respec-
tively, and they can be transformed to each other through a transfor-
mation matrix that is a function of the angle α between the two
beams. According to the analysis in Fig. 11, relations between
loads and beam displacements for beams 1 and 2 can be written as

Fig. 7 Comparison of beams (a) with and (b) without a fillet: the
beam cross section in (a) varies due to the existence of the fillet

Fig. 8 Comparison of plates with and without the fillet: (a) 3D
view of a half welded joint cut from a symmetrical plane of
the joint, (b) the welded joint plate with the fillet, and (c) the
plate without the fillet; the thickness of the welded joint plate
becomes larger due to the existence of the fillet

Fig. 9 Equivalent model of a welded joint with sloped beam ele-
ments that have the same orientations and cross-sectional
dimensions as original beam members in the pyramidal truss
unit in Fig. 5, vertical beammembers that offer an extra stiffness,
and shell elements that have the equivalent bending stiffness to
that of the original plate in the pyramidal truss unit
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Fig. 10 Beam elements used to calculate the equivalent stiff-
ness of the quarter welded joint: (a) an in-plane concentrated
force and a bending moment are applied at the pin and (b) an
out-of-plane concentrated force and a bending moment are
applied at the pin

Fig. 11 Force equilibria of beams 1 and 2 when the out-of-plane
force and moment are applied at the pin

Fig. 12 Force equilibria of beams 1 and 2 when the in-plane
force and moment are applied at the pin

Fig. 13 Coordinate system established on the plane formed by
the welded joint plate, and moments applied to it along X and Y
directions
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respectively, where the superscript “out” denotes out-of-plane, and
subscripts “1” and “2” denote beams 1 and 2, respectively; U, V,
and θ denote axial, transverse, and rotational displacements of
either beam at its end at the pin, respectively; E is the Young’s
modulus of the two beams; L, A, and I denote the length, cross-
sectional area, and area moment of inertia of a cross section of
either beam, respectively; Fp denotes the reaction force on either
beam from the pin along the transverse direction of the beam; and
K denotes the stiffness matrix of either beam with its components
shown there. There is no axial force in either beam when F and
M are applied in the out-of-plane. The out-of-plane transverse dis-
placement of beam 1 Vout

1 is equal to that of beam 2 Vout
2 . Therefore,

Eqs. (1) and (2) can be simplified as
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Since the rotational displacement of a beam affects more its beha-
vior than axial and transverse displacements [16], only θ is selected
to match results from above analytical models and the numerical
result from the solid element model of the quarter welded joint.
In other words, θout1 in Eqs. (3) and (4) can be calculated from the
solid element model of the quarter joint by applying the
out-of-plane force and moment to it. As previously mentioned,
beam 1 has the same cross section as original beam members in
the pyramidal truss unit, which is rectangular and whose dimen-
sions can be directly measured. The out-of-plane area moment of
inertia of beam 1 Iout1 in Eq. (3) is th3/12, where t and h are its cross-
sectional dimensions. The out-of-plane transverse displacement of

Fig. 14 Dimensions of the solid element model of the PTSP with
welded joints: dimensions of (a) the whole PTSP, (b) a pyramidal
truss unit, and (c) a welded joint

Fig. 15 (a) Distribution of the out-of-plane rotational displace-
ment of the quarter welded joint from the solid element model
when the out-of-plane force and moment are applied to it and
(b) that of the in-plane rotational displacement of the quarter
welded joint from the solid element model when the in-plane
force and moment are applied to it
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beam 1 Vout
1 , the out-of-plane transverse reaction force Fout

p , the out-
of-plane moment of inertia of beam 2 Iout2 , and the out-of-plane
rotational displacement of beam 2 θout2 are four unknown vari-
ables that can be subsequently calculated from four equations in
Eqs. (3) and (4).

2.2.2 In-Plane Stiffness of Beam Elements. Relations between
in-plane loads and displacements of beams 1 and 2 can be similarly
derived from Fig. 12, which are
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respectively, where in-plane variables have similar meanings to
out-of-plane variables previously discussed; Nin

p and Fin
p are

in-plane reaction forces from the pin along axial and transverse
directions of beam 2, respectively; Iin1 is the in-plane area moment
of inertia of beam 1, whose calculation is similar to that of its
out-of-plane area moment of inertia; and Iin2 and A2 are given by

Iin2 =
1
12

ab3 (7)

A2 = ab (8)

respectively, in which a and b are cross-sectional dimensions of
beam 2.
As shown in Fig. 12, transformations between axial and trans-

verse displacements of beams 1 and 2 can be expressed as

Uin
2 = Uin

1 cos α + Vin
1 sin α (9)

Vin
2 = −Uin

1 sin α + Vin
1 cos α (10)

respectively, where α is the angle between beams 1 and 2. Equa-
tions (7)–(10) can be substituted into Eq. (6) to yield
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Note that the out-of-plane moment of inertia of beam 2 Iout2 has been
previously obtained; the relation between Iout2 and a and b is

Iout2 =
1
12

ba3 (12)

Fig. 16 Distributions of rotational displacements of edges of the
welded joint plate in the solid element model of the whole welded
joint when moments are applied along (a) Y and (b) X directions
that are defined in Fig. 13

(a)

(b)

Fig. 17 Relation curves between rotational displacements of
edges of beam-shell element models of the whole welded joint
and (a) the Young’s modulus and (b) thickness of shell elements,
where horizontal dashed lines denote the rotational displace-
ment of the solid element model of the whole welded joint that
is obtained from Fig. 16(a)
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Similar to calculating the out-of-plane rotational displacement of
beam 1 θout1 , θin1 that is the in-plane rotational displacement of
beam 1 can be calculated from the solid element model of the
quarter welded joint by applying the in-plane force and moment
to it. Therefore, the seven unknown variables a, b, Nin

p , F
in
p , U

in
1 ,

Vin
1 , and θin2 can be solved from seven equations in Eqs. (5), (11),

and (12).

2.2.3 Bending Stiffness of Shell Elements. As shown in Fig. 13,
a Cartesian coordinate system X–Y is created on the plane that is
formed by the welded joint plate. In order to calculate the equivalent
stiffness of shell elements in the welded joint, the first step is to cal-
culate the bending stiffness of the welded joint plate by applying a
couple Mx along the X direction and another couple My along the Y
direction to it. Rotational displacements of the welded joint plate
can be calculated from the solid element model of the whole
welded joint to determine its bending stiffness. The second step is
to create a beam-shell element model of the whole welded joint,
where cross-sectional dimensions of vertical beam elements a and
b are previously obtained, and to applyMx andMy to it. By updating
the Young’s modulus or thickness of shell elements, rotational dis-
placements of the beam-shell element model of the welded joint can
be matched with those of its solid element model. The updated
Young’s modulus or thickness of shell elements can be used to
represent the equivalent bending stiffness of shell elements in
welded joints of the whole PTSP created by beam and shell
elements.
Based on above analyses and the matching process, the proposed

methods can be generally used to simplify the solid element model
of a PTSP with welded joints. One can see that parameters of beam
and shell elements in the simplified FE model of the PTSP, includ-
ing their cross-sectional dimensions, Young’s modulus, and thick-
ness, are determined by geometrical sizes of its welded joints.
Only solid element models of welded joints instead of the whole
PTSP would be created. Steps of the proposed methods are measur-
ing geometrical sizes of welded joints in the PTSP, creating solid
element models of welded joints, calculating parameters of beam
and shell elements through the proposed methods, and creating
the beam-shell element model of the whole PTSP. The proposed

methods are numerically verified in Sec. 3 and experimentally vali-
dated in Sec. 4.

3 Results of Numerical Analysis
The material and dimensions of the PTSP in numerical analysis

correspond to those of the actual PTSP specimen in Sec. 4; the
material is aluminum that has a Young’s modulus of 71.9 GPa, a
density of 2700 kg/m3, and a Poisson’s ratio of 0.33. Dimensions
of the solid element model of the PTSP are shown in Fig. 14. A
face sheet of the PTSP has a length of 304 mm, a width of
162 mm, and a thickness of 3.5 mm. The distance between two
face sheets is 30 mm. The distance between ends of two adjacent

Table 1 Young’smoduli, cross-sectional dimensions, and thicknesses of beam and shell elements in FEmodels created byMethods
I, II, and III

Method

Beam elements of beam 1 Beam elements of beam 2
Shell elements in welded

joints
Shell elements in face

sheets

E (GPa) a× b (mm) E (GPa) a× b (mm) E (GPa) H (mm) E (GPa) H (mm)

I 71.9 2 × 4 / / / / 71.9 3.5
II 71.9 2 × 4 71.9 0.13 × 8.54 153.5 3.5 71.9 3.5
III 71.9 2 × 4 71.9 0.13 × 8.54 71.9 3.9 71.9 3.5

Fig. 18 Beam-shell element model of the PTSP created by
Method II or III

(a)

(b)

Fig. 19 (a) Natural frequencies of the first 20 elastic modes of
the PTSP from its beam-shell element models in Methods I, II,
and III and its solid element model and (b) errors between
natural frequencies from beam-shell element models and the
solid element model
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beams in a pyramidal truss unit is 35 mm along the length direction
of face sheets and 40 mm along their width direction; the total
number of pyramidal truss units is 8 × 4. As shown in Fig. 14(b),
the angle between two beams along the width direction of face
sheets, which is determined by the air die shown in Fig. 1, is
66 deg. Based on dimensions of the pyramidal truss unit, the rela-
tive density of the PTSP in this work can be calculated by [29]

�ρ =
2π

cos2ω sinω
t1
l

( ) t2
l

( )
(13)

where t1 and t2 are cross-sectional dimensions of beam members, l
is the length of the beam members, and ω is the angle between the
beam members and face sheets. Values of above parameters are
shown in Fig. 14 and �ρ is 11.8% in this work. One can see from
Fig. 14(c) that dimensions of the welded joint plate are 12 mm×
12 mm×3.5 mm, the radius of fillets is 2 mm, and cross-sectional
dimensions of beam members are 4 mm×2 mm, which are approx-
imate dimensions of welded joints in the actual PTSP specimen. As
mentioned in Sec. 2, dimensions of all welded joints are assumed to
be the same in numerical calculation.

3.1 Results of the Equivalent Stiffness of Beam Elements.
As discussed in Sec. 2, out-of-plane and in-plane bending
moments of 10 N·m and concentrated forces of 1000 N are
applied to the solid element model of the quarter welded joint to cal-
culate cross-sectional dimensions of beam 2. Lengths of beams 1

and 2 in Fig. 9 are 6 mm and 4.3 mm, respectively. As shown in
Fig. 15, out-of-plane and in-plane rotational displacements of
beam 1 are θout1 = 0.0479 rad and θin1 = 0.157 rad, respectively. As
derived in Eqs. (1)–(12), out-of-plane and in-plane moments of
inertia of beam 2 can be calculated as Iout2 = 6.8041 × 10−12m4

and Iin2 = 1.6061 × 10−15m4, respectively. Therefore, cross-
sectional dimensions of beam 2 are a= 1.3118 × 10−4m and b=
8.538 × 10−3m. By inputting calculated cross-sectional dimensions
of beam 2, a beam-shell element model of the whole welded joint
can be created.

3.2 Results of the Equivalent Stiffness of Shell Elements.
As mentioned in Sec. 2, couples Mx and My along X and Y direc-
tions, respectively, which have the same value of 100 N·m, are
applied to the solid element model of the whole welded joint to cal-
culate its rotational displacements. As shown in Fig. 16, rotational
displacements of edges of the welded joint plate are 0.129 rad and
0.119 rad along Y and X directions, respectively. It is important to
note that equivalent bending stiffnesses of shell elements along
the two directions should be separately calculated by matching rota-
tional displacements between the beam-shell element model of the
whole welded joint and its solid element model since they are gen-
erally different along the two directions; orthotropic elastic proper-
ties of shell elements can then be specified by setting their

Fig. 20 First elastic mode shapes from (a) the solid element
model, (b) the beam-shell element model in Method I, (c) the
beam-shell element model in Method II, and (d ) the beam-shell
element model in Method III

Fig. 21 Second elastic mode shapes from (a) the solid element
model, (b) the beam-shell element model in Method I, (c) the
beam-shell element model in Method II, and (d ) the beam-shell
element model in Method III

Fig. 22 Edge areas at the frontface and backface of the PTSP
that are not reinforced by the truss core
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engineering constants in ABAQUS. For this study, however, differ-
ences between rotational displacements of the welded joint plate
along the two directions are relatively small. Therefore, only the
rotational displacement of the welded joint plate along the Y direc-
tion is used in calculation of the equivalent bending stiffness of shell
elements.
In order to match the rotational displacement of edges of the

beam-shell element model of the whole welded joint with that of
edges of the welded joint plate in its solid element model, updating
the Young’s modulus or thickness of shell elements is used as two
methods in this work. The initial Young’s modulus and thickness of
shell elements are the same as those of solid elements. Relation
curves between rotational displacements of edges of beam-shell
element models of the whole welded joint and the Young’s
modulus and thickness of shell elements are shown in Fig. 17,
where horizontal dashed lines denote the rotational displacement
of edges of the welded joint plate in the solid element model of
the whole welded joint that is obtained from Fig. 16(a). Intersec-
tions of relation curves and dashed lines in Fig. 17 denote points
where rotational displacements of edges of beam-shell element
models of the whole welded joint match those of edges of
the welded joint plate in its solid element model. One can see
from Fig. 17 that the updated Young’s modulus and thickness at
intersections of relation curves and dashed lines are
E∗=153.5GPa and H∗=3.88mm, respectively.
Beam-shell element models of the PTSP can be created by input-

ting parameters of beam and shell elements in Table 1 that are
obtained from the above numerical analysis, where H is the thick-
ness of shell elements. Methods I, II, and III in Table 1 represent
the direct simplification method, the updating Young’s modulus
method, and the updating thickness method, which are used to
create beam-shell element models of the PTSP. One can see that
the Young’s modulus and cross-sectional dimensions of beam ele-
ments of beam 1, and the Young’s modulus and thickness of shell
elements in face sheets in the three methods are the same as those in
the solid element model of the PTSP. Parameters of beam elements
of beam 2 and shell elements in welded joints vanish in Method I
since welded joints are neglected there. It is noted from Table 1

that Methods II and III have the same cross-sectional dimensions
of beam elements of beam 2, which are calculated in Sec. 3.1, but
different Young’s moduli and thicknesses of shell elements in
welded joints, which are obtained in Sec. 3.2.
The beam-shell element model of the PTSP created by Method II

or III is shown in Fig. 18. The total number of DOFs of the solid
element model of the PTSP that is shown in Fig. 3 is 6,853,806,
that of its beam-shell element model created by Method I is
159,648, and that of its beam-shell element model created by
Method II or III is 162,912. This indicates that compared with the
solid element model of the PTSP, DOFs are reduced by 97.7%
for its beam-shell element models in Methods I, II, and III. Com-
pared with DOFs of the solid element model of a welded joint,
those of beam-shell element models of the welded joint in
Methods II and III are reduced by 99.1%.

3.3 Comparison of Natural Frequencies. Note that the first
six modes of FE models of the PTSP in this work are rigid-
body modes due to its free boundary conditions; by ignoring rigid-
body modes whose natural frequencies are almost zero, only elastic
modes that begin with the seventh mode are discussed here. Errors
between the ith natural frequencies of beam-shell element models in
Methods I, II, and III and that of the solid element model can be cal-
culated by

ηMethod X
i =

fMethod X
i − f Solidi

f Solidi

× 100% (14)

where the subscript i denotes the ith elastic mode, which ranges
from 1 to 20 in this work after ignoring rigid-body modes; super-
scripts Method X and Solid denote values corresponding to beam-
shell element models in Method I, II, or III and that from the
solid element model, respectively; and f denotes the corresponding
natural frequency.
Natural frequencies of the first 20 elastic modes of the PTSP from

its beam-shell element models in Methods I, II, and III are compared
with those from its solid element model in Fig. 19. It can be seen

Fig. 23 17th elastic mode shapes from (a) the solid element model, (b) the beam-shell element model in Method I, (c) the beam-
shell element model in Method II, and (d ) the beam-shell element model in Method III
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from Fig. 19(a) that elastic natural frequencies from the beam-shell
element model in Method I are much smaller than those from the
solid element model and differences between them become more
significant for the third and higher elastic modes. One can see
from Fig. 19(b) that absolute values of errors between elastic
natural frequencies from the beam-shell element model in Method
I and those from the solid element model are about 15% for the
first two elastic modes, and they range from 20% to 25% for the
third through 20th elastic modes. When Methods II and III are
used to create FE models, however, elastic natural frequencies
from beam-shell element models are within ±2% of those from
the solid element model. While DOFs of beam-shell element
models of the PTSP in Methods II and III are 2% larger than

those in Method I because welded joints are ignored in Method I,
its elastic natural frequencies calculated by Methods II and III are
at least 14% more accurate than those by Method I.
In order to demonstrate the necessity of creating beam 2 in

Methods II and III, another beam-shell element model of the
PTSP, which combines the direct simplification method and equiv-
alent stiffness method, is created and compared with its solid
element model. In this equivalent direct simplification method,
the beam-shell element model of a welded joint is created to
obtain its equivalent stiffness, which is similar to the process in
Sec. 2.2, but beam 2 is removed and cross-sectional dimensions
of beam 1 are changed from 2 mm×4 mm to 5.8 mm× 10.8 mm
to match the stiffness of the welded joint. The maximum error
between the first 20 elastic natural frequencies of the PTSP from
its beam-shell element model in the equivalent direct simplification
method and those from its solid element model is 6.5%, which is
much larger than those in Methods II and III. Therefore, it would
be good to obtain the accurate equivalent stiffness of the welded
joint by creating an extra beam.

3.4 Comparison of Mode Shapes. The first 20 elastic mode
shapes of the PTSP from its four FE models are also compared.
The first elastic mode shapes of the PTSP from the four FE
models are torsional modes, as shown in Fig. 20, and the second
elastic mode shapes from the four models are bending modes, as
shown in Fig. 21. Note that the first two elastic modes of the
PTSP are global modes, and its two face sheets have almost the
same shapes. According to the discussion in Sec. 3.3, Method I
that ignores welded joints underestimates both torsional and
bending stiffnesses of the PTSP.
Due to the dimensional limitation of the core part in the manufac-

turing process, edge areas of the PTSP marked in Fig. 22 that are not
reinforced by the truss core are located at asymmetric positions of
its frontface and backface. As a result, mode shapes of the PTSP
from the third through 20th elastic modes are localized mode
shapes in these edge areas and asymmetric for the two face
sheets, which differ from the first two elastic mode shapes in
Figs. 20 and 21. The 17th elastic mode shapes from the four FE
models in Fig. 23 show typical high localized mode shapes of the
PTSP. It can be seen from Fig. 23 that the frontface and backface
of the solid element model of the PTSP have different shapes,
and large vibrations occur in its edge areas shown in Fig. 22. The
17th elastic mode shape from the beam-shell element model in
Method I is significantly different from that from the solid
element model. However, the 17th mode shapes from beam-shell
element models in Methods II and III are similar to that from the
solid element model. Especially, the 17th mode shape from the
beam-shell element model in Method II is in excellent agreement
with that from the solid element model.
In order to quantitatively evaluate correlation between mode

shapes of the PTSP from its beam-shell element models and solid
element model, modal assurance criterion (MAC) values are intro-
duced and can be calculated by

MACi,j =
|(ψSolid

i )
H
(ψMethod X

j
)|2

[(ψSolid
i

)H(ψSolid
i

)][(ψMethod X
j )H(ψMethod X

j )]
× 100% (15)

where subscripts i and j denote the ith and jth elastic modes, respec-
tively, which range from 1 to 20; the superscript H denotes conju-
gate transpose of a vector or matrix; and ψi and ψj denote the ith and
jth components of a mode shape vector, respectively. Correlation
between mode shapes from beam-shell element models in
Methods I, II, and III and those from the solid element model is
high for the same modes when MAC values along the diagonal of
the MAC matrix are close to 100%, and it is low for different
modes when MAC values for off-diagonal elements of the matrix
are close to 0 [30].

Fig. 24 MAC matrices between mode shapes from the solid
element model of the PTSP and those from its beam-shell
element models in Methods (a) I, (b) II, and (c) III
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MAC values between mode shapes from beam-shell element
models in Methods I, II, and III and those from the solid element
model are shown in Fig. 24. By using Method I to create the
beam-shell element model of the PTSP, diagonal MAC values in
Fig. 24(a) are lower than 90% for some modes and even decrease
to about 40% for the 16th and 17th elastic modes, which is consis-
tent with results of the 17th elastic mode shape in Fig. 23. One can
see from Fig. 24(b) that MAC values between mode shapes from the
beam-shell element model in Method II and those from the solid
element model are all larger than 95% along the diagonal of the
MAC matrix and close to 0 for off-diagonal elements of the
matrix. Note that while it is not shown here, absolute values of
errors between the 21st through 23rd elastic natural frequencies
of the PTSP from its beam-shell element model in Method II and
those from its solid element model are 1.8%, 2.4%, and 2.7%,
respectively, and corresponding diagonal MAC values between
their 21st through 23rd elastic mode shapes are 97%, 99%, and
88%, respectively. This indicates that Method II can provide
good results of modal parameters of the PTSP for at least its first
22 elastic modes. While most diagonal MAC values are larger
than 95% for the beam-shell element model in Method III, as
shown in Fig. 24(c), diagonal MAC values decrease to about
70% for the 17th mode and even 40% for the 20th mode, which
show weaker correlation between some high mode shapes from
the beam-shell element model in Method III and those from the
solid element model. A possible reason for this is that updating

the thickness of shell elements in welded joints of the PTSP in
Method III leads to thickness discontinuities of face sheets, which
may affect some high mode shapes. As shown in Table 1, shell ele-
ments in welded joints have a larger thickness than those in other
areas of face sheets that do not have welded joints in Method III.
While the equivalent stiffness of shell elements in the beam-shell
element model of a welded joint in Method III matches that of
the plate in its solid element model, nonuniformity of face sheets
with different thicknesses may affect some high mode shapes.

4 Experimental Validation of Beam-Shell Element
Models in Methods II and III
4.1 Experimental Setup. An operational modal analysis was

conducted using a noncontact measurement technique to measure
natural frequencies and mode shapes of a PTSP specimen to vali-
date its beam-shell element models in Methods II and III, with
the experimental setup shown in Fig. 25. A speaker was used to
excite the PTSP specimen, a 3D SLV Polytec PSV-500 with three
scanning heads was used to measure 3D responses of measurement
points on its two face sheets for capturing their possible 3D mode
shapes, and a portable single-point laser vibrometer Polytec
PDV-100 was used as a reference measurement. Two thin strings
were symmetrically tied to the truss core of the specimen, and the

Fig. 25 (a) Experimental setup for an operational modal analysis of a PTSP specimen: a speaker was used to excite the speci-
men, a mirror was used to capture vibration of the backface of the specimen, and two thin strings and a stable heavy frame were
used to hang the specimen; (b) a 3D SLV PSV-500 with three scanning heads used to measure vibration of the specimen and a
single-point laser vibrometer PDV-100 used as a reference measurement; (c) the relative position of the speaker to the specimen,
which can excite localized mode shapes of the specimen in its edge areas; and (d ) measurement points on the specimen, which
form a 5×5 grid on either face sheet of the specimen, and a reference measurement point on the specimen that is selected by
avoiding nodal lines of the first 20 elastic modes of the specimen

041002-12 / Vol. 143, AUGUST 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/vibrationacoustics/article-pdf/143/4/041002/6589475/vib_143_4_041002.pdf by U

niversity O
f M

aryland-Baltim
ore C

ty user on 09 N
ovem

ber 2020



specimen was hung by the strings on a stable heavy frame, which
simulated free boundary conditions of the specimen.
As discussed in Sec. 3, except for the first two global elastic

modes, the third through 20th elastic modes of the PTSP are local-
ized elastic modes in edge areas of its frontface and backface and

have different shapes for the two face sheets. In order to avoid
missing modes of the specimen in operational modal analysis,
especially for its high localized modes, some testing strategies
were adopted to simultaneously excite and measure global and
localized modes of its two face sheets in the experiment. The
speaker that was used in the experiment has a relatively small
power but a relatively wide bandwidth, so that both low and high
elastic modes of the specimen can be excited. The speaker was
placed at a side of the specimen instead of placing it in front or at
back of its face sheets, as shown in Fig. 25(c), to simultaneously
excite modes of the two face sheets. Another significant strategy
to avoid missing modes of the specimen was to synchronously
measure vibrations of its two face sheets. Since it is required to
fix positions of the three scanning heads of the 3D SLV, the single-
point laser vibrometer, and the specimen during the experiment, a
mirror was used to synchronously measure vibration of its backface,
which is essential for two-faced vibration measurement. One can
see from Fig. 25(a) that vibrations of measurement points on the
frontface of the specimen were directly measured and those on its
backface were synchronously measured through their images in
the mirror.
A total number of 50 measurement points were selected in this

experiment, which formed a 5 × 5 grid on either face sheet of the
specimen, as shown in Fig. 25(d ). To avoid selecting the location
of the reference measurement point on nodal lines of elastic
modes of the specimen, its first 20 elastic mode shapes from its
solid element model or beam-shell element model in Method II in
Sec. 3 were used to determine the location of the reference measure-
ment point, as shown in Fig. 25(d ). A periodic chirp signal from the
3D SLV was inputted into the speaker as the source signal. A rec-
tangular window and three-time spectrum averaging were used in
the experiment to minimize errors from leakage and noise. With a
sampling frequency of 8000 Hz and a bandwidth of 3200 Hz,
each set of vibration data at all measurement points on the two

(a)

(b)

Fig. 27 (a) First 14 elastic natural frequencies of the specimen
from its beam-shell element models in Methods I, II, and III and
the experiment and (b) errors between these elastic natural fre-
quencies from the beam-shell element models and experiment

Fig. 28 First two elastic mode shapes of the specimen from the
experiment: global (a) torsional and (b) bending modes,
respectively

Fig. 26 Sum of cross-power spectra between measurement
points and the reference measurement point: 14 peaks can be
seen in the selected frequency range and each peak indicates
an elastic mode of the specimen
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face sheets of the specimen was collected for 1 s and the associated
resolution was 1 Hz.

4.2 Experimental Results. Experimental data of measure-
ment points were collected by the Polytec Data Management
System and analyzed by the LMS Test.Lab through use of the
PolyMax algorithm. The sum of cross-power spectra between mea-
surement points and the reference measurement point is shown in
Fig. 26 to identify elastic modes of the specimen that exist in the
selected frequency range of 1200–3200 Hz; note that its rigid-body
natural frequencies in the frequency range of less than 1200 Hz are
not shown there. A total number of 14 peaks that correspond to the
first 14 elastic natural frequencies of the specimen were measured in
the experiment, as shown in Fig. 26. Note that the ratio of the largest
measured rigid-body natural frequency of the specimen to its first

elastic natural frequency is 16.8%, which is within the allowed
10–20% range mentioned in Ref. [30] for simulating free boundary
conditions of the specimen. The absolute value of the maximum
error between the first 14 elastic natural frequencies from the exper-
iment and those from the solid element model in Sec. 3 is 4.6%,
which indicates that the solid element model provides good esti-
mates of elastic natural frequencies of the specimen compared
with its experimental results.
The first 14 elastic natural frequencies of the specimen from the

experiment are also compared with those from its beam-shell
element models in Methods I, II, and III, as shown in Fig. 27.
Errors between elastic natural frequencies from the experiment
and beam-shell element models can be calculated by Eq. (13),

Fig. 29 14th elastic mode shapes from (a) the experiment,
(b) the beam-shell element model in Method I, (c) the beam-shell
element model in Method II, and (d ) the beam-shell element
model in Method III

Fig. 30 MAC matrices between the first 14 elastic mode shapes
of the specimen from the experiment and those from its beam-
shell element models in Methods (a) I, (b) II, and (c) III
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where f Solidi is replaced by fMeasure
i , which denotes the ith elastic

natural frequency of the specimen from the experiment. Absolute
values of maximum errors between the first 14 elastic natural fre-
quencies from the experiment and those from beam-shell element
models in Methods I, II, and III are 27.2%, 4.7%, and 4.1%, respec-
tively, which occur for the fifth elastic mode in all the three
methods. This indicates that ignoring welded joints in the beam-
shell element model of the specimen in Method I significantly
underestimates its elastic natural frequencies, and considering
them in Methods II and III can provide their much better estimates.
Based on vibration data measured in the experiment, mode

shapes of the specimen are obtained, and the first two and 14th
elastic mode shapes are shown in Figs. 28 and 29(a), respectively,
where dashed lines and rectangular marks denote undeformed posi-
tions of measurement points, and solid lines and circular marks
denote their deformed positions. One can see from Fig. 28 that
the first two elastic mode shapes of the specimen from the experi-
ment are global torsional and bending modes, respectively,
showing good agreement with results from its FE models in
Figs. 20 and 21. The 14th elastic mode shape of the specimen
from the experiment is selected to represent its high localized
modes and compared with those from its beam-shell element
models, as shown in Fig. 29. It can be seen from Fig. 29 that the
14th mode shape of the specimen from the experiment is a localized
mode in edge areas of its face sheets, which is consistent with
results from its beam-shell element models.
In order to quantitatively check correlation between the first 14

elastic mode shapes of the specimen from the experiment and
those from its beam-shell element models in Methods I, II, and
III, MAC matrices between them were calculated by Eq. (14),
where ψSolid

i is replaced by ψMeasure
i , which denotes the ith compo-

nents of a mode shape vector of the specimen from the experiment,
as shown in Fig. 30. By using Method I, diagonal MAC values are
over 95% for the first two global elastic modes; they are less than
80% for most localized elastic modes, and less than 60% for
some localized elastic modes, such as the fifth and tenth modes.
By using Methods II and III, however, diagonal MAC values are
over 95% for the first two global elastic modes and over 85% for
the third through 14th localized elastic modes, which indicates
that the first 14 elastic modes of the specimen were captured in
the experiment without missing any modes and they have good cor-
relation with those from its beam-shell element models in Methods
II and III. Note that some off-diagonal MAC values in Figs. 30(b)
and 30(c) are larger than 10% because use of only 50 measurement
points in the experiment may not fully capture differences between
mode shapes from the experiment and beam-shell element models
in Methods II and III. Therefore, Methods II and III that consider
welded joints in modeling of the PTSP are experimentally validated
through above comparison between elastic natural frequencies and
MAC matrices from the experiment and beam-shell element models
in Methods II and III.
Errors between elastic natural frequencies and mode shapes of

the specimen from the experiment and those from its solid
element model and beam-shell element models in Methods II and
III possibly arise from its geometrical discrepancies induced by
the manufacturing process. As previously mentioned, FE models
in this work are assumed to have ideal geometry, especially for
welded joints. The actual PTSP specimen, however, may be fabri-
cated with some defects, such as nonuniformity of welded joints
and dislocation and nonparallelism of the two face sheets.

5 Conclusions
Two novel methods that consider welded joints in the PTSP as

equivalent stiffnesses of beam and shell elements are developed to
create its beam-shell element models, which can significantly sim-
plify its solid elementmodel. In thesemethods, equivalent stiffnesses
are calculated bymatching rotational displacements of awelded joint
created by beam-shell element models with that created by the solid

element model. The equivalent stiffness of beam elements is simu-
lated by adding extra beam elements with corresponding cross-
sectional dimensions, and that of shell elements is simulated by
updating their Young’s modulus in one method and their thickness
in the other method. Elastic natural frequencies and mode shapes
of beam-shell element models created by the proposed methods are
compared with those from the solid element model and validated
by operational modal analysis of a PTSP specimen. Main conclu-
sions from this work are shown below:

(1) The equivalent stiffness of beam-shell element models of the
PTSP in the two proposed methods can be determined by cre-
ating only the solid element model of a welded joint. Since
no experiment is required to update equivalent stiffnesses
of beam and shell elements in the two proposed methods,
the methodologies developed here can be considered as pre-
dictive ones;

(2) Comparedwith the first 20 elastic natural frequencies from the
solid element model of the PTSP, those from its directly sim-
plified beam-shell element model that ignores welded joints
are underestimated by 15–25%, while those from its beam-
shell element models in the proposed methods are accurately
determined and absolute values of errors are less than 2%,
indicating that modeling of welded joints plays an important
role in estimating natural frequencies of the PTSP;

(3) The first two elastic modes of the PTSP in this work are
global modes, while the third through 20th modes are local-
ized modes in edge areas of its face sheets and have different
shapes for the two face sheets. MAC values between mode
shapes from the beam-shell element model by updating the
Young’s modulus of shell elements and those from the
solid element model are all over 95% along the diagonal of
the MAC matrix and close to 0 for off-diagonal elements
of the matrix, while MAC values between mode shapes
from the beam-shell element model by updating the thickness
of shell elements and those from the solid element model are
less than 70% along the diagonal of the MAC matrix for
some high localized modes, indicating that the method by
updating the thickness of shell elements is less accurate in
simulating high localized mode shapes of the PTSP than
that by updating the Young’s modulus;

(4) Compared with DOFs of the solid element model, those of
beam-shell element models that are created by the proposed
methods are reduced by 98% for the whole PTSP and 99%
for each welded joint, indicating that the proposed methods
can save large amounts of computation time and computer
memory from the solid element model in the FE analysis
of the PTSP with welded joints; and

(5) The first 14 elastic modes of the PTSP specimen were cap-
tured in the experiment without missing any modes. Abso-
lute values of errors between elastic natural frequencies of
the specimen from beam-shell element models in the pro-
posed methods and the experiment are less than 2% for the
first two global modes and less than 5% for the third
through 14th localized modes. Diagonal MAC values are
over 95% for the two global modes and over 85% for the
localized modes. Accuracy of the proposed methods in esti-
mating the first 14 elastic natural frequencies and mode
shapes of the specimen is experimentally validated.
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