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W e r e p ort t h e e x p eri m e nt al d e m o nstr ati o n of a  m m- w a v e el e ctr o n a c c el er ati n g str u ct ur e p o w er e d b y a hi g h- p o w er rf s o ur c e.  W e d e m o n-
str at e r eli a bl e c o u pli n g of a n u n pr e c e d e nt e d rf p o w er — u p t o 5 7 5 k W i nt o t h e  m m- w a v e a c c el er at or str u ct ur e usi n g a q u asi- o pti c al s et u p.
T his st a n di n g  w a v e a c c el er ati n g str u ct ur e c o nsists of a si n gl e- c ell c o p p er c a vit y a n d a  G a ussi a n t o  T M 0 1 m o d e c o n v ert er.  T h e a c c el er at or
str u ct ur e is p o w er e d b y 1 1 0  G H z, 1 0- ns l o n g rf p uls es.  T h es e p uls es ar e c h o p p e d fr o m 3  ms p uls es fr o m a g yr otr o n os cill at or usi n g a
l as er- dri v e n sili c o n s wit c h.  W e s h o w a n u n pr e c e d e nt e d hi g h gr a di e nt u p t o 2 3 0  M V/ m t h at c orr es p o n ds t o a p e a k s urf a c e el e ctri c fi el d of
m or e t h a n 5 2 0  M V/ m.  W e h a v e a c hi e v e d t h es e r es ults aft er c o n diti o ni n g t h e c a vit y  wit h  m or e t h a n 1 0 5 p uls es.  W e als o r e p ort pr eli mi n ar y
m e as ur e m e nts of rf br e a k d o w n r at es,  w hi c h ar e i m p ort a nt f or u n d erst a n di n g rf br e a k d o w n p h ysi cs i n t h e  milli m et er- w a v e r e gi m e.  T h es e
r es ults o p e n u p  m a n y fr o nti ers f or a p pli c ati o ns n ot o nl y li mit e d t o t h e n e xt g e n er ati o n p arti cl e a c c el er at ors b ut als o x-r a y g e n er ati o n, pr o bi n g
m at eri al d y n a mi cs, a n d n o nli n e ar li g ht- m att er i nt er a cti o ns at  m m- w a v e fr e q u e n c y.
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E x pl ori n g n e w r a di o fr e q u e n c y (rf) p arti cl e a c c el er at or t e c h n ol o-
gi es i n t h e  m m- w a v e r e gi m e is sti m ul at e d b y a pr o mis e of hi g h a c c el er-
ati n g gr a di e nt a n d ef fi ci e n c y f or  m a n y a p pli c ati o ns. 1 I n de e d,  G e V/ m
a c c el er ati o n  m a y b e att ai n e d at  m m- w a v e a n d s u bt er a h ertz ( T H z) fr e-
q u e n ci es, l e v er a g e d b y t he e xtre m el y hi g h s h u nt i m pe d a n ce t h at s c al es
as f 1/ 2 .1 It is k n o w n t h at c a vities  wit h s h ort er p ulses s ust ai n hi g h a c c el-
er ati n g gr a die nts.  T h e filli n g ti m e s of a c a vit y s c al es as s / f 3/ 2 , cr e-
ati n g t he o p p ort u nit y f or  m m- w a v e a c c el er at ors at r e p etiti o n r at es o n
t h e or der of k H z at hi g h gr a di e nts.2 I n de e d, a c c el er at ors o p er ati n g at
m m- w a v e fr e q u e n ci es  w er e c o nsi d er e d f or li n e ar c olli d ers 3, 4 a n d c o ul d
b e p ot e nti all y usef ul i n  m a n y a p plic ati o ns, s uc h as c h ar ge d p arti cl e
t h er a p y,5 c o m p a ct x-r a y fr e e- el e ctr o n l as ers ( X F E Ls), 6 a n d ultr af ast
el e ctr o n diffr acti o n ( U E D). 7, 8

A d v a n c e m e nts of  m m- w a v e a c c el er at or t e c h n ol o gi es ar e c o nti n-
g e nt o n t h e d e v el o p me nt of ef fi ci e nt hi g h p o w er rf s o ur c es.
Tr a diti o n all y, a c c el er ati n g str u ct ur es ar e p o w er e d b y rf s o ur ces ( e. g.,
kl ystr o ns) t h at d o n ot pr o d u c e t h e r e q uir e d p e a k p o w er i n t h e s u bt er a-
h ertz r a n g e.  Att e m pts t o r e ali z e hi g h- fi el d s u bter a h ertz r a di ati o n f or

el e ctr o n a c c el er ati o n pr e vi o usl y r eli e d o n b e a m- dri v e n  m et alli c 9 or
di el e ctri c 1 0 – 1 3 str u ct ur es.  T h es e e arli er st u di es hi g hli g hte d c h all e n g es i n
t his r e gi me s u c h as f a bri c ati o n err ors1 4 a n d b e a m-i n d u c e d d a m a g e. 9

O n t h e ot h er h a n d, l as er- dri v e n s o ur c es t h at d o w n- c o n v ert t h e o pti c al
r e gi m e t o s u bter a h ert z fr e q u e nci es ar e r a pi dl y d e v el o pi n g i n a n eff ort
t o fill t h e  T H z g a p.1 5 T h es e l as er dri v e n s o ur c es g e ner at e si n gl e- a n d
m ulti- c y cl e pi c os e c o n d p uls es  wit h l J e n er gi es.1 6, 1 7 T h e y  m a y e n a bl e
all- o pti c al p h ot oi nj e ct ors, 1 8 d e fl e ct ors, 1 9 a c c el er at ors, 2, 2 0 – 2 2 a n d b u n c h
c o m pr ess ors 2 3 – 2 5 f or ultr af ast a p pli c ati o ns.

Pr a cti c all y, t o r e a c h t h e pr o mis e d hi g h gr a di e nt at  m m- w a v es,
n a n os ec o n d-s c al e f e w- mJ rf p ulses ar e r e q uir e d. S o f ar, t hes e rf p ar a m-
et ers  m a y b e o nl y r e ali z e d usi n g  m m- w a v e g yr otr o ns. 2 6 – 2 9 T h es e ar e
v ac u u m t u bes c a p a bl e of pr o d u ci n g  m e g a w att p e a k p o w ers  wit h
micr os e c o n d l o n g p uls es 2 9 or e v e n  C W. 2 8 I n t his  w or k,  w e d e m o n-
str at e a u ni q u e a p pr o a c h t o p o w er a c c el er at or str uct ures usi n g a  m e g a-
w att g yr otr o n rf s o ur c e.  T h e n,  w e utiliz e a l as er- dri v e n s e mi c o n d uct or
s wit c h t o p o w er t h e a c c el er ati n g str u ct ur e  wit h n a n os e c o n d s c al e rf
p uls es.
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T h e o p er ati n g gr a di e nt of a n y rf a c c el er at or is li mit e d b y rf br e a k-
d o w ns i n d u c e d b y p ulse d s urf a c e h e ati n g a n d fi el d e missi o n.  O v er
ti m e, t he o c c urre n c e of br e a k d o w ns r e d u ces  wit h t he n u m b er of
p ulses, a n d t his pr o c ess is r ef err e d t o as c o n diti o ni n g. 3 0 – 3 2 T h e n u m ber
of p ulses r e q uir e d t o c o n diti o n t h e c a vit y d e p e n ds o n  m a n y f a ct ors
i n cl u di n g  m at eri al pr o p erti es, s urf a c e pr e p ar ati o n, a n d g e o m etr y of
t h e c a vit y. It is als o k n o w n t h at rf br e a k d o w n st atistics ar e ass o ci at e d
wit h t h e p e a k el ectri c a n d p e a k  m a g n eti c fi el ds as  w ell as t he p e a k
P o y nti n g v ect or. 3 3 E xt e nsi v e st atisti c al a n al yses of rf br e a k d o w n  w er e
p erf or m e d i n n or m al c o n d ucti n g a c c el er ati n g str u ct ur es at  mi cr o w a v e
fr e q u e n ci es.3 0 – 3 8

F or i nst a n c e,  C E R N’s  C o m p a ct Li n e ar  C olli d er ( C LI C) pr ot ot y p e
mi cr o w a v e str u ct ur es 3 2, 3 7, 3 9 c o m m o nl y a c hi e v e p e a k gr a di e nts of
a b o ut 1 0 0  M V/ m.  T h es e gr a di e nts c a n b e r e a c h e d o nl y aft er c o n diti o n-
i n g t he a c c el er at or str u ct ur es  wit h  m or e t h a n 1 07 p ulses t o a v oi d
d a m a g e fr o m e xt e nsi v e br e a k d o w ns a n d fi el d e missi o ns.  Aft er a b o ut
1 0 8 p ulse, t he br e a k d o w n pr o b a bilit y at 1 0 0  M V/ m t e n ds t o dr o p
b el o w 1 0 6 p er p ulse. 3 2, 3 7 H er e,  w e s h o w t h at i n t h e  m m- w a v e r e gi m e,
a c c el er at or str u ct ur es c a n r e a c h a gr a di e nt of 1 0 0  M V/ m aft er o nl y
1 0 4 p uls es a n d 2 3 0  M V/ m  wit h o nl y 1 0 5 p uls es.  T his p e a k gr a di e nt is
o nl y li mit e d b y t h e a v ail a bl e rf p o w er i n o ur e x p eri m e nt.

Pr e vi o usl y, t h e o nl y  m e as ur e m e nts of hi g h gr a di e nts a n d rf
br e a k d o w ns at  m m- w a v e fr e q u e n ci es  w er e p erf or m e d i n b e a m-
dri v e n a c c el er ati n g str u ct ur es. 9, 4 0, 4 1 T h e gr a di e nts a c hi e v e d i n
t h es e b e a m- dri v e n str u ct ur es d e p e n d e d o n t h e g e o m etr y a n d fr e-
q u e n c y.  U nli k e t h e e xt er n all y dri v e n r e gi m e, b e a m- dri v e n str u c-
t ur es9, 4 0, 4 1 s ust ai n e d si g ni fi c a ntl y hi g h er s urf a c e el e ctri c fi el ds f or
t h e s a m e gr a di e nt. F or e x a m pl e, at 1 2 2  G H z, t h e p e a k s urf a c e
el e ctri c fi el d  w as a b o ut 5 7 0  M V/ m, a n d t h e a c c el er ati n g  m o d e
gr a di e nt  w as a b o ut 3 6  M V/ m 4 0 wit h a br e a k d o w n pr o b a bilit y of
6 1 0 2 p er p uls e.  T h es e br e a k d o w n r at es ar e a c hi e v e d  wit h l ess
t h a n 1 06 p uls es a n d  w er e li k el y i n fl u e n c e d b y t h e dri vi n g el e ctr o n
b u n c h a n d its h al o. 9, 4 0, 4 1 S u c h  w or k e m p h asi z e d t h e n e e d f or a n
i n v esti g ati o n of hi g h gr a di e nt  m m- w a v e a c c el er at or p erf or m a n c e
u n d er e xt er n al e x cit ati o n. I n t his L ett er,  w e als o s h o w pr eli mi n ar y
m e as ur e m e nt of t h e br e a k d o w n r at e of a  m m- w a v e si n gl e c ell
str u ct ur e at 1 1 0  G H z p o w er e d b y n a n os e c o n d s c al e rf p uls es, aft er
si mil ar c o n diti o n e d  wit h  m or e t h a n 1 0 5 p uls es.

A n ot her c h all e n ge t o w ar d a c hi e vi n g hi g h- gr a di e nt p erf or m a n ce
at  m m- w a v e fr e q u e n ci es is t he pr e cisi o n f a bri c ati o n a n d asse m bl y of
t h e a c c el er ati n g str uct ure. L e v er a gi n g st at e- of-t he- art f a bric ati o n

t ec h ni q u es,  w e h a v e utiliz e d a s plit-c ell diff usi o n- b o n di n g t ec h ni q u e t o
asse m bl e t h e a c c el er at or str uct ure.

W e h a v e d esi g n e d a  m m- w a v e a c c el er ati n g str u ct ur e c o nsisti n g
of t hr e e c o u ple d c a viti es a n d o p er ati n g i n t h e p - m o d e.  T h e o ut er t w o
c a vities h a v e a r a di us of 1. 1 6  m m,  w hil e t h e c e ntr al c a vit y’s r a di us is
sli g htl y r e d u c e d t o 1. 1 4  m m.  T his r e n d ers t h at t h e p e a k o n- a xis fi el d i n
t he c e ntr al c a vit y is t wi c e as hi g h as t h at i n t he n ei g h b ori n g c ells.3 1, 4 2

T h e p ur p os e  w as t o e ns ure t h at  m ost of t h e rf br e a k d o w ns o c c ur i n
t he c e ntr al c a vit y, si n ce t he p e a k s urf a c e fi el ds  will als o b e  m uc h l o w er
i n t h e t w o o ut er c a viti es.  All c a vities ar e 1. 3 6  m m l o n g.  T h e c ell’s el ec-
tri c a n d  m a g n etic fi el ds ar e s h o w n i n Fi g. 1( a) .  T h e rf pr o p erties of t he
a c c el er ati n g str uct ure ar e pri m aril y di ct at e d b y t he a/ k r ati o,  w h er e a
is t h e r a di us of t h e iris a p ert ur e a n d k is t h e fr ee s p a c e  w a v el e n gt h. I n
o ur d esi g n,  w e h a v e a /k ¼ 0. 1 0 5, si mil ar t o 1 1. 4 2 4  G H z str u ct ur es
all o wi n g f or a dir e ct c o m p aris o n, 2 0 wit h a ¼ 0. 2 8 6  m m.  T h e c a vit y is
d esi g n e d t o a c hi e v e 3 1 0  M e V/ m of ste a d y-st at e a c c el er ati o n gr a di e nt
f or 6 0 0 k W of dissi p at e d rf p o w er.4 2 T h e s h u nt i m p e d a n c e of t h e c e n-
tr al c ell is 3 6 2  MX / m, t h e el ectri c fi el d p e a k-t o- gr a di e nt r ati o is 2. 2 7,
a n d t h e p e a k  m a g n eti c-t o- el e ctri c fi el d r ati o ( n or m aliz e d b y fr e e s p a c e
i m pe d a n c e) is 1. 0 4.  T h es e d esi g n v al u es ar e o bt ai n e d b y  m o d eli n g t he
rf str uct ure  wit h t h e c o m m er ci al fi nit e el e m e nt c o d e  H F S S b y  A ns ys.
T h e c a vit y is c o n n e ct e d t o a 0. 6 6  m m r a di us b e a m pi p e f or t h e fi el d
e missi o n  m e as ure m e nt.  T h e b e a m pi p e is c o u pl e d t o a  W R- 8  w a v e-
g ui d e p ort f or pr o bi n g c a vit y fi el ds.

R F p o w er  w as c o u pl e d t o t h e c a vit y t hr o u g h t h e  T M 0 1 cir c ul ar
w a v e g ui d e  m o d e, a n d t h e  w a v e g ui d e r a di us is 1. 1 8  m m. Si n c e t he
hi g h- p o w er p uls e is tr a ns p ort e d fr o m t he g yr otr o n i n a f u n d a m e nt al
G a ussi a n b e a m, t he a c c el er at or str uct ur e is f e d  wit h a t a p er e d
G a ussi a n h or n.  T h e  G a ussi a n b e a m is f o c us e d o nt o a 1 5  m m di a m et er
cir c ul ar a p ert ure of a s m o ot h- w all e d h or n  wit h a n 4. 5  m m b e a m
w aist.  T h e h or n c o n v erts a  G a ussi a n  m o d e i nt o t h e  T E 1 1 m o d e of a
cir c ul ar  w a v e g ui d e  wit h 9 9 % ef fi ci e n c y. F oll o wi n g t h e  G a ussi a n c o n-
v erter is a  T E 1 1 t o  T M0 1 m o d e c o n v erter,  w hi c h i n cl u d es 9 0 b e n d
wit h a 5. 2 3  m m r a di us.  T h e  m o d e c o n v erter h as a 9 7 % p o w er c o n v er-
si o n ef fi ci e n c y a n d l ar g e b a n d wi dt h e x c e e di n g 2  G H z.

T h e a c c el er ati n g str u ct ur e  w as f a bri c at e d fr o m t w o h al ves of
o x y g e n-fr e e c o p per,  w hi c h  w er e ali g ne d a n d diff usi o n- b o n de d. S e v er al
pr ot ot y p es of t h e str u ct ur e  w er e f a bric at e d t o t est t h e i m p a ct of t h e
diff usi o n- b o n di n g o n t he rf p ar a m et ers of t h e c a vit y. 4 2 T h e s u b milli-
m et er s c al e f e at ur es h er e ar e s e nsiti v e t o f a bri c ati o n a n d asse m bl y
err ors.

FI G. 1. ( a) Rf d e si g n of a si n gl e- c ell  m m- w a v e a c c el er ati n g str u ct ur e c o n si sti n g of t h e  m o d e c o n v ert er a n d t h e st a n di n g- w a v e c a vit y s h o wi n g t h e n or m ali z e d ac c el er ati n g
p - m o d e fi el d pr o fil e. T h e S- p ar a m et er s ( b) S 1 1 a n d ( c) S 2 1 of t h e  m m- w a v e c a vit y  m e a s ur e d u si n g a q u a si- o pti c al s et u p, s h o wi n g g o o d a gr e e m e nt wit h t h e rf  m o d el i n t h e
p - m o d e tr a n s mi s si o n r e s o n a n c e.
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T h us, v er y strict t ol er a n ces  w er e pl a c e d d uri n g t h e f a bric ati o n
a n d ali g n me nt of t he t w o h al ves.  W e als o f o u n d t h at t h e c a vit y fr e-
q u e n c y t e n ds t o sli g htl y i n cr e as e fr o m pr e- b o n di n g t o p ost- b o n di n g,
a n d t his s hift is c o nsi d er e d pri or t o  m a n uf a ct uri n g t h e fi n al hi g h
p o w er str u ct ur e.

T h e str uct ur e  w as t h e n asse m bl e d  wit h a hi g h- p o w er rf  wi n d o w
a n d a di el e ctric l e ns,  w hi c h f o c us es t h e  G a ussi a n b e a m o nt o t h e h or n
a p ert ur e.  T h e di a g n osti c  w a v e g ui d e h as its o w n rf  wi n d o w.  T h e v ac-
u u m i nsi d e t he str u ct ur e  w as k e pt u n der 1 0 9 T orr.  A F ar a d a y c u p is
c o n n e ct e d t o t h e b e a m pi p e t o c olle ct fi el d-e mitte d c urr e nts.

L o w p o w er, t w o- p ort rf  m e as ur e m e nts of t he asse m bl e d c a vit y
w er e p erf or m e d usi n g a  m m- w a v e v e ct or n et w or k a n al y z er.  A
G a ussi a n b e a m l a u n c h er e x cit es t h e str uct ur e as p ort 1 a n d a r e ct a n g u-
l ar  w a ve g ui d e as p ort 2. Fi g ur es 1( b) a n d 1( c) s h o w t he r es ults of a
m e as ur e d fr e q u e n c y s we e p of t he S- p ar a m et ers as  w ell as si m ul ati o n
r es ults.  T hr ee r es o n a n ces c orres p o n di n g t o t h e 0, p / 2, a n d p m o d es
ar e s e e n i n Fi gs. 1( b) a n d 1( c) . T h e p m o d e r es o n a n c e is f o u n d t o b e at

1 1 0. 0 8  G H z at a b o ut 2 0 C (r o o m t e m per at ur e)  wit h a l o a d e d  Q of
a b o ut 1 6 0 0. I n t h e S 2 1  m e as ure m e nt, t he r es o n a n ce s h o ws u p as a
s h all o w p e a k of a b o ut 4 1 d B, i n v er y cl os e a gr ee m e nt  wit h t h e si m u-
l ati o ns.  T his als o c o n fir ms t h at t h e h or n a n d  m o d e c o n vert er o p er at e
wit hi n t he r e q uir e d b a n d wi dt h a n d ef fi ci e n c y.

T h e hi g h- gr a di e nt e x p eri m e nt al s et u p is s h o w n i n Fi g. 2( a) . T he
rf s o ur c e is a 1 1 0  G H z  m e g a w att g yr otr o n t h at g e n er at es 3 l s l o n g rf
p ulses  wit h a p e a k p o w er u p t o 1. 2 5  M W,  wit h a r e p etiti o n r at e of
1 H z. 4 3 It is o p er at e d at a  T E2 2, 6 c a vit y  m o d e  wit h a n o mi n al v olt a g e of
9 6 k V a n d a c urre nt of 4 0  A.  T h e g e n er at e d rf p uls es ar e t h e n tr a ns-
p ort e d i n a c orr u g at e d  w a v e g ui d e t h at c o u pl es t he p o w er i nt o a fr e e-
s p ac e  G a ussi a n  m o d e i nt o t he a c c el er ati n g str u ct ur e.  A q u asi- o pti c al
att e n u at or a dj usts t he f or w ar d p o w er t o w ar d t h e a c c el er ati n g str u c-
t ure, a n d a q u asi- o pti c al f errit e is ol at or pr ot ects t h e g yr otr o n fr o m
r e fl e cti o ns.  O v er all, t h er e is a b o ut 2 d B l oss i n t he hi g h- p o w er rf p at h
t h at li mits t he i n p ut p o w er t o t h e a c c el er ati n g str u ct ur e t o a b o ut
6 0 0 k W.

T h e 3 l s g yr otr o n p uls es  w o ul d c a us e e x c essi v e p uls e d s urf a c e
h e ati n g i n t h e a c c el er ati n g c a vit y, a n d t h us t h e c a vit y  w o ul d r e q uir e

s h ort er n a n os e c o n d-l o n g p uls es.  T o o bt ai n a s h ort er rf p uls e,  w e
h a v e utili z e d a s e mi c o n d u ct or l as er- dri v e n s wit c h. 4 4, 4 5 A 3 8 7 l m
t hi c k Si  w af er ill u mi n at e d b y a n i nt e ns e n e o d y mi u m- d o p e d
yttri u m al u mi n u m g ar n et ( N d: Y A G) l as er p uls e is us e d as a r e fl e c-
t or.  T h e  N d: Y A G l as er  w a v el e n gt h is 5 2 3 n m, t h e d ur ati o n is 6 ns,
a n d t h e p uls e e n er g y is 2 3 0  mJ. S u c h a l as er p uls e i m pi n gi n g o n t h e
w af er,  w hi c h is ot h er wis e tr a ns p ar e nt at 1 1 0  G H z, r ais es t h e c o n-
d u cti vit y of Si d u e t o t h e g e n er ati o n of c h ar g e d c arri ers t hr o u g h
p h ot o c o n d u cti vit y u ntil it b e c o m es a r e fl e ct or  wit h  m or e t h a n 7 5 %
r e fl e cti vit y a n d r e dir e cts t h e  mi cr o w a v es t o w ar d t h e a c c el er a-
t or.4 4, 4 5 T h e rf p uls e l e n gt h g e n er at e d fr o m t his s et u p is a b o ut
1 0 ns l o n g a n d is li mit e d b y t h e c arri er r e c o m bi n ati o n r at e of sili-
c o n 4 6, 4 7 wit h t h e  m a xi m u m rf p uls e e n er g y of a b o ut 1 1  mJ.

T h e fr e q u e n c y of t he g yr otr o n rf p uls es h as t o c oi n ci d e  wit h t h e
r es o n a n ce fr e q u e n c y of t h e str uct ur e’s p - m o d e.  O ur g yr otr o n h as li m-
it e d fr e q u e n c y t u ni n g at t he p e a k o ut p ut p o w er.  T h er ef or e, t e m p er a-
t ur e t u ni n g of t h e c a vit y usi n g a c hill er is e m pl o y e d i n or d er t o  m at c h
t he fr e q u e n c y of t h e p - m o d e t o t h e g yr otr o n fr e q u e n c y.  T his  w a y, t he
a c c el er ati n g gr a di e nt c a n b e  m a xi mi z e d at a fi x e d p o w er l e v el. I n o ur
s et u p, t he fr e q u e n c y t u ni n g r a n g e  w as a b o ut 4 0  M H z a n d t he o pti m al
o p er ati n g t e m p er at ure f or fr e q u e n c y  m at c hi n g is f o u n d t o b e a b o ut
9 C.

W e  m e as ur e d t he rf  w a v ef or ms f or e a c h rf p uls e: t he f or w ar d
p o w er, t he r e fl e ct e d p o w er, a n d t h e tr a ns mitt e d p o w er t hr o u g h t h e
di a g n osti c  w a v e g ui d e.  T h es e rf p uls es ar e  m e as ur e d usi n g c ali br at e d
m m- w a v e S c h ott k y di o d e d et e ct ors  wit h s u b- ns ris e ti m e.  W e  m e a-
s ur e d fi el d- e mitte d c urr e nts e xisti n g at t h e e n d of t h e b e a m pi p e  wit h
a F ar a d a y c u p.  All  w a v ef or ms ar e r e c or de d usi n g a 4 gi g as a m pl e/
s ec o n d os cill os c o p e.  T h e fr e q u e n c y of t he rf p ulse is  m e as ur e d  wit h a
h et er o d y n e r e c ei v er. 2 9

Pri or t o hi g h- p o w er o p er ati o n,  w e ali g n t he str u ct ur e t o t h e hi g h-
p o w er b e a m a n d t h e n c ali br at e t h e f or w ar d a n d tr a ns mitt e d p o w er
i nt o t he str u ct ur e  wit h o ur i niti al l o w p o w er  m e as ur e m e nts.  A n
e x a m ple of a n rf p ulse at a p e a k p o w er of 5 7 0 k W is s h o w n i n
Fi gs. 2( b) – 2( d) .  W e n ot e t h at t he  m e as ure d r e fl e ct e d p o w er is n ot c ali-
br at e d [s h o w n i n Fi g. 2( e) i n ar bitr ar y u nits].

FI G. 2. ( a) Hi g h- gr a di e nt  m m- w a v e a c c el er ati n g c a vit y t e st s et u p. E x a m pl e of a n rf p ul s e c o u pl e d t o t h e c a vit y at a p e a k p o w er of 5 7 0 k W, ( b)  m e a s ur e d f or w ar d p o w er i nt o
t h e str u ct ur e, a n d ( c) t h e ti m e d e p e n d e nt a c c el er ati n g gr a di e nt a n d F ar a d a y c u p c urr e nt. ( d) P o w er tr a n s mitt e d t hr o u g h t h e di a g n o sti c w a v e g ui d e a n d ( e) r e fl e ct e d p o w er.
D ott e d li n e s i n ( c) –( e) d e si g n at e a n rf br e a k d o w n e v e nt.
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W e h a v e use d t h e  m e as ur e d S- p ar a m et ers t o  m o d el t h e c a vit y
tr a nsie nt fi el ds.  T h e  m o d el e d ti m e- d o m ai n r es p o ns e of t h e a c c el er at-
i n g str uct ur e is als o s u p eri m p os e d i n Fi gs. 2( b) – 2( e) .  T h e tr a ns mitte d
p o w er a gr ees  w ell  wit h o ur rf  m o d el as s ee n i n Fi g. 2( d) . At t he p e a k
i n p ut p o w er of 5 7 0 k W a n d p uls e l e n gt h of 1 1 ns, t he p e a k a c c el er ati n g
gr a di e nt is a b o ut 2 3 0  M V/ m as s h o w n i n Fi g. 2( c) .  T he p e a k e n er g y
g ai n of a r el ati visti c el e ctr o n b u n c h at t his gr a di e nt is esti m at e d t o b e
a b o ut 0. 3 1  M e V fr o m t he c e ntr al c ell.

T h e p e a k a c c el er ati n g gr a di e nt t h at c a n b e est a blis h e d i n t he c a v-
it y d e p e n ds o n t h e rf p uls e l e n gt h, a n d, t h er ef or e, it is i m p ort a nt t o
c h ar act eri z e t he p uls e l e n gt h st atisti cs t o e ns ur e st a bl e gr a di e nt fr o m
s h ot t o s h ot.  T h e f or w ar d as  w ell as tr a ns mitt e d p uls e f ull- wi dt h h alf-
m a xi m u m ( F W H M) vs p e a k f or w ar d p o w er is s h o w n i n Fi g. 3( a) .
D at a s h o w n i n Fi g. 3 ar e t a k e n f or all t h e r ec or d e d rf p ulses e x c e pt t h e
o n es t h at e x p erie n ce s h ort e ni n g d u e t o rf br e a k d o w ns.  T h e F W H M of
t h e f or w ar d p o w er is st a bl e a n d t e n ds t o sli g htl y i n cr e as e  wit h i n cr e as-
i n g p o w er.  T his i n cr e as e i n F W H M c o ul d b e attri b ut e d t o t he
rf- dri v e n e n h a n c e m e nt of p h ot oc arri ers i n t he Si  w af er. ( M or e d et ails
ar e i n gi v e n i n  R ef. 4 4 .)  T h e r ati o b et we e n t h e tr a ns mitt e d a n d f or w ar d
p ulse F W H M is 1. 1 3 6 0. 0 3 a n d t h at als o a gre es  w ell  wit h t he rf  m o d el
b as e d o n t he c al c ul at e d filli n g ti m e of t he c a vit y.  T h e a c c el er ati n g gr a-
di e nt vs f or w ar d p o w er t o g et h er  wit h c al c ul at e d p e a k p uls e s urf a c e
h e ati n g is als o s h o w n i n Fi g. 3( b) .  T h e p e a k a c c el er ati n g gr a di e nt als o
d e m o nstr at es s h ot t o s h ot st a bilit y a n d f oll o ws a s q u ar e l a w fitti n g
wit h t h e f or w ar d p o w er P i n k W, gi v e n b y E ac c 9. 6 3
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W e als o s h o w t h e p uls e d s urf a c e h e ati n g fr o m t he rf s urf a c e
c urr e nts o n t he c a vit y  w alls. P uls e d h e ati n g is a tr a nsi e nt eff e ct 4 8 a n d
d o es n ot i m p act t h e fr e q u e n c y or t he q u alit y f a ct or of t he c a vit y u p t o
t h e p e a k gr a di e nt,  wit hi n t he pr e cisi o n of o ur  m e as ure m e nts.  Als o, t he

ti m e- a v er a g e t h er m al l o a d fr o m t he dissi p at e d rf p o w er i n t h e c a vit y is
n e gli gi bl e f or s uc h a l o w p uls e r e p etiti o n r at e of 1  H z,  wit h a cti v e
t e m per at ur e-r e g ul at e d c o oli n g. I n o ur e x p eri m e nt, t he p e a k p uls e d
s urf a c e h e ati n g is esti m at e d t o b e l ess t h a n 4 0 C at t he hi g h est p o w er
l e v el as s e e n i n Fi g. 3( b) . Fr o m o ur p er vi o us e x p eri m e nts o n d a m a g e
d u e t o p ulse d h e ati n g, 3 4 w e e x p e ct n o s urf a c e d a m a g e b el o w 5 0 C.
T his d a m a g e o nset at a p e a k t e m p er at ure ris e of 5 0 C c o ul d b e
r e a c h e d at a gr a di e nt i n e x c ess of 2 6 0  M V/ m.

O n e of t he  m ai n g o als of o ur e x p eri m e nt is t h e st u d y of t he p h ys-
i cs of v a c u u m rf br e a k d o w n.  W e o bs er v e rf br e a k d o w ns as  m aj or
c h a n g es o c c ur t o t he rf  w a v ef or ms as f oll o ws: (i) tr a ns mitte d p uls e
s h ort e ni n g, (ii) s u d d e n j u m p i n t h e r e fl e ct e d p o w er, a n d (iii) a s h ort
b urst of F ar a d a y c u p c urre nt, as s e e n fr o m Fi gs. 2( d) a n d 2( e) . D uri n g
t his e x p eri m e nt, t h e f or w ar d p o w er is gr a d u all y a dj ust e d  w hil e cl os el y
m o nit ori n g t h e br e a k d o w n r at e at a gi v e n p o w er l e v el, s ee Fi g. 4( a) .
Tri g g er br e a k d o w ns,  w hi c h ar e t he first i n a br e a k d o w n c h ai n, ar e als o
r ec or d e d.3 1, 3 3, 4 9

T h e rf p ulses ar e c oll e ct e d i n s ets of 1 0 3 s h ots.  Aft er a br e a k d o w n
o c c urs, p ulsi n g is i nt err u pt e d f or 8 s.  T his pr ot ects t he c a vit y fr o m
t he d a m a g e c a us e d b y c o nse c uti v e br e a k d o w ns a n d e ns ur es t h at t he
v ac u u m l e v el is k e pt at 1 0 9 T orr.  W e i n cr e as e t h e p o w er  w h e n t he
br e a k d o w n r at e is b el o w 1 %, i. e., l ess t h a n 1 0 br e a k d o w ns p er 1 0 3

s h ots.  At t h e e n d of e a c h d a y d uri n g t he e x p eri m e nt, p o w er is l o w er e d
b y 2 5 % t o e ns ure t h at br e a k d o w n r at es ar e i m pr o vi n g.  A ti m eli n e f or
t esti n g is d e pi ct e d i n Fi g. 4 , s h o wi n g t h e f or w ar d p o w er i n Fi g. 4( a) ,
t he gr a di e nt a n d p e a k s urf a c e fi el ds i n Fi g. 4( b) , a n d a c c u m ul at e d
br e a k d o w ns a n d p e a k F ar a d a y c u p c urre nt i n Fi g. 4( c) . O v er t h e
c o urse of 1 0 5 s h ots,  w e h a v e s e e n t h at t h e c a vit y h as b e e n r a pi dl y pr o c-
essi n g u p t o a n a c c el er ati n g gr a di e nt of 2 3 0  M V/ m.  W e  w er e a bl e t o

FI G. 4. Ti m eli n e of t h e hi g h gr a di e nt pr o c e s si n g of t h e  m m- w a v e a c c el er ati n g c a vit y
c o n si sti n g of 1. 3 1 0 5 p ul s e s, s h o wi n g ( a) t h e f or w ar d p o w er, ( a) a c c el er ati n g gr a-
di e nt a n d p e a k s urf a c e el e ctri c fi el d, a n d ( c) n u m b er of a c c u m ul at e d br e a k d o w n s,
tri g g er br e a k d o w n s, a n d p e a k br e a k d o w n F ar a d a y c u p c urr e nt.

FI G. 3. St a bilit y of g yr otr o n p ul s e s f e e di n g t h e a c c el er ati n g c a vit y v s diff er e nt g yr o-
tr o n p o w er s. ( a)  M e a s ur e d F W H M of t h e f or w ar d a n d tr a n s mitt e d p ul s e s v s f or w ar d
p o w er, ( b)  m e a s ur e d fi el d gr a di e nt a n d c al c ul at e d p e a k t e m p er at ur e ri s e d u e t o
p ul s e s urf a c e h e ati n g v s f or w ar d p o w er. T h e p e a k a c c el er ati n g gr a di e nt s c al e s wit h
t h e f or w ar d p o w er P i n k W a s E a c c 9. 6 3
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s c al e s a s 1 3 1 :3 2 E a c c = Z 0ð Þ 2 ,  w h er e Z 0 i s t h e fr e e s p a c e i m p e d a n c e. T h e v erti c al
err or b ar s r e pr e s e nt r m s err or s i n  m e a s ur e m e nt s f or a fi x e d f or w ar d p o w er s etti n g.
T h e h ori z o nt al err or b ar s ar e o nl y s h o w n f or t h e tr a n s mitt e d p o w er i n ( a) a n d t h e
a c c el er ati o n gr a di e nt i n ( b).
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r e a c h 1 5 0  M V/ m gr a di e nt aft er 1 04 p uls es  w hil e o bs er vi n g l ess t h a n
5 0 0 br e a k d o w ns.  N ot e t h at  w e h a v e n ot o bs er v e d a c urr e nt s pi k e d ur-
i n g p uls e s h orte ni n g e v e nts f or gr a di e nts l ess t h a n 1 5 0  M V/ m.  Aft er
r a m pi n g u p t he gr a die nt fr o m 1 0 0  M V/ m t o 2 0 0  M V/ m o v er t he
c o urs e of 2 1 0 4 p uls es (fr o m 1 0 5 t o 1. 2 1 0 5 i n Fi g. 4 ),  w e h a v e
o nl y o bs er ve d 2 br e a k d o w ns a n d n o tri g ger br e a k d o w ns.  M or e o v er,
w e h a v e n ot d et ect e d c urr e nts f or p ulses  wit h n o br e a k d o w n u p t o t he
hi g h est gr a di e nt of 2 3 0  M V/ m.  W e h a v e a c hi e v e d t his  m a xi m u m gr a-
di e nt aft er 1 8 3 0 br e a k d o w ns i n t ot al.

Aft er  m ai nt ai ni n g t h at gr a di e nt f or 3 1 0 3 c o ns e c uti v e s h ots,  w e
o bs er v e d 2 2 br e a k d o w ns  wit h 2 tri g g er br e a k d o w ns.  T h e br e a k d o w n
r ate i n t h e l ast 1 03 s h ots at 2 3 0  M V/ m  w as a b o ut 1 0 3 p er p uls e.  W e
e m p h asi z e t h at t h e br e a k d o w n r at e h as n ot r e a c h e d a st e a d y st at e l e v el.

I n c o ntr ast, a  micr o w a v e fr e q u e n c y c a vit y r e q uir es  milli o ns of
p ulses t o b e a bl e t o r a m p u p t h e gr a di e nt. F or t h e s a k e of c o m p aris o n,
a  micr o w a v e c a vit y c a n o nl y r e a c h a gr a di e nt l ess t h a n 4 0  M V/ m aft er
1 0 5 p uls es. 3 1, 3 2 T his hi g hli g hts t h e p ot e nti al i m p act of  m m- w a v e a c c el-
er at or i n t er ms of r a pi d c o n diti o ni n g t o u n pr ec e d e nt e d gr a di e nts. It is
n ot e d als o t h at t his first st a g e of o ur e x p eri m e nt  w as li mit e d t o
1. 5 1 0 5 p uls es at 1  H z o p er ati o n a n d a  m a xi m u m p o w er of 6 0 0 k W.
W e e x p ect t h at t he br e a k d o w n r at es  will f urt her d ecr e as e f or e xt e n de d
r u n ni n g ti m e.

I n s u m m ar y,  w e h a v e pr es e nte d t h e e x p eri m e nt al  m e as ur e m e nt
of hi g h gr a di e nt i n a 1 1 0  G H z a c c el er ati n g c a vit y p o w er e d b y a n e xt er-
n al s o urc e, a  m e g a w att g yr otr o n.  W e h a v e utili z e d a l as er- dri v e n
s wit c h t o c h o p n a n os ec o n d-s c al e p uls es fr o m 3 l s g yr otr o n p uls es.  W e
c o u pl e d 5 7 0 k W 1 0 ns p uls es i nt o t he c a vit y a n d a c hi e v e d r e m ar k a bl e
a c c el er ati n g gr a die nts u p t o 2 3 0  M V/ m.  T o r e a c h t his gr a di e nt, t he
c a vit y  w as c o n diti o n e d  wit h  m or e t h a n 1 0 5 p uls es.  W e b elie v e t h at
wit h  m or e c o n diti o ni n g, t h e br e a k d o w n r at es  will d e cr e as e f urt h er.

D ue t o p ossi bl e i m perf e cti o ns i n t h e j oi nt b et w e e n t he t w o
diff usi o n- b o n de d c a vit y bl o c ks, 4 2 t h e p e a k s urf a c e el e ctri c fi el ds  m a y
e x c e e d 5 2 0  M V/ m c al c ul at e d f or a n i d e al c a vit y s urf a c e a n d  m a y c o n-
tri b ut e t o hi g h br e a k d o w ns a n d fi el d e missi o ns. F or t his r e as o n,  w e ar e
e x pl ori n g n e w str u ct ur es ass e m bl e d  wit h ot h er j oi ni n g t ec h ni q u es
s u c h as br azi n g a n d c ar ef ul s urf a c e pr e p ar ati o n t h at  m a y off er b ett er
j oi nt q u alit y.5 0

Fi n all y, t he rf p ulse l e n gt h  m a y b e t u n e d b y d e pl o yi n g ot h er
s e mic o n d u ct or  w af er  m at eri als4 4 i n t h e l as er- dri v e n s wit c h.  Hi g h er
p e a k p o w ers b y  m e a ns of rf p ulse c o m pr essi o n 5 1, 5 2 c o ul d f urt her p us h
t h e a c hi e v a bl e gr a di e nt.  T his st u d y o p e ns r o utes t o w ar d t h e us e of
e xt er n all y dri v e n hi g h fi el d s u bt er a h ert z str uct ur es n ot o nl y i n f ut ur e
a c c el er at or a p pli c ati o ns b ut als o i n pr o bi n g  m at eri al d y n a mi cs a n d
i n d uci n g n o nli n e ar p h e n o m e n a.

T h e a ut h ors t h a n k  Mi c h a el S h a pir o,  Mi c h ell e  G o n z al e z,  A n n
S y, a n d  G or d o n B o w d e n f or h el pf ul dis c ussi o ns.  W e  w o ul d als o li k e
t o t h a n k t h e F usi o n E n er g y  Gr o u p at  G e n er al  At o mi cs f or
e q ui p m e nt l o a ns of q u asi- o pti c al e q ui p m e nt t h at e n a bl e l o w a n d
hi g h- p o w er t esti n g of t his str u ct ur e.  T his  w or k  w as s u p p ort e d b y
t h e  D e p art m e nt of E n er g y  C o ntr a ct  N o.  D E- A C 0 2- 7 6 S F 0 0 5 1 5
( S L A C) a n d  Gr a nt  N o.  D E- S C 0 0 1 5 5 6 6 ( MI T).  T his  w or k  w as als o
s u p p ort e d b y  N S F  Gr a nt  N o. P H Y- 1 7 3 4 0 1 5.

D A T A  A V AI L A BI LI T Y

T h e d at a t h at s u p p ort t he fi n di n gs of t his st u d y ar e a v ail a bl e
fr o m t he c orres p o n di n g a ut h or u p o n r e as o n a bl e r e q u est.
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