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Physics-Guided Architecture (PGA) of Neural Networks
for Quantifying Uncertainty in Lake Temperature Modeling
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Abstract

To simultaneously address the rising need of expressing
uncertainties in deep learning models along with producing
model outputs which are consistent with the known scientific
knowledge, we propose a novel physics-guided architecture
(PGA) of neural networks in the context of lake temperature
modeling where the physical constraints are hard coded in
the neural network architecture. This allows us to integrate
such models with state of the art uncertainty estimation
approaches such as Monte Carlo (MC) Dropout without
sacrificing the physical consistency of our results. We
demonstrate the effectiveness of our approach in ensuring
better generalizability as well as physical consistency in
MC estimates over data collected from Lake Mendota in
Wisconsin and Falling Creek Reservoir in Virginia, even
with limited training data. We further show that our MC
estimates correctly match the distribution of ground-truth
observations, thus making the PGA paradigm amenable to
physically grounded uncertainty quantification.

1 Introduction

Given the success of deep learning methods in com-
mercial domains such as computer vision, speech, and
natural language processing, there is a growing inter-
est in the scientific community to unlock the power of
deep learning methods for advancing scientific discov-
ery [2,9,14,27]. Out of the many reasons fueling this
interest, a primary factor is the rich ecosystem of ad-
vanced deep learning frameworks such as Conv Nets [17]
and long short term memory (LSTM) models [11] that
can handle complex structures in the data common in
many scientific applications. Another reason is that
with algorithmic innovations such as Dropout [28], we
are not only moving toward robustness in deep learn-
ing but also toward better approaches for uncertainty
quantification in deep learning, e.g., using the Monte
Carlo (MC) Dropout method [8]. This is especially im-
portant in scientific problems where we need to produce
uncertainty bounds in addition to point estimates, e.g.,
in climate change applications [24].

Despite dramatic advances in many commercial
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Figure 1: Physics-guided Architecture (PGA) paradigm of
neural networks aims to infuse physics in neural network de-
signs through physics-informed connections among neurons
and through physical intermediate variables, shown in red.
Note: Figures in this paper are best viewed in color.

fields, current standards of deep learning has seen
limited success in scientific applications (e.g., [4,18,22]),
sometimes even leading to spectacular failures (e.g.,
[18]). This is primarily because of the black-box nature
of conventional deep learning frameworks, which are
trained solely on data and are agnostic to the underlying
scientific principles driving real-world phenomena. As
a first step in moving beyond black-box applications
of deep learning, there is an emerging field of research
combining scientific knowledge (or theories) with data
science methods, termed theory-guided data science [15].
A promising line of research in this field is to guide the
learning of neural network models using physics-based
loss functions [13,16,30], that measure the violations of
physical principles in the neural network outputs. We
refer to this paradigm as physics-guided learning (PGL)
of neural networks.

While PGL formulations have been shown to im-
prove generalization performance and generate more
physically consistent predictions, adding a loss function
in the learning objective still does not circumvent the
black-box nature of neural network architectures, in-
volving arbitrary design choices (e.g., number of layers
and nodes per layer). As a result, black-box architec-
tures are susceptible to producing physically inconsis-
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tent solutions with minor perturbations in the network
weights, even after being trained with physics-based loss
functions. This is a major concern when using un-
certainty quantification methods such as MC dropout,
where the network edges are randomly dropped with a
small probability in the testing stage to produce a dis-
tribution of sample predictions for every test instance.
Indeed, our results demonstrate that the randomness
injected by MC dropout in the network weights eas-
ily breaks the ability of the PGL paradigm to preserve
physical consistency in the sample predictions, leading
to physically non-meaningful uncertainty estimates.

This paper presents innovations in an emerging field
of theory-guided data science where, instead of using
black-box architectures, we principally embed well-
known physical principles in the neural network design.
We refer to this paradigm as physics-guided architecture
(PGA) of neural networks. Specifically, this paper
offers two key innovations in the PGA paradigm for
the illustrative problem of lake temperature modeling
as illustrated in Figure 1. First, we introduce novel
physics-informed connections among neurons in the
network to capture physics-based relationships of lake
temperature. Second, we associate physical meaning
to some of the neurons in the network by computing
physical intermediate variables Z in the neural pathway
from inputs to outputs. By hard-wiring physics in the
model architecture, the PGA paradigm ensures physical
consistency of results regardless of small perturbations
in the network weights, e.g, due to MC dropout. We
compare the efficacy of our proposed approach with
baseline methods on data collected from two lakes with
differing physical characteristics and climatic regimes:
Lake Mendota in Wisconsin, U.S.A.; and Falling Creek
Reservoir in Virginia, U.S.A.

The remainder of the paper is organized as fol-
lows. Section 2 provides a brief background of the prob-
lem of lake temperature modeling and relevant related
work. Section 3 describes our proposed PGA-LSTM
framework. Section 4 discusses our evaluation proce-
dure while Section 5 presents results. Section 6 provides
detailed analysis of our results and Section 7 provides
concluding remarks and directions for future research.

2 Background and Related Work

2.1 Lake Temperature Modeling: Modeling the
temperature of water in a lake is important from both
economic and ecological perspectives. Water temper-
ature is known to be principal driver of the growth,
survival, and reproduction of economically viable fish
[21,26] (see Appendix for more details). Hence, accurate
and timely information about water temperature is nec-
essary to monitor the ecological health of lakes and fore-
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Figure 2: Plots of two key physical relationships in lake
temperature modeling: temperature-density physics and
density-depth physics.

cast future populations of fish and other aquatic taxa.
Since observations of water temperatures are incomplete
at broad spatial scales (or non-existent for most lakes),
physics-based models of lake temperature, e.g., the Gen-
eral Lake Model (GLM) [10], are commonly used for
studying lake processes. These modeling studies often
use temperature of water at the centre of a lake at vary-
ing depth values' and time points for model validation.
We adopt the same formulation to model the tempera-
ture of water in a lake, Yy, at depth d and time ¢. There
are two key physical relationships in lake temperature
modeling that serve as the basis of the PGA innova-
tions proposed in this paper. First, the temperature of
freshwater can be directly mapped to density water ac-
cording to the non-linear relationship shown in Figure
2(a) (notice that water is maximally dense at 4°C rather
than 0). Second, denser water sinks to the bottom of the
lake and thus resides at higher depth. Hence, density
of water monotonically increases with depth as shown
in the example plot of Figure 2(b). See Appendix for
more details on these physical relationships.

2.2 Physics-guided Machine Learning: Physics-
guided Learning (PGL) is a recent paradigm in learning
neural networks [13,16,30] where along with considering
the prediction loss in the target space Y, we also
measure the violations of physical principles in the
model outputs Y, represented as physics-based loss in
the PGL objective:

(2.1) argmin Loss(Y, ?) + Apuy PHY.Loss(Y).

where Apgy is a trade-off hyper-parameter that de-
cides the relative importance of minimising the physical
inconsistency compared to the empirical loss and the
model complexity. By using physics-based loss, PGL
restricts the search space of neural network weights
to physically consistent options, thereby aiming to

TDepth is measured in the direction from lake surface to lake

bottom.
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achieve more generalizable and physically relevant pre-
dictions. For the problem of lake temperature model-
ing, Karpatne et al. [16] developed a PGL framework to
measure violations of the two physical relationships in-
troduced in Section 2.1. Jia et al. [13] extended this to
work with time-based LSTM architectures and imple-
mented an additional physics-based loss term to incor-
porate energy conservation. Other recent works like Xu
et al. [31] integrated probabilistic logic with neural net-
works using semantic loss for classification tasks. Also,
Pathak et al. [25] leveraged a set of linear constraints
as loss functions for weakly supervised segmentation.
Marquez et al. [23] imposed hard constraints on neural
networks using constrained optimization formulations.

A major limitation of the PGL paradigm is that the
choice of the neural network architecture is still black-
box and not informed by physics. Even though minimiz-
ing physics-based loss helps in physically constraining
the search space of neural network weights during train-
ing, there are no architectural constraints in the neural
network design that guarantee the model predictions to
be physically consistent on unseen test instances.

Physics-guided architecture of neural networks has
recently gained popularity in several domains. Leibo
et al. [19] proposed network connections to incorpo-
rate Hebbian rule of learning in neuroscience for view-
tolerant facial detection. Another line of work has ex-
plored ways of embedding various forms of invariance
in neural networks for problems in molecular dynam-
ics [1] and turbulence modeling [20]. However, none of
these developments are directly applicable to our prob-
lem of temperature prediction, where we need to encode
physics available in the form of monotonic relationships
and presence of intermediate variables.

2.3 Uncertainty Quantification: Uncertainty
quantification (UQ) is critical for model evaluation in
a number of scientific applications, where rather than
producing point estimates of the target variable, it is
preferred to have a distribution of the possible values.
In our problem of lake temperature modeling, we wish
to perform UQ to ascertain the amount of confidence
we can place in our temperature predictions and its
estimated impact on the population of fish species and
other ecological variables.

A standard approach for performing UQ in neural
networks is by using dropout [28] on the trained neu-
ral network weights in the testing phase, to produce
Monte Carlo samples of the target variable for every
test instance—a technique called Monte Carlo (MC)
dropout [8]. While there are other methods in Bayesian
deep learning for UQ that directly estimate posterior
probabilities using priors on network weights [7], they
are generally slower than MC Dropout. We use MC
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Figure 3: Proposed PGA-LSTM framework.

Dropout in our approach to perform UQ for lake tem-
perature modeling, although our proposed PGA inno-
vations are generic and can be coupled with any other
method for UQ in deep learning.

3 Proposed Framework

3.1 Overview of PGA-LSTM: Figure 3 provides
an overview of our proposed physics-guided architecture
of LSTM (PGA-LSTM) for lake temperature modeling.
It is comprised of three basic components: (i) An
LSTM based auto-encoder framework which extracts
temporal features V; from the data at a given time
t, (ii) a monotonicity-preserving LSTM which uses V;
along with additional depth-based features X;i.q to
predict an intermediate physical quantity: density Zt’d,
while ensuring that Zyd > Z,d—l, and (iii) a multi-
layer perceptron model which combines the density
predictions Z; ¢ with the input drivers X; 4 to finally
predict the temperatures lA/t,d. In the following, we
describe these three components in detail and present an

end-to-end learning procedure for the complete PGA-
LSTM framework.

3.2 Temporal Feature Extraction: The problem
of lake temperature modeling can be viewed as a spatio-
temporal sequential prediction problem. In order to de-
velop a model which addresses both of these aspects si-
multaneously, we propose a simple yet effective method
to incorporate spatio-temporal relationships into our
model.

The autoencoder consists of two Recurrent Neural
Networks (RNNs), the encoder LSTM and the decoder
LSTM, as shown in Figure 4. We construct an input
sequence by augmenting the feature vectors of the last
7 days of target date with its feature vector. This input
Xi_7.4,q is then fed into the encoder which generates
some hidden representations \7} for the target date.
The decoder is then asked to reconstruct the entire
input sequence from just the hidden representation V;
of the target date. In order to do so, the representation
must retain information about the sequential nature of
the input data corresponding to the last week. Note
that the dimensionality of the hidden representations is
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intentionally kept smaller than the input dimensionality.
This design of auto-encoder is inspired by the earlier
work of Srivastava et al. [29].

3.3 Monotonicity-preserving LSTM: We build
upon the basic LSTM architecture [11] that is designed
to capture long-term and short-term memory effects in
predicting a target sequence Zi.; given an input se-
quence Xj.q using a recurrent neural network (RNN)
framework. The basic idea of LSTM is to remember
information for arbitrary long intervals by maintaining
memory cell states, Cy, and hidden states, Hy. The cell
state Cy is operated on by two neural network modules
(or gates): input gate and forget gate, which can add
or delete information in the cell state, respectively, and
are learnable functions of the features, X4, and the hid-
den state at the previous index, Hy_1. The cell state
in turn affects the hidden state H,; using a learnable
output gate. Finally, H,; is mapped to estimates of the
target variable Z; using a stack of fully-connected dense
layers.

While LSTM explicitly captures recurrence rela-
tionships between hidden states at consecutive indices,
H; and Hy_ 1, and thus offers some smoothness in its
predictions, the choice of the recurrence forms are quite
arbitrary and not informed by physics. In our PGA-
LSTM formulation, Zj.4 corresponds to a physically
meaningful intermediate quantity: the density of wa-
ter, which we know from Section 2.1 can only increase
or remain constant with depth d. To incorporate this
knowledge of density-depth physics, we introduce novel
physics-informed connections in LSTM to have a mono-
tonic recurrence relationship between Z; and Z;_1. The
proposed monotonicity-preserving LSTM architecture is
shown in Figure 5 and described in the following.

The main innovation in our proposed architecture
(marked as red in Figure 5) is to not only keep track of
the hidden state and cell state, Hy and Cy, respectively,
but also the physical intermediate variable, Z;, which
we know can only increase with depth. Hence, we
consider the problem of only predicting the positive
increment in density, &4, as a function of Hy, which
when added to Z;_1 yields Z;. In particular, we apply
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Figure 4: Proposed way for temporal feature extraction
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Figure 5: Monotonicity-preserving LSTM Architecture.
Components in red represent novel physics-informed
innovations in LSTM.

a stack of k dense hidden layers on H; and pass the
outputs through a ReLU activation function to predict
positive values of d4. The complete set of equations for
the forward pass of monotonicity-preserving LSTM is
given by:

Ig = o(Wi[Xa, Hi—1,Za—1] + bs)

Fqy=0(W;[X4,Ha—1,Za 1]+ by)

Cy=Fq0Cq_1+ Iqotanh(We[Xa, Ha—1,Za—1] + be)

O4 = 0(Wo[Xaq, Ha—1,Za-1] + bo)

Hy =040 tanh(Cd)

L(li = Activation(W1Hgq + b1)

Li = Activa‘tion(WiLf;1 + b;i), where i = 2,....k.

64 = ReLU(W;5LY + bs)

Zg =741+ 6a

where, terms highlighted in red represent novel physics-
informed innovations introduced in our proposed ar-
chitecture compared to conventional LSTMs. Note
that o(.) denotes the sigmoid activation, o denotes the
Hadamard product, [a,b] denotes the concatenation of
a and b, and (W, b), denotes learnable weight and bias
terms for all values of q.

While the physics-informed innovations in our
PGA-LSTM model were specifically motivated by the
density-depth physics in our target application, the idea
of preserving monotonicity in LSTM outputs is useful
in many other scientific applications. In general, our
PGA-monotonicity-preserving LSTM framework can
be used in applications where a target variable obeys
monotonic constraints.

3.4 Mapping Density to Temperature: Having
computed density as an intermediate variable in our
PGA-LSTM framework, mapping estimates of density
Z4 at depth d to estimates of temperature Yy at depth
d appears quite straightforward. Ideally, one can refer
to the temperature-density physics introduced in Sec-
tion 2.1 to infer density given temperature. However,
the physical mapping from density to temperature is
one-to-many and thus non-unique (see Figure 2(a)). In
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particular, a given value of density Z can be mapped to
two possible values of temperature Y, one corresponding
to the freezing phase (Y < 4°C) and the other corre-
sponding to the warming phase (Y > 4°C'). To address
this, we learn the mapping from Zd to }/}d directly from
the data, by concatenating X, with Z; and feeding the
concatenated values to a stack of fully-connected dense
layers with a single output node predicting the target
variable Y;. Since Z; is already a strong physical pre-
dictor of Y, we do not need a deep architecture to map
density to temperature and thus use a small number of
hidden layers.

3.5 End-to-end Learning Procedure: One of the
benefits of our PGA-LSTM framework is that along
with predicting the target variable: temperature, Y,
it also produces estimates of a physical intermediate
variable: density, Z, as ancillary outputs. Further,
during the training stage, ground-truth observations
of temperature, Y, can be converted to ground-truth
estimates of density, Z, using the one-to-one physical
mapping from temperature to density. Hence, we
perform end-to-end training of the complete PGA-
LSTM model by minimizing the empirical loss over both
Y and Z in the following learning objective:

argmin Loss(Y,Y) + Az Loss(Z, Z) + Ar R(W)
(W.b)

(3.2) R(W) = [[W]]2.

Here, Yy, and Zg; are the observed temperature
and density values, respectively, at depth d and time
t, N is the total number of observations, (W,b) is the
combined set of weights and bias terms, respectively,
across all components of PGA-LSTM, and Az and Agr
are the trade-off parameters for the density prediction
loss and regularization loss, respectively.

4 Evaluation Setup

4.1 Data and Experiment Design: Our proposed
PGA-LSTM model was trained and tested on two lakes
that differed in depth, size, and climatic conditions. The
first lake, Lake Mendota in Wisconsin, USA, is approx-
imately 40 km? in surface area with a maximum depth
of approximately 25 m. Lake Mendota is a dimictic lake
with seasonal variation in water temperatures from 0°
in the winter to nearly 30° in the summer. The overall
data for lake Mendota consisted of 35,213 observations.
Falling Creek Reservoir (FCR) in Virginia, USA, is ap-
proximately 0.119 km? in surface area with a maximum
depth of 9.3 m [5]. Similar to Mendota, FCR is also dim-
ictic and has seasonal variation in water temperatures
from 0° in the winter to nearly 30° in the summer. The
overall data for FCR consisted of 7588 observations [6].

We partitioned the data into two contiguous time
windows to be used for training and testing, such
that there is no temporal auto-correlation between the
training and test sets. The first 4 years was used for
training for both the lakes and the remaining for testing.
Both the input and density outputs were normalised
to zero mean unity standard deviation. The main
temperature output Y was not normalised. Please see
Appendix for detailed description of the data and model

specifications 2.

4.2 Evaluation Metrics: We consider the root
mean square error (RMSE) of a model on the test set
as a metric of generalizability of the model. We also
consider Physical Inconsistency as another evaluation
metric, which is defined as the fraction of times the
MC sample predictions at consecutive depths are phys-
ically inconsistent, i.e., they violate the density-depth
relationship. We have used a tolerance value of 10~°
kg/m? to decide if a difference in density across consec-
utive depths is physically inconsistent or not.

4.3 Baselines: We have chosen the following base-
lines for comparison. (1) An LSTM with similar archi-
tecture as a PGA-LSTM was chosen for comparison.
The black-box LSTM has 8 memory units followed by
four dense layers with 5 hidden units each, finally fol-
lowed by a dense layer with one unit. (2) The PGL-
LSTM was used as another baseline with a similar ar-
chitecture to the LSTM but using physics-guided learn-
ing in the form of loss functions. The PGL-LSTM tries
to minimise the physics based loss that can evaluated
by computing the physical inconsistency of two consec-
utive depth outputs. Note that we did not consider
the PGRNN approach [12] for lake temperature mod-
eling using physics-guided learning in RNNs as a base-
line in this paper due to two main reasons. First, this
paper only considers density-depth relationships while
PGRNN also considers energy conservation. Second,
PGRNN builds RNNs in time dimension whereas we are
building LSTM in the depth dimension, to make use of
the density-depth relations directly in the creation of
physics-guided architecture.

5 Results

5.1 Comparing PGA-LSTM with Baselines:
Tables 1 and 2 compare the performance of PGA-
LSTM with baseline methods on Lake Mendota and
FCR, respectively, using 40% data for training on both
lakes. We are interested in two evaluation metrics: Test
RMSE and Physical Inconsistency of the predicted tem-
perature profiles. Both metrics can be evaluated either

2The codes for PGA-LSTM are available on Github:
https://github.com/arkadaw9/PGA_LSTM
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Test RMSE (in °C) Physical Inconsistency
Per Sample Mean Per Sample Mean
LSTM | 2.25+0.14 1.63 +£0.08 0.32 £ 0.03 0.10 = 0.02
PGL 2.30+£0.12 | 1.62+0.10 | 0.34 £0.02 0.12 +0.02
PGA | 2.09+0.18 | 1.63+0.04 | 0.01 +0.01 | 0.00 £ 0.00
Table 1:  Results on Lake Mendota using 40% training
data.
Test RMSE (in °C) Physical Inconsistency
Per Sample Mean Per Sample Mean
LSTM | 2.96+0.22 | 2.274+0.17 | 0.28+0.02 | 0.07 £0.03
PGL 2.84£0.16 | 2.124+0.13 | 0.27£0.02 | 0.08+0.03
PGA | 219+0.21 | 1.88+0.12 | 0.00 +0.01 | 0.00 + 0.00

Table 2: Results on FCR using 40% training data.

on the individual MC samples (referred to as Per Sam-
ple) or on the mean of the MC samples (referred to
as Mean). (Note that we are interested in Per Sample
evaluation as we want every MC sample to be accurate
and physically consistent for the Mean results to make
sense in scientific applications.) We can see from Ta-
ble 1 that on Lake Mendota, LSTM has fairly high Per
Sample Test RMSE,; illustrating the limitations of black-
box models in achieving good generalizability. Further,
the Per Sample Physical inconsistency of LSTM is 0.32,
which indicates that the MC samples generated from
LSTM are physically inconsistent 32% of the time. If
we consider the mean of MC samples generated from
LSTM, we can get lower Mean Test RMSE, due to the
cancellation of noise through aggregation. However, the
Mean Physical Inconsistency of LSTM is still fairly high.

If we employ the PGL paradigm, we can see that
PGL-LSTM shows little to no improvement in RMSE or
Physical Inconsistency in comparison to LSTM. Note
that every dropout network represents a slightly per-
turbed version of the trained neural network model. Ide-
ally, we want every dropout network to produce phys-
ically consistent simulations of the target variable, so
that the UQ analysis is physically meaningful. How-
ever, if we use black-box architectures, it is highly likely
to obtain dropout networks that produce physically in-
consistent solutions even after using the PGL paradigm.
This is because the dropout procedure effectively injects
a small amount of randomness in the neural network
weights, which may be sufficient to unlearn the physi-
cal consistency introduced during training by the PGL
paradigm. In contrast to the baseline methods, we can
observe that our proposed PGA-LSTM model shows
the smallest Per Sample Test RMSE while always pre-
serving physical consistency, even after performing MC
dropout. Table 2 shows similar trends in the results of
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Figure 6: Test RMSE (per sample) on varying training sizes.

PGA-LSTM w.r.t. baseline methods on FCR.

5.2 Effect of Varying Training Size: To demon-
strate the effects of reducing training size on the ac-
curacy of comparative models, Figure 6 shows the Per
Sample Test RMSE of PGA-LSTM, PGL-LSTM, and
LSTM on varying training fractions. We can see that
the test RMSE of all methods increase as we reduce the
amount of data available for training in both Lake Men-
dota and FCR. However, we can see that PGA-LSTM
shows the lowest Test RMSE for all values of training
fractions in both the lakes. While Lake Mendota and
FCR represent heavily studied water bodies, a majority
of lakes in the USA (and the world) suffer from limited
number of observations. Hence, by comparing models
in scarcity of training data on these lakes, we intend to
simulate real-life scenarios on other unseen lakes where
temperature models have to be deployed. Note that in
FCR, the rate of increase in RMSE as we reduce training
size is lowest for PGA-LSTM as compared to all base-
line methods. This resonates with the fact that the need
for introducing physics to achieve better test RMSE is
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Figure 7: Temperature profiles of comparative models on October 5, 2013 for Lake Mendota.

higher at smaller training sizes, when black-box models
have higher risks of over-fitting and learning spurious
solutions.

6 Analysis of Results

6.1 Visualizing Temperature Profiles: Figures
7(a), 7(b), and 7(c) show plots of 15 sample temperature
profiles generated by comparative models on a represen-
tative test date of October 15, 2013 in Lake Mendota,
when trained on 40% data. Note that these 15 samples
have been selected at random from the pool of dropout
MC samples generated on this test date across all 10
random runs of training. We can observe that the sam-
ple profiles of LSTM and PGL-LSTM are highly phys-
ically inconsistent (i.e., temperature profiles show no
monotonic behavior with depth). Hence, despite their
RMSE values, a lake scientist will have lower confidence
in trusting their results and using them in subsequent
scientific analyses. In contrast to baseline methods,
PGA-LSTM produces sample profiles that are always
physically consistent, and thus are useful from a domain
perspective.

To analyze the validity of MC profiles in capturing
the uncertainty around temperature predictions, Fig-

ures 7(d), 7(e), and 7(f) show the mean and variance
of comparative models for the complete pool of dropout
samples generated on this test date across all 10 ran-
dom runs of training. The error bars in these plots have
been generated using two standard deviations around
the mean, thus capturing 99.7% of samples under Gaus-
sian assumption. We can see that the mean profiles of
LSTM and PGL-LSTM are close to the ground-truth
and the error bars engulf the ground-truth in the shal-
lower portion of the lake (depth < 10m). However, as we
move to the deeper portion of the lake (depth > 10m),
the ground-truth observations start to depart from the
distribution of samples generated by LSTM and PGL-
LSTM and escapes outside the error bars. On the
other hand, the distribution of samples generated us-
ing PGA-LSTM accurately envelops the ground-truth
observations at every portion of the lake irrespective of
depth. 3

6.2 Assessing Uncertainty Estimates: While
Figure 7(f) shows that the ground-truth observations

3While Figure 7 provides results over a single test date in Lake

Mendota, videos of the results for both lakes for all test dates are
available at the following link : click here
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Figure 8: Cumulative percentage of observations within a
certain percentile of samples of comparative models on Lake
Mendota [3].

are contained within 99.7% samples of PGA-LSTM on
a given date in Lake Mendota, we attempt to quantita-
tively assess the validity of our uncertainty estimates as
compared to baseline methods across all dates. Ideally,
if the uncertainty estimates produced by a model are
valid, we should expect the distribution of its samples
to accurately match the distribution of ground-truth ob-
servations on test points. In other words, if we look
at the k' percentile of samples generated by an ideal
model, then we should expect to observe k% of ground-
truth test points to fall within it [3]. To capture this
idea, we first fit a Gaussian distribution on the com-
plete pool of samples generated by a model on a test
point, and then estimate the two-tailed percentile of
the ground-truth observed at that point. Figure 8 plots
the cumulative percentage of ground-truth observations
(Y-axis) that fall within a certain percentile of sam-
ples generated by comparative models (X-axis). The
ideal model is represented by the diagonal line y = x,
where the percentage of ground-truth points within a
percentile is equal to the percentile value. Models that
are over-confident would have fewer ground-truth points
within a certain percentile and hence would lie below the
diagonal. Conversely, models that are under-confident
would reside above the y = x diagonal. We can see from
Figure 8 that the baseline models, LSTM and PGL-
LSTM, lie just below the diagonal and hence produce
slightly over-confident uncertainty estimates, i.e., the
distribution of ground-truth points sometimes falls out-
side the distribution of MC samples. On the other hand,
PGA-LSTM lies just above the diagonal and hence pro-
duces slightly larger uncertainty estimates than what is
ideally expected. Note that in the absence of any infor-
mation about the ground-truth on test dates, it is gener-

ally desirable to be slightly under-confident and produce
wider uncertainty bounds than to be over-confident with
narrower bounds. Further, even though the uncertainty
bounds of PGA-LSTM are wider, it produces lower Per
Sample Test RMSE than all other baseline methods.
This illustrates that PGA-LSTM produces reasonably
good uncertainty estimates that captures the distribu-
tion of the ground-truth observations.

7 Conclusions and Future Work

This paper explored an emerging direction in theory-
guided data science to move beyond black-box neural
network architectures and design physics-guided archi-
tectures (PGA) of neural networks that are informed by
physics. We specifically develop a novel PGA-LSTM
model for the problem of lake temperature modeling,
where we design a monotonicity-preserving LSTM mod-
ule to predict physically consistent densities. We com-
pared our PGA-LSTM model with baseline methods
to demonstrate its ability to produce generalizable and
physically consistent solutions, even after making mi-
nor perturbations in the network weights by the Monte
Carlo (MC) dropout method for uncertainty quantifica-
tion.

Future work will explore applications of the pro-
posed PGA-LSTM in other scientific problems that
show monotonic recurrence relationships. Future work
will also explore the effect of other state of the art un-
certainty prediction methods on physics-guided archi-
tecture models. Extensions of the PGA framework for
capturing more complex forms of physical relationships
in space and time will be explored as well. Future work
can also study the impact of PGA-LSTM on physical
interpretability of neural networks, since the features ex-
tracted at the hidden layers of the network correspond
to physically meaningful concepts.
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