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Deep Non-Rigid Structure from Motion
with Missing Data

Chen Kong, Student Member, IEEE, and Simon Lucey, Member, IEEE

Abstract—Non-Rigid Structure from Motion (NRSfM) refers to the problem of reconstructing cameras and the 3D point cloud of a
non-rigid object from an ensemble of images with 2D correspondences. Current NRSfM algorithms are limited from two perspectives:
(i) the number of images, and (ii) the type of shape variability they can handle. These difficulties stem from the inherent conflict
between the condition of the system and the degrees of freedom needing to be modeled – which has hampered its practical utility for
many applications within vision. In this paper we propose a novel hierarchical sparse coding model for NRSFM which can overcome (i)
and (ii) to such an extent, that NRSFM can be applied to problems in vision previously thought too ill posed. Our approach is realized in
practice as the training of an unsupervised deep neural network (DNN) auto-encoder with a unique architecture that is able to
disentangle pose from 3D structure. Using modern deep learning computational platforms allows us to solve NRSfM problems at an
unprecedented scale and shape complexity. Our approach has no 3D supervision, relying solely on 2D point correspondences.
Further, our approach is also able to handle missing/occluded 2D points without the need for matrix completion. Extensive experiments
demonstrate the impressive performance of our approach where we exhibit superior precision and robustness against all available
state-of-the-art works in some instances by an order of magnitude. We further propose a new quality measure (based on the network
weights) which circumvents the need for 3D ground-truth to ascertain the confidence we have in the reconstructability. We believe our
work to be a significant advance over state-of-the-art in NRSFM.

Index Terms—Nonrigid structure from motion, hierarchical sparse coding, deep neural network, reconstructability, missing data.

F

1 INTRODUCTION

BUILDING an AI capable of inferring the 3D structure and
pose of an object from a single image is a problem of

immense importance. Training such a system using super-
vised learning requires a large number of labeled images –
how to obtain these labels is currently an open problem
for the vision community. Rendering [1] is problematic as
the synthetic images seldom match the appearance and
geometry of the objects we encounter in the real-world.
Hand annotation is preferable, but current strategies rely on
associating the natural images with an external 3D dataset
(e.g. ShapeNet [2], ModelNet [3]), which we refer to as
3D supervision. If the 3D shape dataset does not capture
the variation we see in the imagery, then the problem is
inherently ill-posed.

Non-Rigid Structure from Motion (NRSf M) offers com-
puter vision a way out of this quandary – by recovering the
pose and 3D structure of an object category solely from hand
annotated 2D landmarks with no need of 3D supervision.
Classically [4], the problem of NRSf M has been applied
to objects that move non-rigidly over time such as the
human body and face. Additional benchmarks have been
proposed [5] for other temporally deforming non-rigid ob-
jects. But NRSf M is not restricted to non-rigid objects; it can
equally be applied to rigid objects whose object categories
are non-rigid [6], [7], [8]. Consider, for example, the five
objects in Fig. 1 (top), instances from the visual object
category “chair”. Each object in isolation represents a rigid
chair, but the set of all 3D shapes describing “chair” is non-
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rigid. In other words, each object instance can be modeled
as a certain deformation from its category’s general shape.

Rigid Sf M is already an ill-posed problem. It is the
rigidity prior of objects that helps to obtain good results
across Sf M applications. NRSf M is even more challenging
where rigidity is removed due to its inherent non-rigid
nature. To resolve the problem of NRSf M, additional shape
priors are proposed, e.g. low rank [4], [9], [10], union-of-
subspaces [7], [11], and block-sparsity [6], [12]. However,
low rank is only applicable to simple non-rigid objects with
limited deformations and union-of-subspaces rely heavily
on frame clustering which has difficulty scaling up to
large image collections. A block-sparsity prior where each
shape can be represented by at most K bases out of L, is
considered as one of the most promising assumptions in
terms of covering broad shape variations. This is because
sparsity can be thought as a union of

(L
K

)
subspaces where L

could be large then an over-complete dictionary is utilized.
However, pointed by our previous work [12], searching
the best subspace out of

(L
K

)
is extremely hard and not

robust. Based on this observation, in this paper, we pro-
pose a novel shape prior using hierarchical sparse coding.
The introduced additional layers compared to single-layer
sparse coding are capable of controlling the number of
subspaces by learning from data such that invalid subspaces
are removed while sufficient subspaces are remained for
modeling shape variations. This insight is at the heart of
our paper.

1.1 Contributions

We propose a novel shape prior based on hierarchical
sparse coding and demonstrate that the 2D projections
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Our Result Ground Truth State-of-the-art

Fig. 1. In this paper, we want to reconstruct 3D shapes solely from a
sequence of annotated images—shown on the top—with no need of
3D ground truth. Our proposed hierarchical sparse coding model and
corresponding deep solution outperform state-of-the-arts in the order of
magnitude.

under weak perspective cameras can be represented by the
hierarchical dictionaries in a block sparse way. Through
recent theoretical innovations [13], we then show how this
problem can be reinterpreted as training an unsupervised
feed-forward Deep Neural Network(DNN) auto-encoder.
A common drawback of DNNs when applied to recon-
struction problems is that they are an opaque black-box
lacking any interpretability. A strength of our approach is
that the DNN is directly derived from a hierarchical block
sparse dictionary learning objective – allowing for greater
transparency into what the network weights are modeling.
As a result we are able to formulate a measure of model
quality (using the coherence of learned parameters), which
helps to avoid over-fitting especially when ground-truth of
training data are not available.

Our deep NRSf M is capable of handling hundreds of
thousands of images and learning large parameterizations
to model non-rigidity. Extensive experiments are conducted
and our approach outperforms state-of-the-art methods in
the order of magnitude on a number of benchmarks. Both
quantitative and qualitative results demonstrate our su-
perior performance – an example of qualitative results is
shown in Fig. 1.

Compared to our previous work [14], this paper offers
a substantial leap forward in terms of state-of-the-art. Our
approach can now handle “real-world” scenarios where
camera scale and translation are unknown and there are
missing or occluded 2D points. Specifically, the method is
now capable of reconstructing non-rigid objects under weak
perspective projection instead of orthogonal (as in [14]).
Weak perspective projection is a reasonable assumption for
many practical vision applications where the object’s varia-
tion in depth is small compared to their distance from the
camera [4], [15], [16], [17]. Additionally, unlike our earlier
work [14], this paper provides a solution to reconstruct
invisible points – 2D coordinates missing due to occlusion
or self-occlusion – with no need of matrix completion. These
two breakthroughs make this paper substantially different
from the deep NRSf M first proposed in [14] and dramat-
ically improve its practical utilities in real-world applica-
tions.

1.2 Related Work

In rigid structure from motion, the rank of 3D structure
is fixed, [15] since the 3D structure remains the same
between frames. Based on this insight, Bregler et al. [4]
advocated that non-rigid 3D structure could be represented
by a linear subspace of low rank. Dai et al. [9] developed
this prior further by proving that the low-rank assumption
itself is sufficient to address the ill-posedness of NRSf M
with no need of additional priors. They then proposed a
novel algorithm based on singular value decomposition,
followed by a non-linear optimization to achieve state-of-
the-art performance across numerous benchmarks. The low-
rank assumption has also been applied temporally [18], [19]
– 3D point trajectories can be represented by pre-defined
(e.g. DCT) or learned bases. Although exhibiting impressive
performance, the low-rank assumption has a major draw-
back. The rank is strictly limited by the number of points
and frames (whichever is smaller [9]). This makes low-rank
NRSf M infeasible if we want to solve large-scale problems
with – complex shape variations – when the number of
points is substantially smaller than the number of frames.

Inspired by the intuition that complex non-rigid de-
formations could be clustered into a sequence of simple
motions, Zhu et al. [11] proposed to model non-rigid 3D
structure by a union of local subspaces. They show that
clustering frames from their 2D annotations is less effective
and therefore propose a novel algorithm to reconstruct 3D
shapes and an estimate of the 3D-based frame affinity matrix
simultaneously. The idea of union-of-subspaces was later
extended to spatial-temporal domain [20] and applied to
rigid object category reconstruction [7].Though the union-
of-subspaces model is capable of handling complex object
deformation, its holistic estimation of the entire affinity
matrix – the number of frame by the number of frame matrix
– impedes its scalability to large-scale problems e.g. more
than tens of thousand frames.

Inspired by the union-of-subspaces assumption, a block-
sparsity prior [6], [12], [21] was proposed as a more generic
and elegant prior for NRSf M. The sparsity prior can be
viewed as being mathematically equivalent to the union
of all possible local subspaces. This is advantageous as it
circumvents the need for a messy affinity matrix – since
all local subspaces are being considered. Further, since the
method is entertaining many local subspaces it is also able to
model much more complex 3D shapes than single subspace
low-rank methods. However, the sheer number of subspaces
that can be entertained by the block-sparsity prior is its
fundamental drawback. Since there are so many possible
subspaces to choose from, the approach is quite sensitive to
noise dramatically limiting its applicability to “real-world”
NRSf M problems. In this paper we want to leverage the ele-
gance and expressibility of the block-sparsity prior without
suffering from its inherent sensitivity to noise.

Drover et al. [22] and Kudo et al. [23] recently applied
neural networks for NRSf M in an unsupervised manner.
These two papers proposed a very similar idea i.e. using a
GAN to generate potential 3D structures and ensuring their
consistency across novel viewpoints through the GAN’s
discriminator. Although intriguing, this approach to date
has only been shown effective for 3D human skeletons –
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whereas our approach exhibits state-of-the-art performance
across multiple disparate object classes. Further, unlike [22],
[23], the connection of our approach to sparse dictionary
learning facilitates a measure (based on dictionary coher-
ence) of the uniqueness of the 3D reconstruction without
having any 3D ground-truth. Finally, it is unclear how they
handle missing points – again limiting the applicability of
their approach to to “real-world” problems.

Missing correspondences are inevitable when annotating
objects because key points are often occluded by other
objects or itself, shown in Fig. 1 (top). This requires any
practical NRSf M algorithm to be tolerant to missing 2D
points. Two solutions are usually utilized: (i) a mask is intro-
duced indicating the visibility of 2D points to the objective
function [6], [24], [25], or (ii) the employment of a matrix
completion algorithm to recover the missing 2D points a
priori from which then the NRSf M algorithm [9], [26], [27]
is applied. In this paper, we follow the former strategy and
show how this is implemented by a feed-forward neural
network.

1.3 Background

Sparse dictionary learning can be considered as an unsu-
pervised learning task and divided into two sub-problems:
(i) dictionary learning, and (ii) sparse code recovery. Let us
consider sparse code recovery problem, where we estimate
a sparse representation z for a measurement vector x given
the dictionary D, i.e.

min
z
‖x−Dz‖22 s.t. ‖z‖0 < λ, (1)

where λ related to the trust region controls the sparsity
of recovered code. One classical algorithm to recover the
sparse representation is Iterative Shrinkage and Thresh-
olding Algorithm (ISTA) [28], [29], [30]. ISTA iteratively
executes the following two steps with z[0] = 0:

v = z[i] − αDT (Dz[i] − x), (2)

z[i+1] = argmin
u

1

2
‖u− v‖22 + τ‖u‖1, (3)

which first uses the gradient of ‖x − Dz‖22 to update z[i]

in step size α and then finds the closest sparse solution
using an `1 convex relaxation. It can be demonstrated that
the second step has a closed-form solution that is

z[i+1] = η(v; τ). (4)

where η represents a element-wise soft-thresholding opera-
tion, formally defined as

η(x; b) =


x− b if x > b,

x+ b if x < −b,
0 otherwise.

(5)

Therefore, ISTA can be summarized as the following recur-
sive equation:

z[i+1] = η
(
z[i] − αDT (Dz[i] − x); τ

)
, (6)

where τ is related to λ for controlling sparsity.
Recently, Papyan [13] proposed to use ISTA and sparse

coding to reinterpret feed-forward neural networks. They

argue that feed-forward passing a single-layer neural net-
work z = η(DTx; b) can be considered as one iteration
of ISTA in (6) when setting α = 1 and τ = b. Based on
this insight, the authors extend this interpretation to feed-
forward neural network with N layers

z1 = η(DT
1 x; b1)

z2 = η(DT
2 z1; b2)

...

zN = η(DT
NzN−1; bN )

(7)

as executing a sequence of single-iteration ISTA, serving as
an approximate solution to the hierarchical sparse coding
problem: find {zi}Ni=1, such that

x = D1z1, ‖z1‖0 < λ1,

z1 = D2z2, ‖z2‖0 < λ2,

... ,
...

zN−1 = DNzN , ‖zN‖0 < λN ,

(8)

where the bias terms {bi}Ni=1 (in a similar manner to τ ) are
related to {λi}Ni=1, adjusting the sparsity of recovered code.
Furthermore, they reinterpret back-propagating through the
deep neural network as learning the dictionaries {Di}Ni=1.
This connection offers a novel reinterpretation of DNNs
through the lens of hierarchical sparse dictionary learning.
In this paper, we extend this reinterpretation to the block
sparse scenario and apply it to solving our NRSf M problem.

2 PROBLEM FORMULATION

In the context of NRSf M, the weak perspective projection
model is a reasonable assumption since the many of objects
we deal with in vision applications have a much smaller
depth variation compared to their distance from the camera.
We shall start from the orthogonal projection model in this
section and then generalize to weak perspective projection
in Section 5. Under orthogonal projection, NRSf M deals
with the problem of factorizing a 2D projection matrix
W ∈ RP×2, given P points, as the product of a 3D shape
matrix S ∈ RP×3 and a camera matrix M ∈ R3×2. Formally,

W = SM, (9)

W =


u1 v1

u2 v2

...
...

uP vP

 , S =


x1 y1 z1

x2 y2 z2

...
...

...
xP yP zP

 , MTM = I2,

(10)
where (ui, vi) and (xi, yi, zi) are the image and world co-
ordinates of the i-th point respectively. The goal of NRSf M
is to recover simultaneously the shape S and the camera M
for each projection W in a given set W of 2D landmarks.
In a general NRSf M including Sf C, this set W could contain
deformations of a non-rigid object or various instances from
an object category.
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3 MODELING VIA HIERARCHICAL SPARSE CODING

Kong et al. [12] argued that an effective solution for NRSf M
can be found by assuming the vectorization of S can be
represented by a dictionary sparsely:

s = Dψ, ‖ψ‖0 < λ . (11)

This paper introduces additional layers and therefore a
hierarchical sparse model is proposed:

s = D1ψ1, ‖ψ1‖0 < λ1,

ψ1 = D2ψ2, ‖ψ2‖0 < λ2,

... ,
...

ψN−1 = DNψN , ‖ψN‖0 < λN ,

(12)

where D1 ∈ R3P×K1 ,D2 ∈ RK1×K2 , . . . ,DN ∈ RKN−1×KN

are hierarchical dictionaries and ψ1 ∈ RK1 , ψ2 ∈ RK2 , . . . ,
ψN ∈ RKN are hierarchical sparse codes. In this prior, each
non-rigid shape is represented by a sequence of dictionaries
and corresponding non-negative sparse codes hierarchically.
Each sparse code is determined by its lower-level neighbor
and affects the next-level. The additional layers introduced
by this hierarchy increase the number of variables, and thus
increase the degree of freedom of the system. However,
these additional layers actually result in a more constrained
and thus stable sparse code recovery process.

Sparse code recovery algorithms – solutions to (1) – in
general attempt to solve two problems: 1) select the best
subspace and 2) estimate the closest representation within
the subspace. These two problems could be solved simulta-
neously or alternatively, but the quality of recovered sparse
code highly relies on the former. If the desired subspace is
given from oracle, then the sparse coding problem degener-
ates to a linear system. However, without knowing the size
of the desired subspace, the number of valid subspaces in
(11) is combinatorial to the number of dictionary atoms K
i.e.
∑K

n=1

(K
n

)
. Selecting the best subspace out of such large

number of candidates is considerably difficult, especially
when using over-complete dictionaries. This reveals the
conflict between the quality of sparse code recovery and the
representing capacity of the dictionary, and further explains
the sensitivity of [12] to non-compressible sequences.

The additional layers introduced in this paper alleviate
the dilemma. In (12), the sparse code ψ1 is not completely
free but represented by the subsequent dictionaries. There-
fore, the number of subspaces is not combinatorial to K1

but controlled by the subsequent dictionaries {Di}Ni=2. If
the subsequent dictionaries are learned properly, they could
serve as a filter so that only functional subspaces remain
and redundant ones are removed. This directly breaks the
combinatorial explosion of the number of subspaces and
consequently maintains the robustness of sparse code re-
covery. Based on this observation, we are able to utilize
substantially over-complete dictionaries to model a highly
deformable object from a large scale image collection with
no worries about reconstructability and robustness.

3.1 Hierarchical Block Sparse Coding
Given the proposed hierarchical sparse coding model,
shown in (12), we now build a conduit from the 2D corre-
spondences W to the proposed shape code {ψi}ki=1. Since

s ∈ R3P in (12) is the vectorization of S ∈ RP×3, it can
be well modeled via i.e. S = D]

1(ψ1 ⊗ I3) where ⊗ is
the Kronecker product and D]

1 ∈ RP×3K1 is a reshape of
D1 ∈ R3P×K1 [9]. It is known that AB⊗I = (A⊗I)(B⊗I)
given two matrices A,B, and identity matrix I. Based on
this lemma, we can derive that

S = D]
1(ψ1 ⊗ I3), ‖ψ1‖0 < λ1,

ψ1 ⊗ I3 = (D2 ⊗ I3)(ψ2 ⊗ I3), ‖ψ2‖0 < λ2,

... ,
...

ψN−1 ⊗ I3 = (DN ⊗ I3)(ψN ⊗ I3), ‖ψN‖0 < λN .

(13)

Further, from (9), by right multiplying the camera ma-
trix M ∈ R3×2 to the both sides of (13) and denote
Ψi = ψi ⊗M, we obtain that

W = D]
1Ψ1, ‖Ψ1‖(3×2)

0 < λ1,

Ψ1 = (D2 ⊗ I3)Ψ2, ‖Ψ2‖(3×2)
0 < λ2,

... ,
...

ΨN−1 = (DN ⊗ I3)ΨN , ‖ΨN‖(3×2)
0 < λN ,

(14)

where ‖ · ‖(3×2)
0 divides the argument matrix into blocks

with size 3 × 2 and counts the number of active blocks.
Since ψi has active elements less than λi, Ψi has active
blocks less than λi, that is Ψi is block sparse. This deriva-
tion demonstrates that if the shape vector s satisfies the
hierarchical sparse coding prior described by (12), then its
2D projection W must be in the format of hierarchical
block sparse coding described by (14). We hereby interpret
NRSf M as a hierarchical block sparse dictionary learning
problem, i.e. factorizing W as products of hierarchical dic-
tionaries {Di}Ni=1 and block sparse coefficients {Ψi}Ni=1.

4 DEEP NEURAL NETWORK SOLUTION

Before solving the hierarchical block sparse coding problem
in (14), we first consider a single-layer problem:

min
Z
‖X−DZ‖2F s.t. ‖Z‖(3×2)

0 < λ. (15)

Inspired by ISTA, we propose to solve this problem by
iteratively executing the following two steps:

V = Z[i] − αDT (DZ[i] −X), (16)

Z[i+1] = argmin
U

1

2
‖U−V‖2F + τ‖U‖(3×2)

F1 , (17)

where ‖·‖(3×2)
F1 is defined as the summation of the Frobenius

norm of each 3 × 2 block, serving as a convex relaxation of
the block sparsity constraint. Recall the regular sparse situa-
tion in Section 1.3. Analogous to (4), we use an approximate
solution to (17) for computational efficiency, i.e.

Z[i+1] = η(V; b⊗ 13×2), (18)

where η represents a element-wise soft-thresholding opera-
tion defined in (5), 13×2 denotes a 3-by-2 matrix filled with
one and b is a vector that controls the trust region for each
block. Based on this approximation, a single-iteration block
ISTA with step size α = 1 can be represented by :

Z = η(DTX; b⊗ 13×2), (19)
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Fig. 2. Architecture of our proposed deep NRSfM. The network can be divided into 1) Encoder: from 2D correspondences W to the hidden
block sparse code ΨN , 2) Bottleneck: from hidden block sparse code ΨN to hidden regular sparse code ψN and camera, 3) Decoder: from
hidden regular sparse code ψN to 3D reconstructed shape S. The encoder and decoder are intentionally designed to share convolution kernels
(i.e. dictionaries) and form a symmetric formulation. The symbol a × b, c → d refers to the convolution layer using kernel size a × b with c input
channels and d output channels.

4.1 Encoder

Recall from Section 1.3 that the feed-forward pass through a
deep neural network can be considered as a sequence of
single ISTA iterations and thus provides an approximate
recovery of hierarchical sparse codes. We follow the same
scheme – sequentially using single-iteration block ISTA – to
solve the hierarchical block sparse coding problem (14) i.e.

Ψ1 = η((D]
1)TW; b1 ⊗ 13×2),

Ψ2 = η((D2 ⊗ I3)TΨ1; b2 ⊗ 13×2),

...

ΨN = η((DN ⊗ I3)TΨN−1; bN ⊗ 13×2),

(20)

where {bi}Ni=1 are learnable parameters, controlling the
block sparsity. This formula composes the encoder of our
proposed deep neural network.

It is worth mentioning that setting {bi}Ni=1 as learnable
parameters is crucial because in previous NRSf M algo-
rithms – low-rank [9], union-of-subspaces [11], or block-
sparsity [12] priors – the weight associated with shape regu-
larization (e.g.low-rank or sparsity) is determined through a
cumbersome and slow grid-search process. In our approach,
this weighting is learned simultaneously with all other
parameters, removing the need for irksome cross-validation
of parameter {bi}Ni=1.

4.2 Code and Camera Recovery

Recall that in Section 3.1, we define Ψ = ψ⊗M. By denoting
the k-th block in ΨN as Ψk

N and the k-th element in ψN as
ψk

N . we have
Ψk

N = ψk
NM. (21)

Now, we want to estimate the regular sparse hidden
code ψN and camera M given ΨN . It is obvious that if
one of them is known beforehand, then the other one can be
solved easily. For example, if M is known, then ψk

N can be
estimated by

ψk
N =

1

6

3∑
i=1

2∑
j=1

[Ψk
N ]ij

[M]ij
=

3∑
i=1

2∑
j=1

1

6[M]ij
[Ψk

N ]ij , (22)

where [·]ij denotes the ij-th element in the argument matrix.
Note that actually a single element in camera M and its
correspondence in ΨN are sufficient to estimate the scaler

ψk
N , but, for robust estimation, an average over all elements

(3 × 2 block results in totally 6 elements) is utilized in (22).
Further, if ψN is known, then M can be estimated by

M =
1

KN

KN∑
k=1

Ψk
N

ψk
N

=
KN∑
k=1

1

KNψ
k
N

Ψk
N . (23)

Note that a single element in ψN and a corresponding block
in ΨN is again sufficient to estimate M but, for robustness,
(23) utilizes an average across all blocks.

In the literature of the field [9], [12], [31], these two
coupled variables are mainly solved by a carefully designed
algorithm that utilizes the orthonormal constraint to solve
the camera first and then the sparse hidden code. However,
this heuristic is quite fragile and it is even worse when
the estimation of ΨN is bothered by noise. Further, it has
difficulty deciding the sign ambiguity of each sparse code.
In this paper, we propose a novel algorithm, decoupling
equations (22) and (23) by introducing two learnable pa-
rameters β and γ, specifically,

ψk
N =

3∑
i=1

2∑
j=1

βij [Ψ
k
N ]ij , (24)

M =
KN∑
k=1

γkΨk
N . (25)

It is clear that ψ and M are intrinsically linked – but
our proposed approach seems to ignore this dependency.
We resolve this inconsistency, however, by enforcing an
orthonormal constraint for the camera in our loss function
shown in Section 4.4. This approach has the further advan-
tage of eliminating fragile heuristics and giving substantial
computational savings. Fig. 2 represents this process via
convolutions for conciseness and descent visualization.

4.3 Decoder

Given the sparse hidden code ψN and hierarchical dictio-
naries {Di}Ni=1, the 3D shape vector s could be recovered via
(12). In practice, instead of forming a purely linear decoder,
we preserve soft-thresholding in each layer. This non-linear
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decoder is expected to further enforce sparsity and improve
robustness. Formally,

ψN−1 = η(DNψN ; b′N ),

...
ψ1 = η(D2ψ2; b′2),

s = D]
1ψ1.

(26)

This portion forms the decoder of our deep neural network.

4.4 Loss Function
Until now, the 3D shape S is estimated via the proposed
encoder and decoder architecture given the hierarchical
dictionaries, which is denoted as S

(
W|{Di}Ni=1

)
for sim-

plicity. Further, the camera M is also estimated via the
encoder and a linear combination given the dictionaries,
which is denoted as M

(
W|{Di}Ni=1

)
. Our loss function is

thus defined as

min
{D}Ni=1

∑
W∈W

∥∥∥W − S
(
W|{Di}Ni=1

)
UVT

∥∥∥
F

s.t. UΣVT =M
(
W|{Di}Ni=1

)
,

(27)

which is the summation of reprojection error. To ensure the
success of the orthonormal constraint on the camera, we
introduce the Singular Value Decomposition (SVD) to hard
code the singular value of M to be exact ones. As mentioned
in Section 4.2, reprojecting the estimated 3D shape via the
estimated camera (i.e. left multiplying M to S) implicitly
re-build the bonds between the camera M and the sparse
hidden code ψN (in the form of 3D shape S).

4.5 Implementation Issues
The Kronecker product of identity matrix I3 dramatically
increases the time and space complexity of our approach. To
eliminate it and make parameter sharing easier in modern
deep-learning environments (e.g. TensorFlow, PyTorch), we
reshape the filters and features so that the matrix multipli-
cation in each step can be equivalently computed via multi-
channel convolution (∗) and transposed convolution (∗T ).
We first reshape the 2D input correspondences W into
a three-dimensional tensor w ∈ R1×2×P , which can be
considered in the deep-learning community as a 1×2 image
with P channels. Then, we reshape the first dictionary D]

1

into a four-dimensional tensor d]1 ∈ R3×1×K1×P , which can
be interpreted as a convolutional kernel in size 3×1 withK1

input channels and P output channels. Therefore, we have

(D]
1)TW = d]1 ∗T w, (28)

which helps us to maintain a uniform dictionary shape
and is consequently easier to share parameters. We then
reshape each dictionary Di other than the first one into
a four-dimensional tensor di ∈ R1×1×Ki×Ki−1 and the
hidden block sparse code Ψi into a three-dimensional tensor
Ψi ∈ R3×2×Ki . Therefore, we have

(Di+1 ⊗ I3)TΨi = di+1 ∗T Ψi, (29)

which helps us to eliminate the Kronecker product. Finally,
based on the above reshape, the dictionary-code multiplica-
tion is simplified as

Diψi = di ∗ ψi. (30)

As for the architecture design, we only control three
hyper parameters: 1) the number of dictionaries N , 2) the
number of atoms in the first dictionary K1, and 3) the
number of atoms in the last dictionary KN . We then lin-
early sample K2, . . . ,KN−1 between K1 and KN . As for
training, we implement our neural network via TensorFlow
and train it using an Adam optimizer with a learning rate
exponentially decayed from 0.001.

4.6 Replacing Soft-thresholding via ReLU
Recall in Section 1.3, Papyan et al. replaced the soft-
thresholding operator η by ReLU as a result of the non-
negativity constraint. Actually, it can easily be demonstrated
that a linear (block) sparse model can always be transferred
equivalently to a model only using non-negative (block)
sparse code i.e.

W = DΨ =
[
D −D

] [ Ψ+

−Ψ−

]
, (31)

where Ψ+ and Ψ− are positive and negative parts of Ψ
respectively and Ψ+ + Ψ− = Ψ. The concatenation of
Ψ+ and −Ψ− is still block sparse and now becomes non-
negative. From this observation, we introduce the non-
negativity constraints without the loss of generality and
relax the dictionaries so that they are not bothered by
mirrored structures. Interestingly, our proposed method on
estimating cameras in (25) is compatible with the change,
i.e.

M =
KN∑
k=1

γkΨk
N =

KN∑
k=1

γk(Ψk
N )+

KN∑
k=1

−γk(−Ψk
N )−. (32)

All of these enable us to utilize ReLU to replace the soft-
thresholding. ReLU is good because it is closer to deep
learning packages while soft-thresholding is more compact
in size of parameters. An experiment comparing between
soft-thresholding and ReLU is in the Appendix. It is demon-
strated that no discernible difference in the accuracy of
reconstructions is observed. Therefore, we decide to use
ReLU for the remaining sections and experiments, making
our approach closer to leading techniques in deep learning
and more accessible and approachable to the public.

5 OCCLUSION AND WEAK PERSPECTIVE

5.1 Occlusion
It is commonly observed in real images that a certain portion
of key points are occluded by other objects or the object
itself. For example, we typically see two wheels of a sedan
instead of four. An often-used strategy is to recover the
missing entries in W by matrix completion before feeding
it into the proposed pipeline. A commonly used shape prior
for matrix completion is low-rank, even for some union-of-
subspaces algorithms [7]. This is problematic.

In this paper, we derive a solution from the ISTA to
handle missing entries, which turns out as a quite simple but
well-functioning operation. We observe that missing entries
break the first layer of encoder but once Ψ1 is estimated, all
other layers can execute smoothly. Based on this observa-
tion, we first introduce a diagonal matrix Ω ∈ RP×P , whose
element on the main diagonal is zero if the corresponding
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point in W is missing; otherwise, one and all other elements
except diagonal are zeros. With the help of the mask Ω, the
objective function w.r.t the first layer is

min
Ψ1

‖Ω(W −D]
1Ψ1)‖2F s.t. ‖Ψ1‖(3×2)

0 < λ1. (33)

Following the same derivation in Section 4, a masked ISTA
is to iteratively execute the following two steps:

V = Ψ
[i]
1 − α(D]

1)TΩTΩ(D]
1Ψ

[i]
1 −W), (34)

Ψ
[i+1]
1 = argmin

U

1

2
‖U−V‖2F + τ‖U‖(3×2)

F1 . (35)

By (18), it is implied that the single-iteration block ISTA with
mask is

Ψ1 = η
(
(D]

1)TΩW − b⊗ I3×2

)
. (36)

This is equivalently to set missing entries to zero and then
feed into the proposed deep neural network.

5.2 Scale and Translation
The main difference between weak perspective and orthog-
onal projection is additional scale and translation besides
rotation. Due to the ambiguity between camera scale and
3D shape size, we do not solve the camera scale explicitly,
but consider the scale to be one and reconstruct a scaled 3D
shape. To alleviate the effect of the scale on optimization, we
normalize the 2D correspondences into a unit bounding box
before feeding into the proposed neural network.

Translation is not a problem and can even be eliminated
when all points are visible. This is because one can always
remove the camera translation by shifting the center of 2D
correspondences to the image origin. However, this is not
true when some correspondences are missing. Formally, i ∈
Ω denotes that the i-th point is visible and (ui, vi) is the
image coordinate of the i-th point. Shifting the center of all
points (where missing entries are set to zero) to the origin
remains a translation residual

1

n

∑
i

[
ui
vi

]
− 1

n

∑
i∈Ω

[
ui
vi

]
=

1

n

∑
i6∈Ω

[
ui
vi

]
. (37)

When key points distribute closely in a cluster and a small
portion of them are missing, the residual translation could
be treated as some sort of noise perturbation and conse-
quently need no further operation. Otherwise, we need to
solve the translation explicitly.

Consider the camera projection with translation t, i.e.

W =


u1 v1

u2 v2

...
...

uP vP

 =


x1 y1 z1 1
x2 y2 z2 1
...

...
...

...
xP yP zP 1


[
M
tT

]
. (38)

We could introduce an auxiliary variable ε

W =


x1 y1 z1 ε
x2 y2 z2 ε
...

...
...

...
xP yP zP ε


[

M
tT /ε

]
= S̃M̃, (39)

such that S̃ satisfies the proposed hierarchical sparse model
in (13) after appending ones to each dictionary. Therefore, a
similar neural network could be derived from a 4-by-2 block
sparse ISTA as M̃ ∈ R4×2.

6 EXPERIMENTS

We conduct extensive experiments to evaluate the perfor-
mance of our deep solution to solving NRSf M and Sf C
problems. For quantitative evaluation, we follow the metric
normalized mean 3D error reported in [7], [9], [24], [32]. Our
implementation, processed data, and pre-trained models are
publicly accessible for future comparison1.

6.1 IKEA Furniture

We first apply our method to a furniture dataset, IKEA
dataset [33], [34]. The IKEA dataset contains four object
categories: bed, chair, sofa, and table. We apply our ap-
proach to each category seperately. For each object category,
we project the 3D ground-truth by the orthogonal cameras
annotated from real images. Since fully annotated images
are limited, we thereby augment them with 2,000 projec-
tions under randomly generated orthogonal cameras. The
errors are evaluated only on frames using cameras from
real images. Numbers are summarized into Table 1. One can
observe that our method outperforms baselines in the order
of magnitude, clearly showing the superiority of our model.
For qualitative evaluation, we randomly select a frame from
each object category and show these frames in Fig. 3 against
ground-truth and baselines. As shown, our reconstructed
landmarks effectively depict the 3D geometry of objects and
our method is able to cover subtle geometric details.

TABLE 1
Quantitative Comparison against State-Of-The-Art Algorithms using

IKEA Dataset in Normalized 3D Error.

Furnitures Bed Chair Sofa Table Average Relative
KSTA [24] 0.069 0.158 0.066 0.217 0.128 12.19

BMM [9] 0.059 0.330 0.245 0.211 0.211 20.12
CNR [26] 0.227 0.163 0.835 0.186 0.352 33.55
NLO [25] 0.245 0.339 0.158 0.275 0.243 23.18
RIKS [27] 0.202 0.135 0.048 0.218 0.117 11.13

SPS [12] 0.971 0.946 0.955 0.280 0.788 74.96
SFC [6] 0.247 0.195 0.233 0.193 0.217 20.67
OURS 0.004 0.019 0.005 0.012 0.010 1.00

6.2 PASCAL3D+ Dataset

We then apply our method to the PASCAL3D+ dataset [17],
which contains twelve object categories. Following the ex-
periment setting reported in [7], we also utilize eight cat-
egories: aeroplane, bicycle, bus, car, chair, dining table,
motorbike and sofa. We apply our method to each category
separately. To explore the performance in various situations,
we design experiments with respect to

• Orthogonal or weak perspective projection?
• Complete or missing measurement?
• Clean data or Gaussian noise perturbed?

Totally, there are eight configurations. Specifically, for pro-
jection setting, we randomly generate rotation matrices for
orthogonal projection while additionally utilizing random

1. https://github.com/kongchen1992/deep-nrsfm
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Fig. 3. Qualitative evaluation on IKEA dataset. From top to bottom are tables, chairs, sofas and tables. From left to right are ground-truth and
respectively reconstructions by ours, RIKS [27], KSTA [24], NLO [25], SFC [6], CNS [26], BMM [9]. In each rendering, red cubes are reconstructed
points but the planes and bars are manually added for descent visualization.

scale and random translation for weak perspective projec-
tion. For missing data, we randomly sample approximately
10% of points missing for each category. For noise, we
corrupt 2D correspondences with a zero mean Gaussian
perturbation, following the same noise ratio in [7]. For the
translation residual, we simply treat it as noise and handle
it with a 3-by-2 block sparse model. In Table 2, we report
the normalized mean 3D error of our proposed method and
state-of-the-arts: KSTA [24], RIKS [27], CNS [26], NLO [25],
SFC [6], SPS [12], and BMM [9]. For readers’ interest, one
can compare our numbers against the Table 2 in [7] for more
baselines.

From Table 2, one can observe that our proposed method
achieves considerably more accurate reconstructions for all
cases, and for some cases, more than ten times the amount
of smaller 3D errors than state-of-the-arts. It clearly demon-
strates the high precision of our proposed deep neural
network. By comparing between clean and noisy config-
urations, it is shown that our proposed method has high
robustness, where our method applied on noisy data even
outperforms state-of-the-arts on clean data. By comparing
between orthogonal and weak perspective projections, it is
demonstrated that our proposed 3-by-2 block sparse model
can handle scale and translation properly, even with missing
data. In the configuration with missing measurement, KSTA,
RIKS, BMM, CNS, and SPS use the matrix completion algo-
rithm proposed by [35] to recover missing entries first, but
our proposed method, SFC, and NLO can directly optimize
over partially-visible 2D measurements, which are more
capable at handling missing data. This is verified by Table 2,
where OURS, SFC, and NLO sacrifice less performance
than others when handling missing data. For qualitative
evaluation, we use “motorbike” as an exemplar category

and randomly select a frame from four configurations: 1)
orthogonal+complete+noise, 2) orthogonal+missing+noise,
3) weak perspective+complete+noise, and 4) weak perspec-
tive+missing+noise, showing in Fig. 4. One can observe that
our proposed method outperforms KSTA, RIKS, CNS and
SPS obviously and beat NLO and SFC in reconstruction
details, e.g. handlebar. The figure also verifies that KSTA,
RIKS, CNS, and SPS break easily with missing points while
ours, SFC, and NLO maintain a nice stability against missing
entries.

6.3 Large-Scale NRSfM on CMU Motion Capture

To evaluate the performance of our method on a large
scale image sequence, we apply our method to solving
the problem of NRSf M, using the CMU motion capture
dataset2. We randomly select 10 subjects out of 144, and
for each subject, we concatenate 80% of motions to form
large image collections and leave the remaining 20% as
unseen motions for testing generalization. We then apply
our method to each subject separately. In this experiment,
each subject contains more than ten thousand frames under
randomly generated orthogonal projections. We compare
our method against state-of-the-art methods, summarized
in Table 3. Due to the huge volume of frames, KSTA [24],
BMM [9], MUS [7], RIKS [27], and SFC [6] all fail and thus
are omitted in the table. We also report the normalized mean
3D error on unseen motions, labeled as UNSEEN. From
Table 3, one can see that our method obtains impressive re-
construction performance and outperforms all others again
in every sequence. Moreover, our network generalizes well
with unseen data, which implies the potential utility of our

2. http://mocap.cs.cmu.edu/
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TABLE 2
Quantitative Comparison against State-Of-The-Art Algorithms using PASCAL3D Dataset. In each configuration, numbers from top to bottom are

for category aeroplane, bicycle, bus, car, chair, diningtable motorbike and sofa.

No Noise Perturbation Added Noise Perturbation
OURS KSTA RIKS CNS NLO SFC SPS BMM OURS KSTA RIKS CNS NLO SFC SPS BMM

O
rt

ho
go

na
lP

ro
je

ct
io

n

C
om

pl
et

e
M

ea
su

re
m

en
t 0.013 0.161 0.562 0.636 0.175 0.499 0.902 1.030 0.026 0.175 0.583 0.626 0.167 0.518 0.761 1.177

0.003 0.249 0.826 0.732 0.285 0.370 0.959 1.247 0.009 0.253 0.779 0.715 0.916 0.367 1.065 1.424
0.004 0.201 0.578 0.443 0.262 0.255 0.902 0.728 0.012 0.196 0.450 0.442 0.320 0.253 1.096 0.754
0.003 0.124 0.497 0.497 0.135 0.284 0.955 1.006 0.012 0.162 0.557 0.496 0.192 0.285 0.879 0.915
0.009 0.191 0.748 0.540 0.145 0.223 1.018 1.381 0.028 0.190 0.668 0.554 0.107 0.224 0.927 1.251
0.030 0.244 0.778 0.549 0.234 0.220 0.707 1.351 0.040 0.238 0.721 0.521 0.450 0.219 0.968 1.420
0.001 0.254 0.703 0.647 0.320 0.356 1.090 1.033 0.004 0.251 0.722 0.629 0.168 0.366 0.938 1.029
0.007 0.401 0.798 0.623 0.055 0.302 0.779 1.017 0.020 0.333 0.725 0.627 0.064 0.297 1.041 1.315

M
is

si
ng

M
ea

su
re

m
en

t 0.033 0.533 0.515 0.693 0.348 0.496 1.076 1.154 0.065 0.434 0.514 0.707 0.382 0.493 0.815 1.199
0.021 0.584 0.540 0.854 0.106 0.376 1.112 1.372 0.028 0.566 0.560 0.835 0.459 0.372 1.201 1.286
0.018 0.357 0.316 0.517 0.317 0.254 1.273 0.728 0.057 0.364 0.323 0.526 0.079 0.245 0.791 0.743
0.010 0.400 0.334 0.598 0.089 0.286 0.918 1.014 0.023 0.391 0.299 0.587 0.111 0.285 1.077 1.244
0.024 0.599 0.581 0.601 0.102 0.228 1.184 1.242 0.066 0.571 0.479 0.593 0.103 0.229 1.153 1.274
0.040 0.554 0.473 0.602 0.171 0.224 1.264 1.414 0.050 0.494 0.408 0.587 0.177 0.228 1.019 1.098
0.009 0.539 0.501 0.729 0.177 0.366 0.892 1.117 0.032 0.523 0.528 0.730 0.154 0.363 1.100 1.157
0.015 0.573 0.567 0.728 0.911 0.301 1.214 1.171 0.039 0.576 0.590 0.727 0.080 0.307 1.252 1.017

W
ea

k
Pe

rs
pe

ct
iv

e
Pr

oj
ec

ti
on

C
om

pl
et

e
M

ea
su

re
m

en
t 0.034 0.402 0.460 0.667 0.192 0.500 1.123 1.055 0.046 0.525 0.489 0.644 0.206 0.527 0.961 1.203

0.008 0.576 0.817 0.707 0.595 0.373 1.172 1.301 0.029 0.618 0.729 0.760 0.930 0.368 1.202 1.331
0.017 0.480 0.582 0.458 0.205 0.251 1.380 0.743 0.044 0.384 0.443 0.443 0.666 0.248 0.820 0.739
0.015 0.369 0.573 0.504 0.175 0.284 1.090 1.051 0.022 0.409 0.475 0.524 0.178 0.285 0.836 1.342
0.013 0.621 0.832 0.540 0.197 0.224 0.970 1.220 0.026 0.497 0.622 0.543 0.122 0.226 1.283 1.284
0.025 0.647 0.829 0.533 0.428 0.220 0.927 1.447 0.068 0.585 0.629 0.506 0.303 0.220 0.993 1.123
0.003 0.614 0.739 0.662 0.180 0.359 1.406 1.069 0.018 0.607 0.789 0.671 0.159 0.362 1.101 1.019
0.022 0.609 0.792 0.632 0.070 0.295 0.976 0.980 0.041 0.606 0.684 0.644 0.062 0.301 1.603 1.165

M
is

si
ng

M
ea

su
re

m
en

t 0.102 0.461 0.531 0.727 0.670 0.502 1.162 1.150 0.157 0.449 0.571 0.737 0.742 0.493 0.984 1.220
0.048 0.499 0.572 0.875 0.115 0.372 1.312 1.279 0.084 0.668 0.708 0.895 0.141 0.375 1.003 1.405
0.066 0.356 0.341 0.553 0.091 0.250 0.912 0.752 0.091 0.383 0.365 0.557 0.139 0.253 0.985 0.752
0.027 0.402 0.403 0.637 0.093 0.280 0.949 0.954 0.081 0.355 0.358 0.619 0.109 0.293 1.023 1.063
0.077 0.484 0.485 0.607 0.118 0.227 1.107 1.263 0.122 0.522 0.434 0.601 0.123 0.224 1.037 1.263
0.091 0.463 0.465 0.594 0.174 0.232 1.210 1.229 0.136 0.558 0.528 0.612 0.173 0.225 1.151 1.510
0.056 0.561 0.656 0.779 0.201 0.367 1.119 1.125 0.051 0.544 0.585 0.763 0.191 0.369 1.039 1.017
0.066 0.529 0.615 0.728 0.081 0.311 1.730 1.150 0.082 0.543 0.548 0.730 0.156 0.299 0.890 1.146

TABLE 3
Quantitative Comparison aginst State-Of-The-Arts using CMU Motion

Capture Dataset in Normalized 3D Error

SUBJECT OURS CNS NLO SPS UNSEEN
1 0.176 0.613 1.218 1.282 0.362
5 0.221 0.657 1.160 1.122 0.331

18 0.082 0.542 0.917 0.954 0.438
23 0.054 0.604 0.999 0.880 0.388
64 0.082 0.543 1.219 1.120 0.174
70 0.040 0.473 0.837 1.010 0.090

102 0.116 0.582 1.145 1.079 0.413
106 0.114 0.637 1.016 0.958 0.195
123 0.041 0.479 1.009 0.828 0.092
127 0.095 0.645 1.051 1.022 0.389

model to the application of single image 3D reconstruction.
For qualitative evaluation, we randomly select a frame from
each subject and render the reconstructed human skeleton

in Fig. 7, which visually verifies the impressive performance
of our deep solution.

6.3.1 Robustness analysis
To analyze the robustness of our method, we retrain the
neural network for Subject 70, using projected points per-
turbed by Gaussian noise. The results are summarized in
Fig. 5. The noise ratio is defined as ‖noise‖F /‖W‖F . One
can see that the error increases slowly while adding a
higher magnitude of noise; when adding up to 20% noise to
image coordinates, our method in blue still achieves better
reconstruction compared to the best baseline with no noise
perturbation (in red). This experiment clearly demonstrates
the robustness of our model and its high accuracy against
state-of-the-art works.

6.3.2 Explicitly solve translation
In this experiment, we verify the performance of the pro-
posed 4-by-2 block sparse model. We focus on Subject 23,
following the same experiment setting as above, except
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Fig. 4. Qualitative evaluation on PASCAL3D dataset. From top to bottom are configurations 1) orthogonal projection with no missing points, 2)
orthogonal projection with missing points, 3) weak perspective projection with no missing points, 4) weak perspective projection with missing
points. All these four configurations are perturbed by Gaussian noise. From left to right are ground-truth, ours, KSTA [24], RIKS [27], CNS [26],
NLO [25], SFC [6], SPS [12]. In each rendering of reconstruction, red cubes are reconstructed points but the planes and bars are manually added
for visualization.
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Fig. 5. Normalized mean 3D error on CMU Motion Capture dataset with
Gaussian noise perturbation. The blue solid line is ours while the red
dashed line is CNS [26], the lowest error of state-of-the-arts with no
noise perturbation.

adding randomly generated translation. To avoid removing
translation, we do not normalize 2D correspondences. We
then apply the proposed 4-by-2 block sparse model to the
data with translation and compare it to the 3-by-2 block
sparse model without translation. The normalized mean 3D
error of the 4-by-2 model is 0.060, which is very close to the
error without translation, i.e. 0.054, and lower than state-of-
the-arts without translation in the order of magnitude, as
shown in Table 3. To give a clearer sense of the quality of
the reconstructed 3D shape, we draw two cumulative error
plots in Fig. 6 that show the percentage of frames below a
certain normalized mean 3D error. The two plots are mostly
identical, implying the success of our 4-by-2 model.

6.3.3 Missing points
In this experiment, we explore the capability of handling
missing data. We focus on Subject 23 under orthogonal pro-
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Fig. 6. Percentage below a certain normalized mean 3D error. The
blue solid line is our 4-by-2 block sparse model, proposed to solve
translation explicitly. The red dashed line is our 3-by-2 block sparse
model. The blue solid line is the results applied to data with randomly
generated translation while the red dashed line is applied to clean data
with no translation. These two plots are mostly identical. This similarity
is achieved because our proposed weak perspective solution accurately
estimates translations. This verifies our contribution.

jection and sequentially train and test our proposed network
on data with a different percentage of missing points. Specif-
ically, we control the maximum possible number of missing
points and evaluate the performance from one to seven out
of 31 total points. For example, when the maximum possible
number of missing points is three, then each frame has to
have one, two, or three missing points in uniform distri-
bution. We visualize the normalized mean 3D error in each
case in Fig. 8 and append the lowest error achieved by state-
of-the-arts under the complete measurement assumption as
a baseline. One can see that the 3D error increases when
the maximum possible number of missing points grows.
However, even making approximately 20% (7/31) of points
invisible, our proposed method still outperforms the best
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Fig. 7. Qualitative evaluation on CMU Motion Capture dataset. From top to bottom are ground-truth, and respectively reconstructions by ours,
CNS [26], SPS [12], NLO [25]. From left to right are a randomly sampled frame from subjects 1, 5, 18, 23, 64, 70, 102, 106, 123, 127. In each
rendering, spheres are reconstructed landmarks but bars are for descent visualization. In each reconstruction, 3D shapes are alighted to the
ground-truth by a orthonormal matrix.
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Fig. 8. Normalized mean 3D error v.s. maximum possible number of
missing points. Maximum possible number of missing points equals to
three denotes every frame has to have one, two, or three missing points.
The blue bar is our proposed network. The red bar is the best baseline
when all points are visible, i.e. CNS in Table 3.

baseline with no missing points, i.e. CNS 0.604 in Table 3.

6.3.4 Coherence as guide
Over-fitting is commonly observed in the deep learning
community, especially in the NRSf M area, where over-
fitting to 2D correspondences will dramatically hurt the
quality of reconstructions. To solve this problem, we borrow
a tool from compressed sensing – mutual coherence [36].
Mutual coherence measures the similarity between atoms in
a dictionary. It is often used to depict the dictionary quality
and build the bounds of sparse code reconstructability. Dur-
ing training for each subject, we compute the normalized
mean 3D error and the coherence of the last dictionary in
a fixed training iteration interval. By drawing the scatter
plot of the error and the coherence, we observe a strong
correlation, shown in Fig. 9. This implies that the coherence
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Fig. 9. A scatter plot of the normalized mean 3D error v.s. the coherence
of the final dictionary. The blue line is fitted based on the red points.
Shading presents the quality of linear regression. From left to right are,
respectively, for Subjects 5, 18, and 64. Note that each point is not
individual experiments but different iterations of the same experiment.
The figure shows that during training, coherence are getting smaller and
errors are getting lower.

of the final dictionary could be used as a measure of model
quality.

Recall the proposed block sparse model in (14), wherein
every block sparse code Ψi is constrained by its subse-
quent representation and thus, the quality of code recov-
ery depends not only on the quality of the corresponding
dictionary but also the subsequent layers. However, this
is not applicable to the final code ΨN , making it overly
reliant upon the final dictionary DN . From this perspective,
the quality of the final dictionary measured by mutual
coherence could serve as a lower bound of the entire system.
With the help of the coherence, we could avoid over-fitting
even when 3D evaluation is not available. This improves
the utility of our deep NRSf M in applications without 3D
ground-truth.
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Fig. 10. Qualitative evaluation on real images with hand-annotated 2D correspondences. Some images have missing points, due to occlusion. From
top to bottom are aeroplanes, bicycles, chairs, and dining tables. For each pair, the left is an image with key points in red and the right is our
reconstruction. In each rendering of reconstruction, red cubes are reconstructed points, but the planes and bars are manually added for descent
visualization. Our method successfully captures shape variations presented in the images, e.g. table width-length ratio, the position of aeroplane
wings, bicycle handlebar, and so forth.

6.4 Real Images

Our proposed network is designed for applications on large-
scale image sequences of highly deformable objects, espe-
cially object categories. However, to our best knowledge,
commonly-used object datasets mostly contain less than one
hundred images of reasonable quality, a number which is
greatly insufficient to train a neural network. For example,
most objects in the PASCAL3D dataset have more than
50% occluded points. To demonstrate the performance of
our proposed network, we apply the model pre-trained
on synthetic images to real images with hand annotated
correspondences. Due to the absence of 3D ground-truth, we
qualitatively evaluate the reconstructed shapes and show
them in Fig. 10. One can see that our proposed neural
network successfully reconstructs the 3D shape for each
image and impressively captures the subtle shape variation
presented in the image, e.g. the table width-length ratio, the
position of aeroplane wings, the bicycle handlebar and so
forth.

7 DISCUSSION

This paper utilizes the weak-perspective projection to ap-
proximate the perspective projection. Though still not per-
spective, the jump from orthogonal projection (used in our
previous work [14]) to weak-perspective allows us to apply
our proposed neural network to practical scenarios, e.g. real
images with hand-annotated landmarks. This feasibility is
substantially a larger improvement than increasing accuracy
via the perspective projection. As for the future research,
we believe, rather than our used feed-forward network,

a recurrent network could be more appropriate to handle
the non-linearity of the perspective projection. Moreover,
a recurrent network could also provides a better chance
to handle a large portion of missing points. We believe,
it is also promising to apply the basic ideas of this paper
to the dual space, trajectory reconstruction. Due to the
continuity of object trajectory, introducing convolution to
the hierarchical sparse model is an interesting attempt.

8 CONCLUSION

In this paper, we proposed to use the hierarchical sparse
coding as a novel prior assumption for representing 3D non-
rigid shapes and designed an innovative encoder-decoder
neural network to solve the problem of NRSf M. The pro-
posed deep neural network was derived by generalizing the
classical sparse coding algorithm, ISTA, to a block sparse
scenario. The proposed network architecture is mathemati-
cally interpretable as a hierarchical block sparse dictionary
learning solver. Extensive experiments demonstrated our
superior performance against the state-of-the-art methods
on various configurations including orthogonal projections,
weak perspective projection, noise perturbations, missing
points, real images, and even unseen shape variations. Fi-
nally, we propose to use the coherence of the final dictionary
as a generalization measure, offering a practical way to
avoid over-fitting and select the best model without 3D
ground-truth.
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