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Visual scene characteristics can affect various aspects of saccade and microsaccade dynam-
ics. For example, blank visual scenes are known to elicit diminished saccade and microsac-
cade production, compared to natural scenes. Similarly, microsaccades are less frequent in
the dark. Yet, the extent to which foveal versus peripheral visual information contribute to
microsaccade production remains unclear: because microsaccade directions are biased to-
wards covert attention locations, it follows that peripheral visual stimulation could suffice
to produce regular microsaccade dynamics, even without foveal stimulation being present.
Here we determined the characteristics of microsaccades as a function of foveal and/or pe-
ripheral visual stimulation, while human subjects conducted four types of oculomotor tasks
(fixation, free viewing, guided viewing and passive viewing). Foveal information was either
available, or made unavailable, by the presentation of simulated scotomas. We found foveal
stimulation to be critical for microsaccade production, and peripheral stimulation, by itself,
to be insufficient to yield normal microsaccades. In each oculomotor task, microsaccade
production decreased when scotomas blocked foveal stimulation. Across comparable foveal
stimulation conditions, the type of peripheral stimulation (static versus dynamic) moreover
affected microsaccade production, with dynamic backgrounds resulting in lower microsac-
cadic rates than static backgrounds. These results indicate that a foveal visual anchor is nec-
essary for normal microsaccade generation. Whereas peripheral visual stimulation, on its
own, does not suffice for normal microsaccade production, it can nevertheless modulate
microsaccadic characteristics. These findings extend our current understanding of the links
between visual input and ocular motor control, and may therefore help improve the diagno-
sis and treatment of ophthalmic conditions that degrade central vision, such as age-related
macular degeneration.
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Attempts to fasten one’s gaze to a target—either
during sustained fixation of a small visual feature, or while
scanning large scenes—are known to result in
microsaccade production. Microsaccades are jerk-like
movements of comparable characteristics to those of larger
saccades, and one of three types of fixational eye
movements (FEMS), which also comprise intersaccadic
drift and tremor (see Martinez-Conde et al., 2004, 2013;
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Rolfs, 2009 for reviews). Whereas the body of research on
drift and tremor has been steadily growing, most FEM
investigations to date have focused on microsaccades. A
main reason has been that microsaccades’ relative larger
sizes and speeds allow for their easier measurement and
objective characterization via commercial eye trackers and
standard detection algorithms (Bellet et al., 2018; Engbert
& Kliegl, 2003; Mihali et al., 2017; J. Otero-Millan et al.,
2014).

Thus, research studies have started to address the visual
and cognitive influences—which include bottom-up as
well as top-down factors—on microsaccade parameters
(see Martinez-Conde & Macknik, 2017 for a review). For
instance, the size of the fixation target has a substantial im-
pact on microsaccade rates and magnitudes (microsaccade
rates decrease linearly and magnitudes increase linearly
with target size (McCamy et al., 2013a). Yet, as long as the
fixation target remains visible, its luminance does not af-
fect microsaccade production (McCamy et al., 2013a;
Steinman, 1965).

Scene characteristics also affect microsaccadic dynam-
ics during exploration and search. For example, blank
scenes cause decreased (micro) saccadic production during
free-viewing, compared with natural scenes (Jorge Otero-
Millan et al., 2008). Microsaccades are also less frequent
in scotopic than in photopic conditions, though their sizes
are larger (Ditchburn & Ginsborg, 1953; Paulun et al.,
2015). In scenes with visual content, microsaccadic rates
are higher on faces vs. non-faces, objects vs. backgrounds,
and more informative vs. less informative image regions
(McCamy et al., 2014; Jorge Otero-Millan et al., 2008).
The size of natural scenes is an additional factor: images
of diminishing sizes result in saccade magnitude distribu-
tions that shift on a continuum towards smaller saccades,
and reach sizes equivalent to those of fixational microsac-
cades for the smallest images (Jorge Otero-Millan et al.,
2013).

Microsaccade production is moreover affected by men-
tal fatigue (Di Stasi et al., 2013, 2015) and cognitive load
(i.e. task difficulty), even in the absence of visual infor-
mation (Siegenthaler et al., 2014). Finally, numerous stud-
ies have established a strong link between the onset of at-
tention and microsaccade dynamics. Remarkably, mi-
crosaccadic rate transiently drops approximately 100-200
ms after the onset of an attentional cue, followed by a tran-
sient rate enhancement—a phenomenon known as mi-
crosaccadic inhibition (Engbert & Kliegl, 2003).
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These influences notwithstanding, there are important
gaps that remain in our understanding of how both visual
information and viewing task affect microsaccadic fea-
tures. One such gap relates to the experimental conditions
in which observers have access to degraded central visual
information and undegraded peripheral visual content. Im-
proved understanding of such scenarios might lead to re-
finements in the diagnosis and treatment of ophthalmic
diseases where central vision is impoverished while pe-
ripheral vision is not, such as age-related macular degen-
eration (Kumar & Chung, 2014), or even conditions that
affect the entire visual field, such as amblyopia (Chung et
al., 2015; Shaikh et al., 2016; Subramanian et al., 2013).
In addition, it is not known how the presence of dynamic
vs. stationary peripheral information affects microsaccade
production.

Here we set out to answer these questions by measuring
microsaccades under four viewing-task conditions, while
presenting four types of visual scenes. The viewing condi-
tions consisted on a) a static scene, b) a scene with a sim-
ulated scotoma implemented with a gaze contingent dis-
play (Aguilar & Castet, 2011; David et al., 2019; Du-
chowski et al., 2004; Glen et al., 2016), or ¢) a scene in
which either a target or the background moved replicating
previously recorded eye movements.

Previous studies showed links between foveal stimula-
tion and microsaccade production in the context of visual
scanning (Jorge Otero-Millan et al., 2013) and the correc-
tion of eye position errors (Costela et al., 2014; Ko et al.,
2010; J. Otero-Millan et al., 2011). Our present experi-
mental design allowed us to study (micro)saccade charac-
teristics as a function of foveal and/or peripheral visual
stimulation, while assessing the proposal that microsac-
cades and saccades behave as part of a continuum (Jorge
Otero-Millan et al., 2008, 2013; Rolfs et al., 20006).

Methods

Participants

Six subjects (2 females, 4 males) with normal or cor-
rected-to-normal vision participated in the experiments
and were paid $15/session. Experiments were carried out
under the guidelines of the Barrow Neurological Institute’s
Institutional Review Board (protocol number 04BN039)
and conformed with the World Medical Association
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Declaration of Helsinki. Written informed consent was ob-
tained from each subject.

Experimental Design

Subjects rested their foreheads and chins on the Eye-
Link 1000 head/chin-rest, ~57 cm from a linearized video
monitor (Barco Reference Calibrator V monitor, 60 Hz re-
fresh rate, 40x30 cm size, and 1240x1024 pixels resolu-
tion). We programmed our experiments in

Natural scene Blank scene
=14}
£
3
QL
>
Q
g
w
=
_D
® O
x
S
[+T4]
L
3 O
Q@ O
>
©
2 (]
o
=
(G]
Qo
8=
2
2L
>
o { ]
=
v
w
[1°]
s T

Otero-Millan, J., Langston, R. E., Costela, F, Macknik S. L. & Martinez-Conde, S. (2020).

Microsaccade generation requires a foveal anchor

Matlab (The MathWorks, Inc., Natick, MA USA), us-
ing the Psychophysics Toolbox extensions (Kleiner et al.,
2007). Experiments consisted of 5 sessions of ~60 minutes
each and tested 4 viewing conditions and 4 scene condi-
tions (Figure 1). Participants completed the experiment
over an average of 20 days (4 minimum, 42 maximum),
and there was just one subject who performed more than
one session per day (two sessions, twice, with a two-hour
rest in between sessions).

Solid scotoma Blurred scotoma

- R i

Figure 1. Experimental conditions. The experiments included four viewing conditions (free viewing, fixation, guided viewing, passive
viewing) and four scene conditions (natural scene, blank scene, solid scotoma, blurred scotoma). The natural-scene and blank-scene
conditions displayed central fixation targets in all viewing conditions, except for the free-viewing condition. In the guided-viewing
condition, the fixation target—or the scotoma, when present—moved, replaying the eye movements previously recorded in the free-
viewing condition. In the passive-viewing condition, the background moved, replaying the eye movements previously recorded in the
free-viewing condition. In the free-viewing scotoma conditions, solid or blurred gaze-contingent scotomas were presented at each
fixation location. Fixation targets and scotomas are depicted for illustration purposes, and not to scale.

The viewing (i.e. task) conditions included: 1) a free-
viewing condition, 2) a fixation condition, 3) a guided-
viewing condition, and 4) a passive-viewing condition. In
the free-viewing condition, subjects were instructed to

move their eyes freely within the image (eye movements
exceeding the area of the image were nevertheless rec-
orded). In the fixation condition, subjects fixated a target
formed by two concentric circles, the inner one white (0.25
degrees diameter), and the outer one red (0.5 degrees
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diameter), placed at the center of the image. The guided-
viewing condition was similar to the fixation condition,
except that the fixation target jumped around the image,
following a pattern determined by the previously recorded
free-viewing condition for the same image. In the passive-
viewing condition, subjects fixated a static central target,
but the image behind it moved, again replaying a pattern
determined by the eye movements previously recorded in
the free-viewing condition. This replay pattern was not an
exact replica of the eye movements recorded beforehand,
for two main reasons. First, the previous recordings in-
cluded not only the eye movements themselves, but also
noise (including from blinks and partial blinks, as well as
from noise in the image sensor, or from errors in the pupil
tracking algorithm, among other possible sources). Sec-
ond, in the guided-viewing condition subjects had to locate
and make a saccade to the target after each target jump,
which required additional time to accomplish (as com-
pared to maintaining fixation on a stationary target). Thus,
we simplified the replay in both the guided-viewing con-
dition (where the target moved) and in the passive-viewing
condition (where the background moved), to consist of a
sequence of either target or background jumps, in which
consecutive jumps were separated by a minimum period of
900ms, with the target/background completely stationary
between jumps.

The scene conditions included: 1) a natural scene con-
dition, 2) a blank scene condition, 3) a solid scotoma con-
dition, and 4) a blurred scotoma condition. The blank
scene condition displayed a 50% gray full-screen back-
ground. The other three scene conditions displayed natural
images from the McGill Calibrated Colour Image Data-
base (Olmos & Kingdom, 2004). Subjects saw a total of 15
different natural images, with each image being shown 12
times (4 times in each of the non-blank scene conditions).
The image repetitions were intended to reduce experi-
mental error and to enable the comparison of the same set
of images across the different viewing tasks. The blank
scene condition was similarly presented 4 times. Each im-
age was presented at the center of the screen and covered
768 by 576 pixels, or 24 by 17 degrees of visual angle (note
that pixels in our setup where not square). The solid sco-
toma and the blurred scotoma conditions were as the natu-
ral scene condition, except that a simulated scotoma re-
placed—and served as—the fixation target in each of the
viewing tasks. One main goal of this manipulation was to
approximate the visual experience of patients suffering
from age-related macular degeneration, a condition that
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results in foveal vision impairment, but which does not af-
fect the rest of the visual field. In the free-viewing task
condition, a gaze-contingent scotoma was presented at
each fixation location: that is, the position of the scotoma
was updated every frame (60 Hz) with the eye position re-
ported by EyeLink through the ethernet link. The delay be-
tween an eye movement and the gaze-contingent scotoma
movement was estimated between 17 and 34 ms. Because
our focus was the analysis of eye movements during fixa-
tion periods, where the scotoma remained relatively stable,
this delay should not have substantially affected our re-
sults.

Both the solid and the blurred scotomas obscured the
details of the scene underneath. The solid scotoma was a
50% gray circle with a 3-degree radius. Likewise, the
blurred scotoma was a 50% gray circle, but its edges
blended smoothly with the background following a gauss-
ian profile. Thus, the scotoma’s transparency was 50% at
4 degrees of distance from its center, and 90% at 6 degrees
from its center. Presenting these two types of scotoma en-
abled us to examine the potential effect of sharp edges on
(micro)saccade production (Reingold & Loschky, 2002).

The full experiment included 3 blocks. Each block pre-
sented 5 different natural images and consisted of 80 30-s
trials that were pseudorandomly interleaved, with the only
restriction being that free-viewing trials always preceded
replay trials using the same image (the median separation
between a replay and its corresponding recording was 42
trials). Thus, each of the 5 experimental sessions contained
48 trials. Each trial was preceded by an instructions screen
indicating the task to be performed.

Eye Movement Analyses

Eye position was acquired noninvasively in both eyes
at 500 samples/s (EyeLink 1000, SR Research). Saccades
were identified with a modified version of the algorithm
developed by Engbert & Kliegl (Engbert, 2006; Engbert &
Kliegl, 2003; Engbert & Mergenthaler, 2006; Laubrock et
al., 2005; Rolfs et al., 2006) with A = 6 (used to obtain the
velocity threshold) and a minimum saccadic duration of 6
ms. Microsaccades were defined as saccades with magni-
tude <1° in both eyes (Martinez-Conde et al., 2009, 2013;
Jorge Otero-Millan et al., 2008). To calculate (micro)sac-
cade properties such as magnitude and peak velocity we
averaged the values for the right and left eyes. Figure 2
shows the peak velocity-magnitude relationship, also
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Figure 2. Main sequence relationship between (micro)saccade magnitude and peak velocity in each viewing task.

known as the main sequence (Bahill et al., 1975), for sac-
cades of all sizes, including microsaccades. The analysis
included a total of 67,064 saccades. The main sequence
serves as a general snapshot of the characteristics of the

Statistical Methods

Microsaccade rates were first averaged across images
for each condition, and then compared across conditions
using a repeated measures ANOVA with two within sub-
ject factors: viewing condition and stimulus condition. Sta-
tistical significance for post-hoc tests was calculated with
t-tests and is indicated in the figures with ** (p<0.01) and
*(p<0.05). Summary statistics throughout the article are
reported as mean + standard error of the mean.

Results

Subjects observed both blank scenes and natural scenes
while conducting four types of oculomotor tasks: fixation,
free viewing, guided viewing, and passive viewing. In the
guided-viewing condition, subjects fixated a target that re-
played the eye movements previously recorded in the free-
viewing condition. In the passive-viewing condition, sub-
jects fixated a central target while the background moved,

eye tracking system, allowing for the comparison of anal-
ysis methods across studies, and helping to identify poten-
tial problems in the data collection or analysis techniques.

replaying the eye movements previously recorded in the
free-viewing condition. Foveal information in natural
scenes was either available or made unavailable by the
presentation of both solid and blurred scotomas (thus ap-
proximating the visual experience of patients with macular
degeneration and other foveal impairment conditions). In
the free-viewing scotoma conditions, gaze-contingent sco-
tomas were presented at each fixation location (Figure 1).
This experimental design allowed us to study the charac-
teristics of microsaccades and saccades as a function of fo-
veal and/or peripheral visual stimulation. Figure 3 shows
the amplitude distribution of saccades in each experi-
mental condition, grouped by viewing task and scene con-
dition. Supplementary Figure 1 displays the same data,
now focused on the amplitude distribution of microsac-
cades. Table 1 shows the summary statistics for each con-
dition. Repeated measures ANOVA revealed a significant
effect of viewing task (F(1,5)=38.8, p=0.002), scene con-
dition (F(1,5)= 45.4, p= 0.001), and their interaction
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Figure 3. Saccadic amplitude distribution in each experimental condition. Distributions arranged by viewing task condition

(N=6 subjects).

(F(1,5)=44.5,p=0.001). Next, we analyze particular com-
parisons of interest within the dataset.

Effects of present versus absent foveal stimu-
lation on microsaccades

Natural scenes with (solid and blurred) scotomas oc-
cluding the center of vision provided intact peripheral
stimulation without foveal information. In contrast, blank
scene conditions provided deprived peripheral stimulation,
either in the presence of a foveal fixation target (in the fix-
ation, guided-viewing, and passive-viewing tasks) or in its
absence (in the free-viewing task). Finally, natural scenes
without scotomas provided intact information throughout
the visual field.

Our data revealed that, in the absence of a foveal
stimulus to fixate on, observers produced fewer microsac-
cades. Figure 3 shows that the presence of either type of
scotoma, by nulling foveal stimulation, had the effect of
shifting saccadic magnitudes towards larger values, during
fixation, free-viewing, and guide-viewing tasks. Figure 4
takes a closer look at microsaccades produced under the

same viewing conditions, and illustrates their dramatic de-
crease in number in the presence of foveal scotomas.

When subjects fixated a central target presented over a
blank or a natural scene, their microsaccade rates were
1.24+0.2 and 1.2+0.3 microsaccades/s respectively. When
these fixation targets were replaced by either solid or
blurred scotomas, microsaccade rates dropped to 0.7+0.2
microsaccades/s (t(5) =3.2 , p = 0.02). The natural and
blank scene free-viewing conditions produced 0.50+0.04
and 0.3+0.1 microsaccades/s respectively, in agreement
with prior reports of lower microsaccadic rates during free
exploration of blank vs. natural scenes (Jorge Otero-Millan
et al., 2008). The introduction of solid and blurred scoto-
mas on natural scenes further decreased microsaccade pro-
duction during visual exploration, to 0.15+0.04 and
0.11+0.04 microsaccades/s respectively (from 0.5+0.04
microsaccades/s; t(5)=14.3, p<0.0001). During guided-
viewing conditions, where the fixation target (or the sco-
toma, when present) moved to replay previously recorded
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eye movements, natural scenes produced 0.86+0.08 mi-
crosaccades/s, blank scenes 0.98+0.1 microsaccades/s,
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solid scotomas 0.17+0.04 microsaccades/s, and blurred
scotomas 0.1740.05 microsaccades/s (t=6.1,p =0.0008).
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Figure 4. Effect of present vs. absent foveal stimulation on microsaccade production during fixationsaccade production during fixation
(top row), free viewing (middle row) and guided viewing (bottom row). Left column: Microsac- 1row). Left column: Microsac-
cade amplitude distributions for each experimental condition, for all subjects combined. Right col- all subjects combined. Right col-
umn: Average microsaccade rate across subjects. Overall, the solid scotoma and blurred scotoma  id scotoma and blurred scotoma
conditions resulted in lower microsaccade rates than the natural scene and blank scene conditions. :cene and blank scene conditions.
Error bars indicate the standard error of the mean (N=6 subjects). Significant comparisons are high-. Significant comparisons are high-
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lighted with an asterisk (p<0.05).

Effects of dynamic versus static peripheral
stimulation on microsaccades

The fixation condition allowed us to study microsac-
cade characteristics in the presence of static peripheral
stimulation. The passive-viewing condition—in which ob-
servers fixated either a central fixation target or a central
scotoma while the background replayed previously rec-
orded eye motions—allowed us to study microsaccades
characteristics in the presence of dynamic peripheral stim-
ulation. The guided viewing task, when conducted over
natural scenes, moreover allowed us to study microsac-
cades in the presence of stationary peripheral stimulation
that was nevertheless continuously updated by gaze shifts.
The same guided viewing task, when conduced over a

blank scene, provided stationary albeit deprived peripheral
stimulation.

Our data revealed a decrease in microsaccade produc-
tion in the presence of dynamic peripheral stimulation (i.e.
during passive viewing), compared to that recorded with
static peripheral stimulation (i.e. during non-passive view-
ing scenarios). Pairwise comparisons showed that dynamic
peripheral stimulation tended to suppress microsaccade
generation in a variety of conditions, including: a) central
fixation of a static natural scene vs. a dynamic natural
scene (i.e. passive viewing) (t=1.6, p=0.07), b) fixation of
a scotoma with a static background vs. a dynamic back-
ground (i.e. passive viewing) (t=2.0, p=0.05), and c)
guided viewing of a fixation target over a blank scene vs.
guided viewing of a fixation target over a natural scene (in
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which the background did not move, but large eye move-
ments repeatedly updated the peripheral retinal input)
(t=0.9, p=0.2) (Figure 5).
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Figure 6. Effect of peripheral stimulation on microsaccades. Left panel: microsaccade amplitude distributions for each experimental
condition, for all subjects combined (N=6). Right column: average saccade rate across subjects, for a selection of comparisons. Dy-
namic peripheral stimulation tended to suppress microsaccades when compared to static peripheral stimulation. This was true for the
fixation of a static natural scene vs. a dynamic natural scene (i.e. during passive viewing, top) for the fixation of a scotoma with a
static background vs. a dynamic background (middle), or for the guided viewing of a fixation target over a blank scene vs. the guided
viewing of a fixation target over a static natural scene (in which the background did not move, but large eye movements repeatedly
“refreshed” the peripheral retinal input) (bottom). Significant comparisons are highlighted with an asterisk (p<0.05).

We wondered if some of the differences above could
be related to the known transient suppression of microsac-
cade production that takes place shortly after peripheral
stimulation changes (Engbert & Kliegl, 2003; Laubrock et
al., 2005). To find out, we correlated the onsets of either
motions of the background image (corresponding to sac-
cades in passive viewing) or those of the fixation target
(corresponding to saccades in guided viewing) to the on-
sets of microsaccades. Figure 6 shows the results for each
type of condition. In passive viewing (Figure 6 left), all

conditions displaying an actual stimulus resulted in the
suppression of (micro)saccades at ~120 ms after the back-
ground image motion. This inhibition was more pro-
nounced in the case of natural images than in the scotoma
conditions, given that microsaccade production was al-
ready depressed in the latter ones, due to the absence of
foveal stimulation. In the case of the blank scene, there was
no actual motion of the uniform image background; there-
fore, there was no resulting (micro)saccadic inhibition.
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Passive viewing
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Figure 7. Correlation between image motion and (micro)saccade production in the passive-viewing and guided-viewing condi-
tions. Each line indicates the average (micro)saccade rate across subjects relative to the occurrence of peripheral image motion
(left panel) or fixation target motion (right panel). The lines where smoothed with a Savitzky-Golay filter of length 100 ms.
Shaded areas represent the standard error of the mean across subjects (N=6).

In guided viewing (Figure 6 right), the fixation target
motion led to a large increase in saccade production in all
scene conditions, followed by a smaller saccadic bump in
the foveal stimulation conditions only. Because this

Table 1. This is a caption for the Table 1.

secondary boost presumably reflects the occurrence of mi-
crosaccades and corrective saccades in the presence of fo-
veal inputs, it did not arise in either scotoma condition.

Factor 2
Stim Task Microsaccade Rate Microsaccade Saccade Rate Saccade Magni-

(1/s) Magnitude (deg) (1/s) tude (deg)

Blank Scene Fixation 1.22+0.24 0.39+0.03 1.3+0.24 0.49 +0.05
Blank Scene Free Viewing 0.34+0.1 0.57 £0.03 2.03+0.3 4.14 £ 0.62
Blank Scene Guided Viewing 0.99+0.12 0.53+0.01 2.42+0.25 3.32+0.48
Blank Scene Passive Viewing 1.24+0.24 0.37+£0.03 1.31+0.23 0.46 £ 0.04
Blurred Scotoma Fixation 0.71+0.17 0.59£0.05 0.96+£0.14 0.97+£0.14
Blurred Scotoma Free Viewing 0.11+0.04 0.59 £ 0.02 2.68+0.21 5.45+0.43
Blurred Scotoma Guided Viewing 0.17 £ 0.05 0.56 £ 0.05 1.91+0.15 5.36 +0.39
Blurred Scotoma Passive Viewing 0.4+0.1 0.56 £ 0.04 0.67 £0.09 1.21+0.13
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Factor 2
Natural Scene Fixation 1.23+0.27 0.37+0.03 1.31+0.27 0.47 +£0.06
Natural Scene Free Viewing 0.51+0.04 0.61+0.01 2.89+0.19 3.34+0.15
Natural Scene Guided Viewing 0.87 +£0.09 0.56 £0.03 2.6+0.12 3.27+0.14
Natural Scene Passive Viewing 1.11+0.14 0.42 £0.04 1.18 £0.14 0.54 £ 0.07
Solid Scotoma Fixation 0.73+0.17 0.57+0.03 0.96 +0.17 0.94+0.13
Solid Scotoma Free Viewing 0.15+0.04 0.51+0.02 2.93+0.23 5.41+0.36
Solid Scotoma Guided Viewing 0.18 £ 0.04 0.59+0.03 1.89+0.13 5.24+0.27
Solid Scotoma Passive Viewing 0.46 +0.13 0.54 £0.04 0.7+0.11 1.17+0.2

Discussion

Here we set to determine the differential effect of fo-
veal vs. peripheral visual stimulation on microsaccade pro-
duction. We tested different viewing tasks (fixation, free
viewing, guided viewing, passive viewing) in combination
with various visual stimuli (blank scenes, static natural
scenes, dynamic natural scenes), and the presence/absence
of two different types of simulated foveal scotomas. We
found that microsaccade production was reduced in the ab-
sence of foveal stimulation in every type of viewing task,
supporting the proposal that microsaccades require the
presence of a “target to anchor to” (Jorge Otero-Millan et
al., 2008). The effect of peripheral stimulation on mi-
crosaccade production was overall suppressive, though
only significant in cases where the background’s mo-
tion/updating served to renew the peripheral visual input.

Effects of simulated visual loss on explora-
tory eye movements

Previous studies have explored the effect of simulated
scotomas on eye movements during visual exploration
(David et al., 2018, 2019; Laubrock et al., 2013; Mcllreavy
et al., 2012). Laubrock and colleagues characterized eye
movements during visual exploration of natural scenes, us-
ing gaze contingent displays to apply different filters to the
foveal or peripheral stimulation. Though their study fo-
cused on the effects of the different kinds of stimulation on

fixation durations, they also found that low pass filtering
of foveal stimulation reduced the production of saccades
smaller than 1 degree during visual exploration. In con-
trast, low pass filtering of the visual periphery did not alter
the distribution of saccades below 1 degree. David et al.
(2018, 2018) tested the effects of peripheral and foveal
masking on saccade amplitudes, and found a shift towards
larger saccade sizes when foveal masks were applied. The
larger the foveal mask, the greater the shift towards larger
saccades, possibly because the bigger masks forced sub-
jects to find new objects of interest at greater retinal eccen-
tricities. Mcllreavy et al. (2012) found no major changes
in saccadic amplitudes in the presence of an artificial sco-
toma, but their data suggests a reduction in the occurrence
of smaller saccades. This is consistent with our observa-
tion of a decreased microsaccade production during visual
exploration in the absence of foveal input.

Effects of varying foveal visual stimulation
on microsaccades

Prior research has investigated how the characteristics
of fixation targets affect microsaccadic features during
sustained fixation (McCamy et al., 2013b; Thaler et al.,
2013). These studies found that, as long there was a fixa-
tion target, microsaccades occurred during fixation at-
tempts. In addition, most target features had minor or neg-
ligible effects on microsaccade dynamics, except for target
size, which did substantially affect both microsaccade
rates and sizes. Thus, Thaler et al. varied the shape of
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fixation targets and found that microsaccades rates were
comparable across conditions, ranging from 1.6 to 1.8 mi-
crosaccades/s. Mccamy et al. reported that, whereas the
absence of a fixation target reduced the frequency of mi-
crosaccades and increased their amplitude, the contrast of
visible targets had little effect on microsaccade dynamics.
This same study found that the size of the fixation target (a
solid circular fixation spot varying in diameter from ~0.07
to 2 deg) had a substantial impact on microsaccade pro-
duction, however, with bigger targets resulting in larger
and less frequent microsaccades (McCamy et al., 2013Db;
Thaler et al., 2013).

In the current study, participants were instructed to fix-
ate the centers of foveal scotomas whenever present, rais-
ing the possibility that such scotomas may have acted as
enlarged fixation targets for all practical purposes. If so,
the reduced microsaccade rates and distribution shifts to-
wards larger microsaccade magnitudes, observed in our
two scotoma conditions, may not only be compatible with,
but also extend, the earlier results by McCamy et al.—al-
beit with even larger fixation targets. Another way to in-
terpret McCamy et al.’s findings in light of the present data
is that large fixation targets work like simulated scotomas,
in that they deprive vision of fine-grained information at
the very center of gaze.

Effects of ophthalmic loss on microsaccades

Patients affected with macular disease can suffer from
localized vision loss, resulting in foveal scotomas. Previ-
ous studies (David et al., 2018, 2018; Mcllreavy et al.,
2012) found that the distributions of microsaccade sizes in
patients with macular disease shifted towards larger mag-
nitudes, consistent with our present results with simulated
scotomas. Contrary to our current findings, however, mi-
crosaccade rates in macular degeneration patients were
comparable to those in healthy participants (Kumar &
Chung, 2014). One important difference between vision
with a pathological versus a simulated scotoma is that pa-
tients with macular disease often develop a non-foveal pre-
ferred retinal locus (PRL). That is, they tend to fixate their
gaze using a part of the retina other than the fovea. In con-
trast, our subjects would not be expected to develop a PRL,
given that trials with and without foveal stimulation were
randomly interleaved, and that foveal stimulation was only
lacking for an average of 13.5 min per session (instead of
the hours previously reported to be necessary to develop a
PRL (Kwon et al., 2013)). Ophthalmic conditions in which
the visual loss extends to the whole visual field (rather than
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just the fovea), such as amblyopia, may not result in a PRL
either, but they do nevertheless affect microsaccade pro-
duction. Thus, patients with amblyopia display increased
overall fixation instability (Shaikh et al., 2016; Subrama-
nian et al., 2013), which is accompanied by larger but less
frequent microsaccades (Shaikh et al., 2016; Shi et al.,
2012). We note that this pattern of microsaccade produc-
tion in amblyopia resembles that obtained in our current
study when healthy participants fixated either the center of
a blank scene or a scotoma. However, it could not be in-
duced in previous research by merely blurring the visual
input (Raveendran et al., 2019), perhaps because amblyo-
pia’s sustained visual loss has a greater impact on fixa-
tional dynamics than transiently blurring a visual scene.

Link between peripheral visual stimulation
and microsaccade production

We found more frequent microsaccades when partici-
pants fixated a target that was presented over a static back-
ground than over a dynamic background. This difference
was further enhanced when a simulated scotoma blocked
all foveal stimulation and subjects were instructed to fixate
at the center of the empty region. Our findings are con-
sistent with, and extend in new directions, prior work
showing that the sudden onsets of peripheral visual stimuli
transiently suppress microsaccade production (Engbert &
Kliegl, 2003; Laubrock et al., 2005). The time course of
this phenomenon, known as microsaccadic inhibition, or
the ‘microsaccade signature,’ consists of a phasic response
with a microsaccade rate reduction around 100 to 200 ms
after the peripheral stimulus onset, sometimes followed by
a secondary increase shortly afterwards (Hafed & Ignash-
chenkova, 2013; Rolfs et al., 2008). Our present findings
might be considered a variation of this effect, in which
each jump of the image acts as a new peripheral stimula-
tion onset, leading to the observed overall microsaccade
rate reduction.

Conclusions

Microsaccades are generated during fixation in re-
sponse to foveal stimulation, and used by the visual system
to scan visual targets features (Jorge Otero-Millan et al.,
2013) and correct eye position errors (Costela et al., 2014;
Ko et al., 2010; J. Otero-Millan et al., 2011). Whereas pe-
ripheral stimulation can modulate microsaccade dynamics,
it does not seem essential for microsaccade generation.
Our combined results support the proposal that microsac-
cade production requires the presence of an anchoring
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target (Jorge Otero-Millan et al., 2008). These findings
deepen our understanding of the links between visual in-
puts and ocular motor control, and may aid the diagnosis
and treatment of ophthalmic conditions that result in foveal
impairment, such as age-related macular degeneration. Fu-
ture studies may be conducted with larger populations and
image sets, and thus avoid any potential biases inadvert-
ently introduced in our design.
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