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Abstract

Gene co-expression networks (GCNSs) are constructed from Gene Expression Matrices
(GEMSs) in a bottom up approach where all gene pairs are tested for correlation within the
context of the input sample set. This approach is computationally intensive for many current
GEMs and may not be scalable to millions of samples. Further, traditional GCNs do not
detect non-linear relationships missed by correlation tests and do not place genetic relation-
ships in a gene expression intensity context. In this report, we propose EdgeScaping, which
constructs and analyzes the pairwise gene intensity network in a holistic, top down approach
where no edges are filtered. EdgeScaping uses a novel technique to convert traditional pair-
wise gene expression data to an image based format. This conversion not only performs
feature compression, making our algorithm highly scalable, but it also allows for exploring
non-linear relationships between genes by leveraging deep learning image analysis algo-
rithms. Using the learned embedded feature space we implement a fast, efficient algorithm
to cluster the entire space of gene expression relationships while retaining gene expression
intensity. Since EdgeScaping does not eliminate conventionally noisy edges, it extends the
identification of co-expression relationships beyond classically correlated edges to facilitate
the discovery of novel or unusual expression patterns within the network. We applied Edge-
Scaping to a human tumor GEM to identify sets of genes that exhibit conventional and non-
conventional interdependent non-linear behavior associated with brain specific tumor sub-
types that would be eliminated in conventional bottom-up construction of GCNs. Edgescap-
ing source code is available at https://github.com/bhusain/EdgeScaping under the MIT
license.

Introduction

A fundamental goal of biology is to discover genetic relationships that coordinate the bio-
chemical mechanisms underlying phenotype expression. A standardized way to contextualize
these relationships is via gene co-expression networks (GCNs; also known as relevance net-
works [1]) that are mathematical graphs used to model complex global gene co-expression
dependencies extracted from gene expression matrices (GEMs). In a GCN, nodes represent

PLOS ONE | https://doi.org/10.1371/journal.pone.0220279  August 6, 2019

1/15


http://orcid.org/0000-0002-5542-5992
http://orcid.org/0000-0002-2123-6114
https://github.com/bhusain/EdgeScaping
https://doi.org/10.1371/journal.pone.0220279
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0220279&domain=pdf&date_stamp=2019-08-06
https://doi.org/10.1371/journal.pone.0220279
http://creativecommons.org/licenses/by/4.0/
https://github.com/bhusain/EdgeScaping

@ PLOS|ONE

Fast comprehensive binary gene expression mapping

genes and edges are formed when a significant correlation exists between two genes across a
set of Ribonucleic acid (RNA) expression profiles. The first reported GCN was by developed
by Eisen et al. [2], and since then GCNs have been used for a several different analyses that are
species-specific, including cancer studies [3-6]. A plethora of software tools and technologies
have since been developed for the construction of GCNs, each using a different approach for
identifying co-expression patterns. WGCNA [7], CLR [8], MRNET [9], RMTGeneNet [10],
KINC [11], petal [12] and FastGCN [13] are few of the more broadly utilized techniques.

A limitation to discovering genetic correlation is that a GCN edge can only be detected if it
was spatiotemporally present in the input sample set and is detectable above noise. Fortu-
nately, millions of gene expression profiles containing rare gene expression relationships from
diverse experimental conditions are available in public databases such as NCBI Short Read
Archive [14] and Gene Expression Omnibus [15] databases, EBI ArrayExpress database [16],
The Cancer Genome Atlas [17], Genotype-Tissue Expression [18], LINCS [19], ENCODE
[20], and many others. In order to minimize confounding biological noise as datasets become
deeper and more diverse, we have previously demonstrated that sorting multi-modal pairwise
gene comparisons prior to a correlation test reveals condition-specific gene co-expression pat-
terns as implemented in KINC software [11].

While much progress has been made in GCN construction, the current GCN construction
strategies (a) are computationally intensive and are not scalable to GEMS with millions of sam-
ples; (b) do not detect non-linear relationships missed by correlation tests; and (c) do not place
genetic relationships in a gene expression intensity context. In this study, we took a step back
and engineered an algorithm called EdgeScaping that addresses all of the above limitations.

EdgeScaping is a novel technique to convert gene-gene edge data into an image format
that substantially reduces the dimensionality of the data. This feature reduction technique is
highly scalable to increases in GEM size. Further, converting gene expression data into an
image permits one to leverage advanced image analysis techniques inspired by deep learning
to detect non-linear features and relationships between edges that were previously undetected.
Coupling image based data with an efficient deep learning algorithm, EdgeScaping imple-
ments a novel non-linear feature selection model to quickly and efficiently classify all the
potential edges in the fully connected GCN. Thus, EdgeScaping lays out the holistic landscape
of the distribution of edges while maintaining expression intensity information derived from
the GEM. This framework enables researchers to identify novel genetic relationships that
cannot be strictly defined by correlation or are non-linear in nature. In the following sections
we describe in detail the EdgeScaping algorithm and workflow, present results from EdgeScap-
ing applied on five tumor sub-types dataset, and discuss the utility and limitations of the
approach.

Materials and methods

In this section we outline the EdgeScaping workflow depicted in Fig 1. Source code is available
under the MIT liscense at https://github.com/bhusain/EdgeScaping under the MIT license.

Gene Expression Matrix (GEM)

The input dataset for our algorithm was a GEM constructed from combining five cancer sub-
types represented by module A in Fig 1. To construct the GEM, all normalized isoform data-
sets for lower grade glioma (LGG) with 534 samples, thyroid cancer (THCA) with 572 samples,
glioblastoma (GBM) with 174 samples, ovarian cancer (OV) with 309 samples, and bladder
cancer (BLCA) with 427 samples were obtained from The Cancer Genome Atlas [17]. The
GEM contained 73,599 transcript quantifications (UCSC kg5 identifiers) making the
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Fig 1. EdgeScaping workflow. Key stages of the algorithm are shown in steps A-I.
https://doi.org/10.1371/journal.pone.0220279.9001

dimensions resulting in a 2,016 row X 73,599 column GEM. The RNA sequence (RNAseq)
obtained was in the Reads Per Kilobase of transcript, per Million mapped reads (RPKM) for-
mat, which required further normalizing before it was ready for analysis. Normalizing the
GEM involved four steps: (a) replacing missing values with ‘NA’, (b) log2 transformation of
the expression values, (c) KS-test for outlier removal (no outliers were found), and (d) quantile
normalization to ensure suitable comparison between samples.

From the normalized GEM, we further performed preprocessing as depicted by module B
in Fig 1 to eliminate transcripts that fall below the required expression level threshold, that is
their expression levels across samples were too low to account for any significant contribution
towards the network. Therefore, we dropped all transcripts that had 1500 or more (75%) sam-
ples with expression levels below 0. The number of transcripts was then reduced to 59,111
transcripts with a total of 1,747,025,605 pairwise gene comparisons (edges) across 2,016
tumors.

Feature compression (binning)

Since there are over 1.7 billion possible edges, the entire dataset becomes computationally
heavy. In GEMs with ever growing sample size and billions of edges even simple correlation
calculations is cumbersome and require significant time and hardware resources. This
limitation also hinders exploration of non-linear relationships within gene-gene edges.
Therefore, in order to overcome the increasing dimensionality problem that is pervasive in
GCN construction as datasets only grow in size, we implemented a novel solution of data
compression (Binning) while still maintaining the feature information per edge. Binning
converts a 2 dimensional array containing gene expression data for a gene-gene edge into a
grayscale image, as depicted by module C in Fig 1. The range of the data was selected as
min = 0 (since only positive expression levels are considered) and max = 19 (since the maxi-
mum expression level in the entire dataset was 18.98). Hence, each edge data was binned
into 19 X 19 equal sized gene expression intensity bins. The value of each bin was calculated
by the number of samples assigned to that bin based on their expression levels, therefore
the range of values would always be between 0 to 2,016 and the number of bins are 361
(19*19). This reduced the number of data points that are considered per edge from 2016 x 2
to 361. Hence, each grayscale image of size 19 X 19 becomes a data point that represents a
gene-gene edge.
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Deep learning clustering algorithm

In order to cluster over 1.7 billion edges we required a robust model that was able to surmise
deep feature representation that included non-linear patterns. Deep clustering is one such
example of building models based on learning embedded features and perform clustering by
defining a clustering loss. We chose the Improved Deep Embedded Clustering (IDEC) algo-
rithm [21] to account for data structure preservation. IDEC algorithm operates in two steps,
where the first step applies an autoencoder to learn embedded features and performs
dimensionality reduction, and optimizes over reconstruction loss. The second step performs
clustering using the learned features and optimizes over clustering loss. The two steps are per-
formed iteratively until the algorithm converges. Using the deep clustering algorithm of IDEC
as depicted by module D in Fig 1, for a user specified parameter n = Number of clusters, cluster
models were generated with 0.5 million, 1 million, and 1.5 million randomly selected data
points from the edge list.

Model selection

An integral component of mapping the spatial distribution of gene edge expression levels
involves determining the number of clusters that are optimal for classification. To this end, we
ran two tests to determine the number of clusters # required to train the EdgeScaping model.

« Inter-cluster loss: The first test depicted by module E in Fig 1 to estimate n (number of clus-
ters) was to calculate inter-cluster loss between centroids of the cluster models using two
techniques detailed below for a wide range of n. We select n ranging from 5 to 50 with a step
of 5 as depicted by Fig 2. We next plotted the calculated inter-cluster loss for each n to deter-
mine the plateau point for the loss values as depicted in Fig 3.

The two loss functions used to calculate inter-cluster loss were the Calinski and Harabaz
(CH) [22] score and Mean Silhouette Coefficient [23] represented by Fig 3A and 3B, respec-
tively. The progressing loss values were collected for clusters between n = 5 and n = 50 with a
step size of 5. Observing Fig 3, it can be noted that a plateau is reasonably achieved between
cluster numbers # = 30 and n = 40.

o Hierarchical clustering: The inter-cluster loss plots show the trend of loss numbers that give
an overview of number of clusters that may be desirable to describe the space of expression
levels. In order to select an optimum specific n, we ran IDEC deep clustering as an
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Fig 2. Edges sorted across a range of cluster sizes. Cluster centroids are depicted on each figure with » ranging between 5 to 50
with a step of 5. Horizontal and vertical axes represent log2-transformed RNA expression intensity. Each cluster was randomly
assigned a color.

https://doi.org/10.1371/journal.pone.0220279.9002
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Fig 3. Estimating the number of co-expression clusters. Three methods were used to estimate the number of EdgeScaped clusters.
(A) Calinski and Harabaz inter-cluster CH loss. CH loss value mapped between clusters for number of clusters ranging from 5 to 50
with the increment of 5. Loss value calculated for 500 thousand, 1 million, and 1.5 million sample data points. (B) Inter-cluster
Silhouette Coefficient. Silhouette Coefficient mean value mapped between clusters for number of clusters ranging from 5 to 50 with
the increment of 5. Loss value calculated for 500 thousand, 1 million, and 1.5 million sample data points. (C) Hierarchical clustering.
Number of leaves obtained with 11 experimental iterations.

https://doi.org/10.1371/journal.pone.0220279.9003

hierarchical clustering algorithm. In this experiment we began with the 500k data points and
performed binary clustering hierarchically, where every branch was further split into two
branches only if the inter-cluster loss (Mean Silhouette Coefficient) of that branch was
greater than 10% than its parent branch. We continued the algorithm until no further splits
were possible and the number of leaf nodes represented the number of clusters. Averaging
the number of leaves over 11 test runs depicted in Fig 3C gave us with 32 clusters. Based on
these two tests, along with visual observations of the clustering models between 5-50 clusters,
we determined # = 32 clusters to be a reasonable number to represent the classification of
edge space shown in module F in our workflow depicted in Fig 1.

In Fig 3 it can also be observed that we ran the inter-cluster loss experiment for the datasets
containing 500k, 1 million, and 1.5 million edges. In all three cases we observed a very similar
trend. This indicates that increasing the number of data points in the training of the model did
not lead to a change in the classification output, and therefore we assume that the model using
500k edges was sufficient representation of the edge space.
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Fig 4. EdgeScape map for five 2,016 human tumor samples. (A) The representative centroids for n = 32 clusters depicted on the
same plot. (B) Variation plot for the distribution of sample over the space of all possible gene expression levels.

https://doi.org/10.1371/journal.pone.0220279.9004

Edge classification

By selecting the number of clusters to classify the entire dataset as n = 32 with the models gen-
erated using 500k samples, we classified all the 1,747,025,605 edges each falling into one of the
32 clusters. The final representative centroids of each of the 32 clusters was then calculated by
averaging the value for each of the 2,016 samples for edges that were classified into that cluster.
Fig 4 depicts the calculated centroids of all the clusters displayed relative to each other. Fig 5
represents each cluster centroids individually. These figures essentially depict the distribution
of the pairwise (edge) gene expression intensity space for the input GEM, i.e EdgeScaping.

Results

All potential edges were sorted using EdgeScaping into their respective 32 clusters (C1-C32)
based upon pairwise RNA expression intensity. The details of the algorithm explaining why
this number of clusters was selected and how the edges were sorted are discussed in the Mate-
rials and Methods. In this section, we describe the analysis of the 32 clusters of 5 tumor edges
using a combination of visualization and analytic techniques to ascertain if it is possible to
identify interesting edges.

EdgeScaping human tumors

Fig 5 depicts the number of edges that are classified into expression intensity bins for each of
the 32 clusters using our previous work for GCN construction (KINC algorithm) [11] and our
EdgeScaping algorithm, along with their percentage representations per cluster. There are sev-
eral observations apparent with the distributions of the number of edges. Notably cluster C11
represents a significant number of edges in both the KINC (23.3%) and EdgeScaping (9.88%)
algorithms. This cluster specifically encapsulates edges where both genes exhibit low expres-
sion levels.

Fig 6 depicts metadata annotated over the distributions of the expression levels for the 32
clusters. Fig 6(A) represents each sample labeled based on different types of tissues (Primary
tumor(PT), Recurrent tumor(RT), Normal tissue(NT), or Metastatic(M)). It can be observed
that there were no distinct differences in the distribution based on tissue types. Similarly, it
can be observed in Fig 6(B) and 6(D) that represent distribution annotated based on gender
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Fig 5. EdgeScape clusters for 2,016 human tumor samples. Each subfigure on the left depicts one of the representative
cluster centroids with the cluster number (C1-C32) on the top left corner where colors indicate the five tumor sub-types.
Subfigures on the right represents the variation plot for all the edges that are classified to the cluster on the left. The number of
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https://doi.org/10.1371/journal.pone.0220279.9005
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https://doi.org/10.1371/journal.pone.0220279.9006

and different stages of cancer (stage i-iv, normal tissue, and not reported data) respectively,
also do not show any observable distinction of interest in their expression levels. The Fig 6(C)
visualizes the data with the cancer sub-type annotation involving the 5 cancer types (LGG,
THCA, OV, BLCA, GBM). For multiple clusters (C1, C6, C7, C19, C21, C28), as observed in
Fig 5, the scatterplot clearly depicts different pairwise expression levels for LGG and GBM
(brain cancer) samples than the other cancer sub-types which is detailed in the Discussion

section.

Bimodal cluster evaluation

In order to further explore the phenomenon observed in the clusters with distinctly different
expression level for brain (LGG and GBM) cancer samples in comparison to the other cancer
sub-types, we isolated genes that are primarily classified into one of the 6 clusters of interest
(C1, C6, C7, C19, C21, C28). This results is 5,352 genes of interest. We further explore these
genes by building a GCN with all edges formed by these specific 5,352 genes that were also
classified into the 6 clusters. This resulted in a GCN with 1,048,575 edges. Each edge was
weighted with the distance between the nodes using the Euclidean distance measure of gene
expression levels.
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Table 1. Functional enrichment analysis.
Gene Set
Bimodal
MCL Cluster 1
MCL Cluster 2
MCL Cluster 3

Random

GO-MF
69
24
31

https://doi.org/10.1371/journal.pone.0220279.t001

MCL clustering

We utilized the Markov Cluster Algorithm (MCL) [24] to cluster the network formed using
the gene expression level distances. Clustering on nodes of the GCN was performed in order
to create modules in the network of genes that represent similar gene expression levels across
the samples. In this particular case since we begin with genes exhibiting bimodality during
EdgeScaping, we hypothesized that these genes and in extension certain modules exhibit cer-
tain behaviors more representative of brain or brain cancer functionality. The output of MCL
clustering on the 1,048,575 edges resulted in 14 MCL clusters where 8 clusters formed with 5
or less genes and were not further characterized. Of the remaining 6 clusters, 3 resulted in sta-
tistically significant functional enrichment and are listed below in Table 1

Functional enrichment

We performed functional enrichment analysis based on functional annotations and protein
interactions network using the ToppGene suite [25]. Multiple groups of clustered gene were
analyzed to observe any functional clustering concomitant to specifically examine the bimodal
genes from “brain-shifted” clusters as listed in Table 1. We evaluated the number of enriched
terms for five categories of gene groups: All genes involved in bimodal clusters in EdgeScaping
(5,352 genes), MCL Cluster 1 (2,459 genes), MCL Cluster 2 (1,467), MCL Cluster 3 (552), and
arandom set of genes (1,700). Per gene set, we performed functional enrichment and counted
the number of statistically significant enriched GO terms (q <107) for each of the the GO cate-
gories: Molecular Function (MF), Biological Process (BP), and Cellular Component (CC).
ToppFun Pathway and Disease labels were also analyzed. Note the presence of enriched terms

in the genes sets from clusters but not a random gene set. All enriched terms can be found in
S1 Table.

Overlap with known co-expression edges

In our previous work KINC utilizes the approach of Gaussian mixture models (GMMs) to
construct a condition-annotated GCN for the same five tumor sub-types obtained from The
Cancer Genome Atlas. That approach was specifically designed to address natural extrinsic
variation during network construction from mixed input conditions. With the hypothesis that
gene expression relationships exhibit modality, the GMMs allows for the identification of mul-
tiple mode for each pair-wise gene expression. The constructed GCN showed that this tech-
nique discovered tumor sub-type specific significant gene co-expression patterns (and
modules) that are significantly enriched for clinical attributes.

We extended the results obtained in [11], by performing edge enrichment on the KINC
constructed GCN for the five tumor sub-types and a significance threshold of p value < 0.001.
Out of the total 14,908 KINC GCN edges, BLCA was enriched for 1496 edges, OV for 1986,
THCA for 1353, GBM for 4414, and LGG for 8168. It is noteworthy to observe that all edges

GO-CC GO-BP Pathway Diseases
108 273 71 46
53 151 10 12
75 212 22 19
1 1 4
0 0 0
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enriched for GBM and LGG were also present within the bimodal cluster GCN for EdgeScap-
ing. We also mapped previously described KINC edges to the 32 EdgeScape clusters to observe
the distribution of KINC edges over the clusters as detailed in Fig 5.

Discussion

The formulation of GCNs allows us to explore condition-specific genetic subnetworks respon-
sible for the biochemical mechanisms controlling phenotype expression. However, the increas-
ing temporal and computational restrictions to determine gene-gene correlations in the
presence of diluting noise sources can result in a GCN that is not fully representative of the
potential gene relational network. Conventionally, these restrictions also lead to ignoring non-
linear relationships that exists between genes. It is highly likely that biologically relevant edges
may be ignored in the formulation of a GCN and certain irrelevant edges maybe included. In
either of those cases, it is not possible to account for what the fully interconnected expression
pattern of the entire gene space represents.

Our EdgeScaping algorithm addresses these limitations by quickly classifying the entire
edge space of genes based on their expression intensity level using dimensionality reduction by
converting sample input set into binned image data. Utilizing the algorithm, we can determine
the number and types of edge clusters that exist within the dataset. As depicted in Fig 4, all 32
centroids of the classified edges are represented in the same plot. This representation of the
entire space of gene edges is a holistic view of linear, non-linear, and uncoupled gene co-
expression.

Our binning technique is an integral contribution towards improving the speed of sorting
the edges as compared to our previous work, KINC, and is inspired by the image analysis mod-
els implemented in [26-28]. EdgeScaping uses pixelated data (images) and feeds it into the
deep neural network to detect relevant features. Although there is some existing work in the
field of bioinformatics that leverages image analysis along with deep neural networks to build
a classification model, they nearly all primarily utilize existing images as input data [29-32],
and almost none of the techniques utilize image structuring to reduce the dimensionality.

A key feature of our approach is that converting scatterplot of gene edges to binned images
is highly scalable. Even when the number of samples increase from 2,016 to a magnitude multi-
ple times its size, the only effect on the overall computation time is during the binning step of
the algorithm. This addresses a critical bottleneck that GCN algorithms face with ever increas-
ing size of GEMs. Another essential contribution of our technique by conversion of data from
array of numbers into an image format is that it allows us to leverage vast advancements made
in the field of deep learning and image analysis to discover patterns and hidden non-linear
relationships between genes. This novel representation of gene-gene edge data as images per-
mits for exploration of network regulation and interaction using modalities that have not been
previously explored. In EdgeScaping we demonstrate one such application of edge analysis
that permits us to classify a fully connected GCN in a fast and efficient manner to explore pat-
terns that were previously left undetected.

Is this all noise?

One major concern about EdgeScaping classification is that a significant number of edges
probably do not exhibit any interesting genetic relationships yet still get classified into clusters.
We have in essence characterized all the signal and noise in the dataset leading to the impor-
tant question: Are EdgeScape networks mostly noise? The simple answer is yes. EdgeScaping
does include the millions of noisy edges when constructing the map of pairwise gene expres-
sion. In fact, an EdgeScaped GEM is defined by what the noisy edges of the dataset look like
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and how they are distributed. However, it is useful to determine the entire edge space while
tracking pairwise gene expression intensity before designing the restriction criteria that elimi-
nate the uncorrelated edges. This is especially true when one wants to account for dependent
edges that were not found to be correlated via traditional correlation metrics (e.g. Spearman,
Pearson) that ignore non-linear polynomial relationships.

Even in the face of noisy edges, there is evidence that our approach sorts edges into clusters
with variable correlation signal as observed in Fig 5. For example, clusters C11, C19, and C21
collectively contain 46.6% of the previously described KINC edges suggesting that these inten-
sity-binned edge clusters are enriched for more significant GCN edges relative to the other
clusters. Further, these known KINC edges are now placed in a pairwise gene expression inten-
sity context. Since specific EdgeScaped clusters are enriched for significant correlation, these
clusters can be prioritized for GCN construction thereby significantly reducing the computa-
tional time required to sort through noisier clusters. Hence EdgeScaping can be utilized as a
quick and efficient preprocessing technique.

EdgeScaping clusters also identified signal through the noise at the condition level. For
example, consider cluster C6 in Fig 5 which is annotated with metadata from different tumor
sub-types. It is apparent that the samples associated with LGG and GBM tumors contain a dis-
tinct shift in co-expression level when compared to other tumor sub-types (OV, BLCA, and
THCA) thus making cluster C6 a bimodal cluster. Similar bimodal clusters can also be
observed in clusters C1, C7, C21, C19, and C28 with a distinct expression intensity shift for
LGG and GBM indicating that there is a strong relationship between edges that were classified
into these clusters and pathways that control brain and/or brain tumor function.

Evaluating bimodal clusters

In order to test if the edges classified within the bimodal clusters depicting the clear shift in
LGG and GBM expression patterns may exhibit brain and/or brain tumor function, we exam-
ined the collective function of 5,352 genes in bimodal clusters (C1, C6, C7, C19, C21, C28) that
involved a total of 1,048,575 edges. By applying MCL clustering and analyzing the significant
edges, it can be observed from Table 1 that a statistically significant number of bimodal genes
were enriched for GO, pathway, and disease terms, including the MCL clusterl and MCL clus-
ter2 subsets. In contrast, we experimented with 1,700 random genes with multiple test runs
and did not find these random genes to be statistically significant for any function. The results
of term enrichment for Table 1 can be found in S1 Table.

On closer inspection of enriched terms for MCL cluster1, it was found that bimodal cluster
edges, while containing samples for five tumor sub-types, were enriched for brain function
attributes as opposed to hallmark cancer processes as depicted in Table 2. The GO biological
process, GO cellular component, and Pathway terms included ‘synapse’, ‘neuron part’,
‘trans-synaptic signaling’, ‘chemical synaptic signaling’, ‘neurogenesis’, ‘neuron projection’,
‘neuronal system’, and other related terms. Furthermore, by observing the category enriched
for diseases it is clear that significant terms lean more towards brain related diseases but not
brain cancer. Our future work involves further investigating the set of genes extracted via
bimodal clustering that are more consistent with tumor versus brain biology. Overall, based
on Tables 1 and 2 it seems very likely that for this GEM, the bimodal clusters are non-ran-
domly associated with specific tumor sub-types thus enabling a novel path to condition-spe-
cific edge-oriented biomarker discovery.

Another interesting observation is the significant number of KINC edges observed within
the bimodal clusters, especially cluster C19 (11.9%) and C21 (11.4%). This indicates that a sub-
stantial number of KINC edges are found within the bimodal clusters as opposed to clusters
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Table 2. Top five enriched functions for genes in cluster 1.

Category
GO-MF

GO-CC

GO-BP

Pathway

Diseases

Term ID

GO:0008092
GO:0005085
GO:0030695
GO:0005088
GO:0060589
GO:0045202
GO:0097458
GO:0043005
GO:0044456
GO:0044463
GO:0098916
GO:0007268
GO:0099537
GO:0099536
G0O:0032990
1268763
169346
1268766
P00057
1270303
C0036341
C0005586
C3714756
C0004352
C0014544

https://doi.org/10.1371/journal.pone.0220279.t002

Term Description
cytoskeletal protein binding
guanyl-nucleotide exchange factor activity

GTPase regulator activity

Ras guanyl-nucleotide exchange factor activity

nucleoside-triphosphatase regulator activity

synapse
neuron part
neuron projection
synapse part
cell projection part
anterograde trans-synaptic signaling
chemical synaptic transmission
trans-synaptic signaling
synaptic signaling
cell part morphogenesis
Neuronal System
Regulation of RACI activity
Transmission across Chemical Synapses
Wnht signaling pathway
Axon guidance
Schizophrenia
Bipolar Disorder
Intellectual Disability

Autistic Disorder

Epilepsy

q-value

1.52E-07
1.28E-05
1.28E-05
4.74E-05
7.98E-05
3.82E-34
1.99E-33
8.23E-28
8.31E-28
4.65E-21
1.94E-20
1.94E-20
1.94E-20
3.04E-20
3.70E-18
2.01E-09
1.29E-06
9.25E-06
1.34E-03
1.34E-03
2.27E-09
1.32E-07
1.32E-07
7.52E-06
1.12E-05

with different distributions. This phenomena can also be observed by performing edge enrich-
ment on KINC edges where it was observed that out of the total 14,908 edges, 4,414 edges were
enriched for GBM and 8,168 for LGG, further indicating a significant amount edges that were

brain or brain tumor related.

EdgeScaping efficiency

A core issue of clustering more than 1.7 billion edges within realistic computational and time
constraints was the requirement that the algorithm be able to efficiently and quickly create the
model as well as cluster the edges. We addressed this requirement by leveraging the advance-
ments in speed and accuracy demonstrated by deep neural network clustering. In order to

adapt our data into input to the IDEC clustering algorithm, we transformed the gene-pair sam-
ples into a reduced dimensionality image based dataset. This allowed us to work with binned
data that is significantly smaller and therefore processes faster than the original dataset. Fur-
ther, the EdgeScaping framework facilitates the exploration of new deep learning tools and
techniques that are constantly being refined.

Limitations

Although, the conversion of edge data into an image format will always perform dimensional-

ity reduction and make analysis scalable for increasing GEM sizes, we note there may be
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conditions where the noise of the entire GCN overshadows the underlying signals. In this
paper we have demonstrated a case study as to why exploring the entire landscape of the GCN
might lead to detection of hidden polynomial relationships, there may be cases where categori-
zation of all the edges may not lead to easily identifiable patterns.

Future work

There are two directions in which this research will move forward. Firstly, due to the efficient
speed in clustering over 1.7 billion edges, we can now transform huge GEMs with increased
number of samples which can be easily converted to binned expression data bound by the
minimum and the maximum expression values of the GEM. This ensures that the computation
time for model generation and clustering will not increase with the increase in the number of
samples. Hence, future works will include application of EdgeScaping algorithm on panCancer
TCGA matrix that comprises of 33 cancer sub-types which can be annotated and analyzed for
various types of metadata. The second set of experiments are aimed towards further exploring
the candidate biomarker edges that were identified via EdgeScaping to be associated with
brain tumors yet appear to be enriched for non-tumor function.

Conclusion

In this paper, we detailed a technique that reveals the holistic edge space derived from the
GEM, modelled as an image, rather than a select subset of significant edges we “landscape” the
entire range of pairwise gene expression relationships. EdgeScaping allows one to map gene
pairs in a quick, efficient manner using a dimensionality reduction binning technique and
deep learning algorithm. Annotating metadata over the clustered centroids allows one to visu-
alize patterns that were not apparent using other conventional techniques that create GCNs.
Through this approach, distinct patterns were identified for brain tumor sub-types to identify
potential biomarker genes and edges for these biological conditions.

Supporting information

S$1 Table. Full functional enrichment analysis of bimodal cluster genes.
(TXT)
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