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Mikhail Khovanov and Yin Tian

Abstract. We construct a triangulated monoidal Karoubi closed category with the Grothen-
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1. Introduction

Natural numbers IN, integers Z, rationals @, and real numbers R are basic struc-
tures that belong to the foundations of modern mathematics. The category k-vect
of finite-dimensional vector spaces over a field k can be viewed as a categorifi-
cation of N = {0, 1,2, ...}. The Grothendieck monoid of k-vect is naturally iso-
morphic to the semiring IN, via the map that sends the image [V/] of a vector space
V in the monoid to its dimension, an element of IN. Direct sum and tensor product
of vector spaces lift addition and multiplication in IN. Additive monoidal category
k-vect, which linear algebra studies, is indispensable in modern mathematics and
its applications, even more so when the field k is R or C.

The ring of integers Z is categorified via the category D (k-vect) of complexes
of vector spaces up to chain homotopies, with finite-dimensional total cohomol-
ogy groups. The Grothendieck ring Ky of the category D(k-vect) is isomorphic
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to Z via the map that takes a symbol [V'] € K, of a complex V' in D(k-vect) to
its Euler characteristic y(}'). The notion of cohomology and the use of category
D(k-vect) is ubiquitous in modern mathematics as well.

The category D(k-vect) is triangulated monoidal, with the Grothendieck
ring Z. Given the importance of the simplest categorifications of IN and Z, which
are behind the subjects of linear algebra and cohomology, it is natural to ask
if the two objects next in complexity on the original list, rings @ and R, can
be categorified. More precisely, are there monoidal triangulated categories with
Grothendieck rings isomorphic to @ and R? A natural additional requirement is
for the categories to be idempotent complete (Karoubi closed).

This question was recently asked in [17, Problem 2.3] for ) and without the
idempotent completeness requirement, together with a related and potentially
simpler problem [17, Problem 2.4] to categorify the ring Z[%], the localization
of Z given by inverting n.

In the present paper we present an idempotent complete categorification of the
ring Z[%] In Section 3 we construct a DG (differential graded) monoidal category
C. The full subcategory D¢(C) of compact objects of the derived category D(C)
is an idempotent complete triangulated monoidal category. We then establish a
ring isomorphism

Ko(D€(€) = Z[1]. 6))

The category C is generated by the unit object 1 and an additional object X and
has a diagrammatic flavor. Morphisms between tensor powers of X are described
via suitable planar diagrams modulo local relations. Diagrammatic approach to
monoidal categories is common in quantum algebra and categorification, and
plays a significant role in the present paper as well.

Let us provide a simple motivation for the construction. To have a monoidal
category with the Grothendieck ring Z[%] one would want an object X whose
image [X] in the Grothendieck ring is 5. The simplest way to try to get [X] = 1
is via a direct sum decomposition 1 =~ X @ X in the category, since the symbol
(1] of the unit object is the unit element 1 of the Grothendieck ring.

The relation 1 = X & X would imply that the endomorphism algebra of 1 is
isomorphic to M, (End(X)), the 2 x 2 matrix algebra with coefficients in the ring
of endomorphisms of X. This contradicts the property that the endomorphism
ring of the unit object 1 in an additive monoidal category is a commutative ring
(or a super-commutative ring, for categories enriched over super-vector spaces),
since matrix algebras are far from being commutative.



How to categorify the ring of integers localized at two 725

Our idea is to keep some form of the direct sum relation but rebalance to have
one X on each side. Specifically, assume that the category is triangulated and
objects can be shifted by [r]. If there is a direct sum decomposition

X~ X[-1]®1, 2)

then in the Grothendieck ring there is a relation [X] = —[X] + 1, equivalent to
2[X] = 1, that is, X descends to the element % in the Grothendieck ring of the
category.

Equation (2) can be implemented by requiring mutually-inverse isomorphisms
between its two sides. Each of these isomorphisms has two components: a
morphism between X and its shift X[—1], and a morphism between X and 1,
for the total of four morphisms, see Figure 15. Two morphisms between X and
X[—1] of cohomological degrees zero give rise to two endomorphisms of X of
cohomological degrees 1 and —1. It results in a DG (differential graded) algebra
structure on the endomorphism ring of 1 @& X, but with the trivial action of the
differential. The four morphisms and relations on them are represented graphically
in Figures 11 and 12 at the beginning of Section 3. These generators and relations
give rise to a monoidal DG category € with a single generator X (in addition to
the unit object 1). This category is studied in Section 3, where it is also explained
how it gives rise to a triangulated monoidal idempotent complete category D€ (C).

Our main result is Theorem 3.19 in Section 3.5 stating that the Grothendieck
ring of D¢(C) is isomorphic to Z[%], when the ground field k has characteristic
two. To prove this result, we compute the Grothendieck group of the DG algebra
Ay of endomorphisms of X ®* for all k. Our computation requires determining the
first K-groups of certain DG algebras and ends up being quite tricky. Higher K-
theory of DG algebras and categories appears to be a subtle and difficult subject,
where even definitions need to be chosen carefully for basic computational goals.
This is the perception of the authors of the present paper, who only dipped their
toes into the subject.

In the proof we eventually need to specialize to working over a field k of char-
acteristic two, but the category is defined over any field and the isomorphism (1)
is likely to hold over any field as well.

Section 2 is devoted to preliminary work, used in later sections, to construct
a pre-additive monoidal category generated by a single object X (and the unit
object 1) subject to additional restrictions that the endomorphism ring of 1 is the
ground field k and the composition map

Hom(X,1) ® Hom(1, X) — Hom(X, X)
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is injective. Such a structure can be encoded by the ring A of endomorphisms of
1 & X and the idempotent e € A corresponding to the projection of 1 & X onto 1
subject to conditions that eAe =~ k and the multiplication (1 —e)Ade ®eA(l —e) —
(1 —e)A(1 — e) is injective. We show that this data does generate a monoidal
category, give a diagrammatical presentation for this category, and provide a
basis for the hom spaces Hom(X ®”, X®™). From the diagrammatic viewpoint,
categories of these type are not particularly complicated, since the generating
morphisms are given by labels on single strands and labels on strands ending
or appearing inside the diagrams. No generating morphisms go between tensor
products of generating objects, which may give rise to complicated networks built
out of generating morphisms.

Our categorification of Z[%] in Section 3 and a conjectural categorification of
Z[%] in Section 4 both rely on certain instances of (A4, ¢) data and on the monoidal
categories they generate. The construction of Section 3 requires us to work in the
DG setting, with the associated triangulated categories and with the complexity
of the structure mostly happening on the homological side.

In Section 4 we propose another approach to categorification of Z[%] and
Z[%], based on an alternative way to stabilize the impossible isomorphism 1 =
X @ X. One would want an isomorphism

X1 XXX, €))

which does not immediately contradict End(1) being commutative or super-
commutative. We develop this approach in Section 4. Object X can be thought of
as categorifying —%. There are no shift functors present in isomorphism (3) and
it is possible to work here with the usual K¢ groups of algebras. Interestingly, we
immediately encounter Leavitt path algebras, that have gained wide prominence
in ring theory, operator algebras and related fields over the last decade, see [1] and
references therein.

The Leavitt algebra L(1, n) is a universal ring R with the property that R =~ R"
as a left module over itself [20], that is, the rank one free R-module is isomorphic
to the rank n free module. Such an isomorphism is encoded by the entries of an
n x 1 matrix (xq,...,x,)7, giving a module map R — R”, and the entries of
the 1 x n matrix (y1,..., yn), giving a map R" — R, with x;, y;’s elements of R.
These maps being mutually-inverse isomorphisms produces a system of equations
on x;’s and y;’s, and the Leavitt algebra L (1, n) is the quotient of the free algebra
on the x;’s and y;’s by these relations. Leavitt algebras have exponential growth
and are not noetherian. They satisfy many remarkable properties and have found
various applications [1]. The relation to equation (3) is that, when ignoring the
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unit object (by setting any morphism that factors through 1 to zero), one would
need an isomorphism X =~ X3, and the six endomorphisms of X giving rise to
such an isomorphism satisfy the Leavitt algebra L(1, 3) defining relations.

Natural generalizations of the Leavitt algebras include Leavitt path algebras [1]
and Cohn-Leavitt algebras [5, 1] which can be encoded via oriented graphs. One
can think of these algebras as categorifying certain systems of homogeneous linear
equations with non-negative integer coefficients, see [1, Proposition 9], [3].

For the category in Section 4, the algebra of endomorphisms of the direct sum
16 X is a particular Leavitt path algebra L(Q) associated to the graph Q given
by

2C a — b. 4

The Leavitt path algebra L(Q) categorifies the linear equation x = 3x + y.
Quotient of this algebra by the two-sided ideal generated by the idempotent of
projecting X @ Y onto Y is isomorphic to the Leavitt algebra L(1, 3).

The construction of Section 4 can be viewed as forming a monoidal envelope
of the Leavitt path algebra L(Q), where Y is set to be the unit object 1. En-
domorphisms of 1 & X are encoded by L(Q), and these endomorphism spaces
are then extended to describe morphisms between arbitrary tensor powers of X.
Passing from certain Leavitt path algebras to monoidal categories can perhaps be
viewed as categorifications of quotients of free algebras by certain systems of in-
homogeneous linear equations with non-negative integer coefficients imposed on
generators of free algebras.

We come short of proving that the Grothendieck ring of the associated idem-
potent completion is indeed Z[]. The obstacle is in not knowing K-groups
K;i(L(1,3)®%) of tensor powers of L(1,3) fori = 0, 1, see Conjecture 4.2. This
problem is discussed in [3], but the answer is not known for general k.

Equation (3) admits a natural generalization to

X>1q X", ®)

where the right hand side contains n + 1 summands X. Now X plays the role
of categorified —%. In Section 4.3 we construct an additive monoidal Karoubi
closed category in which the isomorphism above holds and conjecture that its
Grothendieck ring is isomorphic to Z[%], see Conjecture 4.3.
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The DG ring A of endomorphisms of 16 X that appears in our categorification
of Z[%] in Section 3 is also a Leavitt path algebra L(T'), of the Toeplitz graph T
given by

C X —Y, (6)

see [1, Example 7]. Considering A as a Leavitt path algebra, one should ignore
the grading of A and its structure as a DG algebra. Leavitt path algebra of the
Toeplitz graph T is isomorphic to the Jacobson algebra [12], with generators
a,b and defining relation ba = 1, making a and b one-sided inverses of each
other. The linear equation categorified by this algebra is x = x + y, lifted to an
isomorphism of projective modules X =~ X @ Y. In the Grothendieck group of
this Leavitt path algebra [Y] = 0. In the monoidal envelope where Y is the unit
object 1, an isomorphism X = X @ 1 would imply the Grothendieck ring is zero,
since | = [1] = 0. These problems are avoided by introducing a shift into the
isomorphism as in equation (2), and consequently working in the DG framework,
as explained earlier. Choice of [—1] over [1] is inessential, see Remark 3.20.

Having a monoidal structure or some close substitute is a natural requirement
for a categorification of Z[1] and Q, emphasized in [17]. The direct limit D =
My (K) of matrix algebras M« (k) under unital inclusions M« (k) C M,x+1 (k)
has the Grothendieck group K of finitely-generated projective modules naturally
isomorphic to the abelian group Z[%], see [28, Exercise 1.2.7]. The isomorphism
is that of groups, not rings. Similar limits give algebras with K isomorphic to

any subgroup of Q.

Phillips [26] shows that the algebra D is algebraically strongly selfabsorbing,
that is, there is an isomorphism D =~ D ®y D which is algebraically approximately
similar to the inclusion D = D ® 1 C D ®k D. This isomorphism allows to equip
Ko(D) with a ring structure, making Ko(D) isomorphic to Z[%] as a ring, and
likewise for the other subrings of @, see [26]. We are not aware of any monoidal
structure or its close substitute on the category of finitely-generated projective
D-modules that would induce the Phillips ring structure on Ko(D).

Barwick et al. [8] construct triangulated categories (and stable co-categories)
with Grothendieck groups isomorphic to localizations S™!Z of Z along any set
S of primes, as well as more general localizations. For these localizations a
monoidal or some tensor product structure on the underlying categories does not
seem to be present, either, to turn Grothendieck groups into rings.
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2. A family of monoidal categories via arc diagrams

A monoidal category from (A4 ,e). Forafieldk, let A be a unital k-algebra and
e € A an idempotent such that eAe =~ k and the multiplication map

7

(1—e)de ® eA(l —e) — (1 —e)A(l —e),
denoted m’, is injective. Another notation for m’(b ® ¢) is simply bc. Let
A" =im(m’) Cc (1 —e)A(l —e)

and choose a k-vector subspace A” of A such that (1 —e)A(1 —e) = A’ @ A”.

We fix bases Bj 0, Bo,1, and By 1 (1) of vector spaces (1 — e)Ae, eA(1 — e),
and A”, respectively. The subscript 0 corresponds to the idempotent e, and the
subscript 1 corresponds to the complementary idempotent 1 — e. The notation
Bi,1(1) will be explained later in (11). We also choose By o to be a one-element
set consisting of any nonzero element of k = eA4e (element 1 is a natural choice).
The set B1,0 x Bo,1 of elements bc, over all b € B; ¢ and ¢ € By, 1, is naturally a
basis of A’. The union By ;(1) U (By,0 x By,1) gives a basis of (1 —e)A(1 — e).
Choices of A” and By 9, Bo,1, B1,1(1) are not needed in the definition of category
C below.

To a pair (4, e) as above we will assign a k-linear pre-additive strict monoidal
category C = C(4,e). Objects of € are tensor powers X ®" of the generating
object X. The unit object 1 = X®° The algebra 4 describes the ring of
endomorphisms of the object 1@ X . Slightly informally, we write 4 in the matrix

notation
_ eAe eA(l —e)
4= ((1 —e)de (1-e)A(l— e))' )

meaning, in particular, that, as a k-vector space, A4 is the direct sum of the four

7
matrix entries, and the multiplication 4 ® A "™ Ain A reduces to matrix-
like tensor product maps between the entries. The two diagonal entries are
subalgebras, via nonunital inclusions. We declare (7) to be the matrix of homs
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between the summands of the object1® X in C:

Home(1,1) Home(1, X)) eAe eA(l —e)
(Home(X, 1) Home(X, X)) N ((1 —e)de (1 —e)A(l —e))‘

The algebra eAde = Kk is the endomorphism ring of the unit object 1. The
k-vector space (1 —e)Ae is Home (1, X), while Home (X, 1) = eA(1 —e), and the
ring Ende(X) = (1 —e)A(1 —e).

The algebra A can be used to generate a vector space of morphisms between
tensor powers of X, by tensoring and composing morphisms between the objects
1 and X, and imposing only the relations that come from the axioms of a strict
monoidal pre-additive category. The only nontrivial part, as explained below, is
to check that the category does not degenerate, that is, the hom spaces in the
resulting category have the expected sizes (bases).

Before considering diagrammatics for morphisms between tensor powers of X,
we start with diagrams that describe homs between 1 and X. We draw the
diagrams inside a strip R x [0, 1]. An endomorphism « of X (a is an element of
(1—e)A(1 —e)) is depicted by a vertical line that starts and ends on the boundary
of the strip and in the middle carries a dot labeled a, see Figure 1. We call such
a line a long strand labeled by a. An element b € Home(1, X) = (1 — e)Ae is
depicted by a short top strand labeled by b. The top endpoint of a short top strand
is at the boundary. An element ¢ € Home(X,1) = eA(1 — e) is depicted by a
short bottom strand labeled by c. Its bottom endpoint is at the boundary of the
strip. Each short strand has two endpoints: the boundary endpoint (either at the
top or bottom of the strand), and the floating endpoint, which is a labeled dot. An
endomorphism / of the identity object 1 is depicted by a dot, labeled by £, in the
middle of the plane (in our case, these endomorphisms are elements of the ground
field k). These four types of diagrams are depicted in Figure 1.

Vertical concatenation of diagrams corresponds to the composition of mor-
phisms, as depicted in Figure 2. For instance, if an element of (1 —e)A(1 — e)
factors as bc, for b € (1 —e)Ae and ¢ € eA(1 — e), we can depict it as a compo-
sition of a top strand with label b and a bottom strand with label c, see the lower
right equality above.

Addition of alike diagrams is given by adding their labels, see examples in
Figure 3 for adding elements of (1 —e)A(1 —e) and (1 — e) Ae.

Likewise, scaling a diagram by an element of k corresponds to multiplying
its label by that element. An element a € (1 — e)A(1 — e) decomposes uniquely
a=d +d’, wherea' € A = im(m’),a” € A”. Furthermore, a’ admits a (non-
unique) presentationa’ = Zf-;l bici,b;i € (1—e)Ae,c; € eA(1—e), see Figure 4
for diagrammatic expression.
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te boge e

Figure 1. Presentation of morphisms, boundary of R x [0, 1] not shown.

an Cc
= azdq = ac
al a

‘ = e@ecbh lb = bc
e

Figure 2. Graphical presentation of composition in A.

+a1 + +a2 = +a1+a2 lbl-i- lbzz lbl—i-bz

Figure 3. Adding diagrams.

+a - +a"+ illgl{

i=1

Figure 4. Decomposition of an element in (1 — e)A(1 — e).

The algebra A has a basis given by diagrams in Figure 1 overalla € B ;(1) U
(B1,0 X Bo,1), b € B1,o, ¢ € By,1, and h € By (recall that By, has cardinality
one). Vertical line without a label denotes the idempotent 1 — e. This idempotent
does not have to lie in A”, but we usually choose A” to contain 1 — e and a basis
By,1(1) of A” to contain 1 — e as well (also see Example 2 below).

These diagrammatics for A extend to diagrammatics for a monoidal category
with the generating object X and algebra A describing the endomorphisms of
1® X. Morphisms from X ®” to X ®™ are k-linear combinations of diagrams with
n bottom and m top endpoints which are concatenations of labeled long and short
strands, as in the figure below (where n = 5 and m = 4).
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Defining relations are isotopies of these labeled diagrams rel boundary and
the relations coming from the algebra A as shown in Figures 2—4. Any floating
strand (of the form cb as in Figure 2) reduces to a constant and can be removed
by rescaling the coefficient of the diagram.

A basis for homs. We now describe what is obviously a spanning set of
Home (X ®", X®™), Ignoring labels, an isotopy class of a diagram of long and
short strands as in Figure 5 corresponds to a partial order-preserving bijection

f:[1,n] — [1,m]. (8)

Here [1,n] = {l,...,n}, viewed as an ordered set with the standard order.
A partial bijection f: X — Y is a bijection from a subset Ly of X to a subset of
Y, and order-preserving means X, Y are ordered sets, and f(i) < f(j)ifi < j
andi,j € Ly. Let Ly = {iy,....ijz)} C [l,n], where iy < i> < ...ijy. Here
| f| denotes the cardinality of L ¢, which we also call the width of f. Denote by
PB,, » the set of all partial order-preserving bijections (8).

A Long strand, counting from left to right, connects the k-th element iy € [1, n]
of Ly, viewed as a point on the bottom edge of the strip, to f(ix) € [1,m], viewed
as a point on the top edge. Elements in [1, 7] \ L are the lower endpoints of the
short bottom strands. Elements of [1,m] \ f(Ly) are the upper endpoints of the
short top strands.

In Figure 5 partial bijection f:[1,5] — [1, 4] has

Ly ={1,2,5}

and
fy=2. f@=3 [ =4

For each bijection f choose a diagram in the isotopy class of diagrams repre-
senting this bijection and add a dot to each long strand, see Figure 6. Each short
strand already has a dot at its floating endpoint. Denote this diagram D.

Partial bijection f has | f| long strands, n — | f| bottom strands and m — | f|
top strands. Let By be the following set of elements of Home (X ®", X®™). To
the floating endpoint of each bottom strand assign an element of By, ; and denote
theseelements cy, .. ., ¢, r| from left to right. To the floating endpoint of each top
strand assign an element of B o and denote these elements by, ..., b,_| | from
left to right. To the dot at each long strand assign an element of Bj (1) (recall
that By,; (1) is a basis of A”) and denote them ay, ..., a|r. Figure 7 depicts an
example withn = 6, m = 7and | f| = 3.
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b

ai
TC] Tcz

Figure 5. A diagram of long and short strands.

f(i1) f(i2) SGirD)

LU
TV T

Figure 6. Partial bijection diagram D .

[y

Figure 7. A labeled partial bijection diagram d.

The set By of labeled diagrams for a given f is naturally parametrized by the
set

(B1,0)™ M x By (1)1 x (By,1)" 71,

and each labeled diagram d in B, gives rise to an element of Home (X ®", X ®™),
also denoted d .
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Theorem 2.1. The Kk-vector space Home(X®", X®™) has a basis of labeled
diagrams

Bma=| |By
f€PByn

and is naturally isomorphic to the space

D1 - e)4e)2" 1D @ (4781 @ (eA(1 — ¢))®* 1D,
f€PByn

The notation By, , is compatible for (m,n) = (1,0), (0, 1), (0,0) with the
notation at the beginning of Section 2.

Proof. We first observe that vector spaces kBB, , admit multiplications

kIBk,m ® kIBm,n — kIBk,n (9)
that turn the direct sum
kB := (PkB. (10)
n,melN

into an idempotented (nonunital) associative algebra, where N = {0, 1,2, ...}. To
compute the product hxhy € KBy, for hy € By, h1 € B, n We concatenate the
diagrams /5 A, into a single diagram. Every floating strand in /4, evaluates to
a scalar in k. Long strands in A/, are concatenations of pairs of long strands in
ha, h1, each carrying a label, say a»,a; € Bj,1(1). The concatenation carries the
label aza; € (1—e)A(1 —e) and is simplified as in Figure 4, with a = aa; on the
left hand side. The right hand side term a” in Figure 4 further decomposes into
a linear combination of elements of B ; (1), and the terms in the sum into linear
combinations of elements of B; g x By,;.

Concatenation of a long strand and a short (top or bottom) strand results in
a short (top or bottom) strand that carries the product label, see the right half of
Figure 2. That label is a linear combination of elements in B, o, in the top strand
case, and elements of B!, in the bottom strand case.

The simplification procedure is consistent and results in a well-defined element
hahy of KBy ,,. Associativity of multiplications (9), resulting in well-defined maps

kIBr,k ® kIBk,m kB, — kIBk,n

for all r, k, m, n, follows from the observation that the computation of 4,41 can be
localized along each concatenation point. Simplification of each pair of strands
along their concatenation point can be done independently, and the resulting ele-
ments of A, interpreted as diagrams, can then be tensored (horizontally composed)
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to yield hyh;. In this way associativity of (9) follows from associativity of mul-
tiplication in A. Since the multiplication is consistent, kIB carries an associative
non-unital algebra structure.

A substitute for the unit element is a system of idempotents in kIB. Denote
by 1, the element of kB, , given by n parallel vertical lines without labels. In
particular, 19 = e. The diagram 1,, is an idempotent corresponding to the identity
endomorphism of X®”, and for any a € B, ,,b € By, , the products 1,a = a,
bl, = b. The diagram 1,, is the horizontal concatenation of n copies of 1 —e € A.
In all cases considered in this paper 1 — e € By (1), but this is not necessary in
general: 1 — e might not be in the basis By,; (1) of A”, or even in A”.

Elements 1,, over all n > 0, constitute a local system of mutually-orthogonal
idempotents in kIB. For any finitely many elements z1, ..., z,, of kB there exists
n such that z;1), = 1,z; = z; for 1 <i <m, where 1), = 1o + 1; +--- + 1,.
Non-unital algebra kB can be written as a direct limit of unital algebras 1, kB1),
under non-unital inclusions

1,kB1, c 1, kB1,_,.

We also refer to an algebra with a local system of idempotents as an idempotented
algebra.

Multiplication in kB corresponds to vertical concatention of labeled diagrams,
and is compatible with the horizontal concatenation (tensor product) of diagrams,
giving us maps

KB.n @ KBy s —> KBptm’ ntn

and producing a monoidal category, denoted C, with a single generating object X
and KB, ,, the space of homs from X ®" to X®™. Injectivity of multiplication in
C implies that C is equivalent (and even isomorphic) to €, and that sets B,, , are
indeed bases of homs in C.

The subalgebra

KB<; = KBo,0 @ kBo,1 ® kB1,0 ® kBy,;

of kB is naturally isomorphic to A. |

Thus, the space Home (X ®", X®™) is a direct sum over all order-preserving
partial bijections f:[1,n] — [1, m] of vector spaces

(1= e)4e)® /D & (4" & (eA(1 — £))®@ /D
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Denote by B, ,({) the subset of B,, , corresponding to partial bijections f with

Ifl=¢

Bma(t) =| |By. 1)

|fl=¢
These are all basis diagrams with £ long strands. The notation By, ,(£) is
compatible with the notation B ;(1) at the beginning of Section 2. We have
Bi,1 = By1,1(0) U By,1(1), and there is a natural bijection B; 1(0) = B o x By 1.

Additive, idempotent complete extension. From C we can form its additive
closure €24, with objects—finite directs sums of objects of C. Category €2d
is a k-linear additive strict monoidal category. Furthermore, let Ka(C) be the
Karoubi closure of €2, Category Ka(C) is an idempotent complete k-linear
additive strict monoidal category. Its Grothendieck group Ko(Ka(C)) is naturally
a unital associative ring under the tensor product operation, and there is a natural
homomorphism
Z[x] — Ko(Ka(€))

from the ring of polynomials in a variable x to its Grothendieck group, taking x
to [X], the symbol of the generating object X in the Grothendieck group. The
homomorphism may not be injective or surjective.

By an inclusion A C B of categories we mean a fully faithful functor A — B.
There is a sequence of categories and inclusion functors

€ — M _, Ka(e).

Category C is preadditive. Category €2 is additive and contains C as a full
subcategory. Category Ka(C) is additive, idempotent complete, and contains €244
as a full subcategory. All three categories are monoidal.

Examples. We now provide some examples for the above construction.

Example 1. A special case of the monoidal category C appeared in [18], with the
sets B1,0, Bo,1, and By 1 (1) all of cardinality one. Denoting elements of these sets
by b, ¢, and (1), respectively, the algebra A can be identified with the Figure 8
quiver algebra subject to the relation ch = (0), where (), for j € {0, 1}, denotes
the idempotent path of length zero at vertex j. Thus, the composition cb equals
the idempotent path (0) at the vertex 0. Algebra A has a basis {(0), (1), b, c, bc}.
It’s a semisimple algebra isomorphic to the direct product M, (k) x k, where the
second factor is spanned by the idempotent (1) — bc. The first factor has a basis
{(0), b, c, bc}.
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ol
b

Figure 8. Quiver with vertices 0, 1 and arrows b, ¢ between them.

A basis of the hom space Home(X®", X®™) is given by partial bijections
from [1,n] to [1, m], with no additional decorations necessary. The idempotent
completion Ka(@) of the additive closure G2 of € is semisimple, and X =~ 1§ X,
where the object X; = (X, lx —bc) of the idempotent completion comes from the
above idempotent 1y — bc. The simple objects, up to isomorphism, are all tensor
powers of X;. For this pair (4, e) the natural homomorphism Z[x] — Ko (Ka(C))
is an isomorphism, see [18].

Example 2. Consider a special case when 1 — e € A’ = im(m’). Then A" =
(1 —e)A(1 —e) and A” = 0. Choose a presentation 1 —e = Y 7'_, b;c; with
bi € (1 —e)Ae, c; € eA(1 — e), and the smallest n. Multiplying this equality by
b; on the right implies ¢;b; = 6; ; € K. Multiplying on the right by any element
of (1 — e)Ae shows that b;’s are a basis of (1 — e)Ae. Likewise, elements c; are a
basis of eA(1 —e), and the pair (A4, e) is isomorphic to the pair (M, +1(k), e11) of a
matrix algebra of size n + 1 and a minimal idempotent in it. In the additive closure
@2dd of @ (and in the idempotent completion Ka(®)), the object X is isomorphic
to n copies of the unit object 1. This degenerate case is of no interest to us.

Otherwise, 1 —e is not in the subspace A’ of (1 —e)A(1—e), and we can always
choose A” and By (1) to contain 1 — e, ensuring that the vertical line diagram is
in the basis By 1 (1).

Case when A is a super algebra. We now discuss a generalization when A4 is
an algebra in the category of super-vector spaces. In that category the objects
are 7/2-graded and degree one summands are called odd components. Algebra
A must be Z/2-graded, A = Ay & A;, with the idempotent ¢ € Aq such that
eAe = k. Then 1 — e is also in Ay. Vector spaces eA(1 —e), (1 — e)Ae, eAe, and
(1 —e)A(1 — e) are then each a direct sum of its homogeneous components. For
instance eA(1 —e) = eAo(1 —e) ®eA; (1 —e), with eAd; (1 — e) being the degree
i component of eA(1 —e) fori =0, 1.

We continue to require injectivity of m’. Subspace A’ = im(m’) is Z/2-graded,
and we select its complement A” to be graded as well. All basis elements of
Bo,0, Bo,1, B1,0. B1,1(1) should be homogeneous (which is automatic for Bg,g).
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This will result in a Z/2-graded idempotented algebra kB with homogeneous
basis elements in B.

The monoidal category € that we assign to (4, e) is enriched over the category
of super-vector spaces. For this reason, homogeneous morphisms in € supercom-
mute when their relative height order changes during an isotopy, see Figure 9, with
the coefficient (—1)/¢M?! where |a| € {0, 1} is the Z/2-degree of the generator a.

b
Tb — (71)|a|\b| ; T

Figure 9. Super-commutativity of morphisms.

In our construction of a basis of hom spaces Home (X ®", X ®™) = kB, ,,, we
need to choose a particular order of heights when dealing with decorated basis
diagrams, to avoid sign indeterminancy. The order that we follow is shown in
Figure 10. Lengths of top short arcs increase going from left to right, so that b;
label is at the highest position, followed by b, and so on. Highest long strand
label a; is below the lowest b-label b,,_||. It’s followed by a» to the right and
below, all the way to a, 7|, which has the lowest height of all a labels. Leftmost
bottom arc label ¢y is lower than a| | label, and the remaining bottom arc labels

2, ..., Cp—| r| continue with the lower heights. The lowest label in the diagram is
Cn—|f1-
L
b3
ay b4
a
as

C1 ,
Figure 10. Keeping track of heights of labels, left to right and top to bottom.

Proof of Theorem 2.1 extends without any changes, simply by confirming
the consistency of signs in several places. The theorem implies that there is no
collapse in the size of homs between tensor powers of X and gives a basis for the
space of morphisms from X®" to X ®™,
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Case when A is a DG algebra with the trivial differential. A mild general-
ization of our construction to DG (differential graded) algebras will be needed in
Section 3. A DG algebra A is a Z-graded algebra, 4 = ), ,, A’, with a differen-
tial d of degree one, such that d(ab) = d(a)b + (—1)!%ad(b), where |a| € Z is
the degree of a, for homogeneous a. Each DG algebra is viewed as a superalgebra
by reducing the degree modulo two and forgetting the differential.

In this paper we will only encounter the simplest case, when the differential is
trivial on 4. We assume this to be the case. With the differential zero on 4, no
additional conditions on A or e are needed, and the generalization from the super
algebras to such DG algebras is straightforward. The grading is now by Z and not
just Z/2, with idempotent e in degree zero.

We choose A” to be a subspace that is the direct sum of its intersections with
the homogenous summands of (1 —e)A(1 — e). Likewise, bases Bo,o, Bo,1, B1,0,
and B; (1) are chosen to consist of homogeneous elements.

The DG category C is constructed from this data just as in the super-algebra
case. Due to Z-grading, one introduces enlarged morphism spaces,

HOMe(M. N) = @5 Home (M, N[m)).

mez

Morphism spaces HOM¢ between tensor powers of X have bases as described
in Theorem 2.1, with heights in the basis diagrams tracked as in Figure 10. The
differential acts by zero on all morphism spaces HOM¢e (X ®”, X ®™). Diagrams
super-commute, with the super grading given by reducing the Z-grading modulo
two.

A chain of ideals J, . Now assume A is an algebra, or a super-algebra, or a
DG algebra with the trivial differential. The ring 4y = Ende(X ®F) is spanned
by diagrams of decorated long and short strands, with each diagram having ¢
long strands and 2(k — £) short strands, an equal number k — £ at both top
and bottom. Composing two such diagram D;, D, with £; and ¢, long arcs,
correspondingly, results in the product D, D, which is also an endomorphism of
X®k that decomposes into a linear combination of diagrams, each with at most
min({, £,) long strands. The number of long strands in a diagram cannot increase
upon composition with another diagram.

Therefore, there is a two-sided ideal J, x of Ax whose elements are linear
combinations of diagrams with at most n long strands. Here 0 < n < k. It’s also
convenient to define J_; x to be the zero ideal. There is a chain of inclusions of
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two-sided ideals
0=J_1x CJok C-- CJk—1k C Ik = Ax. (12)

Basis By x of Ay respects this ideal filtration, and restricts to a basis in each J,, k.

Corollary 2.2. Two-sided ideal J, ;. has a basis
Bri(<n) =] |Bex(®).

0<l<n

In the special case £k = 1, we denote by J the ideal Jy ; and by L the quotient
ring A1/ Jo,1. Thus, there is an exact sequence

0—J —>A — L —0,
where
J =Jo1=(1—e)deA(1—e),
A1 =1 —e)A(l —e),
L=A4,/J =2=(1—-e)A(1—e)/(1 —e)AeA(l —e).

A1 = Ende(X) is a subring of A, with the unit element 1 —e, and L is isomorphic
to the quotient of A; by the two-sided ideal of maps that factors through 1.
The quotient ring

Ly = Ag/Jr-1k (13)

is naturally isomorphic to L®¥, the k-th tensor power of L. Graphically, we
quotient the space of linear combinations of decorated diagrams with k endpoints
at both bottom and top by the ideal of diagrams with at least one short strand
(necessarily at least one at the top and the bottom). Elements in the quotient by this
ideal will be represented by linear combinations of diagrams of k decorated long
strands, modulo diagrams where a long strand simplifies into a linear combination
of a pair of decorated short strands. The quotient is isomorphic to L = L, defined
above for k = 1, and to the k-th tensor power of L for general k. In the super-case,
the tensor power is understood correspondingly, counting signs.

3. A categorification of Z[]]

The goal of this section is to describe a monoidal DG category €, and its asso-
ciated monoidal triangulated Karoubi closed category D¢(C). We show that the
Grothendieck ring Ko(D¢(€)) is isomorphic to Z[3].
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3.1. A diagrammatic category C. As before, we work over a field k. Consider a
pre-additive monoidal category C with one generating object X, enriched over the
category of Z-graded super-vector spaces over Kk, with the supergrading given by
reducing the Z-grading modulo 2. In a pre-additive category, homomorphisms
between any two objects constitute an abelian group (in our case, a Z-graded
k-vector space), but direct sums of objects are not formed.

A set of generating morphisms together with their degrees is given in Figure 11.

generator X y z z
degree 1 —1 0 0

Figure 11. Generating morphisms.

Two of these four generating morphisms are endomorphisms of X, of degrees
1 and —1, correspondingly, one is a morphism from 1 to X of degree 0, and the
fourth morphism goes from X to 1 and has degree 0. We denote these generators
x,y,z,z%, from left to right, so that x, y are endomorphisms of X, z a morphism
from1to X, and z* a morphism from X to 1. We draw x as a long strand decorated
by a box, y as a long strand decorated by a circle, z as a short top strand decorated
by a box, and z* as a short bottom strand decorated by a circle, respectively. A
pair of far away generators super-commute. The first two generators x and y have
odd degrees, while z and z* have even degrees.

Local relations are given in Figure 12. They are

z¥z=1, zx=0, yz=0,
y 14)
yx =1y, xy+zz = lyx.

The identity map 17 of the object 1 is represented by the empty diagram. Fig-
ure 13 shows our notation for powers and some compositions of the generating
morphisms.
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Figure 12. Defining local relations.

no_ : n boxes d)” __ i ncircles

[[]n

Figure 13. Notations for compositions, left to right: x”, y", x"z and z* y”.

We write Home (M, N) for the vector space of degree 0 morphisms, and
HOM¢e (M, N) for the graded vector space with degree components—homogeneous
maps of degree m:

HOMe(M. N) = @) Home (M., N[m]).

meZ
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If char(k) # 2 we choose an order of heights of decorations as follows. For
any pair of strands, the height of decorations on the left strand is above the height
of decorations on the right strand. Let f ® g denote the horizontal composition
of two diagrams f and g, where the height of f is above that of g, see Figure 14.

Figure 14. Convention for f ® g.

Bases of morphism spaces. We observe that the category € is generated from
the suitable data (A, e) as described in Section 2, where A4 is a DG algebra with
the trivial differential. To see this, we restrict the above diagrams and defining
relations on them to the case when there is at most one strand at the top and at
most one strand at the bottom. In other words, we consider generating morphisms
in Figure 11 and compose them only vertically, not horizontally, with the defining
relations in Figure 12. The idempotent e is given by the empty diagram, while
1 — e is the undecorated vertical strand diagram.

Ignoring the grading and the (zero) differential on A, it follows from the
defining relations (14) that A is isomorphic to the Jacobson algebra [12] and to
the Leavitt path algebra L(T") of the Toeplitz graph T in (6), see [1, Example 7].
In particular, as a k-vector space, algebra A has a basis

{13U{x"z | n = 03U{z*y" | n > 0}U{x"zz*y™ | n,m > 0}U{lx,x", y" | n > 0}

by [2, Corollary 1.5.12] or by a straightforward computation. Our notations for
some of these basis elements are shown in Figure 13.

The basis of A can be split into the following disjoint subsets:

(1) edAe = k has a basis Bg,o = {11} consisting of a single element which is the
empty diagram;

(2) (1 —e)Ae has a basis Byo = {x"z | n > 0}. Element x"z is depicted by a
short top strand decorated by a box with label n, see Figure 13;

(3) eA(1 —e) has abasis Bg,; = {z*y" | n > 0}. Element z*y” is depicted by a
short bottom strand decorated by a circle with label  (lollipop in Figure 13);
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(4) (1 —e)A(1 —e) has abasis B;,1(0) L By 1(1), where
By,1(0) = {x"zz*y™ | n,m > 0}

consists of pairs (short top strand with a labelled box, short bottom strand
with a labelled circle), and By 1 (1) = {lx,x", " | n > 0} consists of long
strand diagrams which may carry either circles or boxes, but not both.

The multiplication map (1 —e)Ae ® eA(1 —e) — (1 —e) A(1 — e) sends the basis
Bi,0xBy,; of (1—e)Ae®eA(1—e) bijectively to By 1 (0) so that the multiplication
map is injective.

We see that the conditions on (4, e) from the beginning of Section 2 are
satisfied, and we can indeed form the monoidal category € as above with objects
X®" overn > 0. Algebra A can then be described as the direct sum

A =~ ENDe(1) @ HOMc(1, X) ® HOMe(X, 1) ® ENDe(X),

which is a DG algebra with the trivial differential. Therefore, a basis of the space
HOMe (X ®", X®™) is given in Theorem 2.1.

3.2. DG extensions of C. We turn the category C into a DG category by intro-
ducing a differential d which is trivial on all generating morphisms. Necessarily,
d is trivial on the space of morphisms between any two objects of €. The resulting
DG category is still denoted by C.

We refer the reader to [15] for an introduction to DG categories. For any DG
category D we write Homq (Y, Y’) for the vector space of degree 0 morphisms,
and HOMy, (Y, Y”) for the chain complex of vector spaces with degree components
Homq (Y, Y'[m]) of homogeneous maps of degree m. A right DG D-module M
is a DG functor M: D°P — C h(k) from the opposite DG category D°P to the DG
category of chain complexes of k-vector spaces. For each object Y of D, there is
aright module Y* represented by Y

Y” = HOMop (-, Y).

Unless specified otherwise, all DG modules are right DG modules in this paper.
We use the notations from [30, Section 3.2.21]. For any DG category D, there
is a canonical embedding D C DP™ of D into the pre-triangulated DG category
Dpre associated to D. It’s obtained from D by formally adding iterated shifts,
finite direct sums, and cones of morphisms. The homotopy category Ho(DP™)
of DP'® is triangulated. It is equivalent to the full triangulated subcategory of
the derived category D(D) of DG D-modules which is generated by D. Each
object Y of Ho(DP') corresponds to a module Y of D(D) under the equivalence.
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The idempotent completion ﬁé(@me) of Ho(DP™) is equivalent to the triangulated
category D¢(D) of compact objects in D(D) by [22, Lemma 2.2].
To summarize, there is a chain of categories

D C DP'® --> Ho(DP®) C Ho(DP') ~ D°(D) C D(D).

The first two categories are DG categories, and D C DP' is fully faithful.
The last four categories are triangulated. The dashed arrow between DP™ and
Ho(DP™) is not a functor. More precisely, Ho(‘DP™) has the same objects as
DPre - and morphism spaces as subquotients of morphism spaces of DP™®, It is
a full subcategory of its idempotent completion ﬁé(@l’re). The category D¢ (D)
of compact objects in D (D) is a full triangulated subcategory of D (D).

Definition 3.1. For a unital DG algebra R, let B(R) be a DG category with a single
object * such that ENDg(g)(*) = R. Let D(R) and D¢(R) denote D(B(R)) and
D€ (B(R)), respectively.

Remark 3.2. If R is an ordinary unital algebra viewed as a DG algebra concen-
trated in degree O with the trivial differential, then D(B(R)) is equivalent to the
derived category of R-modules, and D¢(B(R)) is equivalent to the triangulated
category of perfect complexes of R-modules, see [19, Section 6.5] and [31, Propo-
sition 70.3].

Since the DG category € is monoidal, it induces a monoidal structure on CP™
which preserves homotopy equivalences. There are induced monoidal structures
on the triangulated categories Ho(CP™®) and ﬁa(epre). We are interested in the
Grothendieck ring of Ho(CP®) ~ D¢(€).

Isomorphisms in D¢(€). Each morphism f € Home(Y,Y') with df = 0
induces a morphism in Hompe @) (Y, Y’ ), denoted f by abuse of notation. The
generating morphisms in Figure 11 and the local relations in Figure 12 induce an
isomorphism in D¢(C)

XN =10 @ XM [-1], (15)

given by (z*, y)T € Hompe@e) (X", 1" & X" [~1]), and (z, x) € Hompe (1" &
X"[—1], X*), see Figure 15. Tensoring with (X*)®* =1 in D¢(C) on either side
of isomorphism (15) results in isomorphisms in D¢(C)

(X/\)®k ~ (X/\)®(k—1) ® (X/\)®k[—1]. (16)



746 M. Khovanov and Y. Tian

N
L

Figure 15. The isomorphism X ~ 1" @ X" [—1].

@/\D_
—Q—E—D—

3.3. DG algebras of endomorphisms. Part of the structure of € can be encoded
into an idempotented DG algebra B with the trivial differential, which has a
complete system of mutually orthogonal idempotents {14 }x>0, so that
= @ 1Bl
m,n>0
and
1,,B1, = HOMe(X®", X®m),
Multiplication in B matches composition of morphisms in C.

The tensor structure of € induces a tensor structure on B. Given f,g € B
represented by some diagrams in C, let f ® g be an element of B represented by
the horizontal composition of the two diagrams for f and g, where the diagram
for f is on the left whose height is above the height of the diagram for g. There
is the super-commutativity relation

(f @S ®¢) = (~D)*EOIUD ff @ ggf
for homogeneous elements f, /', g, g’ € B.

‘We also define
Bi= P 1mBla.

m,n<k
which is a DG algebra with the trivial differential and the unit element ), _; 1,.
The inclusions By C Bi4+1 and By C B are nonunital. Define

Ar = 14 Bl = ENDg(X ®¥), (17)

which is a DG algebra with the trivial differential and the unit element 1;. For
k = 0, the DG algebras

The inclusion Ay C By is nonunital for & > 0.
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Let ag: Ar—1 <> Ak be an inclusion of DG algebras given by tensoring with
zz* on the left

a(f) = (2z") ® f. 19)

for f € Ar_1. Note that o is nonunital.

Definition 3.3. For k > 1, let J; be the two-sided DG ideal of A; generated by
diagrams with at most k — 1 long strands. The quotient L = Ag/Jy is naturally
a unital DG algebra with the trivial differential.

By Theorem 2.1 and Proposition 2.2 in Section 2, we know that A; has a
k-basis | |yp<x Brx(£), and Ji has a k-basis | |y.,-x_; Bk (€). So Li has
a k-basis gi_ve_n by the images of elements of IBk,kEkj under the quotient map
Ak — Lk.

The ideal J = J; has a k-basis By,1(0) = {x'zz*y/ | i, j > 0}. The unital
DG algebra L = L; is generated by X, y, which are the images of x, y € A; under
the quotient map A; — L. There is an exact sequence

0—J —>A4, —L—0

of DG algebras with the trivial differentials. For n > 0, let M, (k) be the
(n + 1) x (n 4+ 1) matrix DG algebra with the trivial differential and a standard
basis {e;; | 0 < i, j < n} of elementary matrices, with deg(e;;) =i — j.

Proposition 3.4. There are isomorphisms of DG Kk-algebras with trivial differen-
tials:

J = Mn(k),
L =Kla,a™'], deg(a) =1,
Ly =~ k(afl,...,afl)/(a,-aj = —aja;,i # j), deg(a;)=1.
Proof. Define the isomorphism My (k) — J by ¢;; + x'zz*y/ fori,j € IN.
The nonunital DG algebra J is isomorphic to the direct limit My (k) of unital DG
algebras M,, (k) under non-unital inclusions M, (k) C M, (k) taking ¢;; to e;;.

Define a map of algebras L — K[a,a™ '] by ¥ — a,y + a~!. Itis an
isomorphism since

)7)E=yx=1€L, )Ef:ﬂ):l—ZZ*:lGL,

by the local relations (14).
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Forl1 <i<k,letx; =1 ®xQ---landy; =1 ®---QyQ---1€ A,
whose ith factors are x and y € A, respectively. Then L is generated by images
Xi, ¥i, and subject to relations

Yiyi=yixi=1, XiXj=-%Xx, fori#].
Define the isomorphism Ly — k(af'.....af')/(aia;j = —aja;.i # j) by
Xiai,yi—>a;itforl <i <k. 0

We fix the isomorphisms for J, L, L in Proposition 3.4. See Figure 16 for J

and L.
L

ejj a a ala=aa"' =1

Figure 16. Basis element ¢;,; of the ideal J and elements a, a~! of the quotient L, where
generators of L are represented by the same diagrams as for A; by abuse of notation.

3.4. Approximation of D¢(C) by D(Ax). Let C, be the smallest full DG
subcategory of € which contains the objects X®*, 0 < n < k. Note that Cy
is not monoidal. There is a family of inclusions Cx_; C € of DG categories.
They induce a family of functors 1x: D(Cr—1) — D(C¢). For0 < n < k — 1,
1 (XA®") = X~®" is compact in D(Cy), and

ENDpe;_)(X"®") = 4, 2= ENDp ey (X*®") = ENDp(ey) (i (X)),

The functor 1x: D(Cr—1) — D(Cy) is fully faithful by [13, Lemma 4.2 (a, b)]. The
restriction to the subcategory 1;: D(Cx—1) — D(Cx) of compact objects is also
fully faithful. Similarly, there is a family of inclusions g¢: D°(Cx) — D°(C) of
triangulated categories.

Recall that the Grothendieck group Ko (7) of an essentially small triangulated
category T is the abelian group generated by symbols [Y] for every object Y
of T, modulo the relation [Y,] = [Yi1] + [Y3] for every distinguished triangle
Y1 - Yo - Y3 — Yi[l] in 7. In particular, [Y;] = [Y>] if Y; and Y, are
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isomorphic. The functors 1; and g; send distinguished triangles to distinguished
triangles and induce maps of abelian groups

lex: Ko(D(Ck—1)) —> Ko(D(Cr)).  gic,: Ko(D(Cr)) —> Ko(D(C€)).
Let h_n)l Ko(D*(Cx)) denote the direct limit of Ko(D¢(Cx)) with respect to 1 .

Proposition 3.5. There is an isomorphism of abelian groups
c ~ 13 c
Ko(D(€)) = lim Ko(D(C)).

Proof. The family of maps g; , induces amap gx: h_n)i Ko(D¢(Cr)) — Ko(D°(C))
since functors gy _, and g o1 are isomorphic. The map g is surjective since any
object of D¢(C) is contained in D¢(Cy) for some k up to isomorphism. The map
g« is injective since any distinguished triangle in D¢(C) is contained in D¢(Cy)
for some k up to isomorphism. O

The category Cj contains a full DG subcategory € of a single object X ®k
whose endomorphism DG algebra ENDe, (X ®k) = Ay by (17). Thus, the cat-
egory €} is isomorphic to B(A), and D(Ax) = D(B(Ag)), see Definition 3.1
There is an inclusion B(Ay) C Cx of DG categories. The induced functors

hi: D(Ax) — D(Ck), hy: D(Ax) — D(Cx) (20)

of triangulated categories are fully faithful by [13, Lemma 4.2 (a, b)]. A set I
of objects of a triangulated category 7T is a set of generators if T coincides with
its smallest strictly full triangulated subcategory containing H and closed under
infinite direct sums, see [13, Section 4.2]. In particular, {X A 0 <pn < k} forms
a set of generators for D(Cy). Equation (16) implies that X*®” is isomorphic to a
direct summand of X*®¥ for 0 < n < k. Let p, € Endpe,)(X*®¥) denote
the idempotent of projection onto the direct summand X"®”. Then X*®" is
isomorphic to a DG Cx-module given by a complex
L ATP e A®k Py a®K 17Pn oy n®K

Thus, {X n&k } forms a set of compact generators for D(Cr). The functor Ay is
an equivalence of triangulated categories by [13, Lemma 4.2 (c)]. It is clear that
hi: D(Ar) — D¢(Cy) is also an equivalence and thus induces an isomorphism
of Grothendieck groups Ay : Ko(D¢(Ax)) = Ko(D¢(Cy)). By Proposition 3.5,
there is a canonical isomorphism of abelian groups:

Ko(D4(€)) = lim Ko(D®(A))- 2D
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3.5. K-theory computations. For a DG category D, let Ko(D) denote the
Grothendieck group of the triangulated category D¢(D).

If R is an ordinary unital algebra viewed as a DG algebra concentrated in
degree 0 with the trivial differential, then there is a canonical isomorphism
Ko(D¢(R)) = Ko(R) by Remark 3.2, where K((R) is the Grothendieck group
of the ring R.

Without ambiguity let Ko(R) denote Ko(D€(R)) for a unital DG algebra R.
The isomorphism (21) can be rewritten as

Ko(€) = lim Ko(Ak)-

In order to compute Ko(Ay), we need higher K-theory of DG algebras and
DG categories. We briefly recall the definition of higher K-theory of DG cate-
gories following [30, Section 3.2.21]. Schlichting [30, Section 3.2.12] introduces
the notion of complicial exact category with weak equivalences whose higher K-
theory is defined. For a DG category D, its pre-triangulated envelope DP™ can
be made into an exact category whose morphisms are maps of degree 0 which
commute with the differential. A sequence is exact if it is a split exact sequence
when ignoring the differential. Then (DP™¢, w) = (DP'®, homotopy equivalences)
is a complicial exact category with homotopy equivalences as weak equivalences.
The K-theory of the DG category D is defined as the K-theory of the complicial
exact category with weak equivalences (DP™, w). This definition is equivalent
to Waldhausen’s definition of K-theory of a DG category according to [30, Re-
mark 3.2.13].

We introduce the following notations. For a DG category D,

Ki(D) = K1(DP, w),  Ko(D) = Ko(DP, w). (22)
For a unital DG algebra 4,
Ki(4) = K1(B(A4), Ky(4) = Ko(B(A)). (23)

Note that K((D) = Ko(Ho(DP™)) by [30, Proposition 3.2.22]. Recall that
Ko(D) = Ko(D°(D)) = Ko(Ho(D"™)).

By [32, Corollary 2.3], K,(D) — Ko (D) is injective.

Exact sequences of derived categories. The main tool to compute Ko(Ag) is

the Thomason-Waldhausen Localization Theorem specialized to the case of DG
categories.
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F F

A sequence of triangulated categories and exact functors T; 3 Ty =3 Ts is

called exact if FoF; = 0, F; is fully faithful, and F, induces an equivalence
To/ F1(T1) — T3, see [14, Section 2.9] and [30, Section 3.1.5].

A sequence of triangulated categories T; i1> Ty i2> T3 is called exact up
to factors it F,F; = 0, F; is fully faithful, and F, induces an equivalence
T2/ F1(T1) — T3 up to factors, see [30, Definition 3.1.10]. Aninclusion F: A — B
of triangulated categories is called an equivalence up to factors [30, Defini-
tion 2.4.1] if every object of B is a direct summand of an object in F(A).

Given a sequence of DG categories A — B — D, if the sequence

D(A) — D(B) — D(D)
of derived categories of DG modules is exact, then the associated sequence
D¢(A) — D¢(B) — D°(D)

of derived categories of compact objects is exact up to factors by Neeman’s
result [22, Theorem 2.1]. According to [30, Theorem 3.2.27], the Thomason-
Waldhausen Localization Theorem implies that there is an exact sequence of
K-groups:

K1(D) — Ko(A) — Ko(B) — Ko(D).

We will fit D(Ay) into an exact sequence of derived categories and then make
use of the localization theorem.

Definition 3.6. For a DG algebra 4, a DG A-module Q is ( finitely generated)
relatively projective if it is a direct summand of a (finite) direct sum of modules
of the form A[n].

We refer the reader to [14, Section 3.1] for the definition of Property (P) for
a DG module. Any relatively projective module has Property (P). For any object
M € D(A) there exists P(M) € D(A) which is isomorphic to M in D(A) and
has Property (P) [14, Theorem 3.1]. The object P(M) € D(A) is unique up to
isomorphism. If A4 is an ordinary algebra viewed as a DG algebra concentrated in
degree 0, then P (M) is a projective resolution of M.

Let A, B be DG algebras, and X be a DG left A, right B bimodule. We call X a
DG (A, B)-bimodule. The derived tensor product functor — ®ﬁ X:D(A) — D(B)
is defined by M ®II; X =~ P(M) ®4 X. Note that the derived tensor product
commutes with infinite direct sums, see [14, Section 6.1].
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Consider ag: Ax—1 — Ag in (19). Let e = ax(1x—1) = (zz*) ® 1x_1 which
is an idempotent of Ag. It generates a right ideal I, = ey Ay of Ax. The map o
makes I a DG (Ax—1, Ar)-bimodule and induces a functor

ix = — ®Y,_, Irx: D(Ak—1) — D(A).

Note that I is relatively projective as a right Ax-module.

It is clear that /iy, oy is isomorphic to 1 o hy—y as functors D(Ag—,) = D(Cx),
see (20). So

Ko(©) = lim Ko(41) 4

with respect to i..

The quotient map Ay — Li makes Ly a DG (Ag, Li)-bimodule, and induces
a functor

Jk = —®Y, Li: D(Ar) — D(Ly).

A construction of P(Ly) for Ly € D(Ag). Fork = 1,let P(L) be a complex

@ejjAl —> Al,
jeN

whose the differential is the sum of inclusions 1;:e;; A1 <> A;, where A, is in
degree 0, Dy ¢jj A1 is in degree —1, and ej; € J C A are idempotents. In
other words, P (L) is the DG A;-module

((@ejjfh[l]) ® A, 0= le)‘

jeN jeN

Since @,y ejj A1 = J as Aj-modules, P(L) = (J — A1) = L € D(Ay).

For k > 1, we take a product of k copies of P(L), where the product cor-
responds to the monoidal structure on €. More precisely, let u(¢,7) denote the
idempotent of A whose diagram consists of k — 1 vertical long arcs and one
pair of short arcs e;; as the ¢-th strand from the left, for 1 <t < k,i € N, see
Figure 17. They satisfy the commuting relations u(z, i))u(t’,i’) = u(t’,i")u(t,i)
for ¢t # t’. So their products are also idempotents of A, denoted by u(7, i) for
T c{l,....k}yandi e N7, Here u(#, ) is understood as the identity 15 of Ay.
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Let
P(T,i) = u(T,i)Ax

which is a relatively projective DG Ax-module. For P(T,i), P(S,}j) such that
T = Su{r}andiy = jsfors € S, thereisaninclusion:(7,1i,r): P(T,i) — P(S,}])
of Ax-modules given by (7,1, r)(u(T, 1)) = u(S, ju(r,i,).

o
?]

1 t k

u(t,i)

Figure 17. The idempotent u(¢,i) € A.

Consider a DG Ax-module P (L) given by a complex of relatively projective
DG Ag-modules of finite length:

PP —PPTi)— - — PPTH)— A

IT|=k IT|=k—1 IT|=1

ieN!7! ieN!7! ieN! 7|
with the differential

0= (=D)TI(T.i,r),
T,ireT

where Ay is in degree 0, and ¢(T,r) = #{t € T | t < r}. The complex P (L) is
exact except at Ag. Let

pr: P(Ly) — Ly (25)

be the quotient map Ay — L on the summand Ag, and the zero map on the
remaining summands of P(Lg). Then pr is an isomorphism in D(Ag).

Except for the last term Ag, each P(7,1) is naturally a submodule of the ideal
Ji of Ay, which is the kernel of the quotient map Ay — L, see Definition 3.3.
This implies

Je(Li) = Li ®Y, L = P(Lg) ®4; Li = Ax ®4, L = Ly € D(Ag). (26)

Lemma 3.7. The sequence of derived categories D(Ax—1) N D(Ay) ELN D(Ly)
is exact.
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Proof. The image iy (Ax—1) is isomorphic to the module e; A which is finitely
generated relatively projective. In particular, ig (Ag—1) is compact in D(Ag), and

ENDp4,_)(Ax—1) = Ag—1 = ex Agex = ENDp4,)(ix (Ak-1)).

The functor ix: D(Ag—y) — D(Ay) is fully faithful by [13, Lemma 4.2].
The composition ji o iy sends the free module Ax_; to

Jk o ik (Ar—1) = ji(Ar—1 @45, Ix) = ji (k)
= ex Ag ®f;k Li = exAx ®4, Lk =0,

where the last isomorphism holds since ey Ay is relatively projective, and the
last equality holds since ex Ay is contained in the ideal J; which is the kernel
of the quotient map Ay — L. The composition j; o i commutes with the
infinite direct sums [14, Section 6.1]. Thus, j; o iy = 0 on the smallest full
triangulated subcategory of D(Ag_1) containing the free module A_; and closed
under infinite direct sums. This full subcategory coincides with D(Ax_1), see [14,
Section 4.2]. It follows that ji o iy = 0on D(Ag_1).

The algebras L; and Ai act on Ly both from left and right via the map
A — Ly. In the following computation, we view Ly in one of the three ways:
(1) as aright Lz-module, denoted L,g; (2) as aright Ag-module, denoted L4 and
(3) as a (A, Li)-bimodule, denoted 4L L.

The functor j; admits a right adjoint functor f: D(Ly;) — D(Ag) which is
the restriction functor with respect to the quotient map Ay — Lg. In particular,
Jr(L ,f) = L,f. The functor f is fully faithful if and only if the counit map

Speilp ®% ALy — Li (27)

is an isomorphism of right L;-modules, see [25, Lemma 4 (1,3)]. The counit map
81, is the image of 17, € HomD(Ak)(L,f, L,f) = HomD(Ak)(L,f, fk(Lé)) under
the adjunction isomorphism

ad: Homp ) (L. fi(L§)) = Homp o (Li ®YF, ALE. LE).
Replacing L,? by its resolution P (L), there is a chain of isomorphisms
4 Ly S L
Hompa)(Li . fi(Ly)) — Homp(a,)(P(Li). fi(Ly))
ad
— Homp(z,)(P(L) ®4, “LE,LF)
g
—> HOHID(Lk)(L]%, L]lc‘)

h
— Homp (L ®%, ALE. L)
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Here g and h are induced by (26). Recall pr: P(Lg) — Ly from (25), and let
m: Ly ®4, Lx — Li denote the multiplication map. Then

81, =hogoadof(lL,)=hogoad(pr) =hogmo(prolL,)) = h(lz,)

which is an isomorphism. It follows that fz: D(Ly) — D(Ag) is fully faithful.
Let Tx = D(Ax)/ix(D(Ak—-1)), and gx: D(Ax) — T denote the quotient
functor. Since ji o iy is zero, the functor j; factors through #;: T — D(Lg). Let

Sk = qk © fr: D(Lg) — D(Ag) — Tk.

Itis clear that tx osg = tx oqro fxr = jro fx is an equivalence since the counit map
81t jk © Jk(Lk) = L in (27) is an isomorphism, and the conditions of Lemma
4.2(a,c) in [13] hold.

It remains to show that s is an equivalence. By [13, Lemma 4.2 (a,c)], it is
enough to show that s (Ly) is a compact generator of T, and

Sgs- Hompr, ) (Lg, Li[n]) —> Homg, (sg (L), sk (Lx)[n])

is an isomorphism. The object

sk(Li) = qr o fi(Li) = qr(P(Lk)) = qx(Ak),

since all other terms except for A in P(Lg) lie in ix (D(Ag—1)). Theorem 2.1
in [22] implies that g (Ag) is a compact object of Ty since Ay is a compact object
of D(Ay). Moreover, {qr(Ax)} generates Ty since {Ax} generates D(Ay). We
have sg . = gk, © fr4, Where

Jies: Homp g,y (Lg, Li[n]) —> Hompa,)(fi (L), fr(Lr)[n]),

G s: Hompa,) (fk (Lk), fx(Li)[n]) —> Homg, (sg(Lg), sk (Lx)[n]).

The map f, is an isomorphism since f; is fully faithful. The map ¢, is an
isomorphism if Homp4,)(ix (M), fi(Lk)[n]) = 0 for any M € D(Ax_;) by [23,
Definition 9.1.3, Lemma 9.1.5]. By adjointness Homp4,)(ix (M), fi(Li)[n]) =
Homp(z,)(jk o ix (M), Li[n]) = 0 since ji o ix = 0. We finally conclude that si
is an equivalence. U

There is an exact sequence of K-groups
9 ik* jk*
K1(Lk) — Ko(Ag—1) — Ko(Ax) —> Ko(Lk), (28)

induced by the exact sequence of the derived categories in Lemma 3.7.
To compute Ko(Ay) we need K; (L) fori =0, 1.
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3.6. K-theory of L;. We compute K;(Ly) fori = 0, 1 in this subsection. The
key tool to compute Ko(Ly) is a result of Keller [13, Theorem 3.1(c)]. Recall
the notion of relatively projective DG modules from Definition 3.6. For any DG
right Li-module M, let M[1] denote the shift of M, where M[1]! = M'*!,
dupn) = —du, and m[l] -a = ma(l] form € M,m[l] € M[l] and a € L.
See Sections 10.3 and 10.6.3 in [6] for definitions of shifts of left and right DG
modules, respectively.

Theorem 3.8 (Keller [13]). Given any DG algebra A and a DG A-module M, let

be a projective resolution of H*(M) viewed as graded H*(A)-module such that
On = H*(0p) for a relatively projective DG A-module Q. Then M is isomor-
phic to a module P(M) in the derived category D(A) which admits a filtration F,
such that \Jy> o Fn = P(M), the inclusion F,—y C Fy splits as an inclusion of
graded A-modules, and F, | F,—, 5 Onln] as DG A-modules.

We specialize to the case A = Lg. There is an isomorphism of free right DG
L-modules

hi: Ly ~ Li[1] (29)

given by hx(m) = ap - m for m € Li, where the multiplication is that of the
algebra Ly and ay is the invertible closed element of degree 1. So Q is relatively
projective if it is a direct summand of a free module L/, where I is the index
set. Since the differential is trivial on Ly, H*(Ly) =~ L as graded algebras. So
Q is arelatively projective DG Lj-module if and only if Q@ =~ H*(Q) is a direct
summand of L ,ﬁ as graded L -module. Given any projective resolution of H* (M)
as in Theorem 3.8 we can take 0, = Q, viewed as a DG Lj-module.

We now consider projective resolutions of N = H*(M). Let N = P N
be its decomposition into homogenous components. Let R;_; denote the degree
zero subalgebra of the graded algebra L. Then Ry_; is generated by b; = a;a;’
forl <i <k -1, and

Ry = Kb, i) [ (bibj = =bjbisi # ). (30)

We fix the inclusion Rg_; — L from now on. There is an isomorphism of graded
algebras

Ly = Rer(ai ")/ (biax = —aghi), (31)
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For any graded Lj-module N, each component N’ is a R;_;-module. Since aj
is invertible of degree 1, any graded L;-module N is completely determined by
N as a R;_;-module. More precisely, the action of aj induces an isomorphism
of Rj_;-modules

N+ (N, (32)

where a(N') is the abelian group N* with the a-twisted action of Ry_; via an
automorphism o: Rx_; — Ry—y given by a(b;) = —b;. Any projective resolution
P(N®) of a Rx_;-module N induces a projective resolution P(N*) of N. The
direct sum P, ., P(N') is a projective resolution of the graded Lj-module N.

We recall the following results about R _; studied by Farrell and Hsiang [11].
The algebra Ry, = Rk_z[b;f_ll] is an «-twisted finite Laurent series ring.
According to [11, Theorem 25], Ri_; is right regular. So any finitely gen-
erated Ry_;-module admits a finite resolution by finitely generated projective
Rj_1-modules. Furthermore, Ko(Ry—1) = Z with a generator [Ry_1] by [11, The-
orem 27].

Any isomorphism class of objects in D¢(Lg) has a representative M which is
isomorphic to a direct summand of Lff’ for some finite r as graded Lj-modules
(ignoring the differential). So M° and H°(M) are finitely generated Ry_;-mod-
ules since Ry _ is Noetherian. Then H®(M) admits a finite resolution by finitely
generated projective R;_;-modules. The graded Lj-module H*(M) admits a fi-
nite resolution by finitely generated projective L -modules. We have the following
lemma by applying Keller’s Theorem 3.8.

Lemma 3.9. Any M in D¢(Ly) is isomorphic to P(M) which admits a finite
filtration F,(M) such that F,(M)/ F,—1(M) — Q,(M)[n] is a finitely generated
relatively projective DG Lj.-module.

Lemma 3.10. There is a surjection of abelian groups ni:7./2 — Ko(Ly).

Proof. By Lemma 3.9 we have

[M] = (=1)"[Qn(M)] € Ko(L)

for M in D¢(Ly), where the sum is a finite sum. The abelian group Ko(Ly) is
generated by classes [Q] of finitely generated relative projective Q.

The inclusion Rrp_; — Ly is a map of unital DG algebras, where Rj_;
is viewed as a DG algebra concentrated in degree 0. It induces a functor
gk: D¢(Rg—1) — D€¢(Ly) given by tensoring with the (Ry_1, Li)-bimodule L.
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Any Q is a direct summand of a finite free module € Ly, and has the triv-
ial differential. Its degree zero component Q0 is a finitely generated projective
Rj_1-module, and the action of a; induces an isomorphism of Rj_;-modules
0t - a(0%). We have

gr(Q9) =0°®r,_, L =P Q° ® Rk 1aj =P 0" = 0,

i€Z i€Z

by (31), where the direct sums are taking as Rjp_;-modules. It follows that
ks Ko(Rir_1) — Ko(Ly) is surjective since gr,([Q°]) = [Q]. The group
Ko(Ly) is generated by [Lx] = gr«([Rr—1]) since Ko(Rr—1) = Z with a gener-
ator [Ry—1], see [11, Theorem 27]. Isomorphism (29) implies that [Lig] = —[L]-
Hence the map ny: Z/2 — Ko(Ly) defined by 1 (1) = [L] is surjective. O

According to [30, Section 3.2.12], the K-space K(&, w) of a complicial exact
category & with weak equivalences w is the homotopy fiber of of BQ(EY) —
BQ(&), where E¥ C £ is the full exact subcategory of objects X in £ for which
the map 0 — X is a weak equivalence. Here BQ(€) is the classifying space of
the category Q(€) used in Quillen’s Q-construction. By definition, there is a an
exact sequence:

Kl((gw) — Kl((g) — Kl(g, w) —> Ko(gw) L) Ko(g) — Ko(g, w). (33)

Here, K;(EY) and K; (&) are K groups of the exact categories £ and €&, respec-
tively.

From now on let € denote the complicial exact category B (L )P, see Defini-
tion 3.1. A sequence L — M — N is exact if it is split exact when forgetting the
differential. The weak equivalences are the homotopy equivalences. So ¥ C €
is the full subcategory of contractible objects in €. By [30, Proposition 3.2.22]
and the definition of K in (22) and (23)

Ko(&.w) = Kp(Li).  Ki(E.w) = Ki(Ly). (34)

Any M € € is a finite direct sum of free modules L[rn] when forgetting the
differential. Since Ly = Lg[l] € &, any M is isomorphic to L,?’ for some
r € N as graded Li-modules. Its degree zero component M? = R,?_’ , as free
Rj_1-modules. Since any exact sequence L — M — N in € induces a split exact
sequence L° — M? — NO of free Ry_;-modules, it induces a homomorphism
r:Ko(€) — Ko(Ri_1) = Z defined by r([M]) = [M°] € Ko(Ri_1). Itis clear
that r is surjective.
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Lemma 3.11. The group Ko(&) = Z with a generator [Ly].

Proof. Define a homomorphism Z[q,q~'] — Ko(€) by mapping ¢" to the class
[Lg[n]] for n € Z. It is surjective since any object M € € admits a finite filtration
whose subquotients are finite direct sums of free modules L[r]. The map factors
through Z[q,q™'] = Z since Ly = Lg[l] € €. Let ¢:Z — Ko(E) denote
the induced map which is surjective. It is clear that r and ¢ are inverse to each
other. O

We now consider Ko(E¥). Any object M € EY is contractible. There exists
a degree —1 map h: M — M of graded L;-modules such that dh + hd =
on M. Thus, Kerdy = Imdy. Moreover, Kerdys and h(Imdys) are graded
Lj-submodules of M. For any m € Imdy N h(Imdp), m = h(n) for some
n € Imdy sothat n = dh(n) + hd(n) = d(m) = 0and m = 0. Thus
Imdpy N h(Imdp) = {0}. As graded Li-modules, M =~ (Imdpy & h(Imdyy))
since m = dh(m) + hd(m). Moreover, Im djs is a DG Lg-submodule of M with
the trivial differential. As DG Lj-modules,

M =~ (h(Imdy) ® Imdy.d = dy: h(Imdy) — Imday)

35
>~ (Imdy[1] ® Imdpy,d =id: Imdp [1] — Imdyy). (55

The degree zero component (Im dj;)° is a direct summand of a finitely gen-
erated free R;_;-module M°. Thus (Imdj,)° is a finitely generated projective
Rj_1-module. Recall from [11, Theorem 27] that Ko(Rk—1) = Z with a generator
of the class [Ry_1] of the free module R;_;. It follows that every finitely gener-
ated projective Rx_j-module P is stably free, i.e. P & R}’ | =~ Rj_, for some
m,n € N. Thus (Imdyy)° is a finitely generated stably free Rk 1- module so that

Imdys is a stably free DG Li-module. Let C(L;) = Cone(Lyg 9 Ly) € &Y,
where two Lp’s are in degrees —1 and 0. There exists m,n € IN such that
M @ C(Lp)®™ = C(Ly)®" by (35).

Define a homomorphism ¢:Z — Ko(EY) by ¥ (1) = [C(Lg)]. Then v is
surjective.

For M € &Y, let

t(M) = [(Imdp)°] € Ko(Ry—1) = Z. (36)
For any exact sequence L i> ME Nin &Y, there is an induced sequence

Imdy, L> Im dys LN Imdy.
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We claim that it is a short exact sequence of graded Lz-modules.
(1) The first map is clearly injective.

(2) Thelastmapis surjective. Foranyn = dy(n’) € Imdy,n’ = g(m’) for some
m' € M since g is surjective. Son = dy(g(m’)) = g(dp (m')) € g(Imdyy).

(3) The middle term is exact. For any m € Im dys N Ker(g), m = f(I) for some
[ € L. Then dps(m) = dy(f(1)) = f(dr(l)) = 0 implies that dy. (/) = 0
since f is injective. So/ € Kerdy, = Imdy andm = f(I) € f(Imdy).

Then (Imdy)° EN (Imdy)® S (Imdy)° is a short exact sequence of finitely
generated stably free Ry_;-modules. Therefore, the map ¢ given by (36) induces
a homomorphism #: Ko(EY) — Ko(Rr—1) = Z which maps [C(Lg)] to 1. It is
clear that ¢ and ¥ are inverse to each other. We have the following lemma.

Lemma 3.12. The group Ko(EY) = Z with a generator [C(Ly)].

The map i: Ko(EW) — Ko(€) in the exact sequence (33) takes the generator
[C(Lg)] to 2[Lg], see Lemma 3.11. In particular, i is injective and not surjective.

Proposition 3.13. The group Ko(Ly) = 7Z./2 with a generator [Ly].

Proof. Recall from (22) that K{(Lg) = Ko(Ho(CP™®)), and K{(Lx) — Ko(Lk)
is injective by [32, Corollary 2.3]. The group K| (L) is nonzero since i is not
surjective in the exact sequence (33). It implies that Ko(Lg) is nonzero. Hence
the surjection ng:7Z/2 — Ko(Lg) in Lemma 3.10 is an isomorphism. O

Define a map pg: Z — Ko(Ay) of abelian groups by px (1) = [Ag].
Proposition 3.14. The map py, is surjective for all k > 0.

Proof. There is a commutative diagram from the exact sequence (28) and Propo-
sition 3.13:

Ko(Ar_1) —*> Ko(Ar) 2 Ko(Ly)

] el

7 2 7 7 0

The first square commutes because [Ax] = ix«[Ax—1] + [Ax[—1]] by an analogue
of (16). The second square commutes since ji,[Ax] = [Lx]. The map po is an
isomorphism since Ao = k by (18). By induction on k one can prove that py is
surjective using the snake lemma. |
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Taking the direct limit of pg, we have a surjective map p: h_r)n 7 — h_r)n Ko(Ag)
of abelian groups, where li_rr>1% o~ Z[%], and h_r)nKo(Ak) with respect to iy, is
naturally isomorphic to K¢ (C) as abelian groups, see (24). The monoidal structure
on D¢(C) induces a ring structure on Ko(C), where [A¢][Ax] = [Ar+i] € Ko(C).
Then p: Z[%] — Ko(C) is a ring homomorphism such that p(1) = [Ag], and
p(3) = [A1].

Theorem 3.15. There is a surjective homomorphism of rings: p: Z[%] — Ko(C).

To show that p is an isomorphism, we need to assume that char(k) = 2. The
exact sequence (33) gives K;(EY) — K1(€) — K;(Lg) — 0, since i is injective.

Proposition 3.16. If char(k) = 2, then K1(Ly) is 2-torsion.
Proof. It is enough to show that 2« is in the image of K1(EY) — K;(&) for any

a € K;(€). We use Nenashev’s presentation of K (&) of the exact category &,
see [24]. Any o € K;(&) is represented by a double short exact sequence

f1 f1
M —=N_—=XL.
g1 g1

Consider the cone C(M) of id: M — M, and morphisms iy;: M — C(M)
and jy: C(M) — M[1]in €. Any morphism f: M — N induces two morphisms
fI1]: M[1] — NJ[l] and C(f):C(M) — C(N). Let «[l],C(a) € K;(E) be
the classes of double short exact sequences consisting of M[1], N[1], L[1] and
C(M),C(N),C(L), respectively. The diagram

f1 f2
M N L
g1 82
i | lim iv||in ir |lip
C(f1) C(f2)
CM) —= C(N) —= C(L)
C(g1) C(g2)
M || im JN||JIN JL||JL
Sl f2[1]
MI1] N1] L[1]
g1l1] g2[1]

satisfies Nenashev’s condition in [24, Proposition 5.1]. Hence

a—C(a)+a[l] = By — Bn + BL € K1(E),
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where Sy is the class of the vertical double short exact sequence consisting of
X,C(X),X[1] for X = M,N, L. By [24, Lemma 3.1], Bx = 0 € K;(€). So
a + a[l] = C(a), which is in the image of K;(E¥) — K;(&).

If char(k) = 2, then Ly k(alil, .. .,a,ﬁcl)/(a,-aj = aja;,i # j)is
commutative as in Proposition 3.4. In particular, a; is central, invertible, closed
and of degree 1. Define hp: M — M][1] by hp(m) ma; which is an
endomorphism of M in €. It is an isomorphism since a; is invertible. Moreover,

hn o f = f[1] o hp for any morphism f: M — N of €. The diagram

N f2
M N L
g1 82
hM hM h}v hN hL hL
Sl1] f2[1]
M[l] ——= NI[I (1]
g1(1] g2[1]
offo0 offo0 offo0
0 0
0 0 0

0

0

satisfies Nenashev’s condition in [24, Proposition 5.1]. Tt implies that o —«[1]4+0 =

0 — 0 + 0 by [24, Lemma 3.1]. Hence «

Ki(EY) - K (€) forany @ € K1(E).

a[1], and 2¢ is in the image of

O

Remark 3.17. For the field k of any characteristic, there is a central element
aj ---ay of degree k if k is odd. So « alk], and K;(Ly) is 2-torsion. But
the same argument does not apply if k is even.

Remark 3.18. It can be computed from [29] that Ko(L;) =~ Z/2[L4] and
K1(L1) = k*/(k*)? which is 2-torsion for the ground field k of any character-
istic.

Theorem 3.19. There is an isomorphism of rings Ko(C) = Z[%] if char(k) = 2.

Proof. We want to show that pg:Z — Ko(Ag) is an isomorphism by induction
on k. It is true when k 0 since Ap =~ k by (18). Suppose that pg_; is
an isomorphism. If char(k) = 2, then K;(Lg) is 2-torsion so that the map
0: K1(Ly) — Ko(Ag—1) = Z is zero. The commutative diagram in the proof
of Proposition 3.14 becomes

Ki(Ly) =% Ko(Ak—1) —=> Ko(Ar) 2> Ko(Ly)

e ]

Z 2 7 7 0
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The snake lemma implies that pg is an isomorphism, and Ky (Ay) is freely gener-
ated by [Ag].

The same argument before Theorem 3.15 shows that K¢ (C) =~ Z[%] as rings.

O

Remark 3.20. If degrees of the generators x and y in Figure 11 are exchanged,
i.e. deg(x) = —1,deg(y) = 1, then the resulting derived category will have
an isomorphism X” =~ 1" @ X”\[1] as the analogue of equation (15). Since the
quotient algebra Ly is unchanged under the exchange of the degrees, Theorem 3.19
also holds in this case.

If deg(x) = m,deg(y) = —m for some odd m # =1, then in the resulting
derived category there is an isomorphism X” =~ 1" @& X" [-m], leading to a
homomorphism from Z[%] to the Grothendieck ring of that category. We don’t
know whether it is an isomorphism.

3.7. A p-DG extension. Witten—Reshetikhin—Turaev 3-manifold invariants,
when extended to a 3-dimensional TQFT, require working over the ring Z[# & ] -
C, where £ is a primitive N-th root of unity. The space associated to a (decorated)
surface in the TQFT is a free module over Z[% E] and the maps associated to
cobordisms are Z[ﬁ 5]—linear. This ring contains the subring Z[£] of cyclotomic
integers.

When N is aprime p, the ring Z[§] = Z[q]/(1+q+-- +¢P~1). In the notation,
£ = ¢ is an element of C while q is a formal variable, and the isomorphism
takes ¢ to &. Let us also denote this ring by R,,. Ring R, admits a categorification,
investigated in [16, 27]. One works over a field k of characteristic p and forms a
graded Hopf algebra H = Kk[d]/(07), with deg(d) = 1. The category of finitely-
generated graded H-modules has a quotient category, called the stable category,
where morphisms which factor through a projective module are set to 0. The stable
category H-mod is triangulated monoidal and its Grothendieck ring K¢(H -mod)
is naturally isomorphic to the cyclotomic ring R,,. Multiplication by g corresponds
to the grading shift {1} in the category of graded H -modules. The shift functor [1]
in the triangulated category H -mod is different from the grading shift functor {1}.

We now explain a conjectural way to enhance this categorification of R, using
a version of isomorphism (2) from the introduction to categorify the ring Z[%, E]
which contains both R, and Z[£] as subrings. The point is that in Z[£] there is an
equality of principal ideals

(P =0-5""
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see [21, Proposition 6.2], so that subrings Z[%, £] and Z[IITE £] of € coincide
(equivalently, localizations R,[p~'] and R,[(1 —¢)~!] are isomorphic). Inverting
p is equivalent to inverting 1 — £, and the latter can be inverted using a variation
of isomorphism (2).

Namely, one would like to have a monoidal category over a field k of charac-
teristic p with a generating object X and an isomorphism

X=Xx{l}®l, (37)

where {1} is degree shift by one. Having this isomorphism requires the four
generating morphisms as in Figure 15, denoted x, y, z, z* in Figure 11. The degrees
are now the opposite, deg(x) = —1, deg(y) = 1, deg(z) = deg(z*) = 0. The
defining relations are the same, see Figure 12, but now all far-away generating
morphisms commute rather than super-commute.

The construction gives rise to a graded pre-additive category € with objects —
tensor powers of X and morphisms being planar diagrams built out of generators
subject to defining relations. We make C into a p-DG category by equipping it
with the derivation d of degree 1 that acts by zero on all generating morphisms,
hence on all morphisms.

We then extend category C to a triangulated category, as explained in Sec-
tion 3.2 for the DG case, by substituting the p-DG version everywhere. We pass to
the pre-triangulated p-DG category CP™ by formally adding iterated tensor prod-
ucts with objects of H-mod, finite direct sums and cones of morphisms. Shifts of
objects are included in this construction, since they are isomorphic to tensor prod-
ucts with one-dimensional graded H -modules. The homotopy category Ho((?pre)
is triangulated, and we define Ctobeits idempotent completion. The category Cis
triangulated monoidal Karoubi closed, and there is a natural ring homomorphism

Z[%.§] — Ko(©) (38)

taking (1 — &)~! to [X].

Problem 3.21. Is the map (38) an isomorphism?

Beyond this problem, there is an open question whether category € can be used
to enhance known categorifications of quantum groups at prime roots of unity
and to help with categorification of the Witten—Reshetikhin—Turaev 3-manifold
invariants at prime roots.
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4. A monoidal envelope of Leavitt path algebras

The goal of this section is to describe an additive monoidal Karoubi closed
category C whose Grothendieck ring is conjecturally isomorphic to Z[%].

4.1. Category C. Let k be a field. Consider a k-linear pre-additive strict
monoidal category € with one generating object X, in addition to the unit object 1.
A set of generating morphisms is given in Figure 18.

z z* X1 X2 X3 Xy x5 x5

Figure 18. Generating morphisms.

Six of these eight generating morphisms are endomorphisms of X, one is a
morphism from 1 to X, and the last morphism goes from X to 1. We denote
these generators by z, z*, x;, x; fori = 1,2, 3, from left to right in Figure 18. In
particular, x;, x;* are endomorphisms of X, z a morphism from 1 to X, and z*
a morphism from X to 1. We draw x; as a long strand decorated by a box with
label i, x;* as a long strand decorated by a circle with label i, and z as a short top
strand decorated by an empty box, and z* as a short bottom strand decorated by
an empty circle, respectively.

A pair of far away generators commute. Therefore, a horizontal composition
of diagrams is independent of their height order. Given two diagrams f, g, let
f ® g denote the horizontal composition of f and g, where f is on the left of g.

Local relations are given in Figure 19, where the vertical line is 1y, and the
empty diagram is 1;. The relations can be written as

z*z = 14,

x¥z=0, z*x;=0, fori=1,2,3,

1
X;‘)Cj = Si,jlx, fOl‘i,j = 1,2,3, (39)
3

Zx,-xi* +zz* = 1y.

i=1
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Il
—_
ey

Figure 19. Defining local relations.

Let

A= ]AF =] J(1.2.3%

k>0 k>0

be the set of sequences of indices, where A° consists of a single element of
the empty sequence. For I = (i1,...,ig) € A, let I* = (ig,...,i1), and
|I| = k. Let x;,x; € Ende(X) denote compositions x;, ---x;, and xl.*1 x:;(
Let z; = x7z € Home(1, X) and z; = z*x; € Home(X,1). If |[I] = |J], then
x;xy = 81,y+1x, and subsequently z;z; = &7 j= 1.

Figure 20 shows our notations for some vertical compositions of generating
morphisms. We draw x; as a long strand decorated by a box with label 7, and x}
as a long strand decorated by a circle with label 7, respectively. We draw zy as a
short top strand decorated by a box with label 7, and z as a short bottom strand

decorated by a circle with label I, respectively.

Bases of morphism spaces. We observe that the category € is generated from
the suitable data (A, e) as described in Section 2, where A is a k-algebra. To see
this, we restrict the above diagrams and defining relations on them to the case
when there is at most one strand at the top and at most one strand at the bottom. In
other words, we consider generating morphisms in Figure 18 and compose them
only vertically, not horizontally, with the defining relations in Figure 19. The
idempotent e is given by the empty diagram, while 1—e is the undecorated vertical
strand diagram.
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4 ®

HIE

X7 X7

=

zZy Zr

(D
= 87+

k Uk
xyxy =08ry+1x

Figure 20. Notations for compositions xy, x}k, zr, z;‘ for I = (i1,...,ix), and the relation
xjxy =8 g+1x if [I] = |J]|.

It follows from the defining relations (39) that A is isomorphic to the Leavitt
path algebra L (Q) of the graph Q in (4). In particular, as a k-vector space, algebra
A has a basis

{lipulzr [ 1 € A}
U{zy | I €e Ay U{zizy | 1. J € A}
U{xr x| I,J € A, (11, j1) # (3,3))

by [2, Corollary 1.5.12]. Our notations for some of these basis elements are shown
in Figure 20.
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The basis of A can be split into the following disjoint subsets:
(1) eAe = K has a basis
Bo,o = {11}
consisting of a single element which is the empty diagram;
(2) (1 —e)Ae has a basis
Bio={zr| I € A}.

Element z; is depicted by a short top strand decorated by a box with label 7,
see Figure 20;

(3) eA(1 — e) has a basis
IBo,l = {Z}k | I e A}
Element z} is depicted by a short bottom strand decorated by a circle with

label I (lollipop in Figure 20);
(4) (1 —e)A(1 — e) has a basis
B1,1(0) U By,1(1),
where
B1,1(0) ={zsz7 | I,J € A}

consists of pairs (short top strand with a labelled box, short bottom strand
with a labelled circle), and

IB1,1(1) = {XI .ij | I’ J € A7 (l|1|7 ]1) 76 (3’3)}

consists of long strands whose decoration satisfies that no circle is above any
box, and no box with label 3 is next to a circle with label 3.

The multiplication map (1 —e)Ae ® eA(1 —e) — (1 —e) A(1 — e) sends the basis
Bi,0xBo,;1 of (1—e)Ae®eA(1—e) bijectively to B; ;(0) so that the multiplication
map is injective.

We see that the conditions on (A4, e) from the beginning of Section 2 are
satisfied, and we can indeed form the monoidal category € as above with objects
X®" overn > 0. Algebra A can then be described as the direct sum

A = Ende(1) @ Home(1, X) @ Home(X,1) ® Ende(X).

Therefore, a basis of Home (X ®”*, X ®™) is given in Theorem 2.1.
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The idempotent completion of @. Recall that 24 denotes the additive closure
of €, and Ka(C) denotes the idempotent completion of €44, Objects of €24 are
finite formal direct sums of nonnegative powers X ®", where X®° = 1. The
category Ka(C) is k-linear additive strict monoidal.

Defining local relations are chosen to have an isomorphism in Ka(C):

X~1eX°, (40)
given by

(z*, x}, x5, x5)T € Homg,e) (X, 1@ X3),
and
(z.x1, %2, x3) € Homgye)(1 @ X3, X),

see Figure 21. Tensoring with X®*~1 in Ka(C) on either side of isomor-
phism (40) results in isomorphisms in Ka(C)

X®k ~ X®(k—l) @ (X®k)3. (41)

S
AN

Figure 21. The isomorphism X =~ 1@ X3 in Ka(@).

Algebras of endomorphisms. Part of the structure of Ka(€) can be encoded into
an idempotented algebra B, which has a complete system of mutually orthogonal
idempotents {1, },>0, so that

B :@1m31n,

m,n>0
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and
1m Bl, = Homg,e) (X", X®™).

Multiplication in B matches composition of morphisms in C.

We also define
B = €P 1m Bl

m,n<k

which is an algebra with the unit element ) 1,. The inclusion By C By is
n<k

nonunital. The algebra By =~ k. Define
Ak = 1Bl = Endga(e)(X®),

which is an algebra with the unit element 1. The inclusion Ay C By is nonunital
for k > 0.

Let ay: Ax—; < Ay be an inclusion of algebras given by tensoring with zz*
on the left

a(f) = (%) ® f. (42)

for f € Ar_1. Note that o is nonunital.

4.2. Towards computing K¢(Ka(C)). Let C; be the smallest full subcategory
of € which contains the objects X®", 0 < n < k. Let Ka(C;) be the idempotent
completion of the additive closure Gidd of C. There is a family of inclusions of
additive categories Ka(Cr_;) C Ka(C). Similarly, there is a family of inclusions
gk:Ka(Cx) — Ka(C) of additive categories. We have the analogue of Proposi-
tion 3.5.

Proposition 4.1. There is a natural isomorphism of abelian groups
Ko(Ka(€)) = lim Ko(Ka(Cy)).

For a unital algebra A, let P(A) denote the additive category of finitely gener-
ated projective right A-modules. Let Ko(A) denote the split Grothendieck group
of P(A). The category Cx contains a full subcategory C; with a single object X ®k
whose endomorphism algebra Ende, (X ®k) = Aj. Let Ka(€}) be the idempo-
tent completion of the additive closure G}cadd of C,. Thus, the category Ka(C})
is isomorphic to P(Ag). There is an inclusion hg:P(Ax) C Ka(Cr) of addi-
tive categories. Isomorphism (41) implies that & is an equivalence. Therefore,
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hi«: Ko(Ax) — Ko(Ka(Cg)) is an isomorphism. By Proposition 4.1, there is a
natural isomorphism of abelian groups:

Ko(Ka(€)) = lim Ko(Ax). (43)

Here Ag is just a k-algebra without the grading and the differential, and Ko(Ag)
is the usual Grothendieck group of the ring. The major part of the complexity in
this construction lies in dealing with algebras of exponential growth, including the
endomorphism algebra Ay, of the object X ®¥.

An approach to Ko(Ax). Recall the chain of two-sided ideals J, x from (12),
and the quotient algebra Ly = Ay /Ji—1 x from (13) in Section 2. The algebra Ly
is naturally isomorphic to L®* for L = L.

Fork =1,A4; = Ji1hasabasis B;,;; = By,1(0)UBy,1(1),and J = Jy,; hasa
basis B;,1 (0) with respect to the inclusion Jo,; C Aj, by Corollary 2.2. Under the
quotient map A; — L, the set B; 1 (1) is mapped bijectively to the normal form
basis of L = Ly, see [9, Section 5]. The algebra L is naturally isomorphic to the
Leavitt algebra L(1, 3). Thus,

L =~ L(1,3)®k

If we view A, as a DG algebra concentrated in degree 0 with the trivial
differential, the analogue of Lemma 3.7 still holds. Therefore, there is an induced
exact sequence of K-groups

Ki(Li) = Ko(Ar—1) 225 Ko(Ar) 225 Ko(L). (44)

Conjecture 4.2. Fork > 1, Ko(Ly) is isomorphic to 7./2 with a generator [Ly],
and K1(Ly) is torsion.

The Leavitt algebra L; is regular supercoherent by [4, Lemma 6.1]. The
conjecture is known to be true for k = 1, 2, see [3, Theorem 7.6].

By an argument similar to that in the proof of Theorem 3.19, if Conjecture 4.2
is true, then there is a ring isomorphism

Ko(Ka(@)) = Z[1].
Categorical actions of Ka(C). There is an action F,: Z[%] xZ/2m + 1) —

7./ (2m + 1) of the ring Z[%] on the abelian group Z/(2m + 1), where —% acts as
multiplication by m.
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Recall that L (m, n) is the k algebra generated by entries of x;;, y;; of matrices
X = (xi;),Y = (yij) of size m x n and n x m respectively, subject to the relation:
XY = 1I,,,YX = I,. The algebra L(m, n) is the universal object with respect to
the non-IBN (Invariant Basis Number) property: R™ =~ R”". It is known [5] that
Ko(L(m,n)) = 7Z/(n — m) generated by the class [L(m,n)].

There is a family of categorical actions

Fm:Ka(C) x P(L(m,3m + 1)) — P(L(m,3m + 1))

of Ka(C) on the category of finitely generated projective right L(m,3m + 1)-
modules, where the generating object X of Ka(C) acts by tensoring with the
L(m,3m + 1)-bimodule L(m,3m+ 1)™. Conjecturally, F,, categorifies the linear
action Fy,.

4.3. A possible categorification of Z[%] We consider a pre-additive k-linear
strict monoidal category € with a generating object X in addition to the unit object
1 and require the following isomorphism

X ~1g X"t (45)

This isomorphism is a natural generalization of isomorphism (40). Generating
morphisms that induce these mutually-inverse isomorphisms are denoted z €<
Home(1, X), z* € Home(X,1), and x;, x € Ende(X) for 1 <i <n + 1. The
defining relations, generalizing relations (39), are

z*z = 14,

xfz=0, z*x; =0, forl <i=<n+1,

X?Xj =8i,j1X, fOI'lSi,jSI’Z—i—l, (46)
n+1

inx;‘ +zz% = 1y.
i=1

Let A denote the algebra generated by 14, 1x,z,z*, x;,x", 1 <7 < n + 1,
subject to the relations above and the obvious compatibility relations between
generators z, z*, x;, x; and idempotents 11, lx, for instance, z1y = z = 1xz and
zly = 0 = 13z. . The data (A, e = 1;) satisfies the conditions described at the
beginning of Section 2. Thus, we can form a pre-additive monoidal category C
and recover bases of morphisms between tensor powers of X from suitable bases
of A compatible with the idempotent decomposition 1 = e 4 (1 —e), as explained
in Section 2. Let Ka(C) denote the idempotent completion of the additive closure
of C. Category Ka(C€) is an additive k-linear Karoubi closed monoidal category.

Conjecture 4.3. There is a ring isomorphism Ko(Ka(€)) = Z[1].

n
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