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1. Introduction

Natural numbers N, integers Z, rationals Q, and real numbers R are basic struc-

tures that belong to the foundations of modern mathematics. The category k-vect

of finite-dimensional vector spaces over a field k can be viewed as a categorifi-

cation of N D ¹0; 1; 2; : : : º. The Grothendieck monoid of k-vect is naturally iso-

morphic to the semiring N, via the map that sends the image ŒV � of a vector space

V in the monoid to its dimension, an element of N. Direct sum and tensor product

of vector spaces lift addition and multiplication in N. Additive monoidal category

k-vect, which linear algebra studies, is indispensable in modern mathematics and

its applications, even more so when the field k is R or C.

The ring of integers Z is categorified via the category D.k-vect/ of complexes

of vector spaces up to chain homotopies, with finite-dimensional total cohomol-

ogy groups. The Grothendieck ring K0 of the category D.k-vect/ is isomorphic
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to Z via the map that takes a symbol ŒV � 2 K0 of a complex V in D.k-vect/ to

its Euler characteristic �.V /. The notion of cohomology and the use of category

D.k-vect/ is ubiquitous in modern mathematics as well.

The category D.k-vect/ is triangulated monoidal, with the Grothendieck

ring Z. Given the importance of the simplest categorifications of N and Z, which

are behind the subjects of linear algebra and cohomology, it is natural to ask

if the two objects next in complexity on the original list, rings Q and R, can

be categorified. More precisely, are there monoidal triangulated categories with

Grothendieck rings isomorphic to Q and R? A natural additional requirement is

for the categories to be idempotent complete (Karoubi closed).

This question was recently asked in [17, Problem 2.3] for Q and without the

idempotent completeness requirement, together with a related and potentially

simpler problem [17, Problem 2.4] to categorify the ring Z
�

1
n

�
, the localization

of Z given by inverting n.

In the present paper we present an idempotent complete categorification of the

ring Z
�

1
2

�
. In Section 3 we construct a DG (differential graded) monoidal category

C. The full subcategory Dc.C/ of compact objects of the derived category D.C/

is an idempotent complete triangulated monoidal category. We then establish a

ring isomorphism

K0.D
c.C// Š Z

�
1
2

�
: (1)

The category C is generated by the unit object 1 and an additional object X and

has a diagrammatic flavor. Morphisms between tensor powers of X are described

via suitable planar diagrams modulo local relations. Diagrammatic approach to

monoidal categories is common in quantum algebra and categorification, and

plays a significant role in the present paper as well.

Let us provide a simple motivation for the construction. To have a monoidal

category with the Grothendieck ring Z
�

1
2

�
one would want an object X whose

image ŒX� in the Grothendieck ring is 1
2
. The simplest way to try to get ŒX� D 1

2

is via a direct sum decomposition 1 Š X ˚ X in the category, since the symbol

Œ1� of the unit object is the unit element 1 of the Grothendieck ring.

The relation 1 Š X ˚ X would imply that the endomorphism algebra of 1 is

isomorphic to M2.End.X//, the 2 � 2 matrix algebra with coefficients in the ring

of endomorphisms of X . This contradicts the property that the endomorphism

ring of the unit object 1 in an additive monoidal category is a commutative ring

(or a super-commutative ring, for categories enriched over super-vector spaces),

since matrix algebras are far from being commutative.
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Our idea is to keep some form of the direct sum relation but rebalance to have

one X on each side. Specifically, assume that the category is triangulated and

objects can be shifted by Œn�. If there is a direct sum decomposition

X Š XŒ�1�˚ 1; (2)

then in the Grothendieck ring there is a relation ŒX� D �ŒX� C 1, equivalent to

2ŒX� D 1, that is, X descends to the element 1
2

in the Grothendieck ring of the

category.

Equation (2) can be implemented by requiring mutually-inverse isomorphisms

between its two sides. Each of these isomorphisms has two components: a

morphism between X and its shift XŒ�1�, and a morphism between X and 1,

for the total of four morphisms, see Figure 15. Two morphisms between X and

XŒ�1� of cohomological degrees zero give rise to two endomorphisms of X of

cohomological degrees 1 and �1. It results in a DG (differential graded) algebra

structure on the endomorphism ring of 1 ˚ X , but with the trivial action of the

differential. The four morphisms and relations on them are represented graphically

in Figures 11 and 12 at the beginning of Section 3. These generators and relations

give rise to a monoidal DG category C with a single generator X (in addition to

the unit object 1). This category is studied in Section 3, where it is also explained

how it gives rise to a triangulated monoidal idempotent complete categoryDc.C/.

Our main result is Theorem 3.19 in Section 3.5 stating that the Grothendieck

ring of Dc.C/ is isomorphic to Z
�

1
2

�
, when the ground field k has characteristic

two. To prove this result, we compute the Grothendieck group of the DG algebra

Ak of endomorphisms ofX˝k for all k. Our computation requires determining the

first K-groups of certain DG algebras and ends up being quite tricky. Higher K-

theory of DG algebras and categories appears to be a subtle and difficult subject,

where even definitions need to be chosen carefully for basic computational goals.

This is the perception of the authors of the present paper, who only dipped their

toes into the subject.

In the proof we eventually need to specialize to working over a field k of char-

acteristic two, but the category is defined over any field and the isomorphism (1)

is likely to hold over any field as well.

Section 2 is devoted to preliminary work, used in later sections, to construct

a pre-additive monoidal category generated by a single object X (and the unit

object 1) subject to additional restrictions that the endomorphism ring of 1 is the

ground field k and the composition map

Hom.X; 1/˝k Hom.1; X/ �! Hom.X;X/
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is injective. Such a structure can be encoded by the ring A of endomorphisms of

1˚X and the idempotent e 2 A corresponding to the projection of 1˚X onto 1

subject to conditions that eAe Š k and the multiplication .1�e/Ae˝eA.1�e/!

.1 � e/A.1 � e/ is injective. We show that this data does generate a monoidal

category, give a diagrammatical presentation for this category, and provide a

basis for the hom spaces Hom.X˝n; X˝m/. From the diagrammatic viewpoint,

categories of these type are not particularly complicated, since the generating

morphisms are given by labels on single strands and labels on strands ending

or appearing inside the diagrams. No generating morphisms go between tensor

products of generating objects, which may give rise to complicated networks built

out of generating morphisms.

Our categorification of Z
�

1
2

�
in Section 3 and a conjectural categorification of

Z
�

1
n

�
in Section 4 both rely on certain instances of .A; e/ data and on the monoidal

categories they generate. The construction of Section 3 requires us to work in the

DG setting, with the associated triangulated categories and with the complexity

of the structure mostly happening on the homological side.

In Section 4 we propose another approach to categorification of Z
�

1
2

�
and

Z
�

1
n

�
, based on an alternative way to stabilize the impossible isomorphism 1 Š

X ˚X . One would want an isomorphism

X Š 1˚X ˚X ˚X; (3)

which does not immediately contradict End.1/ being commutative or super-

commutative. We develop this approach in Section 4. ObjectX can be thought of

as categorifying �1
2
. There are no shift functors present in isomorphism (3) and

it is possible to work here with the usual K0 groups of algebras. Interestingly, we

immediately encounter Leavitt path algebras, that have gained wide prominence

in ring theory, operator algebras and related fields over the last decade, see [1] and

references therein.

The Leavitt algebraL.1; n/ is a universal ringRwith the property thatR Š Rn

as a left module over itself [20], that is, the rank one free R-module is isomorphic

to the rank n free module. Such an isomorphism is encoded by the entries of an

n � 1 matrix .x1; : : : ; xn/
T , giving a module map R ! Rn, and the entries of

the 1� n matrix .y1; : : : ; yn/, giving a map Rn ! R, with xi ; yi ’s elements of R.

These maps being mutually-inverse isomorphisms produces a system of equations

on xi ’s and yi ’s, and the Leavitt algebra L.1; n/ is the quotient of the free algebra

on the xi ’s and yi ’s by these relations. Leavitt algebras have exponential growth

and are not noetherian. They satisfy many remarkable properties and have found

various applications [1]. The relation to equation (3) is that, when ignoring the
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unit object (by setting any morphism that factors through 1 to zero), one would

need an isomorphism X Š X3, and the six endomorphisms of X giving rise to

such an isomorphism satisfy the Leavitt algebra L.1; 3/ defining relations.

Natural generalizations of the Leavitt algebras include Leavitt path algebras [1]

and Cohn-Leavitt algebras [5, 1] which can be encoded via oriented graphs. One

can think of these algebras as categorifying certain systems of homogeneous linear

equations with non-negative integer coefficients, see [1, Proposition 9], [3].

For the category in Section 4, the algebra of endomorphisms of the direct sum

1 ˚ X is a particular Leavitt path algebra L.Q/ associated to the graph Q given

by

 

!
2 a b:

 !

3

 !
1

(4)

The Leavitt path algebra L.Q/ categorifies the linear equation x D 3x C y.

Quotient of this algebra by the two-sided ideal generated by the idempotent of

projecting X ˚ Y onto Y is isomorphic to the Leavitt algebra L.1; 3/.

The construction of Section 4 can be viewed as forming a monoidal envelope
of the Leavitt path algebra L.Q/, where Y is set to be the unit object 1. En-

domorphisms of 1 ˚ X are encoded by L.Q/, and these endomorphism spaces

are then extended to describe morphisms between arbitrary tensor powers of X .

Passing from certain Leavitt path algebras to monoidal categories can perhaps be

viewed as categorifications of quotients of free algebras by certain systems of in-

homogeneous linear equations with non-negative integer coefficients imposed on

generators of free algebras.

We come short of proving that the Grothendieck ring of the associated idem-

potent completion is indeed Z
�

1
2

�
. The obstacle is in not knowing K-groups

Ki .L.1; 3/
˝k/ of tensor powers of L.1; 3/ for i D 0; 1, see Conjecture 4.2. This

problem is discussed in [3], but the answer is not known for general k.

Equation (3) admits a natural generalization to

X Š 1˚XnC1; (5)

where the right hand side contains n C 1 summands X . Now X plays the role

of categorified � 1
n
. In Section 4.3 we construct an additive monoidal Karoubi

closed category in which the isomorphism above holds and conjecture that its

Grothendieck ring is isomorphic to Z
�

1
n

�
, see Conjecture 4.3.
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The DG ringA of endomorphisms of 1˚X that appears in our categorification

of Z
�

1
2

�
in Section 3 is also a Leavitt path algebra L.T /, of the Toeplitz graph T

given by

 

!
X Y; (6)

see [1, Example 7]. Considering A as a Leavitt path algebra, one should ignore

the grading of A and its structure as a DG algebra. Leavitt path algebra of the

Toeplitz graph T is isomorphic to the Jacobson algebra [12], with generators

a; b and defining relation ba D 1, making a and b one-sided inverses of each

other. The linear equation categorified by this algebra is x D x C y, lifted to an

isomorphism of projective modules X Š X ˚ Y . In the Grothendieck group of

this Leavitt path algebra ŒY � D 0. In the monoidal envelope where Y is the unit

object 1, an isomorphism X Š X ˚ 1 would imply the Grothendieck ring is zero,

since 1 D Œ1� D 0. These problems are avoided by introducing a shift into the

isomorphism as in equation (2), and consequently working in the DG framework,

as explained earlier. Choice of Œ�1� over Œ1� is inessential, see Remark 3.20.

Having a monoidal structure or some close substitute is a natural requirement

for a categorification of Z
�

1
n

�
and Q, emphasized in [17]. The direct limit D D

Mn1.k/ of matrix algebrasMnk .k/ under unital inclusionsMnk .k/ �MnkC1.k/

has the Grothendieck groupK0 of finitely-generated projective modules naturally

isomorphic to the abelian group Z
�

1
n

�
, see [28, Exercise 1.2.7]. The isomorphism

is that of groups, not rings. Similar limits give algebras with K0 isomorphic to

any subgroup of Q.

Phillips [26] shows that the algebra D is algebraically strongly selfabsorbing,

that is, there is an isomorphismD Š D˝kD which is algebraically approximately

similar to the inclusionD Š D˝1 � D˝kD. This isomorphism allows to equip

K0.D/ with a ring structure, making K0.D/ isomorphic to Z
�

1
n

�
as a ring, and

likewise for the other subrings of Q, see [26]. We are not aware of any monoidal

structure or its close substitute on the category of finitely-generated projective

D-modules that would induce the Phillips ring structure on K0.D/.

Barwick et al. [8] construct triangulated categories (and stable1-categories)

with Grothendieck groups isomorphic to localizations S�1Z of Z along any set

S of primes, as well as more general localizations. For these localizations a

monoidal or some tensor product structure on the underlying categories does not

seem to be present, either, to turn Grothendieck groups into rings.
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2. A family of monoidal categories via arc diagrams

A monoidal category from .A; e/. For a field k, letA be a unital k-algebra and

e 2 A an idempotent such that eAe Š k and the multiplication map

.1� e/Ae ˝ eA.1� e/
m0

�! .1 � e/A.1� e/;

denoted m0, is injective. Another notation for m0.b ˝ c/ is simply bc. Let

A0 D im.m0/ � .1 � e/A.1� e/

and choose a k-vector subspace A00 of A such that .1� e/A.1� e/ D A0 ˚ A00.

We fix bases B1;0, B0;1, and B1;1.1/ of vector spaces .1 � e/Ae, eA.1 � e/,

and A00, respectively. The subscript 0 corresponds to the idempotent e, and the

subscript 1 corresponds to the complementary idempotent 1 � e. The notation

B1;1.1/ will be explained later in (11). We also choose B0;0 to be a one-element

set consisting of any nonzero element of k Š eAe (element 1 is a natural choice).

The set B1;0 � B0;1 of elements bc, over all b 2 B1;0 and c 2 B0;1; is naturally a

basis of A0. The union B1;1.1/ t .B1;0 � B0;1/ gives a basis of .1 � e/A.1 � e/.

Choices of A00 and B1;0, B0;1, B1;1.1/ are not needed in the definition of category

C below.

To a pair .A; e/ as above we will assign a k-linear pre-additive strict monoidal

category C D C.A; e/. Objects of C are tensor powers X˝n of the generating

object X . The unit object 1 D X˝0. The algebra A describes the ring of

endomorphisms of the object 1˚X . Slightly informally, we write A in the matrix

notation

A D

�
eAe eA.1� e/

.1 � e/Ae .1 � e/A.1� e/

�
: (7)

meaning, in particular, that, as a k-vector space, A is the direct sum of the four

matrix entries, and the multiplication A ˝ A
m0

! A in A reduces to matrix-

like tensor product maps between the entries. The two diagonal entries are

subalgebras, via nonunital inclusions. We declare (7) to be the matrix of homs



730 M. Khovanov and Y. Tian

between the summands of the object 1˚X in C:
�

HomC.1; 1/ HomC.1; X/

HomC.X; 1/ HomC.X;X/

�
D

�
eAe eA.1� e/

.1 � e/Ae .1 � e/A.1� e/

�
:

The algebra eAe D k is the endomorphism ring of the unit object 1. The

k-vector space .1� e/Ae is HomC.1; X/, while HomC.X; 1/ D eA.1� e/, and the

ring EndC.X/ D .1 � e/A.1� e/:

The algebra A can be used to generate a vector space of morphisms between

tensor powers of X , by tensoring and composing morphisms between the objects

1 and X , and imposing only the relations that come from the axioms of a strict

monoidal pre-additive category. The only nontrivial part, as explained below, is

to check that the category does not degenerate, that is, the hom spaces in the

resulting category have the expected sizes (bases).

Before considering diagrammatics for morphisms between tensor powers ofX ,

we start with diagrams that describe homs between 1 and X . We draw the

diagrams inside a strip R � Œ0; 1�. An endomorphism a of X (a is an element of

.1� e/A.1� e/) is depicted by a vertical line that starts and ends on the boundary

of the strip and in the middle carries a dot labeled a, see Figure 1. We call such

a line a long strand labeled by a. An element b 2 HomC.1; X/ D .1 � e/Ae is

depicted by a short top strand labeled by b. The top endpoint of a short top strand

is at the boundary. An element c 2 HomC.X; 1/ D eA.1 � e/ is depicted by a

short bottom strand labeled by c. Its bottom endpoint is at the boundary of the

strip. Each short strand has two endpoints: the boundary endpoint (either at the

top or bottom of the strand), and the floating endpoint, which is a labeled dot. An

endomorphism h of the identity object 1 is depicted by a dot, labeled by h, in the

middle of the plane (in our case, these endomorphisms are elements of the ground

field k). These four types of diagrams are depicted in Figure 1.

Vertical concatenation of diagrams corresponds to the composition of mor-

phisms, as depicted in Figure 2. For instance, if an element of .1 � e/A.1 � e/

factors as bc, for b 2 .1 � e/Ae and c 2 eA.1 � e/, we can depict it as a compo-

sition of a top strand with label b and a bottom strand with label c, see the lower

right equality above.

Addition of alike diagrams is given by adding their labels, see examples in

Figure 3 for adding elements of .1� e/A.1� e/ and .1 � e/Ae.

Likewise, scaling a diagram by an element of k corresponds to multiplying

its label by that element. An element a 2 .1 � e/A.1 � e/ decomposes uniquely

a D a0 C a00, where a0 2 A0 D im.m0/; a00 2 A00. Furthermore, a0 admits a (non-

unique) presentation a0 D
Pk

iD1 bici ; bi 2 .1�e/Ae; ci 2 eA.1�e/; see Figure 4

for diagrammatic expression.
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a b c h

Figure 1. Presentation of morphisms, boundary of R � Œ0; 1� not shown.

cb

a1

a2
a2a1 ac

bc

c

c

b

a
D

D

D

D

c

b

Figure 2. Graphical presentation of composition in A.

a1 a2 a1 CC Ca2
b1 b2 b1 C b2

D D

Figure 3. Adding diagrams.

a a00

kX

iD1

bi
ci

D C

Figure 4. Decomposition of an element in .1 � e/A.1� e/.

The algebra A has a basis given by diagrams in Figure 1 over all a 2 B1;1.1/t

.B1;0 � B0;1/, b 2 B1;0; c 2 B0;1, and h 2 B0;0 (recall that B0;0 has cardinality

one). Vertical line without a label denotes the idempotent 1� e. This idempotent

does not have to lie in A00, but we usually choose A00 to contain 1 � e and a basis

B1;1.1/ of A00 to contain 1 � e as well (also see Example 2 below).

These diagrammatics for A extend to diagrammatics for a monoidal category

with the generating object X and algebra A describing the endomorphisms of

1˚X . Morphisms fromX˝n to X˝m are k-linear combinations of diagrams with

n bottom andm top endpoints which are concatenations of labeled long and short

strands, as in the figure below (where n D 5 and m D 4).
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Defining relations are isotopies of these labeled diagrams rel boundary and

the relations coming from the algebra A as shown in Figures 2–4. Any floating

strand (of the form cb as in Figure 2) reduces to a constant and can be removed

by rescaling the coefficient of the diagram.

A basis for homs. We now describe what is obviously a spanning set of

HomC.X
˝n; X˝m/: Ignoring labels, an isotopy class of a diagram of long and

short strands as in Figure 5 corresponds to a partial order-preserving bijection

f W Œ1; n� �! Œ1; m�: (8)

Here Œ1; n� D ¹1; : : : ; nº, viewed as an ordered set with the standard order.

A partial bijection f WX �! Y is a bijection from a subset Lf of X to a subset of

Y , and order-preserving means X; Y are ordered sets, and f .i/ < f .j / if i < j

and i; j 2 Lf . Let Lf D ¹i1; : : : ; ijf jº � Œ1; n�, where i1 < i2 < : : : ijf j. Here

jf j denotes the cardinality of Lf , which we also call the width of f . Denote by

PBm;n the set of all partial order-preserving bijections (8).

A Long strand, counting from left to right, connects the k-th element ik 2 Œ1; n�

of Lf , viewed as a point on the bottom edge of the strip, to f .ik/ 2 Œ1; m�, viewed

as a point on the top edge. Elements in Œ1; n� n Lf are the lower endpoints of the

short bottom strands. Elements of Œ1; m� n f .Lf / are the upper endpoints of the

short top strands.

In Figure 5 partial bijection f W Œ1; 5�! Œ1; 4� has

Lf D ¹1; 2; 5º

and

f .1/ D 2; f .2/ D 3; f .5/ D 4:

For each bijection f choose a diagram in the isotopy class of diagrams repre-

senting this bijection and add a dot to each long strand, see Figure 6. Each short

strand already has a dot at its floating endpoint. Denote this diagram Df .

Partial bijection f has jf j long strands, n � jf j bottom strands and m � jf j

top strands. Let Bf be the following set of elements of HomC.X
˝n; X˝m/. To

the floating endpoint of each bottom strand assign an element of B0;1 and denote

these elements c1; : : : ; cn�jf j from left to right. To the floating endpoint of each top

strand assign an element of B1;0 and denote these elements b1; : : : ; bm�jf j from

left to right. To the dot at each long strand assign an element of B1;1.1/ (recall

that B1;1.1/ is a basis of A00) and denote them a1; : : : ; ajf j. Figure 7 depicts an

example with n D 6, m D 7 and jf j D 3.
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a1

a2 a3
b1

c1 c2

Figure 5. A diagram of long and short strands.

f .i1/ f .i2/ f .ijf j/

i1 i2 ijf j

Figure 6. Partial bijection diagram Df .

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3

Figure 7. A labeled partial bijection diagram d .

The set Bf of labeled diagrams for a given f is naturally parametrized by the

set

.B1;0/
m�jf j � .B1;1.1//

jf j � .B0;1/
n�jf j;

and each labeled diagram d in Bf gives rise to an element of HomC.X
˝n; X˝m/,

also denoted d .



734 M. Khovanov and Y. Tian

Theorem 2.1. The k-vector space HomC.X
˝n; X˝m/ has a basis of labeled

diagrams
Bm;n D

G

f 2PBm;n

Bf

and is naturally isomorphic to the space
M

f 2PBm;n

..1� e/Ae/˝.m�jf j/ ˝ .A00/˝jf j ˝ .eA.1� e//˝.n�jf j/:

The notation Bm;n is compatible for .m; n/ D .1; 0/; .0; 1/; .0; 0/ with the

notation at the beginning of Section 2.

Proof. We first observe that vector spaces kBm;n admit multiplications

kBk;m ˝ kBm;n �! kBk;n (9)

that turn the direct sum

kB WD
M

n;m2N

kBm;n (10)

into an idempotented (nonunital) associative algebra, where N D ¹0; 1; 2; : : : º. To

compute the product h2h1 2 kBk;n for h2 2 Bk;m, h1 2 Bm;n we concatenate the

diagrams h2h1 into a single diagram. Every floating strand in h2h1 evaluates to

a scalar in k. Long strands in h2h1 are concatenations of pairs of long strands in

h2, h1, each carrying a label, say a2; a1 2 B1;1.1/. The concatenation carries the

label a2a1 2 .1�e/A.1�e/ and is simplified as in Figure 4, with a D a2a1 on the

left hand side. The right hand side term a00 in Figure 4 further decomposes into

a linear combination of elements of B1;1.1/, and the terms in the sum into linear

combinations of elements of B1;0 �B0;1.

Concatenation of a long strand and a short (top or bottom) strand results in

a short (top or bottom) strand that carries the product label, see the right half of

Figure 2. That label is a linear combination of elements in B1;0, in the top strand

case, and elements of B0;1, in the bottom strand case.

The simplification procedure is consistent and results in a well-defined element

h2h1 of kBk;n. Associativity of multiplications (9), resulting in well-defined maps

kBr;k ˝ kBk;m ˝ kBm;n �! kBk;n

for all r; k; m; n, follows from the observation that the computation of h2h1 can be

localized along each concatenation point. Simplification of each pair of strands

along their concatenation point can be done independently, and the resulting ele-

ments ofA, interpreted as diagrams, can then be tensored (horizontally composed)
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to yield h2h1. In this way associativity of (9) follows from associativity of mul-

tiplication in A. Since the multiplication is consistent, kB carries an associative

non-unital algebra structure.

A substitute for the unit element is a system of idempotents in kB. Denote

by 1n the element of kBn;n given by n parallel vertical lines without labels. In

particular, 10 D e. The diagram 1n is an idempotent corresponding to the identity

endomorphism of X˝n, and for any a 2 Bn;m; b 2 Bm;n the products 1na D a,

b1n D b. The diagram 1n is the horizontal concatenation of n copies of 1� e 2 A.

In all cases considered in this paper 1 � e 2 B1;1.1/, but this is not necessary in

general: 1� e might not be in the basis B1;1.1/ of A00, or even in A00.

Elements 1n, over all n � 0, constitute a local system of mutually-orthogonal

idempotents in kB. For any finitely many elements z1; : : : ; zm of kB there exists

n such that zi1
0
n D 10

nzi D zi for 1 � i � m, where 10
n D 10 C 11 C � � � C 1n.

Non-unital algebra kB can be written as a direct limit of unital algebras 10
nkB10

n

under non-unital inclusions

10
nkB10

n � 1
0
nC1kB10

nC1:

We also refer to an algebra with a local system of idempotents as an idempotented
algebra.

Multiplication in kB corresponds to vertical concatention of labeled diagrams,

and is compatible with the horizontal concatenation (tensor product) of diagrams,

giving us maps

kBm;n ˝ kBm0;n0 �! kBmCm0;nCn0

and producing a monoidal category, denoted
x
C, with a single generating object

x
X

and kBm;n the space of homs from
x
X˝n to

x
X˝m. Injectivity of multiplication in

x
C implies that

x
C is equivalent (and even isomorphic) to C, and that sets Bm;n are

indeed bases of homs in C.

The subalgebra

kB�1 D kB0;0 ˚ kB0;1 ˚ kB1;0 ˚ kB1;1

of kB is naturally isomorphic to A. �

Thus, the space HomC.X
˝n; X˝m/ is a direct sum over all order-preserving

partial bijections f W Œ1; n� �! Œ1; m� of vector spaces

..1� e/Ae/˝.m�jf j/ ˝ .A00/˝jf j ˝ .eA.1� e//˝.n�jf j/:
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Denote by Bm;n.`/ the subset of Bm;n corresponding to partial bijections f with

jf j D `:

Bm;n.`/ D
G

jf jD`

Bf : (11)

These are all basis diagrams with ` long strands. The notation Bm;n.`/ is

compatible with the notation B1;1.1/ at the beginning of Section 2. We have

B1;1 D B1;1.0/ tB1;1.1/, and there is a natural bijection B1;1.0/ Š B1;0 � B0;1.

Additive, idempotent complete extension. From C we can form its additive

closure C
add, with objects—finite directs sums of objects of C. Category C

add

is a k-linear additive strict monoidal category. Furthermore, let Ka.C/ be the

Karoubi closure of C
add. Category Ka.C/ is an idempotent complete k-linear

additive strict monoidal category. Its Grothendieck group K0.Ka.C// is naturally

a unital associative ring under the tensor product operation, and there is a natural

homomorphism

ZŒx� �! K0.Ka.C//

from the ring of polynomials in a variable x to its Grothendieck group, taking x

to ŒX�, the symbol of the generating object X in the Grothendieck group. The

homomorphism may not be injective or surjective.

By an inclusion A � B of categories we mean a fully faithful functor A! B.

There is a sequence of categories and inclusion functors

C �! C
add �! Ka.C/:

Category C is preadditive. Category C
add is additive and contains C as a full

subcategory. Category Ka.C/ is additive, idempotent complete, and contains Cadd

as a full subcategory. All three categories are monoidal.

Examples. We now provide some examples for the above construction.

Example 1. A special case of the monoidal category C appeared in [18], with the

sets B1;0, B0;1, and B1;1.1/ all of cardinality one. Denoting elements of these sets

by b; c; and .1/, respectively, the algebra A can be identified with the Figure 8

quiver algebra subject to the relation cb D .0/, where .j /, for j 2 ¹0; 1º, denotes

the idempotent path of length zero at vertex j . Thus, the composition cb equals

the idempotent path .0/ at the vertex 0. Algebra A has a basis ¹.0/; .1/; b; c; bcº.

It’s a semisimple algebra isomorphic to the direct product M2.k/ � k, where the

second factor is spanned by the idempotent .1/ � bc. The first factor has a basis

¹.0/; b; c; bcº.
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0 1

c

b

Figure 8. Quiver with vertices 0, 1 and arrows b; c between them.

A basis of the hom space HomC.X
˝n; X˝m/ is given by partial bijections

from Œ1; n� to Œ1; m�, with no additional decorations necessary. The idempotent

completion Ka.C/ of the additive closure Cadd of C is semisimple, andX Š 1˚X1,

where the objectX1 D .X; 1X�bc/ of the idempotent completion comes from the

above idempotent 1X � bc. The simple objects, up to isomorphism, are all tensor

powers of X1. For this pair .A; e/ the natural homomorphism ZŒx�! K0.Ka.C//

is an isomorphism, see [18].

Example 2. Consider a special case when 1 � e 2 A0 D im.m0/: Then A0 D

.1 � e/A.1 � e/ and A00 D 0. Choose a presentation 1 � e D
Pn

iD1 bici with

bi 2 .1 � e/Ae; ci 2 eA.1 � e/, and the smallest n. Multiplying this equality by

bj on the right implies cibj D ıi;j 2 k. Multiplying on the right by any element

of .1� e/Ae shows that bi ’s are a basis of .1� e/Ae. Likewise, elements ci are a

basis of eA.1�e/, and the pair .A; e/ is isomorphic to the pair .MnC1.k/; e11/ of a

matrix algebra of size nC1 and a minimal idempotent in it. In the additive closure

C
add of C (and in the idempotent completion Ka.C/), the object X is isomorphic

to n copies of the unit object 1. This degenerate case is of no interest to us.

Otherwise, 1�e is not in the subspaceA0 of .1�e/A.1�e/, and we can always

choose A00 and B1;1.1/ to contain 1� e, ensuring that the vertical line diagram is

in the basis B1;1.1/.

Case when A is a super algebra. We now discuss a generalization when A is

an algebra in the category of super-vector spaces. In that category the objects

are Z=2-graded and degree one summands are called odd components. Algebra

A must be Z=2-graded, A D A0 ˚ A1, with the idempotent e 2 A0 such that

eAe D k. Then 1� e is also in A0. Vector spaces eA.1� e/, .1� e/Ae, eAe, and

.1 � e/A.1� e/ are then each a direct sum of its homogeneous components. For

instance eA.1� e/ D eA0.1� e/˚ eA1.1� e/; with eAi.1� e/ being the degree

i component of eA.1� e/ for i D 0; 1.

We continue to require injectivity ofm0. SubspaceA0 D im.m0/ isZ=2-graded,

and we select its complement A00 to be graded as well. All basis elements of

B0;0;B0;1;B1;0;B1;1.1/ should be homogeneous (which is automatic for B0;0).
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This will result in a Z=2-graded idempotented algebra kB with homogeneous

basis elements in B.

The monoidal category C that we assign to .A; e/ is enriched over the category

of super-vector spaces. For this reason, homogeneous morphisms in C supercom-

mute when their relative height order changes during an isotopy, see Figure 9, with

the coefficient .�1/jaj�jbj, where jaj 2 ¹0; 1º is the Z=2-degree of the generator a.

ab
D . 1/jajjbj

a b

Figure 9. Super-commutativity of morphisms.

In our construction of a basis of hom spaces HomC.X
˝n; X˝m/ D kBm;n, we

need to choose a particular order of heights when dealing with decorated basis

diagrams, to avoid sign indeterminancy. The order that we follow is shown in

Figure 10. Lengths of top short arcs increase going from left to right, so that b1

label is at the highest position, followed by b2, and so on. Highest long strand

label a1 is below the lowest b-label bm�jf j. It’s followed by a2 to the right and

below, all the way to ajf j, which has the lowest height of all a labels. Leftmost

bottom arc label c1 is lower than ajf j label, and the remaining bottom arc labels

c2, . . . , cn�jf j continue with the lower heights. The lowest label in the diagram is

cn�jf j.

a1
a2

a3

b1 b2
b3

b4

c1 c2 c3

Figure 10. Keeping track of heights of labels, left to right and top to bottom.

Proof of Theorem 2.1 extends without any changes, simply by confirming

the consistency of signs in several places. The theorem implies that there is no

collapse in the size of homs between tensor powers of X and gives a basis for the

space of morphisms from X˝n to X˝m.
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Case when A is a DG algebra with the trivial differential. A mild general-

ization of our construction to DG (differential graded) algebras will be needed in

Section 3. A DG algebra A is a Z-graded algebra, A D
L

i2Z A
i , with a differen-

tial d of degree one, such that d.ab/ D d.a/b C .�1/jajad.b/; where jaj 2 Z is

the degree of a, for homogeneous a. Each DG algebra is viewed as a superalgebra

by reducing the degree modulo two and forgetting the differential.

In this paper we will only encounter the simplest case, when the differential is

trivial on A. We assume this to be the case. With the differential zero on A, no

additional conditions on A or e are needed, and the generalization from the super

algebras to such DG algebras is straightforward. The grading is now by Z and not

just Z=2, with idempotent e in degree zero.

We choose A00 to be a subspace that is the direct sum of its intersections with

the homogenous summands of .1 � e/A.1� e/. Likewise, bases B0;0;B0;1;B1;0,

and B1;1.1/ are chosen to consist of homogeneous elements.

The DG category C is constructed from this data just as in the super-algebra

case. Due to Z-grading, one introduces enlarged morphism spaces,

HOMC.M;N/ D
M

m2Z

HomC.M;N Œm�/:

Morphism spaces HOMC between tensor powers ofX have bases as described

in Theorem 2.1, with heights in the basis diagrams tracked as in Figure 10. The

differential acts by zero on all morphism spaces HOMC.X
˝n; X˝m/. Diagrams

super-commute, with the super grading given by reducing the Z-grading modulo

two.

A chain of ideals Jn;k. Now assume A is an algebra, or a super-algebra, or a

DG algebra with the trivial differential. The ring Ak D EndC.X
˝k/ is spanned

by diagrams of decorated long and short strands, with each diagram having `

long strands and 2.k � `/ short strands, an equal number k � ` at both top

and bottom. Composing two such diagram D1, D2 with `1 and `2 long arcs,

correspondingly, results in the productD2D1, which is also an endomorphism of

X˝k , that decomposes into a linear combination of diagrams, each with at most

min.`1; `2/ long strands. The number of long strands in a diagram cannot increase

upon composition with another diagram.

Therefore, there is a two-sided ideal Jn;k of Ak whose elements are linear

combinations of diagrams with at most n long strands. Here 0 � n � k. It’s also

convenient to define J�1;k to be the zero ideal. There is a chain of inclusions of
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two-sided ideals

0 D J�1;k � J0;k � � � � � Jk�1;k � Jk;k D Ak: (12)

Basis Bk;k of Ak respects this ideal filtration, and restricts to a basis in each Jn;k.

Corollary 2.2. Two-sided ideal Jn;k has a basis

Bk;k.� n/ D
G

0�`�n

Bk;k.`/:

In the special case k D 1, we denote by J the ideal J0;1 and by L the quotient

ring A1=J0;1. Thus, there is an exact sequence

0 �! J �! A1 �! L �! 0;

where

J D J0;1 D .1 � e/AeA.1� e/;

A1 D .1 � e/A.1� e/;

L D A1=J Š .1� e/A.1� e/=.1� e/AeA.1� e/:

A1 D EndC.X/ is a subring of A, with the unit element 1�e, andL is isomorphic

to the quotient of A1 by the two-sided ideal of maps that factors through 1.

The quotient ring

Lk D Ak=Jk�1;k (13)

is naturally isomorphic to L˝k, the k-th tensor power of L. Graphically, we

quotient the space of linear combinations of decorated diagrams with k endpoints

at both bottom and top by the ideal of diagrams with at least one short strand

(necessarily at least one at the top and the bottom). Elements in the quotient by this

ideal will be represented by linear combinations of diagrams of k decorated long

strands, modulo diagrams where a long strand simplifies into a linear combination

of a pair of decorated short strands. The quotient is isomorphic toL D L1, defined

above for k D 1, and to the k-th tensor power ofL for general k. In the super-case,

the tensor power is understood correspondingly, counting signs.

3. A categorification of Z
�

1
2

�

The goal of this section is to describe a monoidal DG category C, and its asso-

ciated monoidal triangulated Karoubi closed category Dc.C/. We show that the

Grothendieck ring K0.D
c.C// is isomorphic to Z

�
1
2

�
.
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3.1. A diagrammatic categoryC. As before, we work over a field k. Consider a

pre-additive monoidal category C with one generating objectX , enriched over the

category of Z-graded super-vector spaces over k, with the supergrading given by

reducing the Z-grading modulo 2. In a pre-additive category, homomorphisms

between any two objects constitute an abelian group (in our case, a Z-graded

k-vector space), but direct sums of objects are not formed.

A set of generating morphisms together with their degrees is given in Figure 11.

generator x y z z

degree 1 1 0 0

Figure 11. Generating morphisms.

Two of these four generating morphisms are endomorphisms of X , of degrees

1 and �1, correspondingly, one is a morphism from 1 to X of degree 0, and the

fourth morphism goes from X to 1 and has degree 0. We denote these generators

x; y; z; z�, from left to right, so that x; y are endomorphisms of X , z a morphism

from 1 toX , and z� a morphism fromX to 1. We draw x as a long strand decorated

by a box, y as a long strand decorated by a circle, z as a short top strand decorated

by a box, and z� as a short bottom strand decorated by a circle, respectively. A

pair of far away generators super-commute. The first two generators x and y have

odd degrees, while z and z� have even degrees.

Local relations are given in Figure 12. They are

z�z D 11; z�x D 0; yz D 0;

yx D 1X ; xy C zz� D 1X :
(14)

The identity map 11 of the object 1 is represented by the empty diagram. Fig-

ure 13 shows our notation for powers and some compositions of the generating

morphisms.
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D 1 D 0 D 0

C DD

Figure 12. Defining local relations.

n
D D

D D

n

n

n

n boxes nnn circles

Figure 13. Notations for compositions, left to right: xn; yn; xnz and z�yn.

We write HomC.M;N/ for the vector space of degree 0 morphisms, and

HOMC.M;N/ for the graded vector space with degree components–homogeneous

maps of degree m:

HOMC.M;N/ D
M

m2Z

HomC.M;N Œm�/:
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If char.k/ ¤ 2 we choose an order of heights of decorations as follows. For

any pair of strands, the height of decorations on the left strand is above the height

of decorations on the right strand. Let f ˝ g denote the horizontal composition

of two diagrams f and g, where the height of f is above that of g, see Figure 14.

f

g

Figure 14. Convention for f ˝ g.

Bases of morphism spaces. We observe that the category C is generated from

the suitable data .A; e/ as described in Section 2, where A is a DG algebra with

the trivial differential. To see this, we restrict the above diagrams and defining

relations on them to the case when there is at most one strand at the top and at

most one strand at the bottom. In other words, we consider generating morphisms

in Figure 11 and compose them only vertically, not horizontally, with the defining

relations in Figure 12. The idempotent e is given by the empty diagram, while

1 � e is the undecorated vertical strand diagram.

Ignoring the grading and the (zero) differential on A, it follows from the

defining relations (14) that A is isomorphic to the Jacobson algebra [12] and to

the Leavitt path algebra L.T / of the Toeplitz graph T in (6), see [1, Example 7].

In particular, as a k-vector space, algebra A has a basis

¹11º[¹x
nz j n � 0º[¹z�yn j n � 0º[¹xnzz�ym j n;m � 0º[¹1X ; x

n; yn j n > 0º

by [2, Corollary 1.5.12] or by a straightforward computation. Our notations for

some of these basis elements are shown in Figure 13.

The basis of A can be split into the following disjoint subsets:

(1) eAe Š k has a basis B0;0 D ¹11º consisting of a single element which is the

empty diagram;

(2) .1 � e/Ae has a basis B1;0 D ¹x
nz j n � 0º. Element xnz is depicted by a

short top strand decorated by a box with label n, see Figure 13;

(3) eA.1� e/ has a basis B0;1 D ¹z
�yn j n � 0º. Element z�yn is depicted by a

short bottom strand decorated by a circle with label n (lollipop in Figure 13);
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(4) .1� e/A.1� e/ has a basis B1;1.0/ tB1;1.1/, where

B1;1.0/ D ¹x
nzz�ym j n;m � 0º

consists of pairs (short top strand with a labelled box, short bottom strand

with a labelled circle), and B1;1.1/ D ¹1X ; x
n; yn j n > 0º consists of long

strand diagrams which may carry either circles or boxes, but not both.

The multiplication map .1� e/Ae˝ eA.1� e/! .1� e/A.1� e/ sends the basis

B1;0�B0;1 of .1�e/Ae˝eA.1�e/ bijectively to B1;1.0/ so that the multiplication

map is injective.

We see that the conditions on .A; e/ from the beginning of Section 2 are

satisfied, and we can indeed form the monoidal category C as above with objects

X˝n, over n � 0. Algebra A can then be described as the direct sum

A Š ENDC.1/˚HOMC.1; X/˚HOMC.X; 1/˚ ENDC.X/;

which is a DG algebra with the trivial differential. Therefore, a basis of the space

HOMC.X
˝n; X˝m/ is given in Theorem 2.1.

3.2. DG extensions of C. We turn the category C into a DG category by intro-

ducing a differential @ which is trivial on all generating morphisms. Necessarily,

@ is trivial on the space of morphisms between any two objects of C. The resulting

DG category is still denoted by C.

We refer the reader to [15] for an introduction to DG categories. For any DG

category D we write HomD.Y; Y
0/ for the vector space of degree 0 morphisms,

and HOMD.Y; Y
0/ for the chain complex of vector spaces with degree components

HomD.Y; Y
0Œm�/ of homogeneous maps of degree m. A right DG D-module M

is a DG functorM WDop ! Ch.k/ from the opposite DG category D
op to the DG

category of chain complexes of k-vector spaces. For each object Y of D, there is

a right module Y ^ represented by Y

Y ^ D HOMD.�; Y /:

Unless specified otherwise, all DG modules are right DG modules in this paper.

We use the notations from [30, Section 3.2.21]. For any DG category D, there

is a canonical embedding D � D
pre of D into the pre-triangulated DG category

Dpre associated to D. It’s obtained from D by formally adding iterated shifts,

finite direct sums, and cones of morphisms. The homotopy category Ho.Dpre/

of D
pre is triangulated. It is equivalent to the full triangulated subcategory of

the derived category D.D/ of DG D-modules which is generated by D. Each

object Y of Ho.Dpre/ corresponds to a module Y ^ ofD.D/ under the equivalence.
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The idempotent completion fHo.Dpre/ of Ho.Dpre/ is equivalent to the triangulated

category Dc.D/ of compact objects in D.D/ by [22, Lemma 2.2].

To summarize, there is a chain of categories

D � D
pre

Ü Ho.Dpre/ � fHo.Dpre/ ' Dc.D/ � D.D/:

The first two categories are DG categories, and D � D
pre is fully faithful.

The last four categories are triangulated. The dashed arrow between D
pre and

Ho.Dpre/ is not a functor. More precisely, Ho.Dpre/ has the same objects as

D
pre, and morphism spaces as subquotients of morphism spaces of D

pre. It is

a full subcategory of its idempotent completion fHo.Dpre/. The category Dc.D/

of compact objects in D.D/ is a full triangulated subcategory of D.D/.

Definition 3.1. For a unital DG algebraR, letB.R/ be a DG category with a single

object � such that ENDB.R/.�/ D R. Let D.R/ and Dc.R/ denote D.B.R// and

Dc.B.R//, respectively.

Remark 3.2. If R is an ordinary unital algebra viewed as a DG algebra concen-

trated in degree 0 with the trivial differential, then D.B.R// is equivalent to the

derived category of R-modules, and Dc.B.R// is equivalent to the triangulated

category of perfect complexes ofR-modules, see [19, Section 6.5] and [31, Propo-

sition 70.3].

Since the DG category C is monoidal, it induces a monoidal structure on Cpre

which preserves homotopy equivalences. There are induced monoidal structures

on the triangulated categories Ho.Cpre/ and fHo.Cpre/. We are interested in the

Grothendieck ring of fHo.Cpre/ ' Dc.C/.

Isomorphisms in Dc.C/. Each morphism f 2 HomC.Y; Y
0/ with @f D 0

induces a morphism in HomDc.C/.Y
^; Y 0^/, denoted f by abuse of notation. The

generating morphisms in Figure 11 and the local relations in Figure 12 induce an

isomorphism in Dc.C/

X^ Š 1^ ˚X^Œ�1�; (15)

given by .z�; y/T 2 HomDc.C/.X
^; 1^ ˚ X^Œ�1�/, and .z; x/ 2 HomDc.C/.1

^ ˚

X^Œ�1�; X^/, see Figure 15. Tensoring with .X^/˝.k�1/ in Dc.C/ on either side

of isomorphism (15) results in isomorphisms in Dc.C/

.X^/˝k Š .X^/˝.k�1/ ˚ .X^/˝k Œ�1�: (16)
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X

X

XŒ

Figure 15. The isomorphism X^ Š 1^ ˚X^Œ�1�.

3.3. DG algebras of endomorphisms. Part of the structure of C can be encoded

into an idempotented DG algebra B with the trivial differential, which has a

complete system of mutually orthogonal idempotents ¹1kºk�0; so that

B D
M

m;n�0

1mB1n;

and

1mB1n D HOMC.X
˝n; X˝m/:

Multiplication in B matches composition of morphisms in C.

The tensor structure of C induces a tensor structure on B . Given f; g 2 B

represented by some diagrams in C, let f ˝ g be an element of B represented by

the horizontal composition of the two diagrams for f and g, where the diagram

for f is on the left whose height is above the height of the diagram for g. There

is the super-commutativity relation

.f ˝ g/.f 0 ˝ g0/ D .�1/deg.g/ deg.f 0/ff 0 ˝ gg0

for homogeneous elements f; f 0; g; g0 2 B .

We also define

Bk D
M

m;n�k

1mB1n;

which is a DG algebra with the trivial differential and the unit element
P

n�k 1n.

The inclusions Bk � BkC1 and Bk � B are nonunital. Define

Ak D 1kB1k D ENDC.X
˝k/; (17)

which is a DG algebra with the trivial differential and the unit element 1k. For

k D 0, the DG algebras

A0 D B0 Š k: (18)

The inclusion Ak � Bk is nonunital for k > 0.
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Let ˛k WAk�1 ,! Ak be an inclusion of DG algebras given by tensoring with

zz� on the left

˛k.f / D .zz
�/˝ f; (19)

for f 2 Ak�1. Note that ˛k is nonunital.

Definition 3.3. For k � 1, let Jk be the two-sided DG ideal of Ak generated by

diagrams with at most k � 1 long strands. The quotient Lk D Ak=Jk is naturally

a unital DG algebra with the trivial differential.

By Theorem 2.1 and Proposition 2.2 in Section 2, we know that Ak has a

k-basis
F

0�`�k Bk;k.`/, and Jk has a k-basis
F

0�`�k�1 Bk;k.`/. So Lk has

a k-basis given by the images of elements of Bk;k.k/ under the quotient map

Ak ! Lk .

The ideal J D J1 has a k-basis B1;1.0/ D ¹x
izz�yj j i; j � 0º. The unital

DG algebraL D L1 is generated by Nx; Ny;which are the images of x; y 2 A1 under

the quotient map A1 ! L. There is an exact sequence

0 �! J �! A1 �! L �! 0

of DG algebras with the trivial differentials. For n � 0, let Mn.k/ be the

.n C 1/ � .n C 1/ matrix DG algebra with the trivial differential and a standard

basis ¹eij j 0 � i; j � nº of elementary matrices, with deg.eij / D i � j .

Proposition 3.4. There are isomorphisms of DG k-algebras with trivial differen-
tials:

J Š MN.k/;

L Š kŒa; a�1�; deg.a/ D 1;

Lk Š kha˙1
1 ; : : : ; a˙1

k i=.aiaj D �ajai ; i ¤ j /; deg.ai / D 1:

Proof. Define the isomorphism MN.k/ ! J by eij 7! xizz�yj for i; j 2 N.

The nonunital DG algebra J is isomorphic to the direct limit MN.k/ of unital DG

algebras Mn.k/ under non-unital inclusions Mn.k/ �MnC1.k/ taking eij to eij .

Define a map of algebras L ! kŒa; a�1� by Nx 7! a; Ny 7! a�1: It is an

isomorphism since

Ny Nx D yx D 1 2 L; Nx Ny D xy D 1 � zz� D 1 2 L;

by the local relations (14).
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For 1 � i � k, let xi D 1˝ � � � ˝ x ˝ � � � 1 and yi D 1˝ � � � ˝ y ˝ � � � 1 2 Ak

whose i th factors are x and y 2 A1, respectively. Then Lk is generated by images

xi ; yi , and subject to relations

xi yi D yi xi D 1; xi xj D �xj xi ; for i ¤ j:

Define the isomorphism Lk ! kha˙1
1 ; : : : ; a˙1

k
i=.aiaj D �ajai ; i ¤ j / by

xi 7! ai ; yi 7! a�1
i for 1 � i � k. �

We fix the isomorphisms for J; L; Lk in Proposition 3.4. See Figure 16 for J

and L.

i

j

eij a a 1 a 1a D aa 1
D 1

D D

Figure 16. Basis element eij of the ideal J and elements a; a�1 of the quotient L, where

generators of L are represented by the same diagrams as for A1 by abuse of notation.

3.4. Approximation of Dc.C/ by Dc.Ak/. Let Ck be the smallest full DG

subcategory of C which contains the objects X˝n, 0 � n � k. Note that Ck

is not monoidal. There is a family of inclusions Ck�1 � Ck of DG categories.

They induce a family of functors {k WD.Ck�1/ ! D.Ck/. For 0 � n � k � 1,

{k.X
^˝n

/ D X^˝n
is compact in D.Ck/, and

ENDD.Ck�1/.X
^˝n

/ Š An Š ENDD.Ck/.X
^˝n

/ Š ENDD.Ck/.{k.X
^˝n

//:

The functor {k WD.Ck�1/! D.Ck/ is fully faithful by [13, Lemma 4.2 (a, b)]. The

restriction to the subcategory {c
k
WDc.Ck�1/! Dc.Ck/ of compact objects is also

fully faithful. Similarly, there is a family of inclusions gc
k
WDc.Ck/ ! Dc.C/ of

triangulated categories.

Recall that the Grothendieck group K0.T/ of an essentially small triangulated

category T is the abelian group generated by symbols ŒY � for every object Y

of T, modulo the relation ŒY2� D ŒY1� C ŒY3� for every distinguished triangle

Y1 ! Y2 ! Y3 ! Y1Œ1� in T. In particular, ŒY1� D ŒY2� if Y1 and Y2 are
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isomorphic. The functors {c
k

and gc
k

send distinguished triangles to distinguished

triangles and induce maps of abelian groups

{ck�
WK0.D

c.Ck�1// �! K0.D
c.Ck//; gc

k�
WK0.D

c.Ck// �! K0.D
c.C//:

Let lim
�!

K0.D
c.Ck// denote the direct limit of K0.D

c.Ck// with respect to {c
k�

.

Proposition 3.5. There is an isomorphism of abelian groups

K0.D
c.C// Š lim

�!
K0.D

c.Ck//:

Proof. The family of maps gc
k�

induces a map g�W lim�!
K0.D

c.Ck//! K0.D
c.C//

since functors gc
k�1

and gc
k
ı {c

k
are isomorphic. The map g� is surjective since any

object of Dc.C/ is contained in Dc.Ck/ for some k up to isomorphism. The map

g� is injective since any distinguished triangle in Dc.C/ is contained in Dc.Ck/

for some k up to isomorphism. �

The category Ck contains a full DG subcategory C
0
k

of a single object X˝k

whose endomorphism DG algebra ENDCk
.X˝k/ D Ak by (17). Thus, the cat-

egory C
0
k

is isomorphic to B.Ak/, and D.Ak/ D D.B.Ak//, see Definition 3.1.

There is an inclusion B.Ak/ � Ck of DG categories. The induced functors

hk WD.Ak/ �! D.Ck/; hc
kWD

c.Ak/ �! Dc.Ck/ (20)

of triangulated categories are fully faithful by [13, Lemma 4.2 (a, b)]. A set H

of objects of a triangulated category T is a set of generators if T coincides with

its smallest strictly full triangulated subcategory containing H and closed under

infinite direct sums, see [13, Section 4.2]. In particular, ¹X^˝n
; 0 � n � kº forms

a set of generators forD.Ck/. Equation (16) implies that X^˝n
is isomorphic to a

direct summand of X^˝k
for 0 � n � k. Let pn 2 EndD.Ck/.X

^˝k
/ denote

the idempotent of projection onto the direct summand X^˝n
. Then X^˝n

is

isomorphic to a DG Ck-module given by a complex

� � �
1�pn
���! X^˝k pn

�! X^˝k 1�pn
���! X^˝k

:

Thus, ¹X^˝k
º forms a set of compact generators for D.Ck/. The functor hk is

an equivalence of triangulated categories by [13, Lemma 4.2 (c)]. It is clear that

hc
k
WDc.Ak/ ! Dc.Ck/ is also an equivalence and thus induces an isomorphism

of Grothendieck groups hc
k�
WK0.D

c.Ak// Š K0.D
c.Ck//. By Proposition 3.5,

there is a canonical isomorphism of abelian groups:

K0.D
c.C// Š lim

�!
K0.D

c.Ak//: (21)
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3.5. K-theory computations. For a DG category D, let K0.D/ denote the

Grothendieck group of the triangulated category Dc.D/.

If R is an ordinary unital algebra viewed as a DG algebra concentrated in

degree 0 with the trivial differential, then there is a canonical isomorphism

K0.D
c.R// Š K0.R/ by Remark 3.2, where K0.R/ is the Grothendieck group

of the ring R.

Without ambiguity let K0.R/ denote K0.D
c.R// for a unital DG algebra R.

The isomorphism (21) can be rewritten as

K0.C/ Š lim
�!

K0.Ak/:

In order to compute K0.Ak/, we need higher K-theory of DG algebras and

DG categories. We briefly recall the definition of higher K-theory of DG cate-

gories following [30, Section 3.2.21]. Schlichting [30, Section 3.2.12] introduces

the notion of complicial exact category with weak equivalences whose higher K-

theory is defined. For a DG category D, its pre-triangulated envelope D
pre can

be made into an exact category whose morphisms are maps of degree 0 which

commute with the differential. A sequence is exact if it is a split exact sequence

when ignoring the differential. Then .Dpre; w/ D .Dpre; homotopy equivalences/

is a complicial exact category with homotopy equivalences as weak equivalences.

The K-theory of the DG category D is defined as the K-theory of the complicial

exact category with weak equivalences .Dpre; w/. This definition is equivalent

to Waldhausen’s definition of K-theory of a DG category according to [30, Re-

mark 3.2.13].

We introduce the following notations. For a DG category D,

K1.D/ D K1.D
pre; w/; K 0

0.D/ D K0.D
pre; w/: (22)

For a unital DG algebra A,

K1.A/ D K1.B.A//; K 0
0.A/ D K

0
0.B.A//: (23)

Note that K 0
0.D/ Š K0.Ho.Dpre// by [30, Proposition 3.2.22]. Recall that

K0.D/ D K0.D
c.D// Š K0.fHo.Dpre//:

By [32, Corollary 2.3], K 0
0.D/! K0.D/ is injective.

Exact sequences of derived categories. The main tool to compute K0.Ak/ is

the Thomason-Waldhausen Localization Theorem specialized to the case of DG

categories.
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A sequence of triangulated categories and exact functors T1

F1
! T2

F2
! T3 is

called exact if F2F1 D 0, F1 is fully faithful, and F2 induces an equivalence

T2=F1.T1/! T3, see [14, Section 2.9] and [30, Section 3.1.5].

A sequence of triangulated categories T1

F1
! T2

F2
! T3 is called exact up

to factors if F2F1 D 0, F1 is fully faithful, and F2 induces an equivalence

T2=F1.T1/! T3 up to factors, see [30, Definition 3.1.10]. An inclusionF WA! B

of triangulated categories is called an equivalence up to factors [30, Defini-

tion 2.4.1] if every object of B is a direct summand of an object in F.A/.

Given a sequence of DG categories A! B! D, if the sequence

D.A/ �! D.B/ �! D.D/

of derived categories of DG modules is exact, then the associated sequence

Dc.A/ �! Dc.B/ �! Dc.D/

of derived categories of compact objects is exact up to factors by Neeman’s

result [22, Theorem 2.1]. According to [30, Theorem 3.2.27], the Thomason-

Waldhausen Localization Theorem implies that there is an exact sequence of

K-groups:

K1.D/ �! K0.A/ �! K0.B/ �! K0.D/:

We will fitD.Ak/ into an exact sequence of derived categories and then make

use of the localization theorem.

Definition 3.6. For a DG algebra A, a DG A-module Q is ( finitely generated)
relatively projective if it is a direct summand of a (finite) direct sum of modules

of the form AŒn�.

We refer the reader to [14, Section 3.1] for the definition of Property (P) for

a DG module. Any relatively projective module has Property (P). For any object

M 2 D.A/ there exists P.M/ 2 D.A/ which is isomorphic to M in D.A/ and

has Property (P) [14, Theorem 3.1]. The object P.M/ 2 D.A/ is unique up to

isomorphism. If A is an ordinary algebra viewed as a DG algebra concentrated in

degree 0, then P.M/ is a projective resolution of M .

LetA;B be DG algebras, andX be a DG leftA, rightB bimodule. We callX a

DG .A; B/-bimodule. The derived tensor product functor�˝L
AX WD.A/! D.B/

is defined by M ˝L
A X Š P.M/ ˝A X . Note that the derived tensor product

commutes with infinite direct sums, see [14, Section 6.1].
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Consider ˛k WAk�1 ! Ak in (19). Let ek D ˛k.1k�1/ D .zz�/ ˝ 1k�1 which

is an idempotent of Ak . It generates a right ideal Ik D ekAk of Ak . The map ˛k

makes Ik a DG .Ak�1; Ak/-bimodule and induces a functor

ik D �˝
L
Ak�1

Ik WD.Ak�1/ �! D.Ak/:

Note that Ik is relatively projective as a right Ak-module.

It is clear that hk ıik is isomorphic to {k ıhk�1 as functorsD.Ak�1/! D.Ck/,

see (20). So

K0.C/ Š lim
�!

K0.Ak/ (24)

with respect to ik�.

The quotient map Ak ! Lk makes Lk a DG .Ak; Lk/-bimodule, and induces

a functor

jk D �˝
L
Ak
Lk WD.Ak/ �! D.Lk/:

A construction of P.Lk/ for Lk 2 D.Ak/. For k D 1, let P.L/ be a complex

M

j 2N

ejjA1 �! A1;

whose the differential is the sum of inclusions {j W ejjA1 ,! A1, where A1 is in

degree 0,
L

j 2N ejjA1 is in degree �1, and ejj 2 J � A1 are idempotents. In

other words, P.L/ is the DG A1-module

�� M

j 2N

ejjA1Œ1�
�
˚ A1; @ D

X

j 2N

{j

�
:

Since
L

j 2N ejjA1 D J as A1-modules, P.L/ D .J ! A1/ Š L 2 D.A1/.

For k > 1, we take a product of k copies of P.L/, where the product cor-

responds to the monoidal structure on C. More precisely, let u.t; i/ denote the

idempotent of Ak whose diagram consists of k � 1 vertical long arcs and one

pair of short arcs ei i as the t -th strand from the left, for 1 � t � k; i 2 N, see

Figure 17. They satisfy the commuting relations u.t; i/u.t 0; i 0/ D u.t 0; i 0/u.t; i/

for t ¤ t 0. So their products are also idempotents of Ak, denoted by u.T; i/ for

T � ¹1; : : : ; kº and i 2 NjT j. Here u.;; ;/ is understood as the identity 1k of Ak.
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Let

P.T; i/ D u.T; i/Ak

which is a relatively projective DG Ak-module. For P.T; i/; P.S; j/ such that

T D St¹rº and is D js for s 2 S , there is an inclusion {.T; i; r/WP.T; i/! P.S; j/

of Ak-modules given by {.T; i; r/.u.T; i// D u.S; j/u.r; ir/.

... ...

u.t; i/

1 t k

i

j

Figure 17. The idempotent u.t; i/ 2 Ak .

Consider a DG Ak-module P.Lk/ given by a complex of relatively projective

DG Ak-modules of finite length:

M

jT jDk

i2NjT j

P.T; i/ �!
M

jT jDk�1

i2NjT j

P.T; i/ �! � � � �!
M

jT jD1

i2NjT j

P.T; i/ �! Ak

with the differential

@ D
X

T;i;r2T

.�1/c.T;r/{.T; i; r/;

where Ak is in degree 0, and c.T; r/ D #¹t 2 T j t < rº. The complex P.Lk/ is

exact except at Ak. Let

prWP.Lk/ �! Lk (25)

be the quotient map Ak ! Lk on the summand Ak, and the zero map on the

remaining summands of P.Lk/. Then pr is an isomorphism in D.Ak/.

Except for the last term Ak, each P.T; i/ is naturally a submodule of the ideal

Jk of Ak, which is the kernel of the quotient map Ak ! Lk, see Definition 3.3.

This implies

jk.Lk/ D Lk ˝
L
Ak
Lk Š P.Lk/˝Ak

Lk Š Ak ˝Ak
Lk Š Lk 2 D.Ak/: (26)

Lemma 3.7. The sequence of derived categoriesD.Ak�1/
ik
�! D.Ak/

jk
�! D.Lk/

is exact.



754 M. Khovanov and Y. Tian

Proof. The image ik.Ak�1/ is isomorphic to the module ekAk which is finitely

generated relatively projective. In particular, ik.Ak�1/ is compact in D.Ak/, and

ENDD.Ak�1/.Ak�1/ Š Ak�1 Š ekAkek Š ENDD.Ak/.ik.Ak�1//:

The functor ik WD.Ak�1/! D.Ak/ is fully faithful by [13, Lemma 4.2].

The composition jk ı ik sends the free module Ak�1 to

jk ı ik.Ak�1/ D jk.Ak�1 ˝Ak�1
Ik/ Š jk.Ik/

D ekAk ˝
L
Ak
Lk Š ekAk ˝Ak

Lk D 0;

where the last isomorphism holds since ekAk is relatively projective, and the

last equality holds since ekAk is contained in the ideal Jk which is the kernel

of the quotient map Ak ! Lk . The composition jk ı ik commutes with the

infinite direct sums [14, Section 6.1]. Thus, jk ı ik D 0 on the smallest full

triangulated subcategory ofD.Ak�1/ containing the free moduleAk�1 and closed

under infinite direct sums. This full subcategory coincides withD.Ak�1/, see [14,

Section 4.2]. It follows that jk ı ik D 0 on D.Ak�1/.

The algebras Lk and Ak act on Lk both from left and right via the map

Ak ! Lk . In the following computation, we view Lk in one of the three ways:

(1) as a right Lk-module, denoted LL
k

; (2) as a right Ak-module, denoted LA
k

; and

(3) as a .Ak; Lk/-bimodule, denoted ALL
k

.

The functor jk admits a right adjoint functor fkWD.Lk/ ! D.Ak/ which is

the restriction functor with respect to the quotient map Ak ! Lk . In particular,

fk.L
L
k
/ D LA

k
. The functor fk is fully faithful if and only if the counit map

ıLk
WLA

k ˝
L
Ak

ALL
k �! LL

k (27)

is an isomorphism of right Lk-modules, see [25, Lemma 4 (1,3)]. The counit map

ıLk
is the image of 1Lk

2 HomD.Ak/.L
A
k
; LA

k
/ D HomD.Ak/.L

A
k
; fk.L

L
k
// under

the adjunction isomorphism

adWHomD.Ak/.L
A
k ; fk.L

L
k // Š HomD.Lk/.L

A
k ˝

L
Ak

ALL
k ; L

L
k /:

Replacing LA
k

by its resolution P.Lk/, there is a chain of isomorphisms

HomD.Ak/.L
A
k ; fk.L

L
k //

f
�! HomD.Ak/.P.Lk/; fk.L

L
k //

ad
�! HomD.Lk/.P.Lk/˝Ak

ALL
k ; L

L
k /

g
�! HomD.Lk/.L

L
k ; L

L
k /

h
�! HomD.Lk/.L

A
k ˝

L
Ak

ALL
k ; L

L
k /:
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Here g and h are induced by (26). Recall prWP.Lk/ ! Lk from (25), and let

mWLk ˝Ak
Lk ! Lk denote the multiplication map. Then

ıLk
D h ı g ı ad ıf .1Lk

/ D h ı g ı ad.pr/ D h ı g.m ı .pr˝1Lk
// D h.1Lk

/

which is an isomorphism. It follows that fk WD.Lk/! D.Ak/ is fully faithful.

Let Tk D D.Ak/=ik.D.Ak�1//, and qkWD.Ak/ ! Tk denote the quotient

functor. Since jk ı ik is zero, the functor jk factors through tkWTk ! D.Lk/. Let

sk D qk ı fk WD.Lk/ �! D.Ak/ �! Tk:

It is clear that tk ısk D tk ıqkıfk D jk ıfk is an equivalence since the counit map

ıLk
W jk ı fk.Lk/! Lk in (27) is an isomorphism, and the conditions of Lemma

4.2(a,c) in [13] hold.

It remains to show that sk is an equivalence. By [13, Lemma 4.2 (a,c)], it is

enough to show that sk.Lk/ is a compact generator of Tk, and

sk�WHomD.Lk/.Lk; LkŒn�/ �! HomTk
.sk.Lk/; sk.Lk/Œn�/

is an isomorphism. The object

sk.Lk/ D qk ı fk.Lk/ Š qk.P.Lk// Š qk.Ak/;

since all other terms except for Ak in P.Lk/ lie in ik.D.Ak�1//. Theorem 2.1

in [22] implies that qk.Ak/ is a compact object of Tk since Ak is a compact object

of D.Ak/. Moreover, ¹qk.Ak/º generates Tk since ¹Akº generates D.Ak/. We

have sk� D qk� ı fk�, where

fk�WHomD.Lk /.Lk ; LkŒn�/ �! HomD.Ak/.fk.Lk/; fk.Lk/Œn�/;

qk�WHomD.Ak/.fk.Lk/; fk.Lk/Œn�/ �! HomTk
.sk.Lk/; sk.Lk/Œn�/:

The map fk� is an isomorphism since fk is fully faithful. The map qk� is an

isomorphism if HomD.Ak/.ik.M/; fk.Lk/Œn�/ D 0 for any M 2 D.Ak�1/ by [23,

Definition 9.1.3, Lemma 9.1.5]. By adjointness HomD.Ak/.ik.M/; fk.Lk/Œn�/ D

HomD.Lk/.jk ı ik.M/; LkŒn�/ D 0 since jk ı ik D 0. We finally conclude that sk
is an equivalence. �

There is an exact sequence of K-groups

K1.Lk/
@
�! K0.Ak�1/

ik �
��! K0.Ak/

jk�
��! K0.Lk/; (28)

induced by the exact sequence of the derived categories in Lemma 3.7.

To compute K0.Ak/ we need Ki.Lk/ for i D 0; 1.
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3.6. K-theory of Lk. We compute Ki .Lk/ for i D 0; 1 in this subsection. The

key tool to compute K0.Lk/ is a result of Keller [13, Theorem 3.1(c)]. Recall

the notion of relatively projective DG modules from Definition 3.6. For any DG

right Lk-module M , let MŒ1� denote the shift of M , where MŒ1�i D M iC1,

dM Œ1� D �dM , and mŒ1� � a D maŒ1� for m 2 M;mŒ1� 2 MŒ1� and a 2 Lk.

See Sections 10.3 and 10.6.3 in [6] for definitions of shifts of left and right DG

modules, respectively.

Theorem 3.8 (Keller [13]). Given any DG algebra A and a DG A-module M , let

� � � �! Qn �! � � � �! Q0 �! H�.M/ �! 0

be a projective resolution of H�.M/ viewed as graded H�.A/-module such that
Qn

�
�! H�.Qn/ for a relatively projective DG A-module Qn. Then M is isomor-

phic to a module P.M/ in the derived categoryD.A/which admits a filtration Fn

such that
S1

nD0 Fn D P.M/, the inclusion Fn�1 � Fn splits as an inclusion of

graded A-modules, and Fn=Fn�1
�
�! QnŒn� as DG A-modules.

We specialize to the case A D Lk. There is an isomorphism of free right DG

Lk-modules

hk WLk ' Lk Œ1� (29)

given by hk.m/ D ak � m for m 2 Lk , where the multiplication is that of the

algebra Lk and ak is the invertible closed element of degree 1. So Q is relatively

projective if it is a direct summand of a free module LI
k
, where I is the index

set. Since the differential is trivial on Lk, H�.Lk/ Š Lk as graded algebras. So

Q is a relatively projective DG Lk-module if and only if Q Š H�.Q/ is a direct

summand ofLI
k

as gradedLk-module. Given any projective resolution ofH�.M/

as in Theorem 3.8 we can take Qn D Qn viewed as a DG Lk-module.

We now consider projective resolutions of N D H�.M/. Let N D
L
N i

be its decomposition into homogenous components. Let Rk�1 denote the degree

zero subalgebra of the graded algebra Lk. Then Rk�1 is generated by bi D aia
�1
k

for 1 � i � k � 1, and

Rk�1 D khb˙1
1 ; :::; b˙1

k�1i=.bibj D �bj bi ; i ¤ j /: (30)

We fix the inclusionRk�1 ! Lk from now on. There is an isomorphism of graded

algebras

Lk Š Rk�1ha
˙1
k i=.biak D �akbi /: (31)
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For any graded Lk-module N , each component N i is a Rk�1-module. Since ak

is invertible of degree 1, any graded Lk-module N is completely determined by

N 0 as a Rk�1-module. More precisely, the action of ak induces an isomorphism

of Rk�1-modules

N iC1 �! ˛.N i /; (32)

where ˛.N i / is the abelian group N i with the ˛-twisted action of Rk�1 via an

automorphism ˛WRk�1 ! Rk�1 given by ˛.bi/ D �bi . Any projective resolution

P.N 0/ of a Rk�1-module N 0 induces a projective resolution P.N i/ of N i . The

direct sum
L

i2Z P.N
i / is a projective resolution of the graded Lk-module N .

We recall the following results about Rk�1 studied by Farrell and Hsiang [11].

The algebra Rk�1 Š Rk�2Œb
˙1
k�1

� is an ˛-twisted finite Laurent series ring.

According to [11, Theorem 25], Rk�1 is right regular. So any finitely gen-

erated Rk�1-module admits a finite resolution by finitely generated projective

Rk�1-modules. Furthermore,K0.Rk�1/ Š Z with a generator ŒRk�1� by [11, The-

orem 27].

Any isomorphism class of objects in Dc.Lk/ has a representativeM which is

isomorphic to a direct summand of L˚r
k

for some finite r as graded Lk-modules

(ignoring the differential). So M 0 and H 0.M/ are finitely generated Rk�1-mod-

ules since Rk�1 is Noetherian. Then H 0.M/ admits a finite resolution by finitely

generated projective Rk�1-modules. The graded Lk-module H�.M/ admits a fi-

nite resolution by finitely generated projectiveLk-modules. We have the following

lemma by applying Keller’s Theorem 3.8.

Lemma 3.9. Any M in Dc.Lk/ is isomorphic to P.M/ which admits a finite
filtration Fn.M/ such that Fn.M/=Fn�1.M/

�
�! Qn.M/Œn� is a finitely generated

relatively projective DG Lk-module.

Lemma 3.10. There is a surjection of abelian groups �kWZ=2! K0.Lk/.

Proof. By Lemma 3.9 we have

ŒM� D
X

n

.�1/nŒQn.M/� 2 K0.Lk/

for M in Dc.Lk/, where the sum is a finite sum. The abelian group K0.Lk/ is

generated by classes ŒQ� of finitely generated relative projective Q.

The inclusion Rk�1 ! Lk is a map of unital DG algebras, where Rk�1

is viewed as a DG algebra concentrated in degree 0. It induces a functor

gk WD
c.Rk�1/ ! Dc.Lk/ given by tensoring with the .Rk�1; Lk/-bimodule Lk.
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Any Q is a direct summand of a finite free module
L
Lk, and has the triv-

ial differential. Its degree zero component Q0 is a finitely generated projective

Rk�1-module, and the action of ak induces an isomorphism of Rk�1-modules

QiC1 ! ˛.Qi/. We have

gk.Q
0/ D Q0 ˝Rk�1

Lk D
M

i2Z

Q0 ˝Rk�1a
i
k Š

M

i2Z

Qi D Q;

by (31), where the direct sums are taking as Rk�1-modules. It follows that

gk�WK0.Rk�1/ ! K0.Lk/ is surjective since gk�.ŒQ
0�/ D ŒQ�. The group

K0.Lk/ is generated by ŒLk � D gk�.ŒRk�1�/ since K0.Rk�1/ Š Z with a gener-

ator ŒRk�1�, see [11, Theorem 27]. Isomorphism (29) implies that ŒLk � D �ŒLk�.

Hence the map �k WZ=2! K0.Lk/ defined by �k.1/ D ŒLk � is surjective. �

According to [30, Section 3.2.12], the K-space K.E; w/ of a complicial exact

category E with weak equivalences w is the homotopy fiber of of BQ.Ew/ !

BQ.E/, where E
w � E is the full exact subcategory of objects X in E for which

the map 0 ! X is a weak equivalence. Here BQ.E/ is the classifying space of

the category Q.E/ used in Quillen’s Q-construction. By definition, there is a an

exact sequence:

K1.E
w/ �! K1.E/ �! K1.E; w/ �! K0.E

w/
i
�! K0.E/ �! K0.E; w/: (33)

Here, Ki .E
w/ and Ki .E/ are K groups of the exact categories Ew and E, respec-

tively.

From now on let E denote the complicial exact category B.Lk/
pre, see Defini-

tion 3.1. A sequence L! M ! N is exact if it is split exact when forgetting the

differential. The weak equivalences are the homotopy equivalences. So E
w � E

is the full subcategory of contractible objects in E. By [30, Proposition 3.2.22]

and the definition of K1 in (22) and (23)

K0.E; w/ Š K
0
0.Lk/; K1.E; w/ D K1.Lk/: (34)

Any M 2 E is a finite direct sum of free modules LkŒn� when forgetting the

differential. Since Lk Š LkŒ1� 2 E, any M is isomorphic to L˚r
k

for some

r 2 N as graded Lk-modules. Its degree zero component M 0 Š R˚r
k�1

as free

Rk�1-modules. Since any exact sequenceL! M ! N in E induces a split exact

sequence L0 ! M 0 ! N 0 of free Rk�1-modules, it induces a homomorphism

r WK0.E/ ! K0.Rk�1/ Š Z defined by r.ŒM�/ D ŒM 0� 2 K0.Rk�1/. It is clear

that r is surjective.
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Lemma 3.11. The group K0.E/ Š Z with a generator ŒLk�.

Proof. Define a homomorphism ZŒq; q�1� ! K0.E/ by mapping qn to the class

ŒLk Œn�� for n 2 Z. It is surjective since any objectM 2 E admits a finite filtration

whose subquotients are finite direct sums of free modules Lk Œn�. The map factors

through ZŒq; q�1�
qD1
���! Z since Lk Š Lk Œ1� 2 E. Let �WZ ! K0.E/ denote

the induced map which is surjective. It is clear that r and � are inverse to each

other. �

We now consider K0.E
w/. Any object M 2 Ew is contractible. There exists

a degree �1 map hWM ! M of graded Lk-modules such that dh C hd D 1

on M . Thus, KerdM D Im dM . Moreover, KerdM and h.Im dM / are graded

Lk-submodules of M . For any m 2 Im dM \ h.Im dM /, m D h.n/ for some

n 2 Im dM so that n D dh.n/ C hd.n/ D d.m/ D 0 and m D 0. Thus

Im dM \ h.Im dM / D ¹0º. As graded Lk-modules, M Š .Im dM ˚ h.Im dM //

since m D dh.m/C hd.m/. Moreover, Im dM is a DG Lk-submodule of M with

the trivial differential. As DG Lk-modules,

M Š .h.Im dM /˚ Im dM ; d D dM W h.Im dM / �! Im dM /

Š .Im dM Œ1�˚ Im dM ; d D idW Im dM Œ1� �! Im dM /:
(35)

The degree zero component .Im dM /
0 is a direct summand of a finitely gen-

erated free Rk�1-module M 0. Thus .Im dM /
0 is a finitely generated projective

Rk�1-module. Recall from [11, Theorem 27] thatK0.Rk�1/ Š Z with a generator

of the class ŒRk�1� of the free module Rk�1. It follows that every finitely gener-

ated projective Rk�1-module P is stably free, i.e. P ˚ Rm
k�1
Š Rn

k�1
for some

m; n 2 N. Thus .Im dM /
0 is a finitely generated stably free Rk�1-module so that

Im dM is a stably free DG Lk-module. Let C.Lk/ D Cone.Lk

id
�! Lk/ 2 E

w ,

where two Lk’s are in degrees �1 and 0. There exists m; n 2 N such that

M ˚ C.Lk/
˚m Š C.Lk/

˚n by (35).

Define a homomorphism  WZ ! K0.E
w/ by  .1/ D ŒC.Lk/�. Then  is

surjective.

For M 2 E
w , let

t .M/ D Œ.Im dM /
0� 2 K0.Rk�1/ Š Z: (36)

For any exact sequence L
f
�!M

g
�! N in E

w , there is an induced sequence

Im dL

f
�! Im dM

g
�! Im dN :
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We claim that it is a short exact sequence of graded Lk-modules.

(1) The first map is clearly injective.

(2) The last map is surjective. For any n D dN .n
0/ 2 Im dN , n0 D g.m0/ for some

m0 2M since g is surjective. So n D dN .g.m
0// D g.dM .m

0// 2 g.Im dM /.

(3) The middle term is exact. For any m 2 Im dM \Ker.g/, m D f .l/ for some

l 2 L. Then dM .m/ D dM .f .l// D f .dL.l// D 0 implies that dL.l/ D 0

since f is injective. So l 2 KerdL D Im dL and m D f .l/ 2 f .Im dL/.

Then .Im dL/
0

f
�! .Im dM /

0
g
�! .Im dN /

0 is a short exact sequence of finitely

generated stably free Rk�1-modules. Therefore, the map t given by (36) induces

a homomorphism t WK0.E
w/ ! K0.Rk�1/ Š Z which maps ŒC.Lk/� to 1. It is

clear that t and  are inverse to each other. We have the following lemma.

Lemma 3.12. The group K0.E
w/ Š Z with a generator ŒC.Lk/�.

The map i WK0.E
w/ ! K0.E/ in the exact sequence (33) takes the generator

ŒC.Lk/� to 2ŒLk �, see Lemma 3.11. In particular, i is injective and not surjective.

Proposition 3.13. The group K0.Lk/ Š Z=2 with a generator ŒLk�.

Proof. Recall from (22) that K 0
0.Lk/ Š K0.Ho.Cpre//, and K 0

0.Lk/ ! K0.Lk/

is injective by [32, Corollary 2.3]. The group K 0
0.Lk/ is nonzero since i is not

surjective in the exact sequence (33). It implies that K0.Lk/ is nonzero. Hence

the surjection �k WZ=2! K0.Lk/ in Lemma 3.10 is an isomorphism. �

Define a map �kWZ! K0.Ak/ of abelian groups by �k.1/ D ŒAk�.

Proposition 3.14. The map �k is surjective for all k � 0.

Proof. There is a commutative diagram from the exact sequence (28) and Propo-

sition 3.13:

K0.Ak�1/ K0.Ak/ K0.Lk/

Z Z Z2 0

 

!
ik�  

!
jk�

 

!
2

 !�k�1

 

!

 !�k

 

!

 !Š

The first square commutes because ŒAk� D ik�ŒAk�1�C ŒAk Œ�1�� by an analogue

of (16). The second square commutes since jk�ŒAk� D ŒLk �. The map �0 is an

isomorphism since A0 Š k by (18). By induction on k one can prove that �k is

surjective using the snake lemma. �
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Taking the direct limit of �k , we have a surjective map �W lim
�!

Z! lim
�!

K0.Ak/

of abelian groups, where lim
�!

Z Š ZŒ1
2
�, and lim

�!
K0.Ak/ with respect to ik� is

naturally isomorphic toK0.C/ as abelian groups, see (24). The monoidal structure

onDc.C/ induces a ring structure onK0.C/, where ŒAk�ŒAk0 � D ŒAkCk0 � 2 K0.C/.

Then �WZŒ1
2
� ! K0.C/ is a ring homomorphism such that �.1/ D ŒA0�, and

�.1
2
/ D ŒA1�.

Theorem 3.15. There is a surjective homomorphism of rings: �WZŒ1
2
�! K0.C/.

To show that � is an isomorphism, we need to assume that char.k/ D 2. The

exact sequence (33) gives K1.E
w/! K1.E/! K1.Lk/! 0; since i is injective.

Proposition 3.16. If char.k/ D 2, then K1.Lk/ is 2-torsion.

Proof. It is enough to show that 2˛ is in the image of K1.E
w/ ! K1.E/ for any

˛ 2 K1.E/. We use Nenashev’s presentation of K1.E/ of the exact category E,

see [24]. Any ˛ 2 K1.E/ is represented by a double short exact sequence

M
f1
�!�!
g1

N
f1
�!�!
g1

L:

Consider the cone C.M/ of idWM ! M , and morphisms iM WM ! C.M/

and jM WC.M/!MŒ1� in E. Any morphism f WM ! N induces two morphisms

f Œ1�WMŒ1� ! NŒ1� and C.f /WC.M/ ! C.N/. Let ˛Œ1�; C.˛/ 2 K1.E/ be

the classes of double short exact sequences consisting of MŒ1�; N Œ1�; LŒ1� and

C.M/; C.N/; C.L/, respectively. The diagram

M N L

C.M/ C.N/ C.L/

MŒ1� N Œ1� LŒ1�

 

!
f1

 

!
g1

 

! iM

 

!iM

 

!
f2

 

!
g2

 
! iN

 
!iN

 

! iL

 

!iL

 

!
C.f1/

 

!
C.g1/

 

! jM

 

!jM

 

!
C.f2/

 

!
C.g2/

 
! jN

 
!jN

 

! jL

 

!jL

 

!
f1Œ1�

 

!
g1Œ1�

 

!
f2Œ1�

 

!
g2Œ1�

satisfies Nenashev’s condition in [24, Proposition 5.1]. Hence

˛ � C.˛/C ˛Œ1� D ˇM � ˇN C ˇL 2 K1.E/;
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where ˇX is the class of the vertical double short exact sequence consisting of

X;C.X/; XŒ1� for X D M;N;L. By [24, Lemma 3.1], ˇX D 0 2 K1.E/. So

˛ C ˛Œ1� D C.˛/, which is in the image of K1.E
w/! K1.E/.

If char.k/ D 2, then Lk D kha˙1
1 ; : : : ; a˙1

k
i=.aiaj D ajai ; i ¤ j / is

commutative as in Proposition 3.4. In particular, ai is central, invertible, closed

and of degree 1. Define hM WM ! MŒ1� by hM .m/ D ma1 which is an

endomorphism of M in E. It is an isomorphism since a1 is invertible. Moreover,

hN ı f D f Œ1� ı hM for any morphism f WM ! N of E. The diagram

M N L

MŒ1� N Œ1� LŒ1�

0 0 0

 

!
f1

 

!
g1

 

! hM

 

!hM

 

!
f2

 

!
g2

 

! hN

 

!hN

 

! hL

 

!hL

 

!
f1Œ1�

 

!
g1Œ1�

 

! 0

 

!0

 

!
f2Œ1�

 

!
g2Œ1�

 

! 0

 

!0
 

! 0
 

!0

 

!
0

 

!
0

 

!
0

 

!
0

satisfies Nenashev’s condition in [24, Proposition 5.1]. It implies that ˛�˛Œ1�C0 D

0 � 0 C 0 by [24, Lemma 3.1]. Hence ˛ D ˛Œ1�, and 2˛ is in the image of

K1.E
w/! K1.E/ for any ˛ 2 K1.E/. �

Remark 3.17. For the field k of any characteristic, there is a central element

a1 � � �ak of degree k if k is odd. So ˛ D ˛Œk�, and K1.Lk/ is 2-torsion. But

the same argument does not apply if k is even.

Remark 3.18. It can be computed from [29] that K0.L1/ Š Z=2ŒL1� and

K1.L1/ Š k�=.k�/2 which is 2-torsion for the ground field k of any character-

istic.

Theorem 3.19. There is an isomorphism of rings K0.C/ Š ZŒ1
2
� if char.k/ D 2.

Proof. We want to show that �k WZ ! K0.Ak/ is an isomorphism by induction

on k. It is true when k D 0 since A0 Š k by (18). Suppose that �k�1 is

an isomorphism. If char.k/ D 2, then K1.Lk/ is 2-torsion so that the map

@WK1.Lk/ ! K0.Ak�1/ Š Z is zero. The commutative diagram in the proof

of Proposition 3.14 becomes

K1.Lk/ K0.Ak�1/ K0.Ak/ K0.Lk/

Z Z Z2 0

 

!
@D0  

!
ik�  

!
jk�

 !�k�1

 

!
2

 !�k

 

!

 !Š

 

!
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The snake lemma implies that �k is an isomorphism, and K0.Ak/ is freely gener-

ated by ŒAk�.

The same argument before Theorem 3.15 shows that K0.C/ Š ZŒ1
2
� as rings.

�

Remark 3.20. If degrees of the generators x and y in Figure 11 are exchanged,

i.e. deg.x/ D �1; deg.y/ D 1, then the resulting derived category will have

an isomorphism X^ Š 1^ ˚ X^Œ1� as the analogue of equation (15). Since the

quotient algebraLk is unchanged under the exchange of the degrees, Theorem 3.19

also holds in this case.

If deg.x/ D m; deg.y/ D �m for some odd m ¤ ˙1, then in the resulting

derived category there is an isomorphism X^ Š 1^ ˚ X^Œ�m�, leading to a

homomorphism from ZŒ1
2
� to the Grothendieck ring of that category. We don’t

know whether it is an isomorphism.

3.7. A p-DG extension. Witten–Reshetikhin–Turaev 3-manifold invariants,

when extended to a 3-dimensional TQFT, require working over the ringZ
�

1
N
; �

�
�

C, where � is a primitive N -th root of unity. The space associated to a (decorated)

surface in the TQFT is a free module over Z
�

1
N
; �

�
and the maps associated to

cobordisms are Z
�

1
N
; �

�
-linear. This ring contains the subring ZŒ�� of cyclotomic

integers.

WhenN is a primep, the ringZŒ�� Š ZŒq�=.1CqC� � �Cqp�1/. In the notation,

� D e
2�i

p is an element of C while q is a formal variable, and the isomorphism

takes q to �. Let us also denote this ring byRp. RingRp admits a categorification,

investigated in [16, 27]. One works over a field k of characteristic p and forms a

graded Hopf algebra H D kŒ@�=.@p/, with deg.@/ D 1. The category of finitely-

generated graded H -modules has a quotient category, called the stable category,

where morphisms which factor through a projective module are set to 0. The stable

categoryH -mod is triangulated monoidal and its Grothendieck ring K0.H -mod/

is naturally isomorphic to the cyclotomic ringRp. Multiplication by q corresponds

to the grading shift ¹1º in the category of gradedH -modules. The shift functor Œ1�

in the triangulated categoryH -mod is different from the grading shift functor ¹1º.

We now explain a conjectural way to enhance this categorification ofRp using

a version of isomorphism (2) from the introduction to categorify the ring Z
�

1
p
; �

�

which contains both Rp and ZŒ�� as subrings. The point is that in ZŒ�� there is an

equality of principal ideals

.p/ D .1� �/p�1
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see [21, Proposition 6.2], so that subrings Z
�

1
p
; �

�
and Z

�
1

1��
; �

�
of C coincide

(equivalently, localizations RpŒp
�1� andRpŒ.1�q/

�1� are isomorphic). Inverting

p is equivalent to inverting 1 � �, and the latter can be inverted using a variation

of isomorphism (2).

Namely, one would like to have a monoidal category over a field k of charac-

teristic p with a generating object X and an isomorphism

X Š X¹1º ˚ 1; (37)

where ¹1º is degree shift by one. Having this isomorphism requires the four

generating morphisms as in Figure 15, denoted x; y; z; z� in Figure 11. The degrees

are now the opposite, deg.x/ D �1; deg.y/ D 1, deg.z/ D deg.z�/ D 0. The

defining relations are the same, see Figure 12, but now all far-away generating

morphisms commute rather than super-commute.

The construction gives rise to a graded pre-additive category C with objects –

tensor powers of X and morphisms being planar diagrams built out of generators

subject to defining relations. We make C into a p-DG category by equipping it

with the derivation @ of degree 1 that acts by zero on all generating morphisms,

hence on all morphisms.

We then extend category C to a triangulated category, as explained in Sec-

tion 3.2 for the DG case, by substituting the p-DG version everywhere. We pass to

the pre-triangulated p-DG category C
pre by formally adding iterated tensor prod-

ucts with objects ofH -mod, finite direct sums and cones of morphisms. Shifts of

objects are included in this construction, since they are isomorphic to tensor prod-

ucts with one-dimensional graded H -modules. The homotopy category Ho.Cpre/

is triangulated, and we define zC to be its idempotent completion. The category zC is

triangulated monoidal Karoubi closed, and there is a natural ring homomorphism

Z
�

1
p
; �

�
�! K0.zC/ (38)

taking .1 � �/�1 to ŒX�.

Problem 3.21. Is the map (38) an isomorphism?

Beyond this problem, there is an open question whether category zC can be used

to enhance known categorifications of quantum groups at prime roots of unity

and to help with categorification of the Witten–Reshetikhin–Turaev 3-manifold

invariants at prime roots.
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4. A monoidal envelope of Leavitt path algebras

The goal of this section is to describe an additive monoidal Karoubi closed

category C whose Grothendieck ring is conjecturally isomorphic to ZŒ1
2
�.

4.1. Category C. Let k be a field. Consider a k-linear pre-additive strict

monoidal category C with one generating objectX , in addition to the unit object 1.

A set of generating morphisms is given in Figure 18.

z z x1 x2 x3 x1 x2 x3

1 2 3 1 2 3

Figure 18. Generating morphisms.

Six of these eight generating morphisms are endomorphisms of X , one is a

morphism from 1 to X , and the last morphism goes from X to 1. We denote

these generators by z; z�; xi ; x
�
i for i D 1; 2; 3, from left to right in Figure 18. In

particular, xi ; x
�
i are endomorphisms of X , z a morphism from 1 to X , and z�

a morphism from X to 1. We draw xi as a long strand decorated by a box with

label i , x�
i as a long strand decorated by a circle with label i , and z as a short top

strand decorated by an empty box, and z� as a short bottom strand decorated by

an empty circle, respectively.

A pair of far away generators commute. Therefore, a horizontal composition

of diagrams is independent of their height order. Given two diagrams f; g, let

f ˝ g denote the horizontal composition of f and g, where f is on the left of g.

Local relations are given in Figure 19, where the vertical line is 1X , and the

empty diagram is 11. The relations can be written as

z�z D 11;

x�
i z D 0; z�xi D 0; for i D 1; 2; 3;

x�
i xj D ıi;j1X ; for i; j D 1; 2; 3;

3X

iD1

xix
�
i C zz

� D 1X :

(39)
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iD 1 D 0 D 0i

j

D Dıi;j C

3X

iD1

i i

i

Figure 19. Defining local relations.

Let

ƒ D
G

k�0

ƒk D
G

k�0

¹1; 2; 3ºk

be the set of sequences of indices, where ƒ0 consists of a single element of

the empty sequence. For I D .i1; : : : ; ik/ 2 ƒk , let I� D .ik ; : : : ; i1/, and

jI j D k. Let xI ; x
�
I 2 EndC.X/ denote compositions xi1 � � �xik and x�

i1
� � �x�

ik
.

Let zI D xIz 2 HomC.1; X/ and z�
I D z�x�

I 2 HomC.X; 1/. If jI j D jJ j, then

x�
I xJ D ıI;J �1X , and subsequently z�

I zJ D ıI;J �11.

Figure 20 shows our notations for some vertical compositions of generating

morphisms. We draw xI as a long strand decorated by a box with label I , and x�
I

as a long strand decorated by a circle with label I , respectively. We draw zI as a

short top strand decorated by a box with label I , and z�
I as a short bottom strand

decorated by a circle with label I , respectively.

Bases of morphism spaces. We observe that the category C is generated from

the suitable data .A; e/ as described in Section 2, where A is a k-algebra. To see

this, we restrict the above diagrams and defining relations on them to the case

when there is at most one strand at the top and at most one strand at the bottom. In

other words, we consider generating morphisms in Figure 18 and compose them

only vertically, not horizontally, with the defining relations in Figure 19. The

idempotent e is given by the empty diagram, while 1�e is the undecorated vertical

strand diagram.
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xI xI

zI zI

xI xJ D ıI;J 1X

I

J

ik ik

:::

i1 i1

D D

D D

I I

I

I
I

I

D ıI;J

Figure 20. Notations for compositions xI ; x
�
I
; zI ; z

�
I

for I D .i1; : : : ; ik/, and the relation

x�
I
xJ D ıI;J �1X if jI j D jJ j.

It follows from the defining relations (39) that A is isomorphic to the Leavitt

path algebraL.Q/ of the graphQ in (4). In particular, as a k-vector space, algebra

A has a basis

¹11º [ ¹zI j I 2 ƒº

[ ¹z�
I j I 2 ƒº [ ¹zIz

�
J j I; J 2 ƒº

[ ¹xI x
�
J j I; J 2 ƒ; .ijI j; j1/ ¤ .3; 3/º

by [2, Corollary 1.5.12]. Our notations for some of these basis elements are shown

in Figure 20.
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The basis of A can be split into the following disjoint subsets:

(1) eAe Š k has a basis

B0;0 D ¹11º

consisting of a single element which is the empty diagram;

(2) .1� e/Ae has a basis

B1;0 D ¹zI j I 2 ƒº:

Element zI is depicted by a short top strand decorated by a box with label I ,

see Figure 20;

(3) eA.1� e/ has a basis

B0;1 D ¹z
�
I j I 2 ƒº:

Element z�
I is depicted by a short bottom strand decorated by a circle with

label I (lollipop in Figure 20);

(4) .1� e/A.1� e/ has a basis

B1;1.0/ tB1;1.1/;

where

B1;1.0/ D ¹zIz
�
J j I; J 2 ƒº

consists of pairs (short top strand with a labelled box, short bottom strand

with a labelled circle), and

B1;1.1/ D ¹xI x
�
J j I; J 2 ƒ; .ijI j; j1/ ¤ .3; 3/º

consists of long strands whose decoration satisfies that no circle is above any

box, and no box with label 3 is next to a circle with label 3.

The multiplication map .1� e/Ae˝ eA.1� e/! .1� e/A.1� e/ sends the basis

B1;0�B0;1 of .1�e/Ae˝eA.1�e/ bijectively to B1;1.0/ so that the multiplication

map is injective.

We see that the conditions on .A; e/ from the beginning of Section 2 are

satisfied, and we can indeed form the monoidal category C as above with objects

X˝n, over n � 0. Algebra A can then be described as the direct sum

A Š EndC.1/˚HomC.1; X/˚HomC.X; 1/˚ EndC.X/:

Therefore, a basis of HomC.X
˝n; X˝m/ is given in Theorem 2.1.
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The idempotent completion of C. Recall that Cadd denotes the additive closure

of C, and Ka.C/ denotes the idempotent completion of Cadd. Objects of Cadd are

finite formal direct sums of nonnegative powers X˝n, where X˝0 D 1. The

category Ka.C/ is k-linear additive strict monoidal.

Defining local relations are chosen to have an isomorphism in Ka.C/:

X Š 1˚X3; (40)

given by

.z�; x�
1 ; x

�
2 ; x

�
3 /

T 2 HomKa.C/.X; 1˚X
3/;

and

.z; x1; x2; x3/ 2 HomKa.C/.1˚X
3; X/;

see Figure 21. Tensoring with X˝.k�1/ in Ka.C/ on either side of isomor-

phism (40) results in isomorphisms in Ka.C/

X˝k Š X˝.k�1/ ˚ .X˝k/3: (41)

1

1

2

3

3

2

X X X

X

X

Figure 21. The isomorphism X Š 1˚X3 in Ka.C/.

Algebras of endomorphisms. Part of the structure of Ka.C/ can be encoded into

an idempotented algebra B , which has a complete system of mutually orthogonal

idempotents ¹1nºn�0; so that

B D
M

m;n�0

1mB1n;
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and

1mB1n D HomKa.C/.X
˝n; X˝m/:

Multiplication in B matches composition of morphisms in C.

We also define

Bk D
M

m;n�k

1mB1n;

which is an algebra with the unit element
P

n�k

1n. The inclusion Bk � BkC1 is

nonunital. The algebra B0 Š k. Define

Ak D 1kB1k D EndKa.C/.X
˝k/;

which is an algebra with the unit element 1k . The inclusion Ak � Bk is nonunital

for k > 0.

Let ˛k WAk�1 ,! Ak be an inclusion of algebras given by tensoring with zz�

on the left

˛k.f / D .zz
�/˝ f; (42)

for f 2 Ak�1. Note that ˛k is nonunital.

4.2. Towards computing K0.Ka.C//. Let Ck be the smallest full subcategory

of C which contains the objects X˝n, 0 � n � k. Let Ka.Ck/ be the idempotent

completion of the additive closure C
add
k

of Ck. There is a family of inclusions of

additive categories Ka.Ck�1/ � Ka.Ck/. Similarly, there is a family of inclusions

gk WKa.Ck/ ! Ka.C/ of additive categories. We have the analogue of Proposi-

tion 3.5.

Proposition 4.1. There is a natural isomorphism of abelian groups

K0.Ka.C// Š lim
�!

K0.Ka.Ck//:

For a unital algebra A, let P.A/ denote the additive category of finitely gener-

ated projective right A-modules. Let K0.A/ denote the split Grothendieck group

of P.A/. The category Ck contains a full subcategory C
0
k

with a single objectX˝k

whose endomorphism algebra EndCk
.X˝k/ D Ak. Let Ka.C0

k
/ be the idempo-

tent completion of the additive closure C
0
k

add
of C0

k
. Thus, the category Ka.C0

k
/

is isomorphic to P.Ak/. There is an inclusion hkWP.Ak/ � Ka.Ck/ of addi-

tive categories. Isomorphism (41) implies that hk is an equivalence. Therefore,



How to categorify the ring of integers localized at two 771

hk�WK0.Ak/ ! K0.Ka.Ck// is an isomorphism. By Proposition 4.1, there is a

natural isomorphism of abelian groups:

K0.Ka.C// Š lim
�!

K0.Ak/: (43)

Here Ak is just a k-algebra without the grading and the differential, and K0.Ak/

is the usual Grothendieck group of the ring. The major part of the complexity in

this construction lies in dealing with algebras of exponential growth, including the

endomorphism algebra Ak of the object X˝k .

An approach to K0.Ak/. Recall the chain of two-sided ideals Jn;k from (12),

and the quotient algebra Lk D Ak=Jk�1;k from (13) in Section 2. The algebra Lk

is naturally isomorphic to L˝k for L D L1.

For k D 1, A1 D J1;1 has a basis B1;1 D B1;1.0/tB1;1.1/, and J D J0;1 has a

basis B1;1.0/ with respect to the inclusion J0;1 � A1, by Corollary 2.2. Under the

quotient map A1 ! L, the set B1;1.1/ is mapped bijectively to the normal form
basis of L D L1, see [9, Section 5]. The algebra L is naturally isomorphic to the

Leavitt algebra L.1; 3/. Thus,

Lk Š L.1; 3/
˝k:

If we view Ak as a DG algebra concentrated in degree 0 with the trivial

differential, the analogue of Lemma 3.7 still holds. Therefore, there is an induced

exact sequence of K-groups

K1.Lk/
@
�! K0.Ak�1/

ik�
��! K0.Ak/

jk �
��! K0.Lk/: (44)

Conjecture 4.2. For k � 1, K0.Lk/ is isomorphic to Z=2 with a generator ŒLk�,
and K1.Lk/ is torsion.

The Leavitt algebra L1 is regular supercoherent by [4, Lemma 6.1]. The

conjecture is known to be true for k D 1; 2, see [3, Theorem 7.6].

By an argument similar to that in the proof of Theorem 3.19, if Conjecture 4.2

is true, then there is a ring isomorphism

K0.Ka.C// Š Z
�

1
2

�
:

Categorical actions of Ka.C/. There is an action FmWZŒ
1
2
� � Z=.2m C 1/ !

Z=.2mC 1/ of the ring ZŒ1
2
� on the abelian group Z=.2mC 1/, where �1

2
acts as

multiplication by m.
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Recall that L.m; n/ is the k algebra generated by entries of xij ; yij of matrices

X D .xij /; Y D .yij / of sizem�n and n�m respectively, subject to the relation:

XY D Im; YX D In. The algebra L.m; n/ is the universal object with respect to

the non-IBN (Invariant Basis Number) property: Rm Š Rn. It is known [5] that

K0.L.m; n// Š Z=.n �m/ generated by the class ŒL.m; n/�.

There is a family of categorical actions

FmWKa.C/ � P.L.m; 3mC 1// �! P.L.m; 3mC 1//

of Ka.C/ on the category of finitely generated projective right L.m; 3m C 1/-

modules, where the generating object X of Ka.C/ acts by tensoring with the

L.m; 3mC 1/-bimodule L.m; 3mC1/m. Conjecturally, Fm categorifies the linear

action Fm.

4.3. A possible categorification of Z
�

1
n

�

. We consider a pre-additive k-linear

strict monoidal category Cwith a generating objectX in addition to the unit object

1 and require the following isomorphism

X Š 1˚XnC1: (45)

This isomorphism is a natural generalization of isomorphism (40). Generating

morphisms that induce these mutually-inverse isomorphisms are denoted z 2

HomC.1; X/; z
� 2 HomC.X; 1/, and xi ; x

�
i 2 EndC.X/ for 1 � i � n C 1. The

defining relations, generalizing relations (39), are

z�z D 11;

x�
i z D 0; z�xi D 0; for 1 � i � nC 1;

x�
i xj D ıi;j1X ; for 1 � i; j � nC 1;

nC1X

iD1

xix
�
i C zz

� D 1X :

(46)

Let A denote the algebra generated by 11; 1X ; z; z
�; xi ; x

�
i ; 1 � i � n C 1,

subject to the relations above and the obvious compatibility relations between

generators z; z�; xi ; x
�
i and idempotents 11; 1X , for instance, z11 D z D 1Xz and

z1X D 0 D 11z. . The data .A; e D 11/ satisfies the conditions described at the

beginning of Section 2. Thus, we can form a pre-additive monoidal category C

and recover bases of morphisms between tensor powers of X from suitable bases

of A compatible with the idempotent decomposition 1 D eC .1� e/, as explained

in Section 2. Let Ka.C/ denote the idempotent completion of the additive closure

of C. Category Ka.C/ is an additive k-linear Karoubi closed monoidal category.

Conjecture 4.3. There is a ring isomorphism K0.Ka.C// Š Z
�

1
n

�
.
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