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1. Introduction

When categorifying a vector space with an additional data, such as the structure of a ring or a module

over a ring, it’s useful to have a bilinear form on the space. Upon categorification, it may turn into the

form coming from the dimension of hom spaces between projective objects of the category or from the Euler

characteristic of the Ext groups between arbitrary objects.

Categorification of rings are monoidal categories, with an underlying structure of an abelian or a trian-

gulated category, so one can form the Grothendieck group and then equip it with the multiplication coming

from the tensor product on the category.

One of the simplest rings to consider for a categorification is the polynomial ring Z[x] in one variable x.

One can try to categorify various inner product on this ring. In [1] the authors considered an example of a

categorification for the inner product (2", 2™) = (
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In this paper we look at a categorification of Z[z] for the inner product corresponding to the Chebyshev
polynomials of the second kind (13). Monomials 2™ will become objects P, of an additive category, while
the inner product (z™,2™) will turn into the vector space Hom(P,, P,,). We choose a field k and define
Hom(P,, P,,) as the k-vector space with the basis of crossingless matching diagrams in the plane with n
points on the left and m points on the right.

To construct a category out of these vector spaces one needs associative compositions

Hom(P,, P,,) ® Hom(P,,, P,) — Hom(P,, Py).

The standard composition of this kind describes the Temperley-Lieb category. The composition is then given
by concatenating diagrams, allowing isotopies rel boundary and removing a closed circle simultaneously
with multiplying the diagram by —q¢ — ¢~ !. As a special case when n = m one recovers the n-stranded
the Temperley-Lieb algebra T'L,, [2]. The Temperley-Lieb category allows to extend the Jones polynomial
(which coincides with the one-variable Kauffman bracket) to tangles. The Temperley-Lieb (TL) algebra
has many idempotents. If we adopt the composition rules of TL algebra, the objects P, will have many
idempotent endomorphisms and will decompose into a direct sum of smaller objects if the ambient category
is abelian (at least if quantum [n]! is invertible in the ground ring). Either way, they will split into direct
summands in the Karoubian envelope of the original additive category. In the Temperley-Lieb case and for
generic ¢, the Grothendieck ring of the resulting category can also be identified with Z[z], with symbols on
P,, corresponding to x™. For generic ¢ the category of semisimple, with simple objects corresponding to the
Chebyshev polynomials.

In this paper we consider a different case, which can be viewed as a sort of frozen limit of the Temperley-
Lieb category, where diagrams that contain a circle or a pair of U-turns that normally can be straightened up
evaluate to zero. Section 2.4 discusses this two-parameter family of categories, isomorphic to the Temperley-
Lieb categories at nonzero values of the parameters. Specialization ¢t = d = 0 produces a monoidal category
that we consider in the present paper. This category and its representations lead to a new categorification
of the Chebyshev polynomials of the second kind described in Section 3, see Theorem 3.5. In Section 4 we
further analyze the Chebyshev monoidal category and prove that it provides a topological interpretation
for the Bernstein-Gelfand-Gelfand reciprocity property in that case, see Corollary 4.6. We also show in
Corollary 4.10 that the corresponding algebra is Koszul. Finally, Section 2 provides necessary background
on the Temperley-Lieb category, Chebyshev polynomials, and idempotented rings and Grothendieck rings.

Acknowledgments: The first author’s work was partially supported by the NSF grants DMS-1664240 and
DMS-1807425. The second author was partially supported by the Simons Foundation Collaboration grant
318086 and the NSF grant DMS-1854705 during the final stages of this project. The authors would like to
thank the referee for a thorough reading and insightful suggestions to improve the paper.

2. Background and motivation

2.1. Idempotented rings and Grothendieck groups

An idempotented ring (A, {1;};es) is a ring A, non-unital in general, equipped with a set of pairwise
orthogonal idempotents {1;};cs (1;1; = 0; j1;) such that A = & 1;A1;. One can visualize an idempotented
i,j€S
ring as a generalized matrix algebra, with rows and columns enumerated by elements of S, and the abelian
group 1;A1; sitting on the intersection of the i-th row and j-th column.
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1, A1,

Without loss of generality, one can impose the condition that the idempotents are non-zero (switching
between the two versions of the definition amounts to discarding zero idempotents 1; = 0).

A is a unital ring if and only if the set of non-zero idempotents in S is finite; then 1 = Zli' We call
{1:}ics an idempotent system. Forgetting the actual system of idempotents leads to the nolteif)n of a ring
with enough idempotents, that is, a ring admitting such a system, see [3] for instance.

Idempotented rings can be encoded by preadditive categories. A category is preadditive if for any two
objects i, j the set Hom(7, j) is an abelian group, with bilinear composite maps

Hom(i, j) x Hom(j, k) — Hom(s, k).

An idempotented ring A gives rise to a small preadditive category A with objects i, for ¢ € S, morphisms
from 4 to j being 1;A1;, and composition of morphisms coming from the multiplication in A:

LAl x 1Al =5 1;Aly. (1)
Vice versa, a small preadditive category A gives rise to the idempotented ring

A= @ Homyu(s,j).
1,jEOB(A)

A (left) module M over idempotented ring A is called unital if M = @ 1, M. In the rest of the paper by
€S

a module we mean a unital left module unless specified otherwise. A (left) A-module M is called finitely-
generated if there exist finitely many ms,...,m, € M such that M = Ami+Amo+. ..+ Am,,. Idempotented
ring A is called (left) Noetherian if any submodule of a finitely-generated (left) module is finitely generated.
Viewed as a left module over itself, A is finitely generated if and only if it is unital, that is, if the system of
idempotents is finite, |S| < .

A module is called projective if it is a projective object in the category of A-modules. The notions of
unital, projective, finitely-generated module do not depend on the choice of system of idempotents {1;}ics.

An idempotent e € A gives rise to a finitely-generated projective module Ae. For any x € A there exists
a finite subset T' C S such that x € 17 Alp, where 17 := Z 1;. Equivalently, 172 = = z17. A minimal
such T is unique; we can denote it by T'(z). <

Definition 2.1. Given an algebra A its Grothendieck group Ky(A) is a free abelian group with generators
— symbols [P] of finitely-generated (left) projective A-modules P and defining relations [P] = [Py] + [Pz]
whenever P = P @ Ps.

There is a canonical isomorphism between the Grothendieck group of an idempotented ring A and the
direct limit of Grothendieck groups of unital rings 17 Al7, where T ranges over finite subsets of S:

Ko(4)= lim Ko(lrAlr), @

|T| <00
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with inclusions 73 C 7T, giving rise to homomorphisms 15 Alp, — 1p,Alp, and induced maps
KO(1T1A1T1) — KO(ngAng)-
For an idempotent e, 17(,) — e is an idempotent too, orthogonal to e,

e+ (Ire) —e) = 1pe) Z 1y,
€T (e)

and Ae @ A(lT(e) - 6) = AlT(@) = @ Alz
1€T (e)
For ¢ € S define P; := Al; and note that modules P; are projective.

Proposition 2.2. A projective A-module P is finitely-generated iff it is isomorphic to a direct summand of a
finite direct sum of projective modules of the form Al;, for some idempotents iy, ...,i, € S:

n
PoQ= & Aly, i1,...,in €8 (3)
Equivalently, P is a direct summand of (Alp)™, for some m and a finite subset T C S.

Proof. P has finitely many generators, and each generator is a finite sum of terms in 1, P, over various #’s.
We can thus assume that each generator p; of P is in 1;P, for some 4. There is a map P; — P taking
1; € P; to p;. The sum of these maps over all generators of P is a surjective map from ®F; to P. Since P is

7
projective, this map splits. We can now take as T the union of ¢’s and for m the number of generators. O

Left, right, and 2-sided ideals in idempotented rings are defined in the same way as for usual rings. A left
ideal I C A is an abelian subgroup, closed under the left action of A, AI C A. Note that ideals in A respect
idempotent decomposition. For instance, a 2-sided ideal I satisfies:

I= @ 1;11;.
i,j€S

The center Z(A) of A is defined as the commutative ring of additive natural transformations of the
identity functor

Id: A—mod — A—mod

(on either the category of left or right A-modules). Elements of Z(A) are in bijection with collections
{zi|z; € 1;AL;, i € S, and Vi, j € S, Yy € 1;Al;, z;y = yx; }.

Given a field k, we say that an idempotented ring A is a k-algebra if the abelian groups 1;A41; are
naturally k-vector spaces, over all ¢,j € S, and multiplications (1) are k-bilinear for all ¢, j, k. Such A will
be called an idempotented k-algebra.

An idempotented k-algebra A is locally finite-dimensional (1fd, for short) if 1;A1; are finite-dimensional
k-vector spaces for all i,j € S.

Proposition 2.3. Finitely-generated modules over an idempotented Ifd k-algebra have the Krull-Schmidt prop-
erty.

Proof. The Krull-Schmidt property for a module M is the uniqueness of a decomposition of M into a direct
sum of indecomposable modules. Let A be an idempotented lfd k-algebra. A sufficient condition for this
property to hold is for End 4(M) to be a finite-dimensional k-algebra. Any finitely-generated A-module M
is a quotient of a finite direct sum of modules P;. Let P be such a finite sum surjecting onto M. Then
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End 4 (M) is a subspace in Hom 4 (P, M). Since P is projective, the natural map End 4 (P) — Homy4 (P, M)
is surjective, and finite-dimensionality of End 4 (M) follows from finite-dimensionality of End 4(P). Algebra
End4(P) is finite dimensional, since it is isomorphic to a finite direct sum of vector spaces of the form
1;A1;, which are finite-dimensional. O

This result, restricted to projective finitely-generated modules, shows that any such module is a direct
summand of P; = Al;, for some i.

Corollary 2.4. The Grothendieck group Ko(A) of finitely-generated projective modules over a locally finite
dimensional idempotented k-algebra A is a free abelian group with a basis given by symbols [P] of indecom-
posable projective A-modules, one for each isomorphism class.

Through the rest of the paper we assume that the idempotented k-algebra A is Ifd.

The ring 1;A1; is finite-dimensional, hence Artinian. Its Jacobson radical J(1;A1;) is nilpotent, and the
quotient algebra 1;A1;/J(1;A1;) is semisimple. Any idempotent decomposition of the unit element 1 in the
quotient ring lifts to a decomposition of 1; in 1;A1;. For each ¢ choose a decomposition 1; = 1; 1 +1;2+-- -+
1;,r, of this idempotent into the sum of primitive mutually-orthogonal idempotents 1; ; € 1;41;, 1 < j < r;.
We refine the 1dempotent system {1;},cs into the 1dempotent system made of 1; ; over all such 7,7, and
denote this system by S. The idempotented k-algebra (A, S ) is also 1fd.

Recall that idempotents e, es in a ring B are called equivalent if there are elements =,y € B such that
e1 = xy, eo = yx. Idempotents e, e5 are equivalent iff projective B-modules Bey, Bey are isomorphic. This
notion of equivalence trivially generalizes to 1dempotented rings. In particular, some of the idempotents
in A might be equivalent. Idempotents 13, over ¢ € S’ decompose into equivalence classes. Choose one
representative ¢/ for each equivalence class, denote the set of such i’s by S’, and define

A = @ 1Al (4)
7'es’

Idempotented k-algebra A’ is a subalgebra of A. Its idempotented system is {1; }iress, and (A’,S”) is Ifd.
Algebras A and A’ are Morita equivalent. In particular, their categories of representations A—mod and
A’—mod are equivalent and their Grothendieck groups are isomorphic.

Idempotented 1fd k-algebra (A’, S’) has the property that all rings 1;;A’1;s are local, and multiplication
(1) takes tensor product 174’1 ® 1,;,A’1l; into the Jacobson radical of 1A'l for all ¢/, € S, i # j'.
We call such an idempotented 1fd algebra basic and shorten basic Ifd to blfd. Equivalently, an idempotented
1fd k-algebra (A’, S") is basic if projective modules A’1;, are indecomposable and pairwise non-isomorphic.
Moreover, any idempotented 1fd k-algebra is Morita equivalent to a basic one.

Corollary 2.5. The Grothendieck group Ko(A) of an idempotented blfd k-algebra (A, S) is free abelian, with
a basis consisting of symbols [P;] of indecomposable projective modules P; = Al;.

Modules P; are pairwise non-isomorphic, have a unique maximal proper submodule, and a unique simple
quotient, denoted L;. Module L; is concentrated in position ¢, in the sense that 1,L; = L;, so that 1;L; =0
for j # i. Any simple A-module L is isomorphic to some L;, for a unique i. End 4 (L;) is a finite-dimensional
division algebra over k.

If (A,S) is an idempotented 1fd k-algebra (not necessarily basic), there is still a bijection between in-
decomposable projective A-modules P,, labeled by elements of some index set U, and simple modules
L,, labeled by elements of the same set, with the property that Hom4(P,,L,) = 0 unless u = v and
Homgu (P, L,) = Enda(Ly, Ly). Thus, L, is the unique simple quotient of P,. For nonbasic algebras it is



6 M. Khovanov, R. Sazdanovic / Journal of Pure and Applied Algebra 225 (2021) 106592

possible for a simple module to be infinite dimensional over k. For instance, this is true for the idempo-
tented algebra of S x S-matrices with coefficients in k, with the column module being simple, where S is
any infinite set.

For a ring or idempotented ring A denote by A—{fl the abelian category of finite-length left A-modules.
Denote by Go(A) = Go(A—fl) the Grothendieck group of the category of finite-length left A-modules. In
general, the Grothendieck group Go(A) of an abelian category A has generators [M], over all objects M of
A, and defining relations [M] = [M;] + [M3] over all exact sequences 0 — My — M — My — 0.

To an abelian category A we can associate at least three different versions of the Grothendieck group.
The Grothendieck group Go(.A) has generators - symbols [M] of objects of A, with short exact sequences
as above giving defining relations. The Grothendieck group of projective objects Ky(A) has generators [P],
over projective objects P € A, and defining relations [P] = [P;] 4+ [P2] whenever there is an isomorphism
P = P @ P,. The split Grothendieck group, which we denote SG(A), has with generators [M], over all
objects M and defining relations [M] = [M;] + [Mz] whenever M = M; @ M.

There are obvious homomorphisms

Ko(A) — SG(A) — Go(A).

The composition Ko(A) — Go(A) is, in general, neither surjective nor injective.
For an idempotented 1fd k-algebra (A, S), there is a bilinear pairing

() + Ko(A) ®z Go(A) — Z (5)
given by
([P], [M]) = dimy Hom4 (P, M) (6)

for a finitely generated projective module P and a finite length module M. If every simple A-module is
absolutely irreducible, that is, Enda(L,) = k for all w € U, then this pairing is perfect, and the bases
{[Pu]}uev and {[Ly]}uev are dual with respect to this pairing. In the absence of absolute irreducibility the
pairing becomes perfect upon tensoring the two Grothendieck groups and Z with Q.

Let A be an idempotented k-algebra. A left A-module M is called locally finite-dimensional (1fd, for
short) if 1;M is a finite-dimensional k-vector space, for any i € S.

Denote by A—1fd the abelian category of Ifd A-modules (furthermore, it’s a thick subcategory of A—mod).
For each ¢ in S there is a homomorphism

pi @ Go(A—1fd) — Z (7)

taking [M] to dimy(1;M). Assume now that A is a basic Ifd idempotented k-algebra. Then the image of
this homomorphism is spanned by dimy(L;) € Z, and the homomorphism is surjective iff L; is absolutely
irreducible.

Taking the product of p; over all i € S gives a homomorphism

p : Go(A-1fd) — ] z. (8)

€S

If (A,S) is a basic Ifd idempotented k-algebra, the image of p is the product H dimy (L;)Z (consider the
€S
image of the object @ L} of A—lfd for arbitrary n; € N).
=
If, in addition, all L;’s are absolutely irreducible, p is surjective. It’s not clear whether p is injective for
various natural examples of 1fd idempotented k-algebras, including the ones considered in this paper.
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If A is an idempotented 1fd k-algebra then any finitely generated A-module is Ifd. In particular, simple
A-modules and finite-length A-modules are 1fd, and there are inclusions of categories

A-fl c A—fg C A-Ifd. (9)
In summary:

o A—fl is the abelian category of finite-length modules,

o A—fg is the additive category of finitely-generated modules (abelian category if A is a Noetherian
idempotented algebra),

o A-Ifd is the abelian category of locally finite-dimensional modules.

2.2. Chebyshev polynomials

The Chebyshev polynomials of the second kind U, (x) are defined by the recurrence relation and initial
conditions

Uns1(z) = 22U, () — Up—1(z), Us(xz) =1, Ui(z) = 2x.

We use their rescaled counterparts U,, = U, (%), which are sometimes called the Chebyshev polynomials of
the second kind on the interval [—2,2], see [4, Section 1.3.2]. In this paper we simply call U,,’s Chebyshev
polynomials. The are determined by the recurrence relation

Unt1(z) = 2y (x) — Up—1 () (10)
and initial conditions
Up(x) =1, Ui(z)=x. (11)
For later use, we rewrite the recurrence as
U () = Upy1(x) + Up—1(z) (12)

Chebyshev polynomials {U4,},>0 form an orthogonal set on the interval [—2,2] with respect to the
weighting function v/4 — z2. If we define the inner product on polynomials by

2

(1:9) = 5= [ f@hg(@)Vi- s, (13)
)

then

21 0 otherwise.
Z2

2
Unn (@), Unn () = — /L{n(x)um(m)\/Zl ~de — { L ifn=m, (14)

Chebyshev polynomials for small values of n are Uy(z) = 1, Uy (z) = z, Us(x) = 22 — 1, Us(x) = 2> —

2z, Ug(z) = 2* — 322 + 1, Us(z) = 2° — 423 + 3z, Us(7) = 25 — 5a* + 622 — 1, Ur(2) = 27 — 62° + 1023 —
4, Us(x) = 28 — T8 + 152% — 1022 + 1.
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Chebyshev polynomials satisfy the multiplication rule

U,, is a monic polynomial of degree n with n real roots 2 cos(n”—_{_“l), k=1,...,n. Notice that 2 cos(nﬂ—ﬁ) =

¢* + ¢F, where ¢ = e7#1. The n-th Chebyshev polynomial U, has integral coefficients, which alternate
with each change in the exponent by two.
Chebyshev polynomials can be described via the determinantal formula

x 1 0 ... 0 O
1 1 ... 0 O
U, (z) = 0 1 =z 0 0 (16)
0 0 0 ... z 1
0 0 0 ... 1

The Chebyshev polynomial has the following evaluations Uy, (1) = 0 and Uy, (—1) = (=1)""}(n — 2)2(*~D
for n > 2. Chebyshev polynomials have the generating function

1
S Uyt = —
o 1—at+t

2.3. A categorification of the Chebyshev polynomials via sly representations

The Lie algebra sl(2) has one irreducible representation in each dimension. Let V;, denote the irreducible
(n + 1) dimensional representation of si(2). Representation V; is trivial, while V; is the defining (vector)
representation of sl(2), and V,, ~ S™(V}). The category sl(2)—mod of finite-dimensional sl(2) representations
is a semisimple tensor category with the Grothendieck ring Ky (sl(2)) being a free abelian group with the
basis {[Vp], [V1],...} in the symbols of all irreducible modules. The multiplication in the Grothendieck ring
is defined by:

VIW]:=[VeW]
Direct sum decomposition for the tensor product
Va® Vi = Vinm| @ Vin—m4+2 @ .- © Vi (17)
categorifies the equation (15) and gives the multiplication in the basis of irreducibles
VallVinl = Vin—m] + Min—mi+2] + - - + [Vasgm].
We identify the Grothendieck ring with the polynomial ring
Ko(sl(2)) =~ Zx] (18)

in one variable z by taking [V3] to  and, correspondingly, [V;*"] to ™. Under this isomorphism sym-
bols of irreducibles go to Chebyshev polynomials, [V,] <> Uy, (x). Thus, irreducible s/(2) modules offer a
categorification of Chebyshev polynomials.

The Temperley-Lieb category, denoted by T'L, is a monoidal C-linear category with objects non-negative
integers n € Z4, n ®@ m = n +m, and Homyy(n,m) = Homg o) (V;>", V™). A basis in Hompy (n, m) is
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ORIy

Fig. 1. Defining relations in T'L: on the left, the value of the circle is set to minus two, and the isotopy relations are shown on the

O S —72,

Fig. 2. Defining relations in Tgq ;.

given by the diagrams of crossingless matchings in the plane between n points on the left and m points on the
right. As a C-linear monoidal category, T'L can be described by a single generating object 1, corresponding
to representation Vi, and two generating morphisms between the unit object 0 and the tensor square
2 = 1 ® 1 of the generating object, corresponding to the intertwiners Vo — V1®2, V1®2 — Vh. These
generating morphisms can be depicted by the U-turn diagrams C and D, with defining relations in T'L,
viewed as a monoidal category, shown in Fig. 1, including the isotopy relations.

The category sl(2)—mod of finite-dimensional sl(2)-representations is equivalent to the Karoubian enve-
lope C of the additive closure of T'L. To define the latter we first allow finite direct sums of objects of T'L,
than pass to the Karoubian envelope C = Kar(Add(TL)). Quantum deformation Cy of C is obtained by
changing the value of a circle to d = —q — ¢~ !, g € C, see Fig. 2 left.

This results in the Temperley-Lieb category T'Lg. This category has non-negative numbers n as objects
and k-linear combinations of diagrams of planar arcs with n left and m right endpoints as morphisms,
modulo the isotopy relations and evaluating a circle to d. Allowing finite direct sums of objects and passing
to the Karoubi envelope results in the monoidal category Cyq = Kar(Add(TLy)).

For ¢ not a root of unity, Cy is equivalent to the category of finite-dimensional representations of the
quantum group Uy(sl(2)) on which the Cartan generator K acts with eigenvalues powers of q.

We refer the reader to Queffelec-Wedrich [5] for a similar categorification of the Chebyshev polynomials
of the first kind.

2.4. A 2-parameter family of Temperley-Lieb type monoidal categories

One-parameter family of Temperley-Lieb categories can be viewed as a limit of a two-parameter family
TLgy+ of monoidal categories, where we evaluate a circle to d and a squiggle to ¢ times the identity, see
Fig. 2.

If ¢ is a nonzero element of the ground field k, one can rescale by dividing either left or right turns by ¢
to reduce to ¢t = 1 case and the relations shown in Fig. 3.

These are the relations in the Temperley-Lieb category with the value of the circle dt~!. Consequently,
there’s an equivalence (even an isomorphism) of categories

TLgy = TLg-
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Fig. 3. Rescaling relations in Ty, for t # 0 to those of Tys-1.

between T'L4; and the original Templerley-Lieb category with a circle evaluating to di—1.

The only case when we cannot divide by ¢ over a field is when ¢ = 0. This is a degenerate case, which
further splits into two cases d # 0 and d = 0.

If d # 0, rescaling a left or a right return by d=! reduces to the case d = 1, giving an equivalence of
categories

TLao = TLyo, if d#0.

In the present paper we deal with the last case, d = ¢ = 0, which is the maximally degenerate one, in
some sense.

The following provides a simple summary of two-parameter family 7'Lg; based on possible values of d
and t:

e t # 0: one can rescale to get the Temperley-Lieb category T'Lg; -1,
e t =0 provides two options:

1. d # 0: rescale to d = 1, which yields the category T'L; o, or

2. d = 0 the category analyzed in this paper.

Note that d = 1,¢ = 0 case is somewhat reminiscent of the categorification of the polynomial ring in
[1]. Since the value of the circle is one, maps of objects n — n + 2 given by inserting a return somewhere
inside the diagram of n parallel lines has a splitting given by the reflected diagram, so that n becomes
a direct summand of n 4 2 in the Karoubi additive closure of T'L; . There are n + 1 such maps, one
for each position of a return relative to n parallel lines. Due to squiggles being 0, these maps and their
duals are mutually orthogonal, and allow to split off n + 1 copies of the object n from the object n + 2 in
Cio = Kar(Add(TL1)). Iterating, object 2n contains the n-th Catalan number of copies of object 0 as
direct summands.

Additive Karoubi envelope of T'Lg; is semisimple for generic d,t € k. Category T'L¢ is on the oppo-
site end of this spectrum, providing the most nonsemisimple extreme behavior in this family of categories.
Nevertheless, there are interesting families of objects even in this extreme case, BGG reciprocity and cate-
gorification properties, considered below.

3. Diagrammatic categorification of the Chebyshev polynomials of the second kind

Let ,,Bg,, for n,m > 0 denote the set of isotopy classes of plane diagrams consisting of n vertices on the
line x = 0 and m vertices on the line = 1, and crossingless connections between them (no intersections
or self-intersections are allowed). Crossingless connections fall into three types: through arcs that connect
points on lines x = 0 and = = 1, and left and right returns that connect pairs of points on the line x = 0
and line x = 1, respectively, see Fig. 4. The number of through arcs is called the width of a diagram. We
let ,BE, (w) and ,,BE,(< w) denote all diagrams in ,BE, of width exactly w and at most w, respectively.

Denote by Bg, the disjoint union of sets ,, Bt, over all n > 0, likewise for ,, B°.
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Fig. 4. A diagram in ¢ B{;(3) of width w = 3 (3 through arcs connecting left and right side) with 3 left returns (blue), and 5 right
returns (red). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Moreover, through arcs are not allowed to have critical points with respect to the orthogonal projection
onto the x—axis, and returns need to have exactly one critical point, see Fig. 1. Diagrams are considered up
to isotopies that preserve these conditions.

The cardinality of the set ,, B, is the k-th Catalan number Cy, = %ﬂ (Qkk) for k = "Zm.

Let A= @& ,A%, where ,A¢, denotes a vector space over a base field k with the basis of diagrams
n,m>0
nBES,. In addition, A° is given k-linear multiplication by the horizontal concatenation of diagrams. More

precisely, the product zy € , B¢ of diagrams x € ,BS, and y € ;B¢ is zero unless m = [, and also equals
zero if the resulting diagram contains one of the diagrams (other then the horizontal line) shown in Fig. 1.
In other words, the product is zero if there is a circle in the concatenated diagram, or a twist which is a
composition of two returns. Equivalently, it is zero if some connected component of the concatenation has
more than one critical point under the projection to the z-axis. Diagrammatic relations in this category
are shown in Fig. 15, where the category is treated as a k-linear category ignoring the monoidal structure,
and a non-local version of defining relation is shown, with key regions where skein relations are nontrivial
surrounded by identity morphisms on both sides. Monoidally, the category is given by the relations in Fig. 2
with d =t = 0.

Algebra A€ equipped with this multiplication becomes an associative non-unital k—algebra. This algebra
contains an idempotent 1, for each n € Z, consisting of n through arcs. These elements {1, },>0 satisfy

the following equalities:

lyx =z, forz € , By,
yl, =y, fory € 1By,
Ll = G L.

E
{1, }n>0 are mutually-orthogonal idempotents. For any = € A°, there exists k € N such that Zlnx ==

n=0
k
mz 1,,. Thus, A€ is an idempotented k-algebra. Alternatively, this structure can be viewed as a preadditive

n=0
category with objects n € Z, morphisms n — m being ,, A¢,, and composition-the product in A°.

Next we define types of modules of interest to us. Let P,, = A¢1,, denote the module over A€ generated (as

a vector space) by all diagrams in B¢ with n right endpoints. P,’s are indecomposable projective modules

and A° Y & P,. Any projective A°~module is a direct sum of P,’s, with multiplicities being invariants of
n>0

the module. The Grothendieck group Ko(A°®) is free abelian with the basis {[P,]}n>0.
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Fig. 5. Action of algebra A on standard modules M,,: if a resulting diagram contains a right return it is equal to zero.

M)\
S

Fig. 6. Typical basis elements of projective, standard and simple A°~modules, respectively.

Theorem 3.1. Any projective left locally finite—dimensional A°-module P is isomorphic to a finite direct sum

of indecomposable projective modules P,, P = @& P, where the multiplicities a, € Z+ are invariants of
n>0
P.

Proof. The theorem follows from more general results about projective modules over idempotented 1fd
algebras discussed in Section 2.1 and the observation that 1, A°l,, is a local algebra, with the maximal
nilpotent ideal .J,, spanned by diagrams other than the identity diagram. The quotient 1, A°1,/J, is the
ground field k. Furthermore, the multiplication map 1,A4.1,, ® 1,,A.1,, — 1,A.1, for m # n has the
image in J,. O

Indecomposable projective module P, has a unique simple quotient module L,,. This module is one-
dimensional. Denote the basis vector generating L,, by 1,, and note that, with some informality, we use the
same notation for this basis vector as for the corresponding idempotent in A¢. Any diagram from B¢ other
than 1,, acts by zero on L,,. Any simple A°-module is isomorphic to L,, for a unique n. The idempotented k-
algebra A° with this set of idempotents {1, },,>0 is basic locally finite-dimensional, providing an example to
the theory discussed in Section 2.1. All of its simple modules are absolutely irreducible. The bilinear pairing
(5), in the case of A°, is perfect. The bases {[P,]}n>0 and {[Ly]|}n>0 of Ko(A°) and Go(A°), respectively,
are dual to each other.

Let M,, for n > 0 denote the standard module, a quotient of P, by the submodule I,, spanned by
diagrams with n right endpoints and at least one right return. While P, has a basis of all diagrams in B¢,
diagrams with no right returns give a basis in M,,. Any diagram which contains a right return acts by zero
on M, (irregardless of the number of right endpoints of this diagram), see Fig. 5, for instance.

Examples of diagrams corresponding to basis elements in projective, standard and simple modules are
shown in Fig. 6.

A€ is not Noetherian, since the submodule @) of the projective module P, generated by the diagrams
b;, © > 0, shown in Fig. 7 is infinitely generated: b; does not belong to the submodule of @) generated by
diagrams b;, j < 1, since the number of left returns parallel to the outermost return can not be increased
by the left action of A°.

How to circumvent the problem of A¢ not being Noetherian, i.e., that the category of finitely generated
Af—modules is not abelian? One solution is to consider the abelian category A°—fl of finite-length A°-
modules. Since simple A°-modules are all one-dimensional, A°—1fl is also the category of finite-dimensional
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Fig. 7. Generators of the submodule Q of Py which can not be finitely generated.

A°-modules A°—fd. Also, by analogy with the slarc algebra [6,1] and Section 2.1, we use the category A°—I1fd
of locally finite-dimensional A°~modules and the category A°—pfg of projective finitely-generated modules.
The Grothendieck group

Go(A°) 1= Go(A°—fl) = Go(A°—1d) (19)

is free abelian with a basis given by symbols of simple modules [L,,], n > 0. The category A°—1fd is abelian as
well, and contains modules L,,, M, and P,. However, the Grothendieck group of A°—Ifd is large, admitting
a surjection

Go(A°-1fd) 5 [ z

n>0
given by sending [M] — (dim 1oM,dim 1, M, . ..), see equation (8) in Section 2.1. Observe that [P,], over all
n > 0, are linearly independent in Go(A°—I1fd), so that the natural map Ko(A¢) — Go(A°—1fd) is injective.
Overall, there are natural injective maps of Grothendieck groups
Ko(Ac) — Go(AC—lfd) — Go(AC),
and a perfect pairing K¢(A%)®z Go(A°—fd) — Z with
([P], [M]) = dim Hom 4 (P, M),

making bases {[P,]}n>0 and {[L,]}n>0 dual to each other, ([P,], [Lim]) = dn,m.-

Theorem 3.2. There is a natural isomorphism sending generators [Py,] of Ko(A®) to ™ € Z[x], categorifying
Z[x] as an abelian group:

Ko(A®) = Z[x]. (20)

In order to categorify Z[z]| as a ring we need to define a monoidal structure on our category. The Hom
space Hom(P,, P,,) between projective modules P,, and P,, has a basis of diagrams in ,,B¢,. Stacking
diagrams on top of each other defines bilinear maps:

Hom(P,,,, Pn,) ® Hom(P,,,, Pn,) = Hom(Po, tmys Pri+ns)- (21)
Define the tensor product bifunctor A—pmod ® A—pmod — A—pmod on objects by:

P'nl ® Pnl = Lni4ny (22)

and on morphisms P,,, 2 P.., P, ﬁ> P,,, as in [6,1], by stacking basic morphisms one on top of another

and extending using bilinearity (o, 8) — a ® 5 where P, +m, *®6 Poitn,-
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On the level of Grothendieck groups, the tensor product descends to the multiplication, with [P,] = =™
and [P, ® Pp,] = [Ppym] = ™2™ = z"+™. This gives us a categorification of the ring Z[z] via the category
of finitely-generated projective A°-modules. Notice that ® is not symmetric i.e. M @ N 2 N @ M.

The tensor product extends to the category of complexes of projective modules up to homotopies. Denote
by C(A°—pfg) the category of bounded complexes of (finitely generated) projective A°~modules modulo
homotopies (given two chains, say Cy,Cs € C(A°~pmod) then C; ® Cy is '@ZC% ® C’g and the differential

1,]€
d=d; ®1+1®ds), see [7,8]. The tensor product is a bifunctor ’

® : C(A°—pfg) x C(A°—pfg) — C(A°—pfg).

Denote by Xn,n+2k the subset of ,, By, consisting of diagrams without left returns, and denote by
Xn,nyor the cardinality of X, n42k. Note that

X . on+1 n + 2k
SRR Y I T N

We also let X, ,,, = 0 unless m — n is an even nonnegative integer.
Let P,(< w) denote a submodule of P, generated by all diagrams in P,, of width less than or equal to
w, for w > 0. P, has a finite decreasing filtration

Pn:Pn(gn)DPn(gn—2)D...DPn(§n—2k)D...DPn(gn—Qng).

The quotient module P,(< n — 2k)/P,(< n — 2(k + 1)) has a natural basis consisting of diagrams in B,
whose width is exactly n — 2k. Any such diagram can be uniquely presented as a composition of a diagram
in BS_,, with no right returns (corresponding to a basis element of the standard module M, _s;), and a
diagram in jzn_gk’n which has exactly k right and no left returns, see Fig. 8. For k < [ 5| we have

n—2k+1/(n
Koo = 1 (1) 29

Each diagram in )Z'n,gk)n (one is shown in Fig. 8 on the right) provides a generator for a copy of M,,_ap,
viewed as a direct summand of the quotient module P,(< n — 2k)/P,(< n — 2(k + 1)). This yields the
following relation:

~ Xn_2k,n
Po(n —2k)/Py(n — 2(k + 1)) & M, "5,

where M7, for a module M and a set I, denotes the direct sum of copies of M, one for each element of the
set I. For i € I we denote the corresponding copy of M in the summand by M®.
We get a relation in any suitable Grothendieck group of A€, for instance in Go(A°—I1fd):

5]
[Pn] = ZanWv,n[Mank]- (24)
k=0

Module M,, appears X, , times in the above filtration of P, by standard modules. This multiplicity
number is independent of the choice of a filtration of P, with subsequent quotients isomorphic to standard
modules. We denote this multiplicity by [P, : My,] = X n.

Diagrams in B¢ can have nested returns, for example a diagram contains right (or left) nested returns if
endpoints of one return lie between the endpoints of the other, outer return, see the right picture on Fig. 8.
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n-2k n
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1 1

Bn-2k n-Zan

Fig. 8. Left: Decomposition of a diagram in Bj into a diagram in B _,, with no right returns (corresponding to a basis element of

the standard module M, i), and a diagram in j(vnfgk,k‘ Right: Diagram in B with nested returns; outer returns are represented
by dashed lines.

Let X and Y be upper-triangular N x N matrices with nonzero entries

n+1 (n+42k pf(n+k
— I = _— > .
Xn,n+2/~c ntk+1 ( k )a Yn,n+2k ( 1) ( k )7”7 k >0 (25)

The entries of X count diagrams in )A(:nJH_Qk, as defined earlier. Let i}n,n_l,_Qk be the set of diagrams in ,, By, | o
with no left returns and only unnested right returns. Such diagrams necessarily has k right returns, and the
absolute value of Y}, ,, 1o is the cardinality of the set Y}, ,,12k.

Proposition 3.3. Matrices X and Y are mutually inverse, XY =Y X = Id.

Proof. Composing a diagram from ?n’nJer with a diagram from )?Hgk,mgm for 0 < k < m results in
a diagram in f(n,nﬂm. A given diagram ~y € )?anrgm has 2" such presentations as a composition (with
varying k), where r is the number of outer (right) returns of +, that is, returns that are not nested inside
other returns. For instance, diagram (a) in Fig. 9 has two outer returns and 22 possible decompositions,
two of which are shown as diagrams (b) and (c). Each diagram ~ contributes to the (n,n + 2m)-entry of
the matrix Y X (the entry is the sum of contributions from all such diagrams). The contribution is the
alternating sum of 2" one’s, with signs counting the number of outer returns of v that appear in the Y-part
of the decomposition. Clearly, the contribution is 0, unless r = 0, which is only possible with m = 0, in
which case the entry is 1. We see that Y X = Id, while XY = Id follows now from upper-triangularity of X
and Y. O

On the level of Grothendieck groups, inverting (24), we get

3] 3] -
] = Y YownlPoad = 04" ) Rad (26)
k=0

k=0

Based on this equation, one expects to have a projective resolution of the standard module M, with the
k-th term equal to the direct sum of Y,,_o,, copies of P,,_o:

n—k
0 ... pe) By A pnt dyp oy (27)

Let us now construct such complex, parametrizing summands of the k-th term by elements of ?n,gk,n:

di-1

Yo—2k,n dk, pYn—2(k-
O o Pn72]ik7 k P n—2(k—1),n

d Yo _2n d
i) 2y pYocan Dy po AL 0, (28)

n—2
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Fig. 9. Diagram (a) contributes to (3, 13)-entry of matrix Y X. Diagrams (b) and (c) are two out of four of its decompositions.

ii+1 > ‘ .' < ;H

I bn b|i1+2

Fig. 10. Diagrams used in defining differentials in resolutions of standard and simple modules.

|

I
ML

b3 B o

Fig. 11. One component of the differential sends PS* into P7[3 for these a € 5B, and § € 7Bf, by composing with —b2; we have
b28 = a.

with the convention that f’nn is the one-element set consisting of the diagram 1,,.

The module map P, _2x — P,_2(x—1) can be described uniquely by a linear combination ¢ of diagrams
in n—2kaL—2(k—1)' A linear combination c takes a € P, o to ac € P,_y(,—1). The differential dy in (28)
decomposes as the sum of its components

ko @ Poo — Py
over all a € ffn_gkm and 8 € }7“,2(]6,1)’“.

Composing the diagram b;_Q(k_l) with £ gives us a diagram b;_2(k_l)ﬁ € n—2rB:. This diagram has
k right returns, no left returns, and lies in 17”_%7” iff it has no nested returns. The unique right return of
b;_Q( k—1) becomes a right return of the composition. Assuming that the composition has no nested returns,
let j be the order of this right return, where we count right returns from top to bottom, see Fig. 11.

For each « and 8 as above there is at most one i such that o = b;_Q(k_l)B. If there is no such i, we set
dyg,0 = 0, otherwise set dyg.a(a) = (=1)’"ab, 4, for a € Py, Differential dy is the sum of dy,g,q
over all 8, a as above. Thus, the differential is a signed sum of maps given by composing with diagrams
with no left and one right return. The equation dy_1d; = 0 follows at once.
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Fig. 12. Diagram b on the right gives rise to a 2-dimensional cube since it has 2 outermost right returns (represented by dotted
lines).

Proposition 3.4. The complex (28) is exact, giving the finite projective resolution of standard modules M,
n > 0.

Proof. Diagrams a € B;,_,,; constitute a basis of the module P7* ,,.. Composition ac is either 0 or a diagram
in BY. Components of the differential dj take a to a signed sum of diagrams ab;ﬂ(kq)’ which are basis
elements in Pf—2(k—1)’ with the property that aa = ab;ﬁ(kfl)ﬁ. Thus, the product aa is “preserved” by
the differential, in the following sense. The complex (28) is a direct sum of complexes of vector spaces, over
all b € BS

no

which have as basis pairs (o, a) over all o, a as above with ac = b. Each of this complexes of
vector spaces is isomorphic to the complex given by collapsing an anticommutative r-dimensional cube of
one-dimensional vector spaces, one for each vertex of the cube, with all edge maps being isomorphisms,
where r is the number of right returns of b, see Fig. 12.

If » > 0, the corresponding complex is contractible, while when r = 0 the complex has one-dimensional
cohomology in degree 0. Thus, cohomology of (28) lives entirely in cohomological degree 0 and has a basis
of diagram in B¢ without right returns. These diagrams constitute a basis of M¢

n’

implying that (28) is a
resolution of the standard module M,,. O

Consider the category C(A°—pfg) of bounded complexes of finitely-generated projective A°~-modules up
to chain homotopy. This is a monoidal triangulated category, and the inclusion of monoidal categories

A¢—pfg C C(A°—pfg)
induces an isomorphism of Grothendieck rings
Ko(A°—pfg) C Ko(C(A°—pfg)).

Thus, Ko(C(A°—pfg)) = Z[z] as a ring. The standard module M,, can be viewed as an object of C(A°—pfg)
due to the finite projective resolution (28).

Theorem 3.5 (Categorification of the Chebyshev polynomials of the second kind U, (x)). Standard modules
M, admit finite resolutions by projectives P, for m < n, see equation (28), and can be converted into objects
of the homotopy category of finitely-generated projective A-modules. Their symbols, viewed as elements of
the Grothendieck ring Ko(A°) = Zx], give the Chebyshev polynomials Uy, (x):

) = 0" P =

k=0

(—1) (” . k) 2 1 (7).

4. Relations between two categorifications, BGG reciprocity and more

In Section 2.3 we briefly recalled the Temperley-Lieb category and its relation to the representation theory
of Lie algebra sl(2) and its quantum deformation. Resolution (28) has a counterpart in that theory, as a
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resolution of the irreducible (n + 1)-dimensional representation V,, of sl(2) or quantum si(2) (for generic q)
by multiples of tensor powers of the two-dimensional representation V;:

0 ... = (VRO oo by @021V agemiyn By

. & (V1®(n—2))n71 & V1®n =V, =0 (29)

The differential is described by the same rules as in (28), via composing diagrams with only right returns. In
this case the diagrams are viewed as describing maps between tensor powers of V; (equivalently, morphisms
in the Temperley-Lieb category). For diagrams with both left and right returns the composition rules are
different from those in A€, but for diagrams with right returns only there is no change. That (29), for any ¢,
is a resolution of V;, can be proved similar to Proposition 3.4, by using diagrammatics [9,10] for the Lusztig
dual canonical basis of tensor powers of V; instead of the basis Bt of P,. Notice that, unlike the quantum
sl(2) case, where V,, is irreducible for generic ¢, standard modules M,, do not even have finite length.

For generic ¢ the category of finite-dimensional representations of quantum si(2) is semisimple, and
resolving objects seems to carry little sense from the homological viewpoint. Nevertheless, essentially this
resolution was used in [11] to categorify the colored Jones polynomial, also see [12,13]. Resolutions of
irreducible representations of sl(n) by tensor products of fundamental representations have been studied
by Akin, Buchsbaum, Weyman [14,15] and others, often in the dual Schur-Weyl context, where simple
symmetric group representations are resolved via induced ones, with applications to algebraic geometry [16].

Projective resolution (28) provides some homological information about standard modules, observed in
the two propositions below. To establish Proposition 4.1 below one forms the above projective resolution of
M, leading to an easy computation of the Ext groups.

Proposition 4.1. Given two standard modules M,,, M,, the k-th Ext group for k < %] is

n—k

Ext® (M, Myn) 2 (1n_21 My) %) and

m—+4n
(R ifm <n—2k and n+m is even,

dimy Extk(anMm) = { ( 0 otherwise

Proposition 4.2. The k-th Ext group for standard and simple modules M,,, L, has dimension

n—k) me <n, k= n—m}

dimy Ext® (M, L) = { ("% 2 (30)

0 otherwise.

Proposition 4.3. Homological dimension of the standard module M, is | ].
A finite-dimensional A°-module M has a finite filtration by simple modules L,. Due to one-

dimensionality of L, the multiplicity of L,, in M, denoted by [M : L,], equals dimy(1,M). With this

observation in mind, we give the following definition.

Definition 4.4. For a locally finite-dimensional A°-module M define the multiplicity of a simple module L,
in M by

[M : L,] := dimy (1, M). (31)

Proposition 4.5. The multiplicity [M,, : Ly] of Ly, in the standard module M,, equals the number of diagrams
in nBS, with no right returns:



M. Khovanov, R. Sazdanovic / Journal of Pure and Applied Algebra 225 (2021) 106592 19

[Mm : Ln] = Xm,n = nt+m+2 \"5 (32)

2

2(m+1) ( n ) if n>m and n —m is even,
0 otherwise.

The last proposition implies the Bernstein-Gelfand-Gelfand (BGG) reciprocity property [17] for our
category. The BGG reciprocity property is the equality of suitably defined multiplicities for indecomposable
projective, standard and simple modules: [P, : M,,] = [M,, : L] for all m,n assuming the notation for the
multiplicity as in Definition 4.4.

Corollary 4.6. Indecomposable projective, standard, and simple A°-modules satisfy the Bernstein-Gelfand-
Gelfand (BGG) reciprocity property:

[P, : My,) = [My, : Ly). (33)

Resolution of a simple module L,, by standard modules M,,, which we now describe, is, in a sense, dual
to the projective resolution (27) of a standard module by projective modules. This is an infinite to the left
resolution, with the k-th term consisting of the standard module M, 9, with multiplicity Y, ,yox:

Yo ni2r Ak Yo nt2(k—1) Fk—1 dy n+1
s MO = MUY = M, — My — Ly — 0. (34)

The differential dj is a sum of its components

dp g @ M o — Mf+2(k71),

over all a € }N/}LJH_% and 5 € ?n,n+2(k—1)~ For each such pair (o, §) there exists at most one i, 1 <i<n-—1,

such that a = Bbi, see Fig. 10 for the latter notation. If that’s the case, define j to be the order (counting

from the bottom) of the right return of b}, when viewed as a right return of o upon composing with 3. If
such i does not exist, we set di 5o = 0. If it does, we let di g o(2) = (=1)7" 2 b, _o, for x € M2, ).

Notice that any diagram b € , B¢, without right returns induces a homomorphism of standard modules

M, — M,,. Diagram %b,_» has no right returns and induces a map from My o) to MP . The

n+2(k—1)
summand dj, g, of the differential dj, is just this map, with a sign.

The diagram ’b,,_5 is a reflection of b?, about the y-axis. In fact, it would also have been natural to label
copies of M, 1o in the resolution by reflections of diagram in Y}, 5,42k, but we did not do this, to avoid an

additional notation.
Proposition 4.7. The complex (3/) describing the resolution of simple by standard modules is exact.

Proof. M ,; has a basis of diagrams v € B;, |, without right returns. Composition ~va!, where o is the
reflection of o about a vertical axis, is a diagram in Bf, without right returns. The element di g, (), when
nonzero, is, up to a sign, a diagram without right returns in BZ+2(k71)7 and diagrams +dj g0 and yo/
are equal. Consequently, the complex (34), with L,, removed, decomposes into the direct sum of complexes
of vector spaces, over all diagrams b € Bf without right returns, with basis elements of the underlying
vector space corresponding to pairs (a, ) as above with yo/ = b. Each such direct summand is a complex
isomorphic to the r-th tensor power of the contractible complex 0 — k Sk 0, where r is the number
of left returns of b. Only the diagram 1, leads to a summand with nontrivial cohomology, which maps
isomorphically onto L,,, implying that (34) is exact. O

To build a projective resolution of a simple module L,,, we start with the resolution (34) of L,, by standard
modules and then convert each standard module M, ;2 into its projective resolution (28). These resolutions
combine into a bicomplex in the second quadrant of the plane; Fig. 13 shows one square of the bicomplex.
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‘71:.n+21~ X)\/u+2k—21.n+2k: ‘7","+2(k71) X 37”+21¢721,,.+2L
P oo ? Pn+2(k—1)72j

I |

PY"'"H(A}” XY iok—2(j—1),n+2k
—

Pyn.n+2k XYy q2k—2(j—1),n+2k
nt2k—2j

n+2k—2(j—1)
Fig. 13. An anticommutative square in the bicomplex for a simple module.

Horizontal and vertical differentials are defined identically to those in complexes (34) and (28), corre-
spondingly. Differential applied to a single term in the direct summand in the upper left corner is a signed
sum of maps in commutative squares

g X oo B1 X
Pn+2k72j Pn+2(k—1)—2j

| l

Pa1X622j+2 ’ Prlfjrélfi%
defined in the same way as for complexes (34) and (28), where a; € ?n,n+2k, b1 € }7”7n+2(k71)7 ete.

The projective resolution of simple module L, is obtained by forming the total complex of this bicomplex.
Due to finite-dimensionality of homs between projective modules P,,, this is the unique minimal resolution
of L,,. Any other projective resolution is isomorphic to the direct sum of the minimal one with contractible
complexes of the form 0 — P L P —5 0 in various homological degrees.

3n+2k4+m n+2k4+3m
Proposition 4.8. k-vector space Extk(Ln7 L,,) has dimension 4 4 if in each of the two
n m

binomials (Z) above both b,a — b are nonnegative integers. Otherwise Extk(Ln, L) =0.

Corollary 4.9. Simple A¢-modules L,, have infinite homological dimension.
4.1. Koszul algebra structure and relations

Algebra A° has a structure of a graded algebra where grading is given by the total number of left and
right returns in a diagram. The zeroth degree part of A€ is semisimple, being the direct sum of ground
fields k1,,. The projective resolution of L,, is naturally graded, with the m-th term generated by degree m
elements, since the differential is a sum of maps over diagrams with a single return, all of which have degree
one.

The referee has pointed out that A° is the associated graded of the filtered algebra T'L, ; for the filtration
given by the minimal number of U-turns in a diagram.

Corollary 4.10. The Chebyshev algebra A€ is Koszul.

We now write A¢ via its generators and homogeneous relations. The basis of A€ in degree zero is {1, }n>0.
Basis of degree one part of 1,,A°1,, 14 is given by diagrams bfl+2, 1 <i<mn+1, see Fig. 10. Basis of degree

7

one part of 1,,2A°1, is given by diagrams °b,, 1 < i < n + 1, which are reflections of b,

1o relative to a
vertical axis, see Fig. 10. For m # n=+2, the degree one subspace of 1,, A°1,, is trivial. The defining relations,
are quadratic, except for the relations involving idempotents 1,. The latter relations have degree zero and

one:
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Fig. 15. Chebyshev quadratic relations from (35)-(39): from left to right and top to bottom.

1,1, = 5nm1na bZ b]m -
b;Ln,J,-le = 5n+2777"7«b171l+2’ b’;1+2 me ==
1mb’:L+2 = 6m,nb’%+23 ’Lbnjbm -

byl = pm'bny Ly = 0nyo.mibn, Dbl o =

if m#n+2,
if m#mn,
if n#m+2,
if n#£m.

Diagrammatically, these relations come from the conditions that the product of diagrams is zero if the
number of endpoints does not match. We can represent these generators as arrows in the quiver which is a

disjoint union of quivers for even and odd values of n in 1,,, see Fig. 14.

The following genuine quadratic relations are shown schematically in Fig. 15:

] i+1
:H-Q ¢ bn = 07

7 7
n+2 bn = 07

) ) jb _ bi72
b21+2 ]bn = . n? ?_2
by _o b

ifi>j+2
if j>i+2,
gz Tbn =72y by if >0+ 2,

by bl = b05 b A G >0+ 2,
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4.2. Approximations of the identity via truncation functors

Following the notation ,, BS, (k) for the diagrams of width k, let A°(< k) C A° denote the two-sided ideal
of A¢ generated by diagrams with at most k through strands. Notice that A¢(< k) C A(< k+ 1) and that
Uk>0AS(< k) = A°. For k > 0, define a right exact functor Fy : A°~mod — A°—mod by Fj(M) = A%(<

k) @ ac M.

Proposition 4.11. Functor F}, acts on indecomposable projective modules by the identity, Fy(P,) = P, for
n <k, and Fy(P,) = P, (< k) := A%(< k)1,, for n > k. For standard modules M, € A°—mod the action is
Fp,(M,) = M, forn <k and Fp(M,) =0 forn > k.

Proof. The proof is straightforward. Note, that M,, has a basis of diagrams with exactly n through strands.
Modules Fy(P,) = P,(< k) for n > k have finite homological dimension, since they admit finite filtrations
with successive quotients isomorphic to standard modules M,, o, for n—2m < k. In particular, P, (< k) has
a finite length resolution by finitely-generated projective, and F} is a well-defined functor on the category
of bounded complexes of finitely-generated projective A°-modules. O

Proposition 4.12. Derived functors of the functor Fy applied to a standard module are L'F),(M,) = M, if
n <k and i =0, otherwise L'F},(M,,) = 0.

Proof. To compute the derived functor LFj on M, we apply Fj to the terms of the projective resolution
(28), removing non-projective term M, on the far right of the diagram. If n < k, F}, acts as identity on
all terms of the resolution. Consequently L°F)(M,) = M, and L‘Fy(M™) = 0 for i > 0 in this case. If
n > k, applying F}, to all terms of the projective resolution (28) results in an exact complex. In the standard
diagram bases of projective modules in this resolution, applying Fj removes all diagrams of width greater
than k. The remaining diagrams, of width at most k, constitute an exact complex of A°-modules. Note
that only diagrams of width n (modulo the span of those of smaller width) constitute a non-exact complex,
whose homology is, naturally, M,,. Thus, for n > k, the derived functor LF;(M,)=0. O

Recall that the Grothendieck group Ko(A°) of finitely-generated projective A°-modules has a basis
{[Pa]}n>0 of symbols of indecomposable projective modules. Monoidal structure of A¢ takes products of
projectives to projectives and induces multiplication on K((A¢). The latter can naturally be identified with
Zx], with ™ = [P,].

Thus, symbols of indecomposable projective modules correspond to the monomials [P,] = z"

, while
symbols of standard modules correspond to Chebyshev polynomials, [M,,] = U,,.

Functor F}, descends to an operator on the Grothendieck group Ko(A€), denoted by [Fy]. This operator
acts by

[Fel(z") = [Fip]([Pa]) = 2™, if n <k,
and
[Fr](Uy,) = [Fr)([My]) = [LF(My)] =0 for n > k.

Thus, [F)] acts by identity on the subspace of polynomials of degree at most k and by zero on the linear
span of Chebyshev polynomials U, for n > k. It’s a reproducing kernel, and the projection operator onto
the subspace spanned by the first £+ 1 Chebyshev polynomial orthogonally to the subspace spanned by U,
for n > k. We can think of [F}] as an approximation to the identity operator, which gets better as k goes to
infinity. Likewise, the truncation functor Fj and its derived functors can be thought of as approximations to
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the identity functor. In particular Fj, acts as the identity functor on the full subcategory of the triangulated
category generated by modules P, for n < k, while annihilating the full subcategory of complexes of
projectives generated by resolutions of M, for n > k.

4.8. Restriction and induction functors

For a unital inclusion ¢ : B C A of arbitrary rings the induction functor Ind : B—mod — A—mod,
defined by Ind(M) = A®p M, is left adjoint to the restriction functor Res : A—mod — B—mod

Hom 4 (Ind(M), N) = Hompg(M, Res(N)).

If the inclusion is non-unital, i.e. ¢ takes the unit element of B to an idempotent e # 1 of A, the restriction
functor needs to be redefined. In this case, to a B-module N the restriction functor assigns an eAe-module
N/(1 — e)N and then restricts the action to B.

The induction functor is defined as before:

Ind M) =A@ M=ZAep M B A(l—e)®@p M = Ae@p M

and the induction is still left adjoint to the restriction. A similar construction works for non-unital B and
A equipped with systems of idempotents.

We consider the map from Chebyshev diagrams in ,, By, to those in 1By, given by adding a horizontal
line above a diagram. This map of diagrams respects composition and induces an inclusion of idempotented
algebras ¢ : A° < A€ such that ¢(1,,) = 1,41. The inclusion gives rise to induction and restriction end-
ofunctors of A°—mod, which we denote Ind and Res. Note that Res is exact and Ind is right exact. The
induction functor takes P, to P,y1. On the level of Grothendieck group, the induction functor descends to
the operator of multiplication by x. The action of the restriction functor Res is more complicated and does
not seem to admit an elegant description, since Res(P,) is neither projective nor finitely generated.
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