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1. Introduction

When categorifying a vector space with an additional data, such as the structure of a ring or a module 
over a ring, it’s useful to have a bilinear form on the space. Upon categorification, it may turn into the 
form coming from the dimension of hom spaces between projective objects of the category or from the Euler 
characteristic of the Ext groups between arbitrary objects.

Categorification of rings are monoidal categories, with an underlying structure of an abelian or a trian-
gulated category, so one can form the Grothendieck group and then equip it with the multiplication coming 
from the tensor product on the category.

One of the simplest rings to consider for a categorification is the polynomial ring Z[x] in one variable x. 
One can try to categorify various inner product on this ring. In [1] the authors considered an example of a 
categorification for the inner product (xn, xm) =

(
n+m
m

)
.
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In this paper we look at a categorification of Z[x] for the inner product corresponding to the Chebyshev 
polynomials of the second kind (13). Monomials xn will become objects Pn of an additive category, while 
the inner product (xn, xm) will turn into the vector space Hom(Pn, Pm). We choose a field k and define 
Hom(Pn, Pm) as the k-vector space with the basis of crossingless matching diagrams in the plane with n
points on the left and m points on the right.

To construct a category out of these vector spaces one needs associative compositions

Hom(Pn, Pm) ⊗ Hom(Pm, Pk) −→ Hom(Pn, Pk).

The standard composition of this kind describes the Temperley-Lieb category. The composition is then given 
by concatenating diagrams, allowing isotopies rel boundary and removing a closed circle simultaneously 
with multiplying the diagram by −q − q−1. As a special case when n = m one recovers the n-stranded 
the Temperley-Lieb algebra TLn [2]. The Temperley-Lieb category allows to extend the Jones polynomial 
(which coincides with the one-variable Kauffman bracket) to tangles. The Temperley-Lieb (TL) algebra 
has many idempotents. If we adopt the composition rules of TL algebra, the objects Pn will have many 
idempotent endomorphisms and will decompose into a direct sum of smaller objects if the ambient category 
is abelian (at least if quantum [n]! is invertible in the ground ring). Either way, they will split into direct 
summands in the Karoubian envelope of the original additive category. In the Temperley-Lieb case and for 
generic q, the Grothendieck ring of the resulting category can also be identified with Z[x], with symbols on 
Pn corresponding to xn. For generic q the category of semisimple, with simple objects corresponding to the 
Chebyshev polynomials.

In this paper we consider a different case, which can be viewed as a sort of frozen limit of the Temperley-
Lieb category, where diagrams that contain a circle or a pair of U-turns that normally can be straightened up 
evaluate to zero. Section 2.4 discusses this two-parameter family of categories, isomorphic to the Temperley-
Lieb categories at nonzero values of the parameters. Specialization t = d = 0 produces a monoidal category 
that we consider in the present paper. This category and its representations lead to a new categorification 
of the Chebyshev polynomials of the second kind described in Section 3, see Theorem 3.5. In Section 4 we 
further analyze the Chebyshev monoidal category and prove that it provides a topological interpretation 
for the Bernstein-Gelfand-Gelfand reciprocity property in that case, see Corollary 4.6. We also show in 
Corollary 4.10 that the corresponding algebra is Koszul. Finally, Section 2 provides necessary background 
on the Temperley-Lieb category, Chebyshev polynomials, and idempotented rings and Grothendieck rings.

Acknowledgments: The first author’s work was partially supported by the NSF grants DMS-1664240 and 
DMS-1807425. The second author was partially supported by the Simons Foundation Collaboration grant 
318086 and the NSF grant DMS-1854705 during the final stages of this project. The authors would like to 
thank the referee for a thorough reading and insightful suggestions to improve the paper.

2. Background and motivation

2.1. Idempotented rings and Grothendieck groups

An idempotented ring (A, {1i}i∈S) is a ring A, non-unital in general, equipped with a set of pairwise 
orthogonal idempotents {1i}i∈S (1i1j = δi,j1i) such that A = ⊕

i,j∈S
1iA1j . One can visualize an idempotented 

ring as a generalized matrix algebra, with rows and columns enumerated by elements of S, and the abelian 
group 1iA1j sitting on the intersection of the i-th row and j-th column.
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A =

⎛⎜⎜⎜⎜⎜⎝
.

.

.

. . 1iA1j . .

.

⎞⎟⎟⎟⎟⎟⎠
Without loss of generality, one can impose the condition that the idempotents are non-zero (switching 

between the two versions of the definition amounts to discarding zero idempotents 1i = 0).
A is a unital ring if and only if the set of non-zero idempotents in S is finite; then 1 =

∑
i∈S

1i. We call 

{1i}i∈S an idempotent system. Forgetting the actual system of idempotents leads to the notion of a ring 
with enough idempotents, that is, a ring admitting such a system, see [3] for instance.

Idempotented rings can be encoded by preadditive categories. A category is preadditive if for any two 
objects i, j the set Hom(i, j) is an abelian group, with bilinear composite maps

Hom(i, j) × Hom(j, k) → Hom(i, k).

An idempotented ring A gives rise to a small preadditive category A with objects i, for i ∈ S, morphisms 
from i to j being 1iA1j , and composition of morphisms coming from the multiplication in A:

1iA1j × 1jA1k
m−→ 1iA1k. (1)

Vice versa, a small preadditive category A gives rise to the idempotented ring

A = ⊕
i,j∈Ob(A)

HomA(i, j).

A (left) module M over idempotented ring A is called unital if M = ⊕
i∈S

1iM . In the rest of the paper by 

a module we mean a unital left module unless specified otherwise. A (left) A-module M is called finitely-
generated if there exist finitely many m1, . . . , mn ∈ M such that M = Am1+Am2+. . .+Amn. Idempotented 
ring A is called (left) Noetherian if any submodule of a finitely-generated (left) module is finitely generated. 
Viewed as a left module over itself, A is finitely generated if and only if it is unital, that is, if the system of 
idempotents is finite, |S| < ∞.

A module is called projective if it is a projective object in the category of A-modules. The notions of 
unital, projective, finitely-generated module do not depend on the choice of system of idempotents {1i}i∈S .

An idempotent e ∈ A gives rise to a finitely-generated projective module Ae. For any x ∈ A there exists 
a finite subset T ⊂ S such that x ∈ 1TA1T , where 1T :=

∑
i∈T

1i. Equivalently, 1Tx = x = x1T . A minimal 

such T is unique; we can denote it by T (x).

Definition 2.1. Given an algebra A its Grothendieck group K0(A) is a free abelian group with generators 
– symbols [P ] of finitely-generated (left) projective A-modules P and defining relations [P ] = [P1] + [P2]
whenever P ∼= P1 ⊕ P2.

There is a canonical isomorphism between the Grothendieck group of an idempotented ring A and the 
direct limit of Grothendieck groups of unital rings 1TA1T , where T ranges over finite subsets of S:

K0(A) ∼= lim
T⊂S

K0(1TA1T ), (2)

|T |<∞
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with inclusions T1 ⊂ T2 giving rise to homomorphisms 1T1A1T1 → 1T2A1T2 and induced maps 
K0(1T1A1T1) → K0(1T2A1T2).

For an idempotent e, 1T (e) − e is an idempotent too, orthogonal to e,

e + (1T (e) − e) = 1T (e) =
∑

i∈T (e)

1i,

and Ae ⊕A(1T (e) − e) ∼= A1T (e) ∼= ⊕
i∈T (e)

A1i.

For i ∈ S define Pi := A1i and note that modules Pi are projective.

Proposition 2.2. A projective A-module P is finitely-generated iff it is isomorphic to a direct summand of a 
finite direct sum of projective modules of the form A1i, for some idempotents i1, . . . , in ∈ S:

P ⊕Q ∼=
n
⊕
k=1

A1ik , i1, . . . , in ∈ S. (3)

Equivalently, P is a direct summand of (A1T )m, for some m and a finite subset T ⊂ S.

Proof. P has finitely many generators, and each generator is a finite sum of terms in 1iP , over various i’s. 
We can thus assume that each generator pi of P is in 1iP , for some i. There is a map Pi −→ P taking 
1i ∈ Pi to pi. The sum of these maps over all generators of P is a surjective map from ⊕

i
Pi to P . Since P is 

projective, this map splits. We can now take as T the union of i’s and for m the number of generators. �
Left, right, and 2-sided ideals in idempotented rings are defined in the same way as for usual rings. A left 

ideal I ⊂ A is an abelian subgroup, closed under the left action of A, AI ⊂ A. Note that ideals in A respect 
idempotent decomposition. For instance, a 2-sided ideal I satisfies:

I = ⊕
i,j∈S

1iI1j .

The center Z(A) of A is defined as the commutative ring of additive natural transformations of the 
identity functor

Id : A−mod −→ A−mod

(on either the category of left or right A-modules). Elements of Z(A) are in bijection with collections 
{xi|xi ∈ 1iA1i, i ∈ S, and ∀i, j ∈ S, ∀y ∈ 1iA1j , xiy = yxj}.

Given a field k, we say that an idempotented ring A is a k-algebra if the abelian groups 1iA1j are 
naturally k-vector spaces, over all i, j ∈ S, and multiplications (1) are k-bilinear for all i, j, k. Such A will 
be called an idempotented k-algebra.

An idempotented k-algebra A is locally finite-dimensional (lfd, for short) if 1iA1j are finite-dimensional 
k-vector spaces for all i, j ∈ S.

Proposition 2.3. Finitely-generated modules over an idempotented lfd k-algebra have the Krull-Schmidt prop-
erty.

Proof. The Krull-Schmidt property for a module M is the uniqueness of a decomposition of M into a direct 
sum of indecomposable modules. Let A be an idempotented lfd k-algebra. A sufficient condition for this 
property to hold is for EndA(M) to be a finite-dimensional k-algebra. Any finitely-generated A-module M
is a quotient of a finite direct sum of modules Pi. Let P be such a finite sum surjecting onto M . Then 
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EndA(M) is a subspace in HomA(P, M). Since P is projective, the natural map EndA(P ) −→ HomA(P, M)
is surjective, and finite-dimensionality of EndA(M) follows from finite-dimensionality of EndA(P ). Algebra 
EndA(P ) is finite dimensional, since it is isomorphic to a finite direct sum of vector spaces of the form 
1iA1j , which are finite-dimensional. �

This result, restricted to projective finitely-generated modules, shows that any such module is a direct 
summand of Pi = A1i, for some i.

Corollary 2.4. The Grothendieck group K0(A) of finitely-generated projective modules over a locally finite 
dimensional idempotented k-algebra A is a free abelian group with a basis given by symbols [P ] of indecom-
posable projective A-modules, one for each isomorphism class.

Through the rest of the paper we assume that the idempotented k-algebra A is lfd.
The ring 1iA1i is finite-dimensional, hence Artinian. Its Jacobson radical J(1iA1i) is nilpotent, and the 

quotient algebra 1iA1i/J(1iA1i) is semisimple. Any idempotent decomposition of the unit element 1 in the 
quotient ring lifts to a decomposition of 1i in 1iA1i. For each i choose a decomposition 1i = 1i,1 +1i,2 + · · ·+
1i,ri of this idempotent into the sum of primitive mutually-orthogonal idempotents 1i,j ∈ 1iA1i, 1 ≤ j ≤ ri. 
We refine the idempotent system {1i}i∈S into the idempotent system made of 1i,j over all such i, j, and 
denote this system by S̃. The idempotented k-algebra (A, S̃) is also lfd.

Recall that idempotents e1, e2 in a ring B are called equivalent if there are elements x, y ∈ B such that 
e1 = xy, e2 = yx. Idempotents e1, e2 are equivalent iff projective B-modules Be1, Be2 are isomorphic. This 
notion of equivalence trivially generalizes to idempotented rings. In particular, some of the idempotents 
in A might be equivalent. Idempotents 1ĩ, over ĩ ∈ S̃, decompose into equivalence classes. Choose one 
representative i′ for each equivalence class, denote the set of such i′’s by S′, and define

A′ = ⊕
i′,j′∈S′

1i′A1j′ . (4)

Idempotented k-algebra A′ is a subalgebra of A. Its idempotented system is {1i′}i′∈S′ , and (A′, S′) is lfd. 
Algebras A and A′ are Morita equivalent. In particular, their categories of representations A−mod and 
A′−mod are equivalent and their Grothendieck groups are isomorphic.

Idempotented lfd k-algebra (A′, S′) has the property that all rings 1i′A′1i′ are local, and multiplication 
(1) takes tensor product 1i′A′1j′ ⊗ 1j′A′1i′ into the Jacobson radical of 1i′A′1i′ for all i′, j′ ∈ S′, i′ �= j′. 
We call such an idempotented lfd algebra basic and shorten basic lfd to blfd. Equivalently, an idempotented 
lfd k-algebra (A′, S′) is basic if projective modules A′1i′ are indecomposable and pairwise non-isomorphic. 
Moreover, any idempotented lfd k-algebra is Morita equivalent to a basic one.

Corollary 2.5. The Grothendieck group K0(A) of an idempotented blfd k-algebra (A, S) is free abelian, with 
a basis consisting of symbols [Pi] of indecomposable projective modules Pi = A1i.

Modules Pi are pairwise non-isomorphic, have a unique maximal proper submodule, and a unique simple 
quotient, denoted Li. Module Li is concentrated in position i, in the sense that 1iLi = Li, so that 1jLi = 0
for j �= i. Any simple A-module L is isomorphic to some Li, for a unique i. EndA(Li) is a finite-dimensional 
division algebra over k.

If (A, S) is an idempotented lfd k-algebra (not necessarily basic), there is still a bijection between in-
decomposable projective A-modules Pu, labeled by elements of some index set U , and simple modules 
Lu, labeled by elements of the same set, with the property that HomA(Pu, Lv) = 0 unless u = v and 
HomA(Pu, Lu) ∼= EndA(Lu, Lu). Thus, Lu is the unique simple quotient of Pu. For nonbasic algebras it is 
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possible for a simple module to be infinite dimensional over k. For instance, this is true for the idempo-
tented algebra of S × S-matrices with coefficients in k, with the column module being simple, where S is 
any infinite set.

For a ring or idempotented ring A denote by A−fl the abelian category of finite-length left A-modules. 
Denote by G0(A) = G0(A−fl) the Grothendieck group of the category of finite-length left A-modules. In 
general, the Grothendieck group G0(A) of an abelian category A has generators [M ], over all objects M of 
A, and defining relations [M ] = [M1] + [M2] over all exact sequences 0 −→ M1 −→ M −→ M2 −→ 0.

To an abelian category A we can associate at least three different versions of the Grothendieck group. 
The Grothendieck group G0(A) has generators - symbols [M ] of objects of A, with short exact sequences 
as above giving defining relations. The Grothendieck group of projective objects K0(A) has generators [P ], 
over projective objects P ∈ A, and defining relations [P ] = [P1] + [P2] whenever there is an isomorphism 
P ∼= P1 ⊕ P2. The split Grothendieck group, which we denote SG(A), has with generators [M ], over all 
objects M and defining relations [M ] = [M1] + [M2] whenever M ∼= M1 ⊕M2.

There are obvious homomorphisms

K0(A) −→ SG(A) −→ G0(A).

The composition K0(A) −→ G0(A) is, in general, neither surjective nor injective.
For an idempotented lfd k-algebra (A, S), there is a bilinear pairing

( , ) : K0(A) ⊗Z G0(A) −→ Z (5)

given by

([P ], [M ]) = dimk HomA(P,M) (6)

for a finitely generated projective module P and a finite length module M . If every simple A-module is 
absolutely irreducible, that is, EndA(Lu) = k for all u ∈ U , then this pairing is perfect, and the bases 
{[Pu]}u∈U and {[Lu]}u∈U are dual with respect to this pairing. In the absence of absolute irreducibility the 
pairing becomes perfect upon tensoring the two Grothendieck groups and Z with Q.

Let A be an idempotented k-algebra. A left A-module M is called locally finite-dimensional (lfd, for 
short) if 1iM is a finite-dimensional k-vector space, for any i ∈ S.

Denote by A−lfd the abelian category of lfd A-modules (furthermore, it’s a thick subcategory of A−mod). 
For each i in S there is a homomorphism

ρi : G0(A−lfd) −→ Z (7)

taking [M ] to dimk(1iM). Assume now that A is a basic lfd idempotented k-algebra. Then the image of 
this homomorphism is spanned by dimk(Li) ∈ Z, and the homomorphism is surjective iff Li is absolutely 
irreducible.

Taking the product of ρi over all i ∈ S gives a homomorphism

ρ : G0(A−lfd) −→
∏
i∈S

Z. (8)

If (A, S) is a basic lfd idempotented k-algebra, the image of ρ is the product 
∏
i∈S

dimk(Li)Z (consider the 

image of the object ⊕
i∈S

Lni
i of A−lfd for arbitrary ni ∈ N).

If, in addition, all Li’s are absolutely irreducible, ρ is surjective. It’s not clear whether ρ is injective for 
various natural examples of lfd idempotented k-algebras, including the ones considered in this paper.
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If A is an idempotented lfd k-algebra then any finitely generated A-module is lfd. In particular, simple 
A-modules and finite-length A-modules are lfd, and there are inclusions of categories

A−fl ⊂ A−fg ⊂ A−lfd. (9)

In summary:

• A−fl is the abelian category of finite-length modules,
• A−fg is the additive category of finitely-generated modules (abelian category if A is a Noetherian 

idempotented algebra),
• A−lfd is the abelian category of locally finite-dimensional modules.

2.2. Chebyshev polynomials

The Chebyshev polynomials of the second kind Un(x) are defined by the recurrence relation and initial 
conditions

Un+1(x) = 2xUn(x) − Un−1(x), U0(x) = 1, U1(x) = 2x.

We use their rescaled counterparts Un = Un(x2 ), which are sometimes called the Chebyshev polynomials of 
the second kind on the interval [−2, 2], see [4, Section 1.3.2]. In this paper we simply call Un’s Chebyshev 
polynomials. The are determined by the recurrence relation

Un+1(x) = xUn(x) − Un−1(x) (10)

and initial conditions

U0(x) = 1, U1(x) = x. (11)

For later use, we rewrite the recurrence as

xUn(x) = Un+1(x) + Un−1(x) (12)

Chebyshev polynomials {Un}n≥0 form an orthogonal set on the interval [−2, 2] with respect to the 
weighting function 

√
4 − x2. If we define the inner product on polynomials by

(f, g) = 1
2π

2∫
−2

f(x)g(x)
√

4 − x2dx, (13)

then

(Un(x),Um(x)) = 1
2π

2∫
−2

Un(x)Um(x)
√

4 − x2dx =
{

1 if n = m,
0 otherwise.

(14)

Chebyshev polynomials for small values of n are U0(x) = 1, U1(x) = x, U2(x) = x2 − 1, U3(x) = x3 −
2x, U4(x) = x4 − 3x2 + 1, U5(x) = x5 − 4x3 + 3x, U6(x) = x6 − 5x4 + 6x2 − 1, U7(x) = x7 − 6x5 + 10x3 −
4x, U8(x) = x8 − 7x6 + 15x4 − 10x2 + 1.
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Chebyshev polynomials satisfy the multiplication rule

UnUm = U|n−m| + U|n−m|+2 + · · · + Un+m. (15)

Un is a monic polynomial of degree n with n real roots 2 cos( πk
n+1 ), k = 1, . . . , n. Notice that 2 cos( πk

n+1 ) =
ζk + ζ−k, where ζ = e

πi
n+1 . The n-th Chebyshev polynomial Un has integral coefficients, which alternate 

with each change in the exponent by two.
Chebyshev polynomials can be described via the determinantal formula

Un(x) =

∣∣∣∣∣∣∣∣∣∣

x 1 0 . . . 0 0
1 x 1 . . . 0 0
0 1 x . . . 0 0
. . . . . . . .
0 0 0 . . . x 1
0 0 0 . . . 1 x

∣∣∣∣∣∣∣∣∣∣
(16)

The Chebyshev polynomial has the following evaluations Un(1) = 0 and Un(−1) = (−1)n−1(n − 2)2(n−1)

for n ≥ 2. Chebyshev polynomials have the generating function

∑
n≥0

Un(x)tn = 1
1 − xt + t2

.

2.3. A categorification of the Chebyshev polynomials via sl2 representations

The Lie algebra sl(2) has one irreducible representation in each dimension. Let Vn denote the irreducible 
(n + 1) dimensional representation of sl(2). Representation V0 is trivial, while V1 is the defining (vector) 
representation of sl(2), and Vn � Sn(V1). The category sl(2)−mod of finite-dimensional sl(2) representations 
is a semisimple tensor category with the Grothendieck ring K0(sl(2)) being a free abelian group with the 
basis {[V0], [V1], . . .} in the symbols of all irreducible modules. The multiplication in the Grothendieck ring 
is defined by:

[V ][W ] := [V ⊗W ]

Direct sum decomposition for the tensor product

Vn ⊕ Vm � V|n−m| ⊕ V|n−m|+2 ⊕ . . .⊕ Vn+m (17)

categorifies the equation (15) and gives the multiplication in the basis of irreducibles

[Vn][Vm] = [V|n−m|] + [V|n−m|+2] + . . . + [Vn+m].

We identify the Grothendieck ring with the polynomial ring

K0(sl(2)) � Z[x] (18)

in one variable x by taking [V1] to x and, correspondingly, [V ⊗n
1 ] to xn. Under this isomorphism sym-

bols of irreducibles go to Chebyshev polynomials, [Vn] ↔ Un(x). Thus, irreducible sl(2) modules offer a 
categorification of Chebyshev polynomials.

The Temperley-Lieb category, denoted by TL, is a monoidal C–linear category with objects non-negative 
integers n ∈ Z+, n ⊗ m = n + m, and HomTL(n, m) = Homsl(2)(V ⊗n

1 , V ⊗m
1 ). A basis in HomTL(n, m) is 
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= −2, = =

Fig. 1. Defining relations in TL: on the left, the value of the circle is set to minus two, and the isotopy relations are shown on the 
right.

= d, = t =

Fig. 2. Defining relations in Td,t.

given by the diagrams of crossingless matchings in the plane between n points on the left and m points on the 
right. As a C-linear monoidal category, TL can be described by a single generating object 1, corresponding 
to representation V1, and two generating morphisms between the unit object 0 and the tensor square 
2 = 1 ⊗ 1 of the generating object, corresponding to the intertwiners V0 → V ⊗2

1 , V ⊗2
1 → V0. These 

generating morphisms can be depicted by the U-turn diagrams ⊂ and ⊃, with defining relations in TL, 
viewed as a monoidal category, shown in Fig. 1, including the isotopy relations.

The category sl(2)−mod of finite-dimensional sl(2)-representations is equivalent to the Karoubian enve-
lope C of the additive closure of TL. To define the latter we first allow finite direct sums of objects of TL, 
than pass to the Karoubian envelope C = Kar(Add(TL)). Quantum deformation Cd of C is obtained by 
changing the value of a circle to d = −q − q−1, q ∈ C, see Fig. 2 left.

This results in the Temperley-Lieb category TLd. This category has non-negative numbers n as objects 
and k-linear combinations of diagrams of planar arcs with n left and m right endpoints as morphisms, 
modulo the isotopy relations and evaluating a circle to d. Allowing finite direct sums of objects and passing 
to the Karoubi envelope results in the monoidal category Cd = Kar(Add(TLd)).

For q not a root of unity, Cd is equivalent to the category of finite-dimensional representations of the 
quantum group Uq(sl(2)) on which the Cartan generator K acts with eigenvalues powers of q.

We refer the reader to Queffelec-Wedrich [5] for a similar categorification of the Chebyshev polynomials 
of the first kind.

2.4. A 2-parameter family of Temperley-Lieb type monoidal categories

One-parameter family of Temperley-Lieb categories can be viewed as a limit of a two-parameter family 
TLd,t of monoidal categories, where we evaluate a circle to d and a squiggle to t times the identity, see 
Fig. 2.

If t is a nonzero element of the ground field k, one can rescale by dividing either left or right turns by t
to reduce to t = 1 case and the relations shown in Fig. 3.

These are the relations in the Temperley-Lieb category with the value of the circle dt−1. Consequently, 
there’s an equivalence (even an isomorphism) of categories

TLd,t
∼= TLdt−1
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= dt−1, = =

Fig. 3. Rescaling relations in Td,t for t �= 0 to those of Tdt−1 .

between TLd,t and the original Templerley-Lieb category with a circle evaluating to dt−1.
The only case when we cannot divide by t over a field is when t = 0. This is a degenerate case, which 

further splits into two cases d �= 0 and d = 0.
If d �= 0, rescaling a left or a right return by d−1 reduces to the case d = 1, giving an equivalence of 

categories

TLd,0 ∼= TL1,0, if d �= 0.

In the present paper we deal with the last case, d = t = 0, which is the maximally degenerate one, in 
some sense.

The following provides a simple summary of two-parameter family TLd,t based on possible values of d
and t:

• t �= 0: one can rescale to get the Temperley-Lieb category TLdt−1 ,
• t = 0 provides two options:

1. d �= 0: rescale to d = 1, which yields the category TL1,0, or
2. d = 0 the category analyzed in this paper.

Note that d = 1, t = 0 case is somewhat reminiscent of the categorification of the polynomial ring in 
[1]. Since the value of the circle is one, maps of objects n −→ n + 2 given by inserting a return somewhere 
inside the diagram of n parallel lines has a splitting given by the reflected diagram, so that n becomes 
a direct summand of n + 2 in the Karoubi additive closure of TL1,0. There are n + 1 such maps, one 
for each position of a return relative to n parallel lines. Due to squiggles being 0, these maps and their 
duals are mutually orthogonal, and allow to split off n + 1 copies of the object n from the object n + 2 in 
C1,0 = Kar(Add(TL1,0)). Iterating, object 2n contains the n-th Catalan number of copies of object 0 as 
direct summands.

Additive Karoubi envelope of TLd,t is semisimple for generic d, t ∈ k. Category TL0,0 is on the oppo-
site end of this spectrum, providing the most nonsemisimple extreme behavior in this family of categories. 
Nevertheless, there are interesting families of objects even in this extreme case, BGG reciprocity and cate-
gorification properties, considered below.

3. Diagrammatic categorification of the Chebyshev polynomials of the second kind

Let nBc
m, for n, m ≥ 0 denote the set of isotopy classes of plane diagrams consisting of n vertices on the 

line x = 0 and m vertices on the line x = 1, and crossingless connections between them (no intersections 
or self-intersections are allowed). Crossingless connections fall into three types: through arcs that connect 
points on lines x = 0 and x = 1, and left and right returns that connect pairs of points on the line x = 0
and line x = 1, respectively, see Fig. 4. The number of through arcs is called the width of a diagram. We 
let nBc

m(w) and nBc
m(≤ w) denote all diagrams in nBc

m of width exactly w and at most w, respectively. 
Denote by Bc

m the disjoint union of sets nBc
m over all n ≥ 0, likewise for nBc.
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Fig. 4. A diagram in 9Bc
13(3) of width w = 3 (3 through arcs connecting left and right side) with 3 left returns (blue), and 5 right 

returns (red). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Moreover, through arcs are not allowed to have critical points with respect to the orthogonal projection 
onto the x–axis, and returns need to have exactly one critical point, see Fig. 1. Diagrams are considered up 
to isotopies that preserve these conditions.

The cardinality of the set nBc
m is the k-th Catalan number Ck = 1

k+1
(2k
k

)
for k = n+m

2 .
Let Ac = ⊕

n,m≥0
nA

c
m, where nAc

m denotes a vector space over a base field k with the basis of diagrams 

nB
c
m. In addition, Ac is given k-linear multiplication by the horizontal concatenation of diagrams. More 

precisely, the product xy ∈ nB
c
s of diagrams x ∈ nB

c
m and y ∈ lB

c
s is zero unless m = l, and also equals 

zero if the resulting diagram contains one of the diagrams (other then the horizontal line) shown in Fig. 1. 
In other words, the product is zero if there is a circle in the concatenated diagram, or a twist which is a 
composition of two returns. Equivalently, it is zero if some connected component of the concatenation has 
more than one critical point under the projection to the x-axis. Diagrammatic relations in this category 
are shown in Fig. 15, where the category is treated as a k-linear category ignoring the monoidal structure, 
and a non-local version of defining relation is shown, with key regions where skein relations are nontrivial 
surrounded by identity morphisms on both sides. Monoidally, the category is given by the relations in Fig. 2
with d = t = 0.

Algebra Ac equipped with this multiplication becomes an associative non-unital k–algebra. This algebra 
contains an idempotent 1n for each n ∈ Z+, consisting of n through arcs. These elements {1n}n≥0 satisfy 
the following equalities:

1nx = x, forx ∈ nB
c
m,

y1n = y, for y ∈ lB
c
n,

1m1n = δm,n 1n.

{1n}n≥0 are mutually-orthogonal idempotents. For any x ∈ Ac, there exists k ∈ N such that 
k∑

n=0
1nx = x =

x
k∑

n=0
1n. Thus, Ac is an idempotented k-algebra. Alternatively, this structure can be viewed as a preadditive 

category with objects n ∈ Z+, morphisms n → m being nAc
m, and composition–the product in Ac.

Next we define types of modules of interest to us. Let Pn = Ac1n denote the module over Ac generated (as 
a vector space) by all diagrams in Bc with n right endpoints. Pn’s are indecomposable projective modules 
and Ac ∼= ⊕

n≥0
Pn. Any projective Ac-module is a direct sum of Pn’s, with multiplicities being invariants of 

the module. The Grothendieck group K0(Ac) is free abelian with the basis {[Pn]}n≥0.
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Fig. 5. Action of algebra Ac on standard modules Mn: if a resulting diagram contains a right return it is equal to zero.

Fig. 6. Typical basis elements of projective, standard and simple Ac–modules, respectively.

Theorem 3.1. Any projective left locally finite–dimensional Ac-module P is isomorphic to a finite direct sum 
of indecomposable projective modules Pn, P ∼= ⊕

n≥0
P an
n , where the multiplicities an ∈ Z+ are invariants of 

P .

Proof. The theorem follows from more general results about projective modules over idempotented lfd 
algebras discussed in Section 2.1 and the observation that 1nAc1n is a local algebra, with the maximal 
nilpotent ideal Jn spanned by diagrams other than the identity diagram. The quotient 1nAc1n/Jn is the 
ground field k. Furthermore, the multiplication map 1nAc1m ⊗ 1mAc1n −→ 1nAc1n for m �= n has the 
image in Jn. �

Indecomposable projective module Pn has a unique simple quotient module Ln. This module is one-
dimensional. Denote the basis vector generating Ln by 1n and note that, with some informality, we use the 
same notation for this basis vector as for the corresponding idempotent in Ac. Any diagram from Bc

n other 
than 1n acts by zero on Ln. Any simple Ac-module is isomorphic to Ln, for a unique n. The idempotented k-
algebra Ac with this set of idempotents {1n}n≥0 is basic locally finite-dimensional, providing an example to 
the theory discussed in Section 2.1. All of its simple modules are absolutely irreducible. The bilinear pairing 
(5), in the case of Ac, is perfect. The bases {[Pn]}n≥0 and {[Ln]}n≥0 of K0(Ac) and G0(Ac), respectively, 
are dual to each other.

Let Mn, for n ≥ 0 denote the standard module, a quotient of Pn by the submodule In spanned by 
diagrams with n right endpoints and at least one right return. While Pn has a basis of all diagrams in Bc

n, 
diagrams with no right returns give a basis in Mn. Any diagram which contains a right return acts by zero 
on Mn (irregardless of the number of right endpoints of this diagram), see Fig. 5, for instance.

Examples of diagrams corresponding to basis elements in projective, standard and simple modules are 
shown in Fig. 6.

Ac is not Noetherian, since the submodule Q of the projective module P0 generated by the diagrams 
bi, i > 0, shown in Fig. 7 is infinitely generated: bi does not belong to the submodule of Q generated by 
diagrams bj , j < i, since the number of left returns parallel to the outermost return can not be increased 
by the left action of Ac.

How to circumvent the problem of Ac not being Noetherian, i.e., that the category of finitely generated 
Ac–modules is not abelian? One solution is to consider the abelian category Ac−fl of finite-length Ac-
modules. Since simple Ac-modules are all one-dimensional, Ac−fl is also the category of finite-dimensional 
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Fig. 7. Generators of the submodule Q of P0 which can not be finitely generated.

Ac-modules Ac−fd. Also, by analogy with the slarc algebra [6,1] and Section 2.1, we use the category Ac−lfd
of locally finite–dimensional Ac–modules and the category Ac−pfg of projective finitely-generated modules.

The Grothendieck group

G0(Ac) := G0(Ac−fl) ∼= G0(Ac−fd) (19)

is free abelian with a basis given by symbols of simple modules [Ln], n ≥ 0. The category Ac−lfd is abelian as 
well, and contains modules Ln, Mn and Pn. However, the Grothendieck group of Ac−lfd is large, admitting 
a surjection

G0(Ac−lfd) ρ→
∏
n≥0

Z

given by sending [M ] �→ (dim 10M, dim 11M, . . .), see equation (8) in Section 2.1. Observe that [Pn], over all 
n ≥ 0, are linearly independent in G0(Ac−lfd), so that the natural map K0(Ac) → G0(Ac−lfd) is injective. 
Overall, there are natural injective maps of Grothendieck groups

K0(Ac) −→ G0(Ac−lfd) ←− G0(Ac),

and a perfect pairing K0(Ac)⊗Z G0(Ac−fd) → Z with

([P ], [M ]) = dim HomAc(P,M),

making bases {[Pn]}n≥0 and {[Ln]}n≥0 dual to each other, ([Pn], [Lm]) = δn,m.

Theorem 3.2. There is a natural isomorphism sending generators [Pn] of K0(Ac) to xn ∈ Z[x], categorifying 
Z[x] as an abelian group:

K0(Ac) ∼= Z[x]. (20)

In order to categorify Z[x] as a ring we need to define a monoidal structure on our category. The Hom 
space Hom(Pn, Pm) between projective modules Pn and Pm has a basis of diagrams in nBc

m. Stacking 
diagrams on top of each other defines bilinear maps:

Hom(Pm1 , Pn1) ⊗ Hom(Pm2 , Pn2) → Hom(Pm1+m2 , Pn1+n2). (21)

Define the tensor product bifunctor A−pmod ⊗A−pmod → A−pmod on objects by:

Pn1 ⊗ Pn1 := Pn1+n2 (22)

and on morphisms Pm1
α→ Pn1 , Pm2

β→ Pn2 , as in [6,1], by stacking basic morphisms one on top of another 
and extending using bilinearity (α, β) �→ α⊗ β where Pm1+m2

α⊗β−→ Pn1+n2 .
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On the level of Grothendieck groups, the tensor product descends to the multiplication, with [Pn] = xn

and [Pn ⊗Pm] = [Pn+m] = xnxm = xn+m. This gives us a categorification of the ring Z[x] via the category 
of finitely-generated projective Ac-modules. Notice that ⊗ is not symmetric i.e. M ⊗N � N ⊗M .

The tensor product extends to the category of complexes of projective modules up to homotopies. Denote 
by C(Ac−pfg) the category of bounded complexes of (finitely generated) projective Ac–modules modulo 
homotopies (given two chains, say C1, C2 ∈ C(Ac−pmod) then C1 ⊗C2 is ⊕

i,j∈Z
Ci

1 ⊗ Cj
2 and the differential 

d = d1 ⊗ 1 + 1 ⊗ d2), see [7,8]. The tensor product is a bifunctor

⊗ : C(Ac−pfg) × C(Ac−pfg) −→ C(Ac−pfg).

Denote by X̃n,n+2k the subset of nBc
n+2k consisting of diagrams without left returns, and denote by 

Xn,n+2k the cardinality of X̃n,n+2k. Note that

Xn,n+2k = n + 1
n + k + 1

(
n + 2k

k

)
.

We also let Xn,m = 0 unless m − n is an even nonnegative integer.
Let Pn(≤ w) denote a submodule of Pn generated by all diagrams in Pn of width less than or equal to 

w, for w ≥ 0. Pn has a finite decreasing filtration

Pn = Pn(≤ n) ⊃ Pn(≤ n− 2) ⊃ . . . ⊃ Pn(≤ n− 2k) ⊃ . . . ⊃ Pn(≤ n− 2�n2 �).

The quotient module Pn(≤ n − 2k)/Pn(≤ n − 2(k + 1)) has a natural basis consisting of diagrams in Bc
n

whose width is exactly n − 2k. Any such diagram can be uniquely presented as a composition of a diagram 
in Bc

n−2k with no right returns (corresponding to a basis element of the standard module Mn−2k), and a 
diagram in X̃n−2k,n which has exactly k right and no left returns, see Fig. 8. For k ≤ �n

2 � we have

Xn−2k,n = n− 2k + 1
n− k + 1

(
n

k

)
. (23)

Each diagram in X̃n−2k,n (one is shown in Fig. 8 on the right) provides a generator for a copy of Mn−2k, 
viewed as a direct summand of the quotient module Pn(≤ n − 2k)/Pn(≤ n − 2(k + 1)). This yields the 
following relation:

Pn(n− 2k)/Pn(n− 2(k + 1)) ∼= M
Xn−2k,n

n−2k ,

where M I , for a module M and a set I, denotes the direct sum of copies of M , one for each element of the 
set I. For i ∈ I we denote the corresponding copy of M in the summand by M i.

We get a relation in any suitable Grothendieck group of Ac, for instance in G0(Ac−lfd):

[Pn] =
	n

2 
∑
k=0

Xn−2k,n[Mn−2k]. (24)

Module Mm appears Xm,n times in the above filtration of Pn by standard modules. This multiplicity 
number is independent of the choice of a filtration of Pn with subsequent quotients isomorphic to standard 
modules. We denote this multiplicity by [Pn : Mm] = Xm,n.

Diagrams in Bc can have nested returns, for example a diagram contains right (or left) nested returns if 
endpoints of one return lie between the endpoints of the other, outer return, see the right picture on Fig. 8.
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Fig. 8. Left: Decomposition of a diagram in Bc
n into a diagram in Bc

n−2k with no right returns (corresponding to a basis element of 
the standard module Mn−2k), and a diagram in X̃n−2k,k. Right: Diagram in Bc with nested returns; outer returns are represented 
by dashed lines.

Let X and Y be upper-triangular N ×N matrices with nonzero entries

Xn,n+2k = n + 1
n + k + 1

(
n + 2k

k

)
, Yn,n+2k = (−1)k

(
n + k

k

)
, n, k ≥ 0. (25)

The entries of X count diagrams in X̃n,n+2k, as defined earlier. Let Ỹn,n+2k be the set of diagrams in nBc
n+2k

with no left returns and only unnested right returns. Such diagrams necessarily has k right returns, and the 
absolute value of Yn,n+2k is the cardinality of the set Ỹn,n+2k.

Proposition 3.3. Matrices X and Y are mutually inverse, XY = Y X = Id.

Proof. Composing a diagram from Ỹn,n+2k with a diagram from X̃n+2k,n+2m for 0 ≤ k ≤ m results in 
a diagram in X̃n,n+2m. A given diagram γ ∈ X̃n,n+2m has 2r such presentations as a composition (with 
varying k), where r is the number of outer (right) returns of γ, that is, returns that are not nested inside 
other returns. For instance, diagram (a) in Fig. 9 has two outer returns and 22 possible decompositions, 
two of which are shown as diagrams (b) and (c). Each diagram γ contributes to the (n, n + 2m)-entry of 
the matrix Y X (the entry is the sum of contributions from all such diagrams). The contribution is the 
alternating sum of 2r one’s, with signs counting the number of outer returns of γ that appear in the Y -part 
of the decomposition. Clearly, the contribution is 0, unless r = 0, which is only possible with m = 0, in 
which case the entry is 1. We see that YX = Id, while XY = Id follows now from upper-triangularity of X
and Y . �

On the level of Grothendieck groups, inverting (24), we get

[Mn] =
	n

2 
∑
k=0

Yn−2k,n[Pn−2k] =
	n

2 
∑
k=0

(−1)k
(
n− k

k

)
[Pn−2k]. (26)

Based on this equation, one expects to have a projective resolution of the standard module Mn with the 
k-th term equal to the direct sum of Yn−2k,n copies of Pn−2k:

0 → . . . → P
(n−k

k )
n−2k

dk−→ . . .
d2−→ Pn−1

n−2
d1−→ Pn → Mn → 0. (27)

Let us now construct such complex, parametrizing summands of the k-th term by elements of Ỹn−2k,n:

0 → . . . → P
Yn−2k,n dk−→ P

Yn−2(k−1),n dk−1−→ . . .
d2−→ P

Yn−2,n
n−2

d1−→ Pn → Mn → 0, (28)
n−2k n−2(k−1)
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Fig. 9. Diagram (a) contributes to (3, 13)-entry of matrix Y X. Diagrams (b) and (c) are two out of four of its decompositions.

Fig. 10. Diagrams used in defining differentials in resolutions of standard and simple modules.

Fig. 11. One component of the differential sends Pα
5 into Pβ

7 for these α ∈ 5B
c
11 and β ∈ 7B

c
11 by composing with −b27; we have 

b27β = α.

with the convention that Ỹn,n is the one-element set consisting of the diagram 1n.
The module map Pn−2k −→ Pn−2(k−1) can be described uniquely by a linear combination c of diagrams 

in n−2kB
c
n−2(k−1). A linear combination c takes a ∈ Pn−2k to ac ∈ Pn−2(k−1). The differential dk in (28)

decomposes as the sum of its components

dk,β,α : Pα
n−2k −→ P β

n−2(k−1)

over all α ∈ Ỹn−2k,n and β ∈ Ỹn−2(k−1),n.
Composing the diagram bin−2(k−1) with β gives us a diagram bin−2(k−1)β ∈ n−2kB

c
n. This diagram has 

k right returns, no left returns, and lies in Ỹn−2k,n iff it has no nested returns. The unique right return of 
bin−2(k−1) becomes a right return of the composition. Assuming that the composition has no nested returns, 
let j be the order of this right return, where we count right returns from top to bottom, see Fig. 11.

For each α and β as above there is at most one i such that α = bin−2(k−1)β. If there is no such i, we set 
dk,β,α = 0, otherwise set dk,β,α(a) = (−1)j−1abin−2(k−1) for a ∈ Pα

n−2k. Differential dk is the sum of dk,β,α
over all β, α as above. Thus, the differential is a signed sum of maps given by composing with diagrams 
with no left and one right return. The equation dk−1dk = 0 follows at once.
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Fig. 12. Diagram b on the right gives rise to a 2-dimensional cube since it has 2 outermost right returns (represented by dotted 
lines).

Proposition 3.4. The complex (28) is exact, giving the finite projective resolution of standard modules Mn, 
n > 0.

Proof. Diagrams a ∈ Bc
n−2k constitute a basis of the module Pα

n−2k. Composition aα is either 0 or a diagram 
in Bc

n. Components of the differential dk take a to a signed sum of diagrams abin−2(k−1), which are basis 
elements in P β

n−2(k−1), with the property that aα = abin−2(k−1)β. Thus, the product aα is “preserved” by 
the differential, in the following sense. The complex (28) is a direct sum of complexes of vector spaces, over 
all b ∈ Bc

n, which have as basis pairs (α, a) over all α, a as above with aα = b. Each of this complexes of 
vector spaces is isomorphic to the complex given by collapsing an anticommutative r-dimensional cube of 
one-dimensional vector spaces, one for each vertex of the cube, with all edge maps being isomorphisms, 
where r is the number of right returns of b, see Fig. 12.

If r > 0, the corresponding complex is contractible, while when r = 0 the complex has one-dimensional 
cohomology in degree 0. Thus, cohomology of (28) lives entirely in cohomological degree 0 and has a basis 
of diagram in Bc

n without right returns. These diagrams constitute a basis of M c
n, implying that (28) is a 

resolution of the standard module Mn. �
Consider the category C(Ac−pfg) of bounded complexes of finitely-generated projective Ac-modules up 

to chain homotopy. This is a monoidal triangulated category, and the inclusion of monoidal categories

Ac−pfg ⊂ C(Ac−pfg)

induces an isomorphism of Grothendieck rings

K0(Ac−pfg) ⊂ K0(C(Ac−pfg)).

Thus, K0(C(Ac−pfg)) ∼= Z[x] as a ring. The standard module Mn can be viewed as an object of C(Ac−pfg)
due to the finite projective resolution (28).

Theorem 3.5 (Categorification of the Chebyshev polynomials of the second kind Un(x)). Standard modules 
Mn admit finite resolutions by projectives Pm for m ≤ n, see equation (28), and can be converted into objects 
of the homotopy category of finitely-generated projective Ac-modules. Their symbols, viewed as elements of 
the Grothendieck ring K0(Ac) ∼= Z[x], give the Chebyshev polynomials Un(x):

[Mn] =
	n

2 
∑
k=0

(−1)k
(
n− k

k

)
[Pn−2k] =

	n
2 
∑

k=0

(−1)k
(
n− k

k

)
xn−2k = Un(x).

4. Relations between two categorifications, BGG reciprocity and more

In Section 2.3 we briefly recalled the Temperley-Lieb category and its relation to the representation theory 
of Lie algebra sl(2) and its quantum deformation. Resolution (28) has a counterpart in that theory, as a 
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resolution of the irreducible (n + 1)-dimensional representation Vn of sl(2) or quantum sl(2) (for generic q) 
by multiples of tensor powers of the two-dimensional representation V1:

0 → . . . → (V ⊗(n−2k)
1 )Ỹn−2k,n

dk−→ (V ⊗(n−2(k−1))
1 )Ỹn−2(k−1),n

dk−1−→ . . .

. . .
d2−→ (V ⊗(n−2)

1 )n−1 d1−→ V ⊗n
1 → Vn → 0 (29)

The differential is described by the same rules as in (28), via composing diagrams with only right returns. In 
this case the diagrams are viewed as describing maps between tensor powers of V1 (equivalently, morphisms 
in the Temperley-Lieb category). For diagrams with both left and right returns the composition rules are 
different from those in Ac, but for diagrams with right returns only there is no change. That (29), for any q, 
is a resolution of Vn can be proved similar to Proposition 3.4, by using diagrammatics [9,10] for the Lusztig 
dual canonical basis of tensor powers of V1 instead of the basis Bc

n of Pn. Notice that, unlike the quantum 
sl(2) case, where Vn is irreducible for generic q, standard modules Mn do not even have finite length.

For generic q the category of finite-dimensional representations of quantum sl(2) is semisimple, and 
resolving objects seems to carry little sense from the homological viewpoint. Nevertheless, essentially this 
resolution was used in [11] to categorify the colored Jones polynomial, also see [12,13]. Resolutions of 
irreducible representations of sl(n) by tensor products of fundamental representations have been studied 
by Akin, Buchsbaum, Weyman [14,15] and others, often in the dual Schur-Weyl context, where simple 
symmetric group representations are resolved via induced ones, with applications to algebraic geometry [16].

Projective resolution (28) provides some homological information about standard modules, observed in 
the two propositions below. To establish Proposition 4.1 below one forms the above projective resolution of 
Mn leading to an easy computation of the Ext groups.

Proposition 4.1. Given two standard modules Mn, Mm, the k-th Ext group for k ≤ �n
2 � is

Extk(Mn,Mm) ∼= (1n−2kMm)(
n−k
k ) and

dimk Extk(Mn,Mm) =
{ (

n−k
k

)(m+n
2 −k
m

)
if m ≤ n− 2k and n + m is even,

0 otherwise.

Proposition 4.2. The k-th Ext group for standard and simple modules Mn, Lm has dimension

dimk Extk(Mn, Lm) =
{ (

n−k
k

)
if m ≤ n, k = n−m

2 ,
0 otherwise.

(30)

Proposition 4.3. Homological dimension of the standard module Mn is �n
2 �.

A finite–dimensional Ac–module M has a finite filtration by simple modules Ln. Due to one-
dimensionality of Ln the multiplicity of Ln in M , denoted by [M : Ln], equals dimk(1nM). With this 
observation in mind, we give the following definition.

Definition 4.4. For a locally finite-dimensional Ac-module M define the multiplicity of a simple module Ln

in M by

[M : Ln] := dimk(1nM). (31)

Proposition 4.5. The multiplicity [Mm : Ln] of Ln in the standard module Mm equals the number of diagrams 
in nBc

m with no right returns:
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[Mm : Ln] = Xm,n =
{

2(m+1)
n+m+2

(
n

n−m
2

)
if n ≥ m and n−m is even,

0 otherwise.
(32)

The last proposition implies the Bernstein-Gelfand-Gelfand (BGG) reciprocity property [17] for our 
category. The BGG reciprocity property is the equality of suitably defined multiplicities for indecomposable 
projective, standard and simple modules: [Pn : Mm] = [Mm : Ln] for all m, n assuming the notation for the 
multiplicity as in Definition 4.4.

Corollary 4.6. Indecomposable projective, standard, and simple Ac-modules satisfy the Bernstein-Gelfand-
Gelfand (BGG) reciprocity property:

[Pn : Mm] = [Mm : Ln]. (33)

Resolution of a simple module Ln by standard modules Mm, which we now describe, is, in a sense, dual 
to the projective resolution (27) of a standard module by projective modules. This is an infinite to the left 
resolution, with the k-th term consisting of the standard module Mn+2k with multiplicity Yn,n+2k:

. . . → M
Yn,n+2k
n+2k

dk−→ M
Yn,n+2(k−1)
n+2(k−1)

dk−1−→ . . .
d1−→ Mn+1

n+2 → Mn → Ln → 0. (34)

The differential dk is a sum of its components

dk,β,α : Mα
n+2k −→ Mβ

n+2(k−1),

over all α ∈ Ỹn,n+2k and β ∈ Ỹn,n+2(k−1). For each such pair (α, β) there exists at most one i, 1 ≤ i ≤ n −1, 
such that α = βbin, see Fig. 10 for the latter notation. If that’s the case, define j to be the order (counting 
from the bottom) of the right return of bin when viewed as a right return of α upon composing with β. If 
such i does not exist, we set dk,β,α = 0. If it does, we let dk,β,α(x) = (−1)j−1x ibn−2, for x ∈ Mα

n+2k.
Notice that any diagram b ∈ nB

c
m without right returns induces a homomorphism of standard modules 

Mn −→ Mm. Diagram ibn−2 has no right returns and induces a map from Mα
n+2k to Mβ

n+2(k−1). The 
summand dk,β,α of the differential dk is just this map, with a sign.

The diagram ibn−2 is a reflection of bin about the y-axis. In fact, it would also have been natural to label 
copies of Mn+2k in the resolution by reflections of diagram in Ỹn,n+2k, but we did not do this, to avoid an 
additional notation.

Proposition 4.7. The complex (34) describing the resolution of simple by standard modules is exact.

Proof. Mα
n+2k has a basis of diagrams γ ∈ Bc

n+2k without right returns. Composition γα′, where α′ is the 
reflection of α about a vertical axis, is a diagram in Bc

n without right returns. The element dk,β,α(γ), when 
nonzero, is, up to a sign, a diagram without right returns in Bc

n+2(k−1), and diagrams ±dk,β,αβ
′ and γα′

are equal. Consequently, the complex (34), with Ln removed, decomposes into the direct sum of complexes 
of vector spaces, over all diagrams b ∈ Bc

n without right returns, with basis elements of the underlying 
vector space corresponding to pairs (α, γ) as above with γα′ = b. Each such direct summand is a complex 

isomorphic to the r-th tensor power of the contractible complex 0 → k
∼=−→ k → 0, where r is the number 

of left returns of b. Only the diagram 1n leads to a summand with nontrivial cohomology, which maps 
isomorphically onto Ln, implying that (34) is exact. �

To build a projective resolution of a simple module Ln, we start with the resolution (34) of Ln by standard 
modules and then convert each standard module Mn+2k into its projective resolution (28). These resolutions 
combine into a bicomplex in the second quadrant of the plane; Fig. 13 shows one square of the bicomplex.
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P
Ỹn,n+2k×Ỹn+2k−2j,n+2k
n+2k−2j −−−−−→ P

Ỹn,n+2(k−1)×Ỹn+2k−2j,n+2k
n+2(k−1)−2j⏐⏐� ⏐⏐�

P
Ỹn,n+2k×Ỹn+2k−2(j−1),n+2k
n+2k−2(j−1) −−−−−→ P

Ỹn,n+2(k−1)×Ỹn+2k−2(j−1),n+2k
n+2k−2j

Fig. 13. An anticommutative square in the bicomplex for a simple module.

Horizontal and vertical differentials are defined identically to those in complexes (34) and (28), corre-
spondingly. Differential applied to a single term in the direct summand in the upper left corner is a signed 
sum of maps in commutative squares

Pα1×α2
n+2k−2j −−−−→ P β1×α2

n+2(k−1)−2j⏐⏐� ⏐⏐�
Pα1×β2
n+2k−2j+2 −−−−→ P β1×β2

n+2k−2j

defined in the same way as for complexes (34) and (28), where α1 ∈ Ỹn,n+2k, β1 ∈ Ỹn,n+2(k−1), etc.
The projective resolution of simple module Ln is obtained by forming the total complex of this bicomplex. 

Due to finite-dimensionality of homs between projective modules Pm, this is the unique minimal resolution 
of Ln. Any other projective resolution is isomorphic to the direct sum of the minimal one with contractible 
complexes of the form 0 → P

1−→ P −→ 0 in various homological degrees.

Proposition 4.8. k-vector space Extk(Ln, Lm) has dimension 

(
3n+2k+m

4
n

)(
n+2k+3m

4
m

)
if in each of the two 

binomials 
(
a

b

)
above both b, a − b are nonnegative integers. Otherwise Extk(Ln, Lm) = 0.

Corollary 4.9. Simple Ac-modules Ln have infinite homological dimension.

4.1. Koszul algebra structure and relations

Algebra Ac has a structure of a graded algebra where grading is given by the total number of left and 
right returns in a diagram. The zeroth degree part of Ac is semisimple, being the direct sum of ground 
fields k1n. The projective resolution of Ln is naturally graded, with the m-th term generated by degree m
elements, since the differential is a sum of maps over diagrams with a single return, all of which have degree 
one.

The referee has pointed out that Ac is the associated graded of the filtered algebra TLq,t for the filtration 
given by the minimal number of U-turns in a diagram.

Corollary 4.10. The Chebyshev algebra Ac is Koszul.

We now write Ac via its generators and homogeneous relations. The basis of Ac in degree zero is {1n}n≥0. 
Basis of degree one part of 1nAc1n+2 is given by diagrams bin+2, 1 ≤ i ≤ n + 1, see Fig. 10. Basis of degree 
one part of 1n+2A

c1n is given by diagrams ibn, 1 ≤ i ≤ n + 1, which are reflections of bin+2 relative to a 
vertical axis, see Fig. 10. For m �= n ±2, the degree one subspace of 1nAc1m is trivial. The defining relations, 
are quadratic, except for the relations involving idempotents 1n. The latter relations have degree zero and 
one:
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Fig. 14. Quiver describing homogeneous generators of the algebra Ac, with n + 1 arrows in both directions between 1n and 1n+2.

Fig. 15. Chebyshev quadratic relations from (35)-(39): from left to right and top to bottom.

1n1m = δnm1n,
bin+21m = δn+2,mbin+2,

1mbin+2 = δm,nb
i
n+2,

ibn1m = δn,m
ibn, 1mibn = δn+2,m

ibn,

bin bjm = 0 if m �= n + 2,
bin+2

jbm = 0 if m �= n,
ibn

jbm = 0 if n �= m + 2,
ibnb

j
m+2 = 0 if n �= m.

Diagrammatically, these relations come from the conditions that the product of diagrams is zero if the 
number of endpoints does not match. We can represent these generators as arrows in the quiver which is a 
disjoint union of quivers for even and odd values of n in 1n, see Fig. 14.

The following genuine quadratic relations are shown schematically in Fig. 15:

bin+2
i±1bn = 0, (35)

bin+2
ibn = 0, (36)

bin+2
jbn =

{
jbn−2 bi−2

n if i ≥ j + 2
jbn−2 bi−2

n if j ≥ i + 2,
(37)

ibn+2
jbn = j+2bn+2

ibn if j ≥ i + 2, (38)

bin+2 bjn = bj−2
n+2 bin if j ≥ i + 2. (39)
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4.2. Approximations of the identity via truncation functors

Following the notation nBc
m(k) for the diagrams of width k, let Ac(≤ k) ⊂ Ac denote the two-sided ideal 

of Ac generated by diagrams with at most k through strands. Notice that Ac(≤ k) ⊂ Ac(≤ k + 1) and that 
∪k≥0A

c(≤ k) = Ac. For k ≥ 0, define a right exact functor Fk : Ac−mod → Ac−mod by Fk(M) = Ac(≤
k) ⊗Ac M .

Proposition 4.11. Functor Fk acts on indecomposable projective modules by the identity, Fk(Pn) = Pn for 
n ≤ k, and Fk(Pn) = Pn(≤ k) := Ac(≤ k)1n for n > k. For standard modules Mn ∈ Ac−mod the action is 
Fk(Mn) = Mn for n ≤ k and Fk(Mn) = 0 for n > k.

Proof. The proof is straightforward. Note, that Mn has a basis of diagrams with exactly n through strands. 
Modules Fk(Pn) = Pn(≤ k) for n > k have finite homological dimension, since they admit finite filtrations 
with successive quotients isomorphic to standard modules Mn−2m for n −2m ≤ k. In particular, Pn(≤ k) has 
a finite length resolution by finitely-generated projective, and Fk is a well-defined functor on the category 
of bounded complexes of finitely-generated projective Ac-modules. �
Proposition 4.12. Derived functors of the functor Fk applied to a standard module are LiFk(Mn) = Mn if 
n ≤ k and i = 0, otherwise LiFk(Mn) = 0.

Proof. To compute the derived functor LFk on Mn we apply Fk to the terms of the projective resolution 
(28), removing non-projective term Mn on the far right of the diagram. If n ≤ k, Fk acts as identity on 
all terms of the resolution. Consequently L0Fk(Mn) ∼= Mn and LiFk(Mn) = 0 for i > 0 in this case. If 
n > k, applying Fk to all terms of the projective resolution (28) results in an exact complex. In the standard 
diagram bases of projective modules in this resolution, applying Fk removes all diagrams of width greater 
than k. The remaining diagrams, of width at most k, constitute an exact complex of Ac-modules. Note 
that only diagrams of width n (modulo the span of those of smaller width) constitute a non-exact complex, 
whose homology is, naturally, Mn. Thus, for n > k, the derived functor LFk(Mn) = 0. �

Recall that the Grothendieck group K0(Ac) of finitely-generated projective Ac-modules has a basis 
{[Pn]}n≥0 of symbols of indecomposable projective modules. Monoidal structure of Ac takes products of 
projectives to projectives and induces multiplication on K0(Ac). The latter can naturally be identified with 
Z[x], with xn = [Pn].

Thus, symbols of indecomposable projective modules correspond to the monomials [Pn] = xn, while 
symbols of standard modules correspond to Chebyshev polynomials, [Mn] = Un.

Functor Fk descends to an operator on the Grothendieck group K0(Ac), denoted by [Fk]. This operator 
acts by

[Fk](xn) = [Fk]([Pn]) = xn, if n ≤ k,

and

[Fk](Un) = [Fk]([Mn]) = [LFk(Mn)] = 0 for n > k.

Thus, [Fk] acts by identity on the subspace of polynomials of degree at most k and by zero on the linear 
span of Chebyshev polynomials Un for n > k. It’s a reproducing kernel, and the projection operator onto 
the subspace spanned by the first k+1 Chebyshev polynomial orthogonally to the subspace spanned by Un

for n > k. We can think of [Fk] as an approximation to the identity operator, which gets better as k goes to 
infinity. Likewise, the truncation functor Fk and its derived functors can be thought of as approximations to 
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the identity functor. In particular Fk acts as the identity functor on the full subcategory of the triangulated 
category generated by modules Pn for n ≤ k, while annihilating the full subcategory of complexes of 
projectives generated by resolutions of Mn for n > k.

4.3. Restriction and induction functors

For a unital inclusion ι : B ⊂ A of arbitrary rings the induction functor Ind : B−mod → A−mod, 
defined by Ind(M) = A ⊗B M , is left adjoint to the restriction functor Res : A−mod → B−mod

HomA(Ind(M), N) ∼= HomB(M,Res(N)).

If the inclusion is non-unital, i.e. ι takes the unit element of B to an idempotent e �= 1 of A, the restriction 
functor needs to be redefined. In this case, to a B-module N the restriction functor assigns an eAe-module 
N/(1 − e)N and then restricts the action to B.

The induction functor is defined as before:

Ind(M) = A⊗B M ∼= Ae⊗B M ⊕A(1 − e) ⊗B M = Ae⊗B M

and the induction is still left adjoint to the restriction. A similar construction works for non-unital B and 
A equipped with systems of idempotents.

We consider the map from Chebyshev diagrams in nBc
m to those in n+1B

c
m+1 given by adding a horizontal 

line above a diagram. This map of diagrams respects composition and induces an inclusion of idempotented 
algebras ι : Ac ↪→ Ac such that ι(1n) = 1n+1. The inclusion gives rise to induction and restriction end-
ofunctors of Ac−mod, which we denote Ind and Res. Note that Res is exact and Ind is right exact. The 
induction functor takes Pn to Pn+1. On the level of Grothendieck group, the induction functor descends to 
the operator of multiplication by x. The action of the restriction functor Res is more complicated and does 
not seem to admit an elegant description, since Res(Pn) is neither projective nor finitely generated.
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