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Abstract

We present a formation control algorithm for agents with extended unicycle dynamics that include orientation
kinematics on SO(m), first-order uncertain speed dynamics, and hard constraints on speed. The desired
interagent positions are expressed in a leader-fixed coordinate frame. Thus, the desired interagent positions
vary in time as the leader-fixed frame rotates. We assume that each agent has relative-position feedback
of its neighbor agents, where the neighbor sets are such that the interagent communication (i.e., feedback)
structure is a quasi-strongly connected directed graph. We assume that at least one agent (which is a center
vertex of the graph) has access to a measurement its position relative to the leader. The main analytic results
show that for almost all initial conditions, each agent converges to its desired relative position with the leader
and the other agents, and each agent’s speed satisfies the speed constraints for all time. We also present an
adaptive extension of the formation control algorithm that addresses uncertain speed dynamics, which are
parameterized as an unknown linear combination of known basis functions. Finally, we present numerical
simulations to demonstrate both the non-adaptive and adaptive formation control methods.

Keywords: Multi-agent systems, formation control, extended unicycle, state constraints

1. Introduction

Autonomous multi-vehicle systems have application to distributed sensing, cooperative surveillance,
precision agriculture, and search and rescue. In formation control, each agent typically relies on sensing or
interagent communication to determine necessary feedback information (e.g., interagent positions). Then, each
agent uses this feedback information in combination with feedforward information (e.g., external commands,
mission objectives) to accomplish tasks such as collision avoidance, cohesion, guidance, and velocity matching.
Collision avoidance repels an agent from nearby agents or obstacles, whereas cohesion attracts an agent to
nearby agents. Guidance often causes each agent to approach a desired destination [1, 2] or follow a leader
agent [3–7]. Velocity matching causes nearby agents to approach a consensus velocity [8–10].

Consensus algorithms have been used to address cohesion (e.g., [5–7, 11, 12]). These approaches force
agents into a predetermined formation by specifying the desired relative position between pairs of agents.
Other examples of formation control algorithms include [1–3, 13–15]. Examples of formation control algorithms
that address uncertain agent dynamics include [12, 16–18], whereas methods that address input saturation
are presented in [6, 11, 19]. Surveys of multi-agent formation-control methods are presented in [9, 10, 20].

Much of the cooperative control literature (e.g., [1, 3, 7, 10–12, 14, 17, 21, 22]) focuses on agents with
double-integrator dynamics, where the control input is the acceleration in an inertial frame. However,
double-integrator dynamics are not suitable for modeling some vehicles such as fixed-wing aircraft or wheeled
robots, which are subject to nonholonomic constraints [2, 23, 24].

This paper addresses agents with extended unicycle dynamics that include orientation kinematics on
SO(m), first-order uncertain speed dynamics, and hard speed constraints. These extended unicycle dynamics
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have application to modeling fixed-wing unmanned air vehicles (UAVs) and ground robots. For example,
similar models are used for fixed-wing UAVs in [25–29] and for ground robots in [2, 6, 30, 31]. However, these
related models do not include orientation kinematics on SO(m), hard speed constraints, or uncertainty in
the speed dynamics—all of which can be important for many applications. For example, a fixed-wing UAV
has hard speed constraints; namely, it must satisfy a minimum speed to maintain lift, and its operational
capabilities impose a limit on maximum speed. Similarly, the speed dynamics of a fixed-wing UAV typically
has uncertainty from a variety of sources, which could include local air density, airframe configuration, level
of battery charge, and payload mass (e.g., remaining fuel, cargo). In addition, these parameters may change
during flight. Thus, it may be beneficial to treat this as parameterized uncertainty rather than attempting
to model these effects directly. Note that formation-control simulation results for fixed-wing UAVs are in
[24–26, 32, 33], and experimental results are in [4, 15, 33–35].

This paper addresses formation control in a leader-fixed frame for agents with the extended unicycle
dynamics. The desired interagent positions are expressed in a leader-fixed coordinate frame, which is aligned
with the leader’s velocity vector. Thus, the desired interagent positions vary in time as the leader-fixed
frame rotates. The leader can be a physical agent or a virtual agent. The algorithms in this paper apply to
formations where: the neighbor sets are such that the interagent communication structure is represented by a
quasi-strongly connected graph; at least one agent has access to a measurement its position relative to the
leader; and each agent has feedforward of the leader’s velocity, acceleration, orientation, angular velocity,
and angular acceleration. In some applications, the higher-order feedforward signals (e.g., accelerations) can
be neglected. The main analytic results show that for almost all initial conditions, the agents converge to
the desired relative positions with the leader and the other agents. We note that topological constraints
associated with SO(m) prevent global convergence using a continuous time-invariant control [36]. The main
analytic results also show that each agent’s speed satisfies the hard speed constraints for all time. In addition,
this paper presents an adaptive extension of the formation control algorithm to address uncertainty in the
speed dynamics, which are parameterized as an unknown linear combination of known basis functions. Both
the non-adaptive and adaptive formation control algorithms are demonstrated in numerical simulations. Some
preliminary results related to this paper appeared in [32, 37]; however, the current paper goes significantly
beyond the preliminary conference publications [32, 37] by presenting complete stability and performance
analyses, and addressing uncertainty in the speed dynamics. It is also worth noting that this paper presents
a significantly different control algorithm than [32, 37]. This improved algorithm effectively accommodates
hard speed constraints, which were not addressed in [32].

2. Problem Formulation

Let the positive number n be the number of agents, and define the agent index set I , {1, 2, . . . , n}.
Define P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered pairs. Unless otherwise stated, all statements
that involve the subscript i are for all i ∈ I, and all statements that involve the subscripts i and j are for all
(i, j) ∈ P . Let ‖ · ‖ denote the 2-norm. The special orthogonal group SO(m) is the set of orthogonal matrices
in Rm×m with determinant one. The set of skew-symmetric matrices in Rm×m is denoted by so(m).

For clarity of presentation, we first develop the extended unicycle model in three-dimensional space. Thus,
for the moment, let m = 3. Let E be an inertial frame (e.g., the Earth frame), and let oE be the origin of E.
Let oi be the location of the ith agent (e.g., the location of the ith vehicle’s center of mass). The position

of oi relative to oE is
⇀
qi, and the ith agent’s position

⇀
qi is resolved in E as qi ,

⇀
qi|E. The velocity of oi

relative to oE with respect to E is
⇀
pi ,E·⇀qi. Let Bi be a frame that is fixed to oi such that

⇀
pi resolved in

Bi is given by
⇀
pi|Bi = sivi, where vi ∈ Rm is a unit vector, and for all t ≥ 0, si(t) ∈ R is the speed of the

ith agent, which is subject to the constraint that for all t ≥ 0, si(t) ∈ Si , (
¯
si, s̄i), where 0 <

¯
si < s̄i. Let

Ri : [0,∞)→ SO(m) be the rotation matrix from Bi to E. Thus, the ith agent’s velocity
⇀
pi resolved in E is

⇀
pi|E = siRivi, which implies that

q̇i(t) = si(t)Ri(t)vi, (1)

where t ≥ 0; qi(t) ∈ Rm, si(t) ∈ Si, and RT
i (t) ∈ SO(m) are the position, speed, and orientation of the ith

agent; and qi(0) ∈ Rm is the initial condition. Note that Rivi is the unit vector in the direction of the velocity
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q̇i. The speed and orientation of the ith agent satisfy

ṡi(t) = fi(si(t), Ri(t)) + gi(si(t), Ri(t))ui(t), (2)

Ṙi(t) = Ri(t)Ωi(t), (3)

where t ≥ 0; ui : [0,∞)→ R and Ωi : [0,∞)→ so(m) are the control inputs; si(0) ∈ Si and Ri(0) ∈ SO(m)
are the initial conditions; and fi : Si × SO(m)→ R and gi : Si × SO(m)→ R \ {0} are continuous. Note that
Ωi is the skew-symmetric form of the angular velocity of Bi relative to E resolved in Bi. The agent model
(1)–(3) is an extended unicycle model that includes both speed dynamics (2) and orientation kinematics (3)
on SO(m), and has a hard constraint on speed si.

Let og be the location of the leader, which can be a physical agent (e.g., a vehicle) or a virtual agent. The

position of og relative to oE is
⇀
qg, and the leader’s position

⇀
qg is resolved in E as qg ,

⇀
qg|E, which is assumed

to be twice continuously differentiable. The velocity of og relative to oE with respect to E is
⇀
pg ,E·⇀qg. Let

Bg be a frame that is fixed to og and has orthogonal unit vectors ı̂g, ̂g, and k̂g, where ı̂g is parallel to the

leader’s velocity vector
⇀
pg, and the rotation matrix from Bg to E is Rg : [0,∞)→ SO(m), which is assumed

to be twice continuously differentiable.
This paper addresses the problem of formation control in the leader-fixed frame Bg. Let δi ∈ Rm be the

desired position of oi relative to og resolved in Bg. Thus, for all (i, j) ∈ P , δij , δi− δj is the desired position
of oi relative to oj resolved in Bg. Our objective is to design controls ui and Ωi such that:

(O1) For all (i, j) ∈ P , limt→∞RT
g (t)[qi(t)− qj(t)] = δij .

(O2) For all i ∈ I, limt→∞[q̇i(t)− q̇g(t)− Ṙg(t)δi] = 0.

(O3) For all i ∈ I, limt→∞RT
g (t)[qi(t)− qg(t)] = δi.

(O4) For all i ∈ I and for all t ≥ 0, si(t) ∈ Si.

Objective (O1) states that the interagent positions approach the desired values. Objective (O2) states
that each agent’s velocity with respect to Bg approaches the leader’s velocity with respect to Bg, and (O3)
states that each agent approaches its desired relative position with the leader. Objective (O4) states that the
agents’ speed constraints are satisfied. If (O3) is satisfied, then (O1) is satisfied. However, we enumerate
these objectives independently because some results in this paper show that if no agents have access to a
measurement of the leader’s position, then (O1) is satisfied but (O3) is not.

Notably, it is not possible to satisfy the formation objectives (O1)–(O3) and the speed constraint (O4) for
an arbitrary leader trajectory (i.e., qg and Rg). More specifically, if (O2) is satisfied, then the ith agent’s

velocity q̇i converges to q̇g + Ṙgδi. Thus, (O2) implies that we want the ith agent’s speed ‖q̇i(t)‖ to equal

‖q̇g(t) + Ṙg(t)δi‖. However, (O4) requires that the ith agent’s speed satisfies ‖q̇i(t)‖ ∈ Si. Thus, if the

ith agent’s speed equals ‖q̇g(t) + Ṙg(t)δi‖ and satisfies ‖q̇i(t)‖ ∈ Si, then the leader trajectory must satisfy

‖q̇g(t) + Ṙg(t)δi‖ ∈ Si. Therefore, we make the following assumption:

(A1) For all i ∈ I, there exists κi > 0 such that for all t ≥ 0, ‖q̇g(t) + Ṙg(t)δi‖ ∈ (
¯
si + κi, s̄i − κi).

Assumption (A1) implies that for all t ≥ 0, ‖q̇g(t) + Ṙg(t)δi‖ is contained in a proper subset of Si. However,
κi > 0 can be arbitrarily close to zero. Furthermore, as κi approaches zero, (A1) approaches the condition
‖q̇g(t)+Ṙg(t)δi‖ ∈ Si, which is necessary to simultaneously satisfy q̇i(t) equals q̇g(t)+Ṙg(t)δi and ‖q̇i(t)‖ ∈ Si.
In many practical applications (e.g., fixed-wing UAV formations or ground robot formations), the leader is a
physical or virtual agent, whose motion can be constrained to ensure that (A1) is satisfied.

Although the physical (i.e., frame-based) formulation of the control problem is described in three dimensions,
the methods in this paper apply to all m ∈ {2, 3, 4, . . .}. Thus, for generality, the remainder of this paper
considers the extended unicycle model (1)–(3) and control objectives (O1)–(O4), where m ∈ {2, 3, 4, . . .}.
The extended unicycle model and formation control problem described above have physical applications for
m = 2 and m = 3. For example, m = 2 is for planar motion, which can apply to a variety of ground-robotic
applications. Similarly, the extended unicycle dynamics for three-dimensional motion (i.e., m = 3) is applicable
to fixed-wing UAVs.
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The interagent communication (i.e., feedback) structure is represented using a directed graph. The agent
index set I is the vertex set of the directed graph, and the n elements of I are the vertices. Let E ⊂ I × I
be the directed edge set. The elements of E are the directed edges. Then, the directed graph is G = (I, E).
The directed graph G = (I, E) has a walk of length l from v0 ∈ I to vl ∈ I if there exists an (l + 1)-tuple
(v0, v1, . . . , vl) ∈ I×I×· · ·×I such that for all j ∈ {1, 2, . . . , l}, (vj−1, vj) ∈ E . The directed graph G = (I, E)
is quasi-strongly connected if there exists ` ∈ I such that for all j ∈ I \ {`}, G = (I, E) has a walk from ` to j.
In this case, ` is a center vertex of the quasi-strongly connected directed graph G = (V, E).

Define the neighbor set Ni , {j ∈ I : (j, i) ∈ E}. Without loss of generality, we assume that for all i ∈ I,
(i, i) 6∈ E , which implies that i 6∈ Ni. In this paper, we assume that G = (I, E) is quasi-strongly connected,
and that the ith agent has access to measurements of {qj − qi}j∈Ni

and {q̇j − q̇i}j∈Ni
for feedback. We

also assume that G = (I, E) has a center vertex ` such that the `th agent has a measurement of its position
relative to the leader qg − qi. Thus, the algorithm presented in this paper only requires that one agent has a

measurement of qg− qi. Finally, we assume that each agent has access to measurements of q̇g, q̈g, Rg, Ṙg, and

R̈g for feedfoward. In many practical applications such as fixed-wing UAV formation flying, it is reasonable
to assume that each agent (e.g., UAV) has access to the required feedforward information regarding the
leader through communication or direct measurement, or because the leader’s maneuvers are specified a
priori. In addition, from a practical implementation perspective, leader maneuvers often have relatively small
translational acceleration q̈g and rotational acceleration R̈g. In this case, the algorithm in this paper can be

effectively implemented with q̈g = 0 and R̈g = 0.

3. Formation Control Algorithm

This section presents a formation control algorithm that achieves (O1)–(O4) for agents modeled by the
extended unicycle dynamics (1)–(3), where the speed dynamics (2) are known, that is, the functions fi and
gi are known. In Section 5, we present and analyze an adaptive extension of the algorithm, which addresses
uncertainty in the speed dynamics (2).

Let ν1, ν2 > 0, and consider σ : [0,∞)→ (0, 1√
ν1

] defined by

σ(a) , 1/
√
ν1 + ν2a. (4)

Furthermore, consider ρ : Rm → Rm defined by

ρ(x) , σ
(
‖x‖2

)
x, (5)

and note that supx∈Rm ‖ρ(x)‖ = 1/
√
ν2. Also, consider ρ′ : Rm → Rm×m defined by

ρ′(x) ,
∂ρ(x)

∂x
= σ

(
‖x‖2

)
Im − ν2σ

3
(
‖x‖2

)
xxT, (6)

where Im is the m×m identity matrix.
Define the feedback function

φi , αi(qg − qi +Rgδi) +
∑
j∈Ni

βij(qj − qi +Rgδij), (7)

where αi ≥ 0; for all j ∈ Ni, βij > 0; and for all j /∈ Ni, βij = 0. The ith agent can compute the feedback
function φi using {qj − qi}j∈Ni

, and qg − qi if αi > 0. The approach in this paper only requires that one
agent has a measurement of qg − qi. Specifically, we assume that there exists a center vertex ` of G = (I, E)
such that α` > 0.

Let ki ∈ (0, κi
√
ν2), and define the ith agent’s desired velocity

pd,i , q̇g + Ṙgδi + kiρ(φi), (8)

and define the ith agent’s desired speed
sd,i , ‖pd,i‖. (9)
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Note that (A1), (4), (5), (8), and (9) imply that pd,i and sd,i are bounded. In fact, the next result shows that

for all t ≥ 0, sd,i(t) is contained in Sd,i , (
¯
si + εd, s̄i − εd), where

εd , min
i∈I

(
κi −

ki√
ν2

)
,

which is positive because ki ∈ (0, κi
√
ν2). This result follows immediately from substituting (8) into (9),

using the triangle inequality, and using (A1).

Proposition 1. Assume that (A1) is satisfied. Then, for all t ≥ 0, sd,i(t) ∈ Sd,i ⊂ Si.

Next, define the time derivatives of pd,i and sd,i, which are

ṗd,i , q̈g + R̈gδi − kiρ′(φi)

[
αi(q̇i − q̇g − Ṙgδi) +

∑
j∈Ni

βij(q̇i − q̇j − Ṙgδij)

]
, (10)

ṡd,i ,
∂sd,i

∂pd,i
ṗd,i =

1

sd,i
pT

d,iṗd,i. (11)

To enforce the speed constraint (O4), we consider the asymmetric speed barrier function hi : Si × Sd,i →
(0,∞) defined by

hi(si, sd,i) ,
(s̄i − sd,i)(sd,i −

¯
si)

(s̄i − si)(si −
¯
si)

, (12)

which is inspired by the asymmetric barrier functions in [38]. Note that for all (si, sd,i) ∈ Si × Sd,i,

hi(si, sd,i) >
¯
hi , 4εd(s̄i −

¯
si − εd)/(s̄i −

¯
si)

2, which is positive. Furthermore, hi(si, sd,i) diverges to infinity
as si approaches its upper bound s̄i or lower bound

¯
si. In addition, define the partial derivatives

∂hi(si, sd,i)

∂si
, − (s̄i +

¯
si − 2si)

(s̄i − si)(si −
¯
si)

hi(si, sd,i), (13)

∂hi(si, sd,i)

∂sd,i
,

(s̄i +
¯
si − 2sd,i)

(s̄i − si)(si −
¯
si)

. (14)

Next, let γi, ηi > 0, and consider the formation control

ui =
−1

gi(si, Ri)

(
fi(si, Ri) +

γi(si − sd,i)hi(si, sd,i)

µi(si, sd,i)
+ ṡd,i

(
(si − sd,i)

µi(si, sd,i)

∂hi(si, sd,i)

∂sd,i
− hi(si, sd,i)

µi(si, sd,i)

))
, (15)

Ωi = ηisd,i

(
RT
i pd,iv

T
i − vipT

d,iRi
)

+
1

s2
d,i

RT
i

(
ṗd,ip

T
d,i − pd,iṗ

T
d,i

)
Ri, (16)

where µi : Si × Sd,i → R is defined by

µi(si, sd,i) , hi(si, sd,i) + (si − sd,i)
∂hi(si, sd,i)

∂si
. (17)

Since for all t ≥ 0, sd,i(t) ∈ Sd,i, it follows that Ωi, which involves division by s2
d,i, is well defined. In the

next section, we show that for all t ≥ 0, si(t) ∈ Si. In this case, the next result demonstrates that for all
t ≥ 0, µi(si(t), sd,i(t)) > 0, which implies that ui, which involves division by µi(si, sd,i), is well defined.

Proposition 2. For all (si, sd,i) ∈ Si × Sd,i, µi(si, sd,i) > 0.

The proof of Proposition 2 is omitted for space considerations; however, the proof follows from direct
computation. Specifically, it can be shown that the numerator of µi(si, sd,i) has only positive local minima on
Si×Sd,i. Since, in addition, this numerator is continuous on Si×Sd,i, it follows that it is positive on Si×Sd,i.
Similarly, it can be shown that the denominator of µi(si, sd,i) is positive on Si × Sd,i. Thus, µi(si, sd,i) is
positive on Si × Sd,i, which confirms the result.
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The control (4)–(17) involves the parameters ν1 > 0, ν2 > 0, αi ≥ 0, βij ≥ 0, ki ∈ (0, κi
√
ν2), γi > 0,

and ηi > 0. Increasing the speed gain γi tends to cause the speed si to converge more quickly to the
desired speed sd,i. Similarly, increasing the attitude gain ηi tends to cause the pointing direction Rivi to
converge more quickly to the desired pointing direction pd,i/sd,i. However, increasing γi and ηi also tends
to increase the magnitude of the controls ui and Ωi. Selecting ki close to the upper limit κi

√
ν2 tends to

make the desired velocity (8) more responsive to the formation term ρ(φi), which, in turn, tends to make the
agents converge more quickly to the desired interagent positions because φi contains the formation terms
βij(qj − qi +Rgδij). The upper limit κi

√
ν2 on ki is imposed to guarantee that the desired speed sd,i is in

the admissible range Sd,i. This upper limit decreases as ν2 decreases. The parameters ν1 and ν2 also affect
the shape of the nonlinear functions σ and ρ. If ν1/ν2 � 1, then for all φi such that ‖φi‖ � ν1/ν2, it follows
that ρ(φi) ≈ 1√

ν1
φi. In this case, the desired velocity (8) is approximately linear in the feedback function

φi, which itself is linear in the formation terms that appear in (7). In contrast, if ν1/ν2 � 1, then for all φi
such that ‖φi‖ � ν1/ν2, it follows that ρ(φi) ≈ 1

‖φi‖
√
ν2
φi, which implies that ρ(φi) changes directions but

‖ρ(φi)‖ is approximately constant. In this case, its worth noting that σ, which is used in ρ, approximates a
switch because it transitions rapidly from its maximum value 1/

√
ν1 to its minimum value 0 as its argument

increases from 0. The formation gains αi and βij determine how sensitive φi is to error in the ith agent’s
position relative to the leader and to error in the ith agent’s position relative to the jth agent, respectively.
Selecting αi and βij small tends to decrease ‖φi‖, which tends to cause ρ(φi) to operate in the approximately
linear range described above. In contrast, selecting αi and βij large tends to increase ‖φi‖, which tends to
cause ρ(φi) to operate in the range where ρ(φi) has constant norm but changing direction.

4. Stability Analysis

In this section, we analyze the closed-loop dynamics (1)–(17). Define the position error

ζi , qi − qg −Rgδi, (18)

and substituting (18) into (7) yields

φi = −αiζi −
∑
j∈Ni

βij(ζi − ζj). (19)

For all t ≥ 0, define

ζ(t) ,

ζ1(t)
...

ζn(t)

 ∈ Rmn, φ(t) ,

φ1(t)
...

φn(t)

 ∈ Rmn.

Let L ∈ Rn×n be such that the (i, j)th element is L(i,j) = −βij , and the (i, i)th element is L(i,i) =∑
j∈Ni

βij . Note that L is the Laplacian of the directed graph G = (I, E), where for all (i, j) ∈ E , we associate
the weight βij . Furthermore, define

A , diag
(
α1, . . . , αn

)
∈ Rn×n,

where diag(·) denotes the diagonal matrix whose diagonal elements are given by the arguments of the operator.
Then, it follows from (19) that

φ = −[(L+A)⊗ Im]ζ, (20)

where ⊗ is the Kronecker product. Note that (20) can be viewed as a change of variables between the position
error ζ and φ. This change of variables is related to the one used in [19]. The following result provides
sufficient conditions such that L+A is nonsingular, which implies that (20) is a bijection. This result follows
from [39, Lemma 1].

Lemma 1. Assume that G = (I, E) is quasi-strongly connected, and assume that there exists a center
vertex ` of G = (I, E) such that α` > 0. Then, L+A is nonsingular.
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Remark 1. Lemma 1 provides sufficient conditions such that L + A is nonsingular; however, theses
conditions are not necessary. For example, if for all i ∈ I, αi > 0, then L+A is nonsingular. This situation
arises if each agent has a measurement of its position relative to the leader. As another example, if G = (I, E)
is the union of l quasi-strongly connected graphs and each of those graphs has a center vertex `1, . . . , `l such
that α`1 , . . . , α`l > 0, then L+A is nonsingular [39, Lemma 1]. The stability results in this paper rely on the
assumption that L+A is nonsingular, and Lemma 1 provides one communication (i.e., feedback) structure
under which L+A is nonsingular. However, as discussed above, there are other communication structures
that yield nonsingular L+A, and the results in this paper also apply to those communication structures.

Next, differentiating (18), and using (1), (5), and (8) implies that

ζ̇i = siRivi − q̇g − Ṙgδi

= kiρ(φi) + siRivi − pd,i

= kiσ(‖φi‖2)φi + siRivi − pd,i. (21)

Consider B : Rmn → Rmn×mn defined by

B(φ) ,
(

diag
(
k1σ(‖φ1‖2), . . . , knσ(‖φn‖2)

))
⊗ Im, (22)

and it follows from (21) that

ζ̇ = B(φ)φ+
∑
i∈I

(di ⊗ Im)(siRivi − pd,i), (23)

where
di ,

[
01×i−1 1 01×n−i

]T ∈ Rn.

Differentiating (20) yields

φ̇ = −
[
(L+A)⊗ Im

]
ζ̇, (24)

and using (23) implies that

φ̇ = −
[
(L+A)⊗ Im

]
B(φ)φ−

∑
i∈I

[
(L+A)di ⊗ Im

](
siRivi − pd,i

)
. (25)

The following result is used to analyze stability. This result follows from [23, Theorem 4.25].

Lemma 2. Assume that L + A is nonsingular. Then, there exists a positive-definite diagonal matrix
D ∈ Rn×n such that (L+A)TD +D(L+A) is positive definite.

The remainder of the stability analysis is divided into four subsections. The first three subsections examine
the closed-loop position dynamics, speed dynamics, and orientation kinematics, respectively. Each subsection
presents a Lyapunov-like function, which is used to analyze the associated component of the closed-loop
behavior. Then, the final subsection combines these Lyapunov-like functions to analyze the full closed-loop
dynamics (1)–(17).

First, Section 4.1 considers the position dynamics (1) under the assumption that each agent’s velocity
siRivi is a control variable, which is equivalent to the simplified scenario with single-integrator agent dynamics.
In this case, if the velocity control is equal to the desired velocity (i.e., siRivi = pd,i), then (O1)–(O4) are
satisfied. The preliminary result in Section 4.1 is not directly applicable to the extended unicycle model (1)–(3)
because it neglects the speed dynamics (2) and orientation kinematics (3). Nevertheless, this preliminary
result is informative because it shows that if the velocity siRivi is equal to the desired velocity pd,i, then the
control objectives are achieved. Moreover, the Lyapunov-like function from this simplified analysis is used in
the full analysis.

Next, Section 4.2 examines the speed dynamics (2) and the associated control (15). This subsection
demonstrates that the speed constraint (O4) is satisfied, and that the speed si converges to the desired
speed sd,i. Then, Section 4.3 examines the orientation kinematics (3) and the associated control (16). This
subsection shows the the point direction Rivi converges to the desired pointing direction pd,i/sd,i. Together,

7



Sections 4.2 and 4.3 show that the velocity siRivi converges to the desired velocity pd,i, which, combined
with the preliminary result in Section 4.1 (which assumes that siRivi = pd,i), provides the intuition for the
full closed-loop analysis.

Finally, Section 4.4 analyzes the full closed-loop dynamics (1)–(17). This analysis combines the three
Lyapunov-like functions used in each of Sections 4.1–4.3 to show that objectives (O1)–(O4) are satisfied.

4.1. Position Dynamics with Direct Velocity Control

This section analyzes the closed-loop position dynamics (25) under the assumption that each agent’s
velocity siRivi is a control variable, specifically, siRivi = pd,i. In this case, (1) can be viewed as a single
integrator with feedback control siRivi = pd,i.

Let D ∈ Rn×n be the positive-definite diagonal matrix given by Lemma 2, and consider the Lyapunov-like
function V0 : Rm × · · · × Rm → [0,∞) defined by

V0(φ1, . . . , φn) ,
∑
i∈I

kid
T
i Ddi

∫ ‖φi‖2

0

σ(s) ds =
2

ν2

∑
i∈I

kid
T
i Ddi

(√
ν1 + ν2‖φi‖2 −

√
ν1

)
. (26)

Next, define the Lyapunov-like derivative

V̇0(φ1, . . . , φn) ,
∑
i∈I

∂V0(φ1, . . . , φn)

∂φi
φ̇i. (27)

The following preliminary result considers the case where the velocity siRivi is a control variable,
specifically, siRivi = pd,i.

Proposition 3. Consider the closed-loop dynamics (25), which consists of (1) and (4)–(8), and assume
that siRivi = pd,i. Assume that L+A is nonsingular. Then, the following statements hold:

i) For all (φ1, . . . , φn) ∈ Rm × · · · × Rm,

V̇0(φ1, . . . , φn) = −φTB(φ)
[(

(L+A)TD +D(L+A)
)
⊗ Im

]
B(φ)φ,

which is negative definite.

ii) φ(t) ≡ 0 is a globally asymptotically stable equilibrium of (25) with siRivi = pd,i.

iii) For all qi(0) ∈ Rm, (O1)–(O3) are satisfied.

iv) If (A1) is satisfied, then for all qi(0) ∈ Rm, (O4) is satisfied.

Proof. Since siRivi = pd,i, it follows from (25) that

φ̇ = −
[
(L+A)⊗ Im

]
B(φ)φ. (28)

Since D is diagonal, it follows from (26), (27), and (22) that

V̇0(φ1, . . . , φn) = 2
∑
i∈I

kid
T
i Ddiσ(‖φi‖2)φT

i φ̇i = 2φTB(φ)
(
D ⊗ Im

)
φ̇. (29)

Evaluating (29) along the trajectories of (28) yields

V̇0(φ1, . . . , φn) = −2φTB(φ)
(
D(L+A)⊗ Im

)
B(φ)φ

= −φTB(φ)
[(

(L+A)TD +D(L+A)
)
⊗ Im

]
B(φ)φ. (30)
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Since L+A is nonsingular, Lemma 2 implies that P , (L+A)TD+D(L+A) is positive definite. Thus, the
minimum eigenvalue of P , which is denoted by λmin(P ), is positive, and it follows from (22) and (30) that

V̇0(φ1, . . . , φn) ≤ −λmin(P )φTB2(φ)φ = −λmin(P )
∑
i∈I

k2
i σ

2(‖φi‖2)φT
i φi. (31)

Since λmin(P ) > 0 and ki > 0, it follows from (4) and (31) that V̇0 is negative definite, which confirms i).
Since V0 is positive definite and radially unbounded, and V̇0 is negative definite, it follows that the origin

is a globally asymptotically stable equilibrium of (25), which confirms ii).
To show iii), it follows from (20) that ζ = −[(L + A)−1 ⊗ Im]φ. Since, in addition, limt→∞ φ(t) =

0, it follows that limt→∞ ζ(t) = 0. Since Rg(t) is bounded and limt→∞ ζi(t) = 0, it follows from (18)
that limt→∞RT

g (t)[qi(t) − qj(t)] = limt→∞RT
g (t)[ζi(t) − ζj(t) + Rg(t)δij ] = δij and limt→∞RT

g (t)qi(t) =

limt→∞RT
g (t)[ζi(t) +Rg(t)δi] = δi, which confirms (O1) and (O3). Since siRivi = pd,i and limt→∞ φi(t) = 0,

it follows from (4) and (21) that limt→∞ ζ̇i(t) = 0, which confirms (O2), thus verifying iii).
To show iv), assume that (A1) is satisfied. Thus, Proposition 1 implies that for all t ≥ 0, sd,i(t) ∈ Sd,i.

Since, in addition, si = sd,i and Sd,i ⊂ Si it follows that for all t ≥ 0, si(t) ∈ Si, which confirms iv).

Remark 2. Proposition 3 relies on the assumption that L+A is nonsingular, and Lemma 1 demonstrates
that this assumption holds if G = (I, E) is quasi-strongly connected with a center vertex that has feedback of
the leader’s position (i.e., α` > 0 for the center vertex `). If no agent has feedback of the leader’s position (i.e.,
for all i ∈ I, αi = 0), then L+A = L is singular. However, under the assumption that G is strongly connected,
it is possible to modify the proof of Proposition 3 to demonstrate that a subset of the formation objective are
satisfied. Specifically, [40] shows that if G is strongly connected, then there exists a positive-definite diagonal
matrix D2 ∈ Rn×n such that LTD2 +D2L is positive semidefinite with a simple eigenvalue at zero and the
ones vector is the associated eigenvector. In this case, we can consider the Lyapunov-like function (26), where
D is replaced by D2, and use steps similar to those in the proof of Proposition 3 to show that φ(t) ≡ 0 is a
globally asymptotically stable equilibrium. However, since L+A = L is singular, it follows that the change of
variables (24) is not a bijection. Thus, although φi converges to zero, ζi does not generally converge to zero.
Nevertheless, it can be demonstrated that (O1) and (O2) are satisfied even though (O3) is not. Additionally,
if (A1) is satisfied, then (O4) is satisfied.

Proposition 3 shows that if siRivi = pd,i, then (O1)–(O3) are satisfied, and if, in addition, (A1) is satisfied,
then (O4) is satisfied. However, the speed si and pointing direction Rivi are not controls. Instead, si is
determined from (2), which has control input ui, and Rivi is determined from (3), which has control input Ωi.
Thus, the next two subsections examine the closed-loop speed dynamics and orientation kinematics. Then,
we analyze the full closed-loop dynamics (1)–(17). Note that the preliminary result Proposition 3 is not used
in any of the subsequent analysis, but the Lyapunov-like function (26) plays a critical role in analyzing the
full closed-loop dynamics.

4.2. Speed Dynamics

In this section, we examine the speed dynamics (2) and the associated control (15) to show that the speed
constraint (O4) is satisfied. Define the speed error

s̃i , si − sd,i.

Differentiating s̃i and using (2) and (15) implies that

˙̃si =
−s̃i

µi(si, sd,i)

[
γihi(si, sd,i) +

(
∂hi(si, sd,i)

∂sd,i
+
∂hi(si, sd,i)

∂si

)
ṡd,i

]
. (32)

Consider the Lyapunov-like function Zi : R× Sd,i → [0,∞) defined by

Zi(s̃i, sd,i) ,
1

2
h2
i (si, sd,i)s̃

2
i , (33)
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and define the Lyapunov-like derivative

Żi(s̃i, sd,i) ,
∂Zi(s̃i, sd,i)

∂s̃i
˙̃si +

∂Zi(s̃i, sd,i)

∂sd,i
ṡd,i. (34)

The next result shows that if (A1) is satisfied and si(0) ∈ Si, then for all t ≥ 0, si(t) ∈ Si and
limt→∞ s̃i(t) = 0.

Proposition 4. Consider the closed-loop dynamics (32), which consists of (2), (4)–(15), and (17). Assume
that (A1) is satisfied. Then, the following statements hold:

i) For all (si, sd,i) ∈ Si × Sd,i, Żi(s̃i, sd,i) = −γih2
i (si, sd,i)s̃

2
i ≤ −γi¯h

2
i s̃

2
i , where

¯
hi ,

4(s̄i−
¯
si−εd)εd

(s̄i−
¯
si)2

> 0.

ii) For all si(0) ∈ Si, (O4) is satisfied.

iii) For all si(0) ∈ Si, limt→∞ s̃i(t) = 0.

Proof. Evaluating (34) along the trajectories of (32) yields

Żi(s̃i, sd,i) = hi(si, sd,i)s̃i

[(
∂hi(si, sd,i)

∂si
ṡi +

∂hi(si, sd,i)

∂sd,i
ṡd,i

)
s̃i + hi(si, sd,i) ˙̃si

]
= hi(si, sd,i)s̃i

[
µi(si, sd,i) ˙̃si + s̃i

(
∂hi(si, sd,i)

∂sd,i
+
∂hi(si, sd,i)

∂si

)
ṡd,i

]
= −γih2

i (si, sd,i)s̃
2
i . (35)

To show i), let (si, sd,i) ∈ Si × Sd,i, and (12) implies

hi(si, sd,i) ≥
(s̄i −

¯
si − εd)εd

(s̄i − si)(si −
¯
si)

. (36)

Furthermore, since the denominator of (36) is maximized over si ∈ Si at si = (
¯
si + s̄i)/2, it follows that

hi(si, sd,i) ≥
¯
hi, which together with (35) confirms i).

To show ii), since si(0) ∈ Si and sd,i(0) ∈ Sd,i, it follows from (12) and (33) that Zi(s̃i(0), sd,i(0)) is
finite. Since, in addition, (35) implies that Zi(s̃i, sd,i) is nonincreasing along (32), it follows that for all t ≥ 0,
Zi(s̃i(t), sd,i(t)) ≤ Zi(s̃i(0), sd,i(0)) <∞. Assume for contradiction that (O4) is not satisfied, which implies
that there exists t1 > 0 such that si(t1) = s̄i or si(t1) =

¯
si. Since, in addition, for all t ≥ 0, sd,i(t) ∈ Sd,i,

it follows from (12) and (33) that Zi(s̃i(t1), sd,i(t1)) = ∞, which is a contradiction. Thus, for all t ≥ 0,
si(t) ∈ Si, which confirms ii).

To show iii), since for all t ≥ 0, (si(t), sd,i(t)) ∈ Si × Sd,i, it follows from i) that Żi(s̃i(t), sd,i(t)) ≤
−γi

¯
h2
i s̃

2
i (t). Thus, LaSalle’s invariance theorem implies that limt→∞ s̃i(t) = 0, which confirms iii).

4.3. Orientation Kinematics

In this section, we examine the orientation kinematics (3) and the associated control (16). Define the
desired pointing direction

bd,i ,
1

sd,i
pd,i,

and note that Proposition 1 implies that for all t ≥ 0, sd,i(t) > 0, which implies that bd,i is well defined.
Define the pointing direction error

b̃i , Rivi − bd,i,

and note that for all t ≥ 0, b̃i(t) ∈ B2, where B2 , {b ∈ Rm : ‖b‖ ≤ 2}, which is the closed ball of radius 2.
Differentiating b̃i and using (3) and (16) implies

˙̃
bi = ηisd,i

(
pd,iv

T
i vi −RivipT

d,iRivi
)

+
1

s2
d,i

(
ṗd,ip

T
d,i − pd,iṗ

T
d,i

)
Rivi − ḃd,i.

10



Since pd,i = sd,ibd,i, ṗd,i = ṡd,ibd,i + sd,iḃd,i, v
T
i vi = 1, and bd,i = −b̃i +Rivi, it follows that

˙̃
bi = ηis

2
d,i

(
−b̃i +

(
1− bTd,iRivi

)
Rivi

)
− ḃd,i

(
1− bTd,iRivi

)
− bd,iḃTd,iRivi.

Since bd,i is a unit vector, it follows that ḃTd,ibd,i = 0. In addition, note that 1 − bTd,iRivi = 1
2 b̃

T
i b̃i and

Rivi = b̃i + bd,i. Thus,

˙̃
bi = −ηis2

d,i

(
b̃i −

1

2
b̃Ti b̃i

(
b̃i + bd,i

))
− 1

2
ḃd,ib̃

T
i b̃i − bd,iḃTd,ib̃i. (37)

Consider the Lyapunov-like function Wi : B2 → [0, 2] defined by

Wi(b̃i) , 1
2 b̃

T
i b̃i = 1− bTd,iRivi, (38)

and define the Lyapunov-like derivative

Ẇi(b̃i) ,
∂Wi(b̃i)

∂b̃i

˙̃
bi. (39)

Define Ri ,
{
R ∈ SO(m) : bTd,i(0)Rvi 6= −1

}
, which is the set of all orientations Rvi except those where the

angle from q̇i(0) to Rvi is exactly π rad.
The next result shows that Wi is nonincreasing along the trajectories of (37); and for almost all initial

conditions, that is, for all Ri(0) ∈ Ri, the angle from q̇i(t) to pd,i(t) is bounded away from π rad for all t ≥ 0.

Proposition 5. Consider the closed-loop dynamics (37), which consists of (3)–(10) and (16). Assume
that (A1) is satisfied. Then, the following statements hold:

i) For all b̃i ∈ B2, Ẇi(b̃i) = − 1
2ηis

2
d,ib̃

T
i b̃i

(
1 + bTd,iRivi

)
, which is nonpositive.

ii) For all Ri(0) ∈ Ri, there exists εi > 0 such that for all t ≥ 0, 1 + bTd,i(t)Ri(t)vi ≥ εi.

Proof. Evaluating (39) along the trajectories of (37) yields

Ẇi(b̃i) = −ηis2
d,ib̃

T
i b̃i

(
1− 1

2
b̃Ti

(
b̃i + bd,i

))
− 1

2
b̃Ti ḃd,ib̃

T
i b̃i − b̃Ti bd,iḃTd,ib̃i = −1

2
ηis

2
d,ib̃

T
i b̃i
(
1 + bTd,iRivi

)
,

which is nonpositive because bTd,iRivi ≥ −1, thus confirming i).

To show ii), since bTd,i(0)Ri(0)vi 6= −1, it follows from (38) that Wi(b̃i(0)) = 1− bTd,i(0)Ri(0)vi < 2. Define

εi , 2−W (b̃i(0)) ∈ (0, 2], and since Wi is nonincreasing along the trajectories of (37), it follows that for all
t ≥ 0, 1 + bTd,i(t)Ri(t)vi = 2−W (b̃i(t)) ≥ εi, which confirms ii).

4.4. Full Closed-Loop Dynamics

We now analyze the full closed-loop dynamics (1)–(17). Since siRivi − pd,i = s̃iRivi + sd,ib̃i , it follows
from (25) that

φ̇ = −
[
(L+A)⊗ Im

]
B(φ)φ−

∑
i∈I

[
(L+A)di ⊗ Im

](
s̃iRivi + sd,ib̃i

)
. (40)

The next theorem is the main result, which shows that (φ(t), s̃1(t), . . . , s̃n(t), b̃1(t), . . . , b̃n(t)) ≡ 0 is an
almost globally exponentially stable equilibrium of the closed-loop system (32), (37), and (40). More specifically,
the equilibrium is Lyapunov stable, and for almost all initial conditions (qi(0), si(0), Ri(0)) ∈ Rm×Si×SO(m),
the state (φi, s̃i, b̃i) converges to zero exponentially and (O1)–(O4) are satisfied. In fact, the only initial
conditions for which the state is not guaranteed to converge to zero are those where the angle from q̇i(0) to
pd,i(0) is exactly π rad, that is, Ri(0) ∈ SO(m) \Ri. Note that topological constraints associated with SO(m)
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prevent global asymptotic stability of the equilibrium using a continuous time-invariant control [36]. The
proof of this main result relies on a Lyapunov function that is a weighted summation of the Lyapunov-like
functions (26), (33), and (38), which are used in each of the previous three subsections.

Theorem 1. Consider the closed-loop dynamics (32), (37), and (40), which consists of (1)–(17). Assume
that L+A is nonsingular and (A1) is satisfied. Then, (φ(t), s̃1(t), . . . , s̃n(t), b̃1(t), . . . , b̃n(t)) ≡ 0 is a Lyapunov
stable equilibrium of (32), (37), and (40). Furthermore, for all initial conditions (qi(0), si(0), Ri(0)) ∈
Rm × Si ×Ri, the following statements hold:

i) φi, s̃i, b̃i and ζi converge to zero exponentially.

ii) (O1)–(O4) are satisfied.

Proof. Since D is diagonal, it follows from (26), (27), and (22) that

V̇0(φ1, . . . , φn) = 2
∑
i∈I

kid
T
i Ddiσ(‖φi‖2)φT

i φ̇i = 2φTB(φ)
(
D ⊗ Im

)
φ̇. (41)

Evaluating (41) along (40) yields

V̇0(φ1, . . . , φn) = −φTB(φ)
[(

(L+A)TD +D(L+A)
)
⊗ Im

]
B(φ)φ

− 2
∑
i∈I

φTB(φ)
[
D(L+A

)
di ⊗ Im

](
s̃iRivi + sd,ib̃i

)
= −φTB(φ)(P ⊗ Im)B(φ)φ− 2

∑
i∈I

φTB(φ)QT
(
di ⊗ Im

)(
s̃iRivi + sd,ib̃i

)
, (42)

where P , (L+A)TD +D(L+A) and Q , (L+A)TD ⊗ Im. Since L+A is nonsingular, it follows from
Lemma 2 that P is positive definite. Since L+ A and D are nonsingular, it follows that Q is nonsingular.
Thus,

c1 ,
4nλmax(QTQ)

λmin(P )
> 0. (43)

Next, note that

0 ≤
(

1
√
c1
QB(φ)φ+

√
c1s̃i(di ⊗ Im)Rivi

)T(
1
√
c1
QB(φ)φ+

√
c1s̃i(di ⊗ Im)Rivi

)
,

which implies that

−2s̃iφ
TB(φ)QT(di ⊗ Im)Rivi ≤

1

c1
φTB(φ)QTQB(φ)φ+ c1s̃

2
i . (44)

Similarly,

−2sd,iφ
TB(φ)QT(di ⊗ Im)b̃i ≤

1

c1
φTB(φ)QTQB(φ)φ+ c1s

2
d,ib̃

T
i b̃i. (45)

Substituting (44) and (45) into (42) and using (43) and (22) yields

V̇0(φ1, . . . , φn) ≤ −φTB(φ)(P ⊗ Im)B(φ)φ+
∑
i∈I

(
2

c1
φTB(φ)QTQB(φ)φ+ c1

(
s̃2
i + s2

d,ib̃
T
i b̃i

))

≤ −
(
λmin(P )− 2nλmax(QTQ)

c1

)
φTB2(φ)φ+

∑
i∈I

c1

(
s̃2
i + s2

d,ib̃
T
i b̃i

)
= −c2φTB2(φ)φ+

∑
i∈I

c1

(
s̃2
i + s2

d,ib̃
T
i b̃i

)
=
∑
i∈I

(
−c2k2

i σ
2(‖φi‖2)φT

i φi + c1

(
s̃2
i + s2

d,ib̃
T
i b̃i

))
. (46)
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where c2 , λmin(P )/2.
To show that (φ(t), s̃1(t), . . . , s̃n(t), b̃1(t), . . . , b̃n(t)) ≡ 0 is a Lyapunov stable equilibrium of (32), (37),

and (40), consider the Lyapunov function V : Rm×· · ·×Rm×S1×· · ·×Sn×B2×· · ·×B2×Sd,1×· · ·×Sd,n →
[0,∞) defined by

V (φ1, . . . , φn, s̃1, . . . , s̃n, b̃1, . . . , b̃n, sd,1, . . . , sd,n) , V0(φ1, . . . , φn) +
∑
i∈I

(
2c1

¯
h2
i γi

Zi(s̃i, sd,i) +
4c1
ε̄iηi

Wi(b̃i)

)
,

(47)
where ε̄i ∈ (0, 2), and

¯
hi > 0 is given by i) of Proposition 4. Using i) of Proposition 4, i) of Proposition 5,

and (46) to evaluate V̇ along the trajectories of (32), (37), and (40) yields

V̇ , V̇0(φ1, . . . , φn) +
∑
i∈I

(
2c1

¯
h2
i γi

Żi(s̃i, sd,i) +
4c1
ε̄iηi

Ẇi(b̃i)

)

≤ −
∑
i∈I

(
c2k

2
i σ

2(‖φi‖2)φT
i φi + c1s̃

2
i + c1

(
2(1 + bTd,iRivi)

ε̄i
− 1

)
s2

d,ib̃
T
i b̃i

)
, (48)

where we omit the arguments from V̇ . Define r , 4 − ε̄i > 0 and Br , {b̃i ∈ Rm : b̃Ti b̃i < r}. Since
1 + bTd,iRivi = 2 − b̃Ti b̃i/2, it follows from (48) that for all (φi, s̃i, b̃i, sd,i) ∈ Rm × Si × Br × Sd,i, V̇ ≤
−
∑
i∈I
(
c2k

2
i σ

2(‖φi‖2)φT
i φi + c1s̃

2
i

)
, which is nonpositive. Thus, the origin is a Lyapunov stable equilibrium.

To show i), consider (47) with ε̄i = εi, where εi > 0 is given by ii) of Proposition 5. Thus, it follows from
(48), ii) of Proposition 5, and Proposition 1 that for all t ≥ 0,

V̇ (t) ≤ −
∑
i∈I

(
c2k

2
i σ

2(‖φi(t)‖2)‖φi(t)‖2 + c1s̃
2
i (t) + c1s

2
d,i(t)‖b̃i(t)‖2

)
≤ −

∑
i∈I

(
c2k

2
i σ

2(‖φi(t)‖2)‖φi(t)‖2 + c1s̃
2
i (t) + c1

¯
s2
i ‖b̃i(t)‖2

)
,

which implies that V is nonincreasing. Since, in addition, V is radially unbounded, it follows that φi is
bounded, which implies that there exists σmin > 0 such that for all t ≥ 0, σ(‖φi(t)‖2) > σmin. Thus,

V̇ (t) ≤ −
∑
i∈I

(
c2k

2
i σ

2
min‖φi(t)‖2 + c1s̃

2
i (t) + c1

¯
s2
i ‖b̃i(t)‖2

)
. (49)

Next, note that ν1 + ν2‖φi‖2 ≤ ν1 + 2ν2‖φi‖2 +
ν2
2

ν1
‖φi‖4 = (

√
ν1 + ν2√

ν1
‖φi‖2)2, and taking the square root of

each side implies that √
ν1 + ν2‖φi‖2 −

√
ν1 ≤

ν2√
ν1
‖φi‖2. (50)

Together, (26) and (50) imply that

V0(φ1, . . . , φn) ≤ 2
√
ν1

∑
i∈I

kid
T
i Ddi‖φi‖2 ≤ c3

∑
i∈I

k2
i ‖φi‖2, (51)

where c3 , maxi∈I 2dT
i Ddi/(ki

√
ν1). Next, ii) and iii) of Proposition 4 implies that for all t ≥ 0, si(t) ∈ Si

and that limt→∞ s̃i(t) = 0. Since, in addition, for all t ≥ 0, sd,i(t) ∈ Sd,i, it follows from (12) that there
exists h̄i > 0 such that for all t ≥ 0, hi(si(t), sd,i(t)) ≤ h̄i. Thus, (33) implies that for all t ≥ 0,

Zi(s̃i(t), sd,i(t)) ≤
h̄2
i

2
s̃2
i . (52)

13



Therefore, combining (38), (51), and (52) with (49) yields

V̇ (t) ≤ −c2σ
2
min

c3
V0(φ1(t), . . . , φn(t))−

∑
i∈I

(
2c1
h̄2
i

Zi(s̃i(t), sd,i(t)) + 2c1
¯
s2
iWi(b̃i(t))

)
,

and using (47) yields

V̇ (t) ≤ −c4V (φ1(t), . . . , φn(t), s̃1(t), . . . , s̃n(t), b̃1(t), . . . , b̃n(t), sd,1(t), . . . , sd,n(t)),

where c4 , min{ c2σ
2
min

c3
, ¯
h2
1γ1
h̄2
1
, . . . , ¯

h2
nγn
h̄2
n
,
ε̄1η1

¯
s21

2 , . . . ,
ε̄nηn

¯
s2n

2 } is positive. Thus, V (t) ≤ e−c4tV (0), which implies

that V converges to zero exponentially. Therefore, each term in (47) converges to zero exponentially, which
implies that V0, Zi, and Wi converge to zero exponentially. Since V0 converges to zero exponentially, (26)
implies that φi converges to zero exponentially. Since, in addition, L+A is nonsingular, it follows from (20)
that ζi converges to zero exponentially. Next, since for all t ≥ 0, (si(t), sd,i(t)) ∈ Si × Sd,i, it follows that
hi(si(t), sd,i(t)) ≥

¯
hi. Since, in addition, Zi converges to zero exponentially, (33) implies that s̃i converges to

zero exponentially. Finally, since Wi converges to zero exponentially, (38) implies that b̃i converges to zero
exponentially, which confirms i).

To show ii), since limt→∞ ζi(t) = 0 and Rg is bounded, it follows that (O3) is satisfied, which implies

that (O1) is satisfied. Next, since sd,i is bounded, limt→∞ φ(t) = 0, limt→∞ s̃i(t) = 0, and limt→∞ b̃i = 0, it

follows from (40) that limt→∞ φ̇(t) = 0. Since, in addition, L+A is nonsingular, it follows from (24) that
limt→∞ ζ̇(t) = 0, which confirms (O2). Lastly, (O4) follows from ii) of Proposition 4.

Next, we present two specializations of Theorem 1, which address the cases where either the speed si
or the pointing direction Rivi are control variables. The proofs of these results are similar to the proof of
Theorem 1. Note that Proposition 3 addresses the case where both speed si and the pointing direction Rivi
are control variables.

Theorem 2. Consider the closed-loop dynamics (37) and (40), which consists of (1), (3)–(10), and (16),
where si = sd,i. Assume that L+ A is nonsingular and (A1) is satisfied. Then, (φ(t), b̃1(t), . . . , b̃n(t)) ≡ 0
is a Lyapunov stable equilibrium of (37) and (40) with si = sd,i. Furthermore, for all initial conditions

(qi(0), Ri(0)) ∈ Rm ×Ri, φi, b̃i, and ζi converge to zero exponentially, and (O1)–(O4) are satisfied.

Theorem 3. Consider the closed-loop dynamics (32) and (40), which consists of (1), (2), (4)–(15), and (17),
where Rivi = bd,i. Assume that L+A is nonsingular and (A1) is satisfied. Then, (φ(t), s̃1(t), . . . , s̃n(t)) ≡ 0
is a Lyapunov stable equilibrium of (32) and (40) with Rivi = bd,i. Furthermore, for all initial conditions
(qi(0), si(0)) ∈ Rm × Si, φi, s̃i, and ζi converge to zero exponentially, and (O1)–(O4) are satisfied.

5. Adaptive Formation Control Algorithm with Uncertainty in Speed Dynamics

In this section, we extended the formation control (4)–(17) to address uncertainty in the speed dynamics
(2), specifically, uncertainty in fi(si, Ri) and gi(si, Ri), which appear in (2). We develop and analyze an
adaptive controller, which is used in place of the non-adaptive controller (15). First, the functions fi(si, Ri)
and gi(si, Ri) are parameterized as

fi(si, Ri) = χT
∗,iΓi(si, Ri), (53)

gi(si, Ri) = r∗,iψi(si, Ri), (54)

where Γi : Si × SO(m) → Rni and ψi : Si × SO(m) → R \ {0} are continuous, χ∗,i ∈ Rni , and r∗,i 6= 0.
We assume that Γi and ψi are known, and the sign of r∗,i is known; however, χ∗,i and |r∗,i| are unknown.
Without loss of generality, let r∗,i > 0 and ψi : Si × SO(m)→ (0,∞).

The adaptive approach in this section uses the continuous projection operator. Here, we briefly review
this operator. For more details, see [41, Appendix E]. To define the continuous projection operator, let
w : R`w → R be a continuously differentiable convex function, and consider ∇w : R`w → R`w defined by
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∇w(x) , [∂w(x)/∂x]
T

. Let εp > 0 and let M ∈ R`w×`w be positive definite, and consider the continuous
projection operator Projw,M : R`w × R`w → R`w defined by

Projw,M (x, y) ,

y −min
{

1, w(x)
εp

}
M∇w(x)

∇wT(x)y

∇wT(x)M∇w(x)
, w(x) ≥ 0 and yT∇w(x) > 0,

y, otherwise.

Define the unknown system parameters θ∗,i , χ∗,i/r∗,i ∈ Rni and l∗,i , 1/r∗,i > 0. Next, let wi : Rni → R
be a continuously differentiable convex function, and define Θi , {θ ∈ Rni : wi(θ) ≤ 0}, which is convex
and assumed to be such that θ∗,i ∈ Θi. Similarly, let zi : R → R be a continuously differentiable convex

function, and define Li , {l ∈ R : zi(l) ≤ 0}, which is convex and assumed to be such that l∗,i ∈ Li. Lastly,

define Θ̄i , {θ ∈ Rni : wi(θ) ≤ εp} and L̄i , {l ∈ R : zi(l) ≤ εp}, which are convex supersets of Θi and Li,
respectively.

Let γi > 0, and consider the formation controller (4)–(14), (16), and (17) combined with the adaptive
speed controller

ui =
−1

ψi(si, Ri)

(
θT
i Γi(si, Ri) +

γi(si − sd,i)hi(si, sd,i)

µi(si, sd,i)
+
liṡd,iυi(si, sd,i)

µi(si, sd,i)

)
, (55)

where υi : Si × Sdi
→ R is defined by

υi(si, sd,i) , (si − sd,i)
∂hi(si, sd,i)

∂sd,i
− hi(si, sd,i), (56)

and the adaptive parameters θi : [0,∞)→ Θ̄i and li : [0,∞)→ L̄i satisfy

θ̇i = Projwi,Mi

(
θi, (si − sd,i)hi(si, sd,i)µi(si, sd,i)MiΓi(si, Ri)

)
, (57)

l̇i = Projzi,τi

(
li, τi(si − sd,i)hi(si, sd,i)υi(si, sd,i)ṡd,i

)
, (58)

where θi(0) ∈ Θ̄i, li(0) ∈ L̄i, τi > 0, and Mi ∈ Rni×ni is positive definite. Note that if li = l∗,i and
θi = θ∗,i, then (55) and (56) are equivalent to the non-adaptive speed control (15), where the gain γi in (15)
is replaced by γi/r∗,i. We also note that the adaptive laws (57) and (58) can be modified using standard
robust modification methods (e.g., normalization, dead-zone, e-modification); see [42] for more details.

To analyze closed-loop stability, define the parameter estimation errors

θ̃i , θi − θ∗,i, l̃i , li − l∗,i.

Differentiating s̃i and using (2) and (53)–(56) yields

˙̃si = χT
∗,iΓi(si, Ri)− r∗,i

(
θT
i Γi(si, Ri) +

γis̃ihi(si, sd,i)

µi(si, sd,i)
+
liṡd,iυi(si, sd,i)

µi(si, sd,i)

)
− ṡd,i

= −r∗,iθ̃T
i Γi(si, Ri)−

r∗,i
µi(si, sd,i)

[
γis̃ihi(si, sd,i) + l̃iṡd,iυi(si, sd,i)

]
−

[
υi(si, sd,i)

µi(si, sd,i)
+ 1

]
ṡd,i. (59)

Consider the Lyapunov-like function Zi : Si × Sd,i × Θ̄i × L̄i defined by

Zi(s̃i, sd,i, θ̃i, l̃i) ,
1

2r∗,i
h2
i (si, sd,i)s̃

2
i +

1

2
θ̃T
i M

−1
i θ̃i +

1

2τi
l̃2i , (60)
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and define the Lyapunov-like derivative

Żi(s̃i, sd,i, θ̃i, l̃i) ,
∂Zi(s̃i, sd,i, θ̃i, l̃i)

∂s̃i
˙̃si +

∂Zi(s̃i, sd,i, θ̃i, l̃i)

∂s̃d,i
ṡd,i +

∂Zi(s̃i, sd,i, θ̃i, l̃i)

∂θ̃i
θ̇i +

∂Zi(s̃i, sd,i, θ̃i, l̃i)

∂l̃i
l̇i.

(61)
The next result shows that if (A1) is satisfied, si(0) ∈ Si, θi(0) ∈ Θ̄i, and li(0) ∈ L̄i, then for all t ≥ 0,
si(t) ∈ Si, θi(t) ∈ Θ̄i, and li(t) ∈ L̄i, and limt→∞ s̃i(t) = 0.

Proposition 6. Consider the closed-loop dynamics (57)–(59), which consists of (2), (4)–(14), (17),
and (53)–(58). Assume that (A1) is satisfied. Then, the following statements hold:

i) For all (si, sd,i, θi, li) ∈ Si × Sd,i × Θ̄i × L̄i, Żi(si, sd,i, θ̃i, l̃i) = −γih2
i (si, sd,i)s̃

2
i ≤ −γi¯h

2
i s̃

2
i , where

¯
hi ,

4(s̄i−
¯
si−εd)εd

(s̄i−
¯
si)2

> 0.

ii) For all (si(0), θi(0), li(0)) ∈ Si × Θ̄i × L̄i, (O4) is satisfied.

iii) For all (si(0), θi(0), li(0)) ∈ Si × Θ̄i × L̄i, limt→∞ s̃i(t) = 0.

iv) For all (si(0), θi(0), li(0)) ∈ Si × Θ̄i × L̄i and for all t ≥ 0, θi(t) ∈ Θ̄i and li(t) ∈ L̄i.

Proof. Computing the partial derivatives in (61) and using (17) and (56) yields

Żi(s̃i, sd,i, θ̃i, l̃i) =
hi(si, sd,i)s̃i

r∗,i

[(
∂hi(si, sd,i)

∂si
ṡi +

∂hi(si, sd,i)

∂sd,i
ṡd,i

)
s̃i + hi(si, sd,i) ˙̃si

]
+ θ̃T

i M
−1
i θ̇i +

l̃i l̇i
τi

=
hi(si, sd,i)s̃i

r∗,i

[
µi(si, sd,i) ˙̃si +

(
υi(si, sd,i) + µi(si, sd,i)

)
ṡd,i

]
+ θ̃T

i M
−1
i θ̇i +

l̃i l̇i
τi
, (62)

and evaluating (62) along the trajectories of (57)–(59) yields

Żi(s̃i, sd,i, θ̃i, l̃i) = −hi(si, sd,i)s̃i

[
µi(s, sd,i)θ̃

T
i Γi(si, Ri) + γis̃ihi(si, sd,i) + l̃iṡd,iυi(si, sd,i)

]
+ θ̃T

i M
−1
i Projwi,Mi

(
θi, s̃ihi(si, sd,i)µi(si, sd,i)MiΓi(si, Ri)

)
+
l̃i
τi

Projzi,τi

(
li, τis̃ihi(si, sd,i)υi(si, sd,i)ṡd,i

)
. (63)

Next, it follows from [41, Lemma E.1] that for all y ∈ Rni , θ̃T
i M

−1
i Projwi,Mi

(θi, y) ≤ θ̃T
i M

−1
i y, and for all

a ∈ R, τ−1
i l̃i Projzi,τi(li, a) ≤ τ−1

i l̃ia. Thus, (63) implies that Żi(s̃i, sd,i, θ̃i, l̃i) = −γih2
i (si, sd,i)s̃

2
i . Using the

same steps that are used after (35) in the proof of Proposition 4, it follows that i)–iii) are satisfied. Lastly,
iv) follows directly from [41, Lemma E.1].

The following theorem is the main result that addresses the case where the speed dynamics are uncertain
and the adaptive speed controller (55)–(58) is used in place of the non-adaptive speed controller (15)
in combination with the rest of the formation control algorithm (4)–(14), (16), and (17). This result
shows that (φ(t), s̃1(0), . . . , s̃n(t), b̃1(t), . . . , b̃n(t), θ̃1(t), . . . , θ̃n(t), l̃1(t), . . . , l̃n(t)) ≡ 0 is a Lyapunov stable
equilibrium of the closed-loop system (37), (40), and (57)–(59), and for all (qi(0), si(0), Ri(0), θi(0), li(0)) ∈
Rm × Si ×Ri × Θ̄i × L̄i, (O1)–(O4) are satisfied. The proof is similar to the proof of Theorem 1 except (60)
is used in place of (33) for Zi, and Proposition 6 is used in place of Proposition 4.

Theorem 4. Consider the closed-loop dynamics (37), (40), and (57)–(59), which consists of (1)–(14), (16),
(17), and (53)–(58). Assume that L+A is nonsingular and (A1) is satisfied. Then, (φ(t), s̃1(0), . . . s̃n(t), b̃1(t),
. . . , b̃n(t), θ̃1(t), . . . , θ̃n(t), l̃1(t), . . . , l̃n(t)) ≡ 0 is a Lyapunov stable equilibrium of (37), (40), and (57)–(59).
Furthermore, for all initial conditions (qi(0), si(0), Ri(0), θi(0), li(0)) ∈ Rm×Si×Ri×Θ̄i×L̄i, limt→∞ ζi(t) = 0,
limt→∞ s̃i(t) = 0, and limt→∞ b̃i(t) = 0; (O1)–(O4) are satisfied; and for all t ≥ 0, θi(t) ∈ Θ̄i and li(t) ∈ L̄i.

Theorem 4 guarantees that (φi, s̃i, b̃i) converges to zero, and (O1)–(O4) are satisfied. Furthermore,
the result shows that the adaptive parameters θi and li are bounded; however, these parameters are not
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guaranteed to converge to the unknown values θ∗,i and l∗,i. The lack of guaranteed convergence for the
adaptive parameters is common in adaptive control schemes, where the control objective (e.g., convergence of
(φi, s̃i, b̃i) to zero) can be achieved without perfect parameter estimation. In order for θi and li to converge to
θ∗,i and l∗,i, the regressors Γi(si, sd,i) and ṡd,i in the adaptive laws (57) and (58) must be sufficiently rich (i.e.,
sufficiently exciting), which, in turn, depends on the exogenous leader trajectory (i.e., qg and Rg). For more
information on adaptive parameter convergence, see [41, 43, 44] for a discussion of persistency of excitation.

Finally, we note that Theorem 4 specializes to the case where the pointing direction Rivi is a control
variable and the speed dynamics are uncertain; similar to how Theorem 1 specializes to Theorem 3.

6. Numerical Simulations

For all examples, let n = 3 and m = 3, and for i ∈ {1, 2, 3}, define ei , [01×i−1 1 01×3−i]
T ∈ R3. Let

vi = e1, which implies that each agent’s velocity is in the body-fixed e1-direction. The speed bounds are

¯
si = 8 m/s and s̄i = 18 m/s. Each agent’s initial position qi(0) and initial orientation Ri(0) are selected
randomly, and each agent’s initial speed si(0) is selected randomly such that si(0) ∈ Si.

The leader position qg and orientation Rg satisfy (1) and (3) with i replaced with g, where vg = e1,
sg = 12 m/s, qg(0) = 0 m, Rg(0) = Im, and Ωg is the skew-symmetric form of the angular velocity
vector [0 0.1 cos 0.5πt 0.1t + 0.2 cosπt]T rad/s. The desired relative positions are δ1 = [−5 5 1]T m,
δ2 = [−5 − 5 2]T m, and δ3 = [−10 − 10 3]T m. Note that for all t ≥ 0, ‖q̇g(t) +Rg(t)δi‖ ∈ (10.5, 15.7).
Thus, (A1) is satisfied with κi = 2.3.

Let N1 = {3}, N2 = {1}, and N3 = {2}, which represents a cyclic feedback structure. For all j ∈ Ni, let
βij = 0.6. Let α1 = 2 and α2 = α3 = 0, which implies that only the first agent has access to a measurement
of its position relative to the leader (i.e., qg − q1). The formation control is implemented with ν1 = ν2 = 1
and ki = 2, which satisfies ki ∈ (0, κi

√
ν2). Each agent’s measurement of qi, si, and the Euler angles that

parameterize Ri are corrupted by additive zero-mean Gaussian white noise with intensities 2 × 10−6 m2,
3× 10−7 m2/s2, and 5× 10−6 rad2, respectively.

The next two examples demonstrate the non-adaptive formation control (4)–(17).

Example 1. For this example, fi(si, Ri) = −si and gi(si, Ri) = 1, which implies that the speed dynamics
are low-pass and linear with unity gain at dc. We implement the (non-adaptive) formation control (4)–(17),
where γi = 1 and and ηi = 0.3. Figure 1 shows the 3-dimensional trajectories of the leader and agents, and
Figure 3 shows that qi − qg approaches Rgδi, which implies that the formation control objectives are satisfied.
The relative positions converge to the desired values by approximately t = 20 s. The root mean square (RMS)
of ‖ζi‖ from t = 30 s to t = 60 s is 0.00041 m, 0.00359 m, and 0.00193 m for agent 1, 2, and 3, respectively.
Note that if the sensor noise is absent, then the RMS errors converge to zero as stated in Theorem 1. Figure 2
shows that si approaches sd,i, and that si is inside the speed bounds for all time. 4

Example 2. For this example, fi(si, Ri) = −0.005|si|si + geT
3 Rivi and gi(si, Ri) = 0.5, where −|si|si

models aerodynamic drag on the agent (e.g., aircraft) and geT
3 Rivi models the acceleration due to gravity

g = 9.81 m/s2 that is in the direction of velocity. We implement the (non-adaptive) formation control
(4)–(17), where γi = 10 and and ηi = 0.3. Figure 4 shows the 3-dimensional trajectories of the leader and
agents, and Figure 6 shows that qi − qg approaches Rgδi, which implies that the formation control objectives
are satisfied. The relative positions converge to the desired values by approximately t = 25 s. The RMS of
‖ζi‖ from t = 30 s to t = 60 s is 0.00045 m, 0.00306 m, and 0.00172 m for agent 1, 2, and 3, respectively.
Figure 5 shows that si approaches sd,i, and that si is inside the speed bounds for all time. 4

The next example demonstrates the adaptive formation control (4)–(14), (16), (17), and (55)–(58).

Example 3. For this example, fi(si, Ri) = −0.005|si|si + geT
3 Rivi and gi(si, Ri) = 0.5, which are the

same as in Example 2; however, we assume that these speed dynamics are uncertain. Specifically, fi and

gi are parameterized as (53) and (54), where ni = 2, Γi(si, Ri) =
[

0.01|si|si geT
3 Rivi

]T
, and ψ(si, Ri) = 1

are known, but χ∗,i = [−0.5 1 ]T and r∗,i = 0.5 are unknown. Thus, θ∗,i = χ∗,i/r∗,i = [−1 2 ] and
l∗,i = 1/r∗,i = 2 are unknown.

To implement the projection operator used in the adaptive laws (57) and (58), we assume there exist
known bounds

¯
li, l̄i ∈ R such that l∗,i is in

¯
Li , {l ∈ R :

¯
li ≤ l ≤ l̄i}. Similarly, we assume there exist
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Figure 1: Agent and leader trajectories qi and qg.
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Figure 2: Agent speed si and desired speed sd,i. The upper
and lower speed bounds are the limits of the vertical axis.
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Figure 3: Agent position relative to the leader qi − qg. Each
agent achieves its desired relative position Rgδi by t = 20 s.
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Figure 4: Agent and leader trajectories qi and qg.
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Figure 5: Agent speed si and desired speed sd,i. The upper
and lower speed bounds are the limits of the vertical axis.
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Figure 6: Agent position relative to the leader qi − qg. Each
agent achieves its desired relative position Rgδi by t = 25 s.

known bounds
¯
θi, θ̄i ∈ Rni such that θ∗,i is in

¯
Θi , {θ ∈ Rni :

¯
θi ≤ θ ≤ θ̄i, where ≤ is defined element-wise}.

Next, we specify continuously differential convex functions zi and wi such that Li , {l ∈ R : zi(l) ≤ 0} and
Θi , {θ ∈ Rni

: wi(θ) ≤ 0} are super sets of
¯
Li and

¯
Θi, respectively.

To develop zi, consider Nli : R→ R defined by

Nli(li) ,

(
li −

l̄i +
¯
li

2

)/(
l̄i −

¯
li

2

)
,

which is a scalar normalization that maps
¯
Li to [−1, 1], that is, Nli(¯

Li) = [−1, 1]. Then, let zi : R→ R be
the continuously differentiable convex function defined by zi(li) , N2

li
(li)− 1, and it follows that Li =

¯
Li,

which implies that l∗,i ∈ Li.

18



To develop wi, consider Nθi : Rni → Rni defined by

Nθi(θi) ,

(
θi −

θ̄i +
¯
θi

2

)
÷
(
θ̄i −

¯
θi

2

)
,

where ÷ is element-wise vector division. Note that Nθi is a vector normalization that maps
¯
Θi to [−1, 1]ni .

Furthermore, we note that
¯
Θi = {θ ∈ Rni : ‖Nθi(θ)‖2∞ − 1 ≤ 0}; however, ‖Nθi(θi)‖2∞ − 1 is not continuously

differentiable, and thus, it cannot be used as the function wi. Instead, let wi : R→ R be the continuously

differentiable convex function defined by wi(θi) , ‖Nθi(θi)‖2p − n
2/p
i , where ‖ · ‖p is the p-norm and p is

an integer greater than 1. Thus, Θi is a super set of
¯
Θi, which implies that θ∗,i ∈ Θi. Furthermore, as p

tends to infinity, Θi tends to
¯
Θi. In this example, we let p = 10,

¯
li = 0.3, l̄i = 5,

¯
θi = [−5 0.1 ]T, and

θ̄i = [−0.1 5 ]T.
We implement the adaptive formation control (4)–(14), (16), (17), and (56)–(58), where εp = 0.1, τi = 0.5,

Mi = diag(2, 4), γi = 10, and ηi = 0.3. The initial conditions θi(0) and li(0) are chosen as uniform random
values in the sets

¯
Θi and Li. Figure 7 shows the 3-dimensional trajectories of the leader and agents, and

Figure 9 shows that qi − qg approaches Rgδi, which implies that the formation control objectives are satisfied.
The relative positions converge to the desired values by approximately t = 25 s. The RMS of ‖ζi‖ from
t = 30 s to t = 60 s is 0.00040 m, 0.00294 m, and 0.00165 m for agent 1, 2, and 3, respectively. Figure 8 shows
that si approaches sd,i, and that si is inside the speed bounds for all time. Figure 10 shows the adaptive
parameters θi and li. 4
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Figure 7: Agent and leader trajectories qi and qg.
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Figure 8: Agent speed si and desired speed sd,i. The upper
and lower speed bounds are the limits of the vertical axis.
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Figure 9: Agent position relative to the leader qi − qg. Each
agent achieves its desired relative position Rgδi by t = 25 s.

The numerical examples illustrate that the formation control algorithms presented in this paper ap-
proximately achieve the objectives (O1)–(O4) in the presence of sensor noise. If the sensor noise is absent,
then the RMS errors converge to zero for all examples and (O1)–(O4) are achieved as stated in Theorem 1
(non-adaptive) and Theorem 4 (adaptive).
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