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Abstract

We present a formation control algorithm for agents with extended unicycle dynamics that include orientation
kinematics on SO(m), first-order uncertain speed dynamics, and hard constraints on speed. The desired
interagent positions are expressed in a leader-fixed coordinate frame. Thus, the desired interagent positions
vary in time as the leader-fixed frame rotates. We assume that each agent has relative-position feedback
of its neighbor agents, where the neighbor sets are such that the interagent communication (i.e., feedback)
structure is a quasi-strongly connected directed graph. We assume that at least one agent (which is a center
vertex of the graph) has access to a measurement its position relative to the leader. The main analytic results
show that for almost all initial conditions, each agent converges to its desired relative position with the leader
and the other agents, and each agent’s speed satisfies the speed constraints for all time. We also present an
adaptive extension of the formation control algorithm that addresses uncertain speed dynamics, which are
parameterized as an unknown linear combination of known basis functions. Finally, we present numerical
simulations to demonstrate both the non-adaptive and adaptive formation control methods.
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1. Introduction

Autonomous multi-vehicle systems have application to distributed sensing, cooperative surveillance,
precision agriculture, and search and rescue. In formation control, each agent typically relies on sensing or
interagent communication to determine necessary feedback information (e.g., interagent positions). Then, each
agent uses this feedback information in combination with feedforward information (e.g., external commands,
mission objectives) to accomplish tasks such as collision avoidance, cohesion, guidance, and velocity matching.
Collision avoidance repels an agent from nearby agents or obstacles, whereas cohesion attracts an agent to
nearby agents. Guidance often causes each agent to approach a desired destination [1, 2] or follow a leader
agent [3-7]. Velocity matching causes nearby agents to approach a consensus velocity [8-10].

Consensus algorithms have been used to address cohesion (e.g., [5-7, 11, 12]). These approaches force
agents into a predetermined formation by specifying the desired relative position between pairs of agents.
Other examples of formation control algorithms include [1-3, 13-15]. Examples of formation control algorithms
that address uncertain agent dynamics include [12, 16-18], whereas methods that address input saturation
are presented in [6, 11, 19]. Surveys of multi-agent formation-control methods are presented in [9, 10, 20].

Much of the cooperative control literature (e.g., [1, 3, 7, 10-12, 14, 17, 21, 22]) focuses on agents with
double-integrator dynamics, where the control input is the acceleration in an inertial frame. However,
double-integrator dynamics are not suitable for modeling some vehicles such as fixed-wing aircraft or wheeled
robots, which are subject to nonholonomic constraints [2, 23, 24].

This paper addresses agents with extended unicycle dynamics that include orientation kinematics on
SO(m), first-order uncertain speed dynamics, and hard speed constraints. These extended unicycle dynamics
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have application to modeling fixed-wing unmanned air vehicles (UAVs) and ground robots. For example,
similar models are used for fixed-wing UAVs in [25-29] and for ground robots in [2, 6, 30, 31]. However, these
related models do not include orientation kinematics on SO(m), hard speed constraints, or uncertainty in
the speed dynamics—all of which can be important for many applications. For example, a fixed-wing UAV
has hard speed constraints; namely, it must satisfy a minimum speed to maintain lift, and its operational
capabilities impose a limit on maximum speed. Similarly, the speed dynamics of a fixed-wing UAV typically
has uncertainty from a variety of sources, which could include local air density, airframe configuration, level
of battery charge, and payload mass (e.g., remaining fuel, cargo). In addition, these parameters may change
during flight. Thus, it may be beneficial to treat this as parameterized uncertainty rather than attempting
to model these effects directly. Note that formation-control simulation results for fixed-wing UAVs are in
[24-26, 32, 33], and experimental results are in [4, 15, 33-35].

This paper addresses formation control in a leader-fixed frame for agents with the extended unicycle
dynamics. The desired interagent positions are expressed in a leader-fixed coordinate frame, which is aligned
with the leader’s velocity vector. Thus, the desired interagent positions vary in time as the leader-fixed
frame rotates. The leader can be a physical agent or a virtual agent. The algorithms in this paper apply to
formations where: the neighbor sets are such that the interagent communication structure is represented by a
quasi-strongly connected graph; at least one agent has access to a measurement its position relative to the
leader; and each agent has feedforward of the leader’s velocity, acceleration, orientation, angular velocity,
and angular acceleration. In some applications, the higher-order feedforward signals (e.g., accelerations) can
be neglected. The main analytic results show that for almost all initial conditions, the agents converge to
the desired relative positions with the leader and the other agents. We note that topological constraints
associated with SO(m) prevent global convergence using a continuous time-invariant control [36]. The main
analytic results also show that each agent’s speed satisfies the hard speed constraints for all time. In addition,
this paper presents an adaptive extension of the formation control algorithm to address uncertainty in the
speed dynamics, which are parameterized as an unknown linear combination of known basis functions. Both
the non-adaptive and adaptive formation control algorithms are demonstrated in numerical simulations. Some
preliminary results related to this paper appeared in [32, 37]; however, the current paper goes significantly
beyond the preliminary conference publications [32, 37] by presenting complete stability and performance
analyses, and addressing uncertainty in the speed dynamics. It is also worth noting that this paper presents
a significantly different control algorithm than [32, 37]. This improved algorithm effectively accommodates
hard speed constraints, which were not addressed in [32].

2. Problem Formulation

Let the positive number n be the number of agents, and define the agent index set Z = {1,2,...,n}.
Define P £ {(i,7) € Z x T : i # j}, which is the set of ordered pairs. Unless otherwise stated, all statements
that involve the subscript ¢ are for all ¢ € Z, and all statements that involve the subscripts ¢ and j are for all
(i,5) € P. Let || - || denote the 2-norm. The special orthogonal group SO(m) is the set of orthogonal matrices
in R™*™ with determinant one. The set of skew-symmetric matrices in R™*™ is denoted by so(m).

For clarity of presentation, we first develop the extended unicycle model in three-dimensional space. Thus,
for the moment, let m = 3. Let E be an inertial frame (e.g., the Earth frame), and let og be the origin of E.
Let o0; be the location of the ith agent (e.g., the locatlon of the ith vehicle’s center of mass). The position
of o; relative to og is ql, and the zth agent S position qz is resolved in E as ¢; = qz|E The Velomty of o;
relative to o with respect to E is pl =%¢q;. Let B; be a frame that is fixed to o; such that pZ resolved in
B; is given by p;|p, = s;v;, where v; € R™ is a unit vector, and for all t > 0, s;(t) € R is the speed of the
ith agent, which is subject to the constraint that for all ¢ > 0, s;(t) € S; £ (s, 5;), where 0 < s; < 5;. Let
R; : [0,00) — SO(m) be the rotation matrix from B; to E. Thus, the ith agent’s velocity p; resolved in E is
ZZ\E = s;R;v;, which implies that

Qi(t) = s:(O) Ri(t)vi, (1)

where t > 0; ¢;(t) € R™, s;(t) € S;, and R} (t) € SO(m) are the position, speed, and orientation of the ith
agent; and ¢;(0) € R™ is the initial condition. Note that R,;v; is the unit vector in the direction of the velocity



¢;- The speed and orientation of the ith agent satisfy

8:(t) = fi(si(t), Ri(t)) + gi(si(t), Ri(t))ui(t), (2)
Ri(t) = Ri(t)Q(t), (3

where t > 0; u; : [0,00) — R and €2, : [0, 00) — so(m) are the control inputs; s;(0) € S; and R;(0) € SO(m)
are the initial conditions; and f; : S; x SO(m) — R and g; : S; x SO(m) — R\ {0} are continuous. Note that
Q; is the skew-symmetric form of the angular velocity of B; relative to E resolved in B;. The agent model
(1)—(3) is an extended unicycle model that includes both speed dynamics (2) and orientation kinematics (3)
on SO(m), and has a hard constraint on speed s;.

Let oy be the location of the leader, which can be a physical agent (e.g., a vehicle) or a virtual agent. The
position of o, relative to og is (E, and the leader’s position q_g\ is resolved in E as ¢ = CE|E, which is assumed
to be twice continuously differentiable. The velocity of o, relative to og with respect to E is p:, équ_ Let
B be a frame that is fixed to o; and has orthogonal unit vectors g, js, and l%g, where i, is parallel to the
leader’s velocity vector p_g\, and the rotation matrix from By to E is Ry : [0,00) — SO(m), which is assumed
to be twice continuously differentiable.

This paper addresses the problem of formation control in the leader-fixed frame Bgs. Let §; € R™ be the
desired position of o; relative to og resolved in Bg. Thus, for all (i,5) € P, §;; = §; — J; is the desired position
of o; relative to o; resolved in B,. Our objective is to design controls u; and €); such that:

(01) For all (i,5) € P, limyo0 RY (t)[ai(t) — q;(t)] = 6.
(02) For all i € T, limy_,00[di(t) — da(t) — Rg(t)di] = 0.
(03) For all i € Z, limy,00 Ry (t)[qi(t) — gg(t)] = di.
(O4) For all i € T and for all t > 0, s;(t) € S;.

Objective (O1) states that the interagent positions approach the desired values. Objective (O2) states
that each agent’s velocity with respect to By approaches the leader’s velocity with respect to By, and (O3)
states that each agent approaches its desired relative position with the leader. Objective (O4) states that the
agents’ speed constraints are satisfied. If (O3) is satisfied, then (O1) is satisfied. However, we enumerate
these objectives independently because some results in this paper show that if no agents have access to a
measurement of the leader’s position, then (O1) is satisfied but (O3) is not.

Notably, it is not possible to satisfy the formation objectives (O1)—(03) and the speed constraint (04) for
an arbitrary leader trajectory (i.e., ¢z and Rg). More specifically, if (O2) is satisfied, then the ith agent’s
velocity ¢; converges to ¢y + Rgéi. Thus, (0O2) implies that we want the ith agent’s speed ||;(¢)|| to equal
lldg(t) + Rg(t)d:]|. However, (O4) requires that the ith agent’s speed satisfies ||¢;(t)|| € S;. Thus, if the
ith agent’s speed equals ||dg(t) + Rg(t)d;]| and satisfies ||¢;(t)|| € S, then the leader trajectory must satisfy
llde(t) + Rg(t)d:|| € Si. Therefore, we make the following assumption:

(A1) For all i € Z, there exists #; > 0 such that for all t > 0, ||Gg(t) + Rg(t)3]| € (i + ki, 5 — i)

Assumption (A1) implies that for all ¢ > 0, [|dg(t) + Rg(t)d;]| is contained in a proper subset of S;. However,
k; > 0 can be arbitrarily close to zero. Furthermore, as k; approaches zero, (A1) approaches the condition
l|de () + Rg(t)35]| € Si, which is necessary to simultaneously satisfy ¢; () equals dg(t) 4+ Rg(t)d; and ||¢; (t)|| € S;.
In many practical applications (e.g., fixed-wing UAV formations or ground robot formations), the leader is a
physical or virtual agent, whose motion can be constrained to ensure that (A1) is satisfied.

Although the physical (i.e., frame-based) formulation of the control problem is described in three dimensions,
the methods in this paper apply to all m € {2,3,4,...}. Thus, for generality, the remainder of this paper
considers the extended unicycle model (1)—(3) and control objectives (O1)—(04), where m € {2,3,4,...}.
The extended unicycle model and formation control problem described above have physical applications for
m = 2 and m = 3. For example, m = 2 is for planar motion, which can apply to a variety of ground-robotic
applications. Similarly, the extended unicycle dynamics for three-dimensional motion (i.e., m = 3) is applicable
to fixed-wing UAVs.



The interagent communication (i.e., feedback) structure is represented using a directed graph. The agent
index set Z is the vertex set of the directed graph, and the n elements of Z are the vertices. Let £ CZ x T
be the directed edge set. The elements of € are the directed edges. Then, the directed graph is G = (Z,€).
The directed graph G = (Z, ) has a walk of length I from vy € T to vy € T if there exists an (I + 1)-tuple
(vo,v1,...,01) € IxZIx---xZTsuchthatforall j € {1,2,...,1}, (vj_1,v;) € . The directed graph G = (Z, &)
is quasi-strongly connected if there exists ¢ € Z such that for all j € Z\ {¢}, G = (Z, ) has a walk from ¢ to j.
In this case, £ is a center vertex of the quasi-strongly connected directed graph G = (V, £).

Define the neighbor set N; = {j € T : (j,i) € £}. Without loss of generality, we assume that for all i € Z,
(i,1) € &, which implies that i ¢ NV;. In this paper, we assume that G = (Z,£) is quasi-strongly connected,
and that the ith agent has access to measurements of {g; — ¢;}jen; and {¢; — ¢i}jen; for feedback. We
also assume that G = (Z, £) has a center vertex ¢ such that the ¢th agent has a measurement of its position
relative to the leader g, — ¢;. Thus, the algorithm presented in this paper only requires that one agent has a
measurement of g, —¢;. Finally, we assume that each agent has access to measurements of g, g, Rg, Rg, and
Rg for feedfoward. In many practical applications such as fixed-wing UAV formation flying, it is reasonable
to assume that each agent (e.g., UAV) has access to the required feedforward information regarding the
leader through communication or direct measurement, or because the leader’s maneuvers are specified a
priori. In addition, from a practical implementation perspective, leader maneuvers often have relatively small
translational acceleration §, and rotational acceleration Rg. In this case, the algorithm in this paper can be
effectively implemented with ¢, = 0 and Rg =0.

3. Formation Control Algorithm

This section presents a formation control algorithm that achieves (O1)-(04) for agents modeled by the
extended unicycle dynamics (1)—(3), where the speed dynamics (2) are known, that is, the functions f; and
g; are known. In Section 5, we present and analyze an adaptive extension of the algorithm, which addresses
uncertainty in the speed dynamics (2).

Let v1,v9 > 0, and consider o : [0, 00) — (0, ﬁ] defined by

o(a) 2 1//v1 + vea. (4)
Furthermore, consider p : R™ — R™ defined by
pla) 2 o (|la)?)a, (5)

and note that sup,cpm ||p(x)|| = 1/4/v2. Also, consider p' : R™ — R™*™ defined by

o) & 20 o (Jal?) 1y — v0? (o)™, ()

where I,,, is the m x m identity matrix.
Define the feedback function

¢i = ai(gg — g + Rgdi) + Z Bij(¢j — ¢ + Rgdij), @
JEN;

where a; > 0; for all j € NV;, 8;; > 0; and for all j ¢ N, 5;; = 0. The ith agent can compute the feedback
function ¢; using {¢; — ¢;}jen;, and ¢z — ¢; if @; > 0. The approach in this paper only requires that one
agent has a measurement of ¢z — ¢;. Specifically, we assume that there exists a center vertex £ of G = (Z,€)
such that ay > 0.

Let k; € (0, kiy/72), and define the ith agent’s desired velocity

Pai £ Qg + Rg(sz + klp((z)l)’ (8)

and define the ith agent’s desired speed

: (9)

A
Sd,i = ||pd,z'|



Note that (A1), (4), (5), (8), and (9) imply that pq; and sq,; are bounded. In fact, the next result shows that

for all t > 0, sq,;(¢) is contained in Sq; 2 (s; +€q,5 —€4q), where

eq 2 min| k ks
= o
i€l ! \/ V2 ’

which is positive because k; € (0, k;\/v2). This result follows immediately from substituting (8) into (9),
using the triangle inequality, and using (A1).

Proposition 1. Assume that (Al) is satisfied. Then, for all t > 0, sq,;(t) € Sqa.; C S;.

Next, define the time derivatives of pq; and sq ;, which are

Pai 2 o + Redi — kip! (¢4) lai(Qi — gy — Redy) + E Bij(di — dj — Redij) |, (10)
JEN;
(?Sd i 1
. A T . T -
Sa, ap(ﬂpa, Sd,ipd, D, (11)

To enforce the speed constraint (O4), we consider the asymmetric speed barrier function h; : S; x Sq,; —
(0, 00) defined by

P ) 2 e tagon s 12)

which is inspired by the asymmetric barrier functions in [38]. Note that for all (s;,s4:) € Si X Say,
hi(si,8a.4) > hi = 4eq(5; — s; — €a)/(8; — 8;)?, which is positive. Furthermore, h;(s;, sq4) diverges to infinity
as s; approaches its upper bound §; or lower bound s;. In addition, define the partial derivatives

Ohi(si,84) » (5 + 81— 25)

0si T i si)(si— §i)hi(8i7 sa4) (13)
Ohi(si,54,4) a (5i+58i—25q,)
Osai (51— s)(si—80) (14)

Next, let ~;,7m; > 0, and consider the formation control

u; = -t (fi(sz‘, R;) + 751 = Sa.i)hi(i, Sa.0) + 8a,i ( (5: = Sa.0) Ohalss, 5a) - halss, Sd’i)>>7 (15)

9i(si, Ry) 1 (83, 8d,i) 1i(siy8d,)  Osa i (83, 8d,i)
1 . .
Q; = nisa,i (R pa,iv) — Uz‘pdT,iRi) + STR;F (Pd,ipdT,z‘ - pd,ipcl;,i)Ria (16)
di

where p; : S; X Sq,; — R is defined by

Oh;(si,54,:)
5‘51-

(1>

pi(8iy84,) = hi(si,54,6) + (86 — 8d,4) . (17)
Since for all ¢t > 0, sq(t) € Say, it follows that ;, which involves division by S(QM, is well defined. In the
next section, we show that for all t > 0, s;(¢) € S;. In this case, the next result demonstrates that for all

t >0, pi(si(t), sa,4(t)) > 0, which implies that u;, which involves division by ;(s;, Sa,;), is well defined.
Proposition 2. For all (s;,84,i) € Si X Sa.is 1i(Ss, Sa,:) > 0.

The proof of Proposition 2 is omitted for space considerations; however, the proof follows from direct
computation. Specifically, it can be shown that the numerator of 1;(s;, s4,;) has only positive local minima on
Si x Sq,i. Since, in addition, this numerator is continuous on S; x Sy, it follows that it is positive on &; x Sq.;.
Similarly, it can be shown that the denominator of p;(s;, sq,;) is positive on S; x Sq ;. Thus, 1;(s;, s4,:) is
positive on S; X Sq,;, which confirms the result.



The control (4)—(17) involves the parameters vy > 0, v > 0, o > 0, B;; > 0, k; € (0, ki/12), vi > 0,
and n; > 0. Increasing the speed gain ~; tends to cause the speed s; to converge more quickly to the
desired speed sq ;. Similarly, increasing the attitude gain 7; tends to cause the pointing direction R;v; to
converge more quickly to the desired pointing direction pq;/sa,. However, increasing v; and n; also tends
to increase the magnitude of the controls u; and ;. Selecting k; close to the upper limit x;,/7; tends to
make the desired velocity (8) more responsive to the formation term p(¢;), which, in turn, tends to make the
agents converge more quickly to the desired interagent positions because ¢; contains the formation terms
Bij(q; — ¢i + Rgdi;). The upper limit x;,/v2 on k; is imposed to guarantee that the desired speed sq; is in
the admissible range Sq ;. This upper limit decreases as v, decreases. The parameters vy and v, also affect
the shape of the nonlinear functions o and p. If v /15 > 1, then for all ¢; such that ||¢;|| < v1 /v, it follows
that p(¢;) ~ \/%Td)i' In this case, the desired velocity (8) is approximately linear in the feedback function
¢, which itself is linear in the formation terms that appear in (7). In contrast, if v1/vs < 1, then for all ¢;
such that ||¢;|| > v1/va, it follows that p(¢;) ~ m@, which implies that p(¢;) changes directions but
lo(¢s)]| is approximately constant. In this case, its worth noting that o, which is used in p, approximates a
switch because it transitions rapidly from its maximum value 1/,/v1 to its minimum value 0 as its argument
increases from 0. The formation gains a; and §;; determine how sensitive ¢; is to error in the ith agent’s
position relative to the leader and to error in the ith agent’s position relative to the jth agent, respectively.
Selecting «; and f3;; small tends to decrease ||¢;||, which tends to cause p(¢;) to operate in the approximately
linear range described above. In contrast, selecting «; and 3;; large tends to increase ||¢;||, which tends to
cause p(¢;) to operate in the range where p(¢;) has constant norm but changing direction.

4. Stability Analysis

In this section, we analyze the closed-loop dynamics (1)—(17). Define the position error

Gi = qi — qg — Ry, (18)
and substituting (18) into (7) yields
¢i = —aii — > Bij (G — ) (19)
JEN;
For all ¢ > 0, define
Gi(t) $1(t)
CHE| - | eR™,  gH)2 | : | eR™.
Ca(t) Pn(t)

Let L € R™™™ be such that the (,7)th element is L(; jy = —f;;, and the (i,i)th element is L(;;) =
Zje/\a- Bij. Note that L is the Laplacian of the directed graph G = (Z, £), where for all (3, j) € &€, we associate
the weight 3;;. Furthermore, define

A £ diag (al, ... ,an> c R™*",

where diag(-) denotes the diagonal matrix whose diagonal elements are given by the arguments of the operator.
Then, it follows from (19) that
¢ = —[(L+A4)® I, (20)

where ® is the Kronecker product. Note that (20) can be viewed as a change of variables between the position
error ¢ and ¢. This change of variables is related to the one used in [19]. The following result provides
sufficient conditions such that L + A is nonsingular, which implies that (20) is a bijection. This result follows
from [39, Lemma 1].

Lemma 1. Assume that G = (Z,€) is quasi-strongly connected, and assume that there exists a center
vertex £ of G = (Z, ) such that ay > 0. Then, L + A is nonsingular.



Remark 1. Lemma 1 provides sufficient conditions such that L + A is nonsingular; however, theses
conditions are not necessary. For example, if for all i € Z, o; > 0, then L + A is nonsingular. This situation
arises if each agent has a measurement of its position relative to the leader. As another example, if G = (Z, &)
is the union of | quasi-strongly connected graphs and each of those graphs has a center vertex ¢y, ...,¢; such
that oy, ,...,ap > 0, then L+ A is nonsingular [39, Lemma 1]. The stability results in this paper rely on the
assumption that L + A is nonsingular, and Lemma 1 provides one communication (i.e., feedback) structure
under which L + A is nonsingular. However, as discussed above, there are other communication structures
that yield nonsingular L + A, and the results in this paper also apply to those communication structures.

Next, differentiating (18), and using (1), (5), and (8) implies that

i = siRivi — g — Rg0;
= kip(¢:) + siRiv; — pa,i

= kio (|| ¢all*) ¢ + siRivi — pai- (21)
Consider B: R™" — R™™*™" defined by
B(9) = (diag (k1o ([61]12), . kno ([6a]®)) ) & Lo, (22)
and it follows from (21) that
{=B($)o+ D> _(di ® Ln)(siRivi — pas), (23)
i€Z

where .
di £ [ Oixic1 1 O1xn—i | €R™

Differentiating (20) yields

o= —|(L+A) 0 L|C, (24)
and using (23) implies that
b= —|(L+A)® L] B®)o =D [(L+A)di @ L (siRivi = pas). (25)
i€

The following result is used to analyze stability. This result follows from [23, Theorem 4.25].

Lemma 2. Assume that L + A is nonsingular. Then, there exists a positive-definite diagonal matrix
D € R™*" such that (L + A)TD + D(L + A) is positive definite.

The remainder of the stability analysis is divided into four subsections. The first three subsections examine
the closed-loop position dynamics, speed dynamics, and orientation kinematics, respectively. Each subsection
presents a Lyapunov-like function, which is used to analyze the associated component of the closed-loop
behavior. Then, the final subsection combines these Lyapunov-like functions to analyze the full closed-loop
dynamics (1)—(17).

First, Section 4.1 considers the position dynamics (1) under the assumption that each agent’s velocity
s;R;v; is a control variable, which is equivalent to the simplified scenario with single-integrator agent dynamics.
In this case, if the velocity control is equal to the desired velocity (i.e., s;R;v; = pq,i), then (0O1)—(O4) are
satisfied. The preliminary result in Section 4.1 is not directly applicable to the extended unicycle model (1)—(3)
because it neglects the speed dynamics (2) and orientation kinematics (3). Nevertheless, this preliminary
result is informative because it shows that if the velocity s; R;v; is equal to the desired velocity pq,;, then the
control objectives are achieved. Moreover, the Lyapunov-like function from this simplified analysis is used in
the full analysis.

Next, Section 4.2 examines the speed dynamics (2) and the associated control (15). This subsection
demonstrates that the speed constraint (O4) is satisfied, and that the speed s; converges to the desired
speed sq;. Then, Section 4.3 examines the orientation kinematics (3) and the associated control (16). This
subsection shows the the point direction R;v; converges to the desired pointing direction pq ;/sq ;. Together,



Sections 4.2 and 4.3 show that the velocity s;R;v; converges to the desired velocity pq ;, which, combined
with the preliminary result in Section 4.1 (which assumes that s;R;v; = pq,;), provides the intuition for the
full closed-loop analysis.

Finally, Section 4.4 analyzes the full closed-loop dynamics (1)—(17). This analysis combines the three
Lyapunov-like functions used in each of Sections 4.1-4.3 to show that objectives (01)—(04) are satisfied.

4.1. Position Dynamics with Direct Velocity Control

This section analyzes the closed-loop position dynamics (25) under the assumption that each agent’s
velocity s;R;v; is a control variable, specifically, s;R;v; = pa;. In this case, (1) can be viewed as a single
integrator with feedback control s; R;v; = pq,;.

Let D € R™ ™ be the positive-definite diagonal matrix given by Lemma 2, and consider the Lyapunov-like
function Vo : R™ x - -+ x R™ — [0, 00) defined by

LﬂﬁpnﬁméEthDQA a@dw:%E:thmcerﬂ@W—¢ﬁ> (26)

€T i€l

llgsl?

Next, define the Lyapunov-like derivative

: = VoD, )
VO(¢177¢7L) :qusl (27)
= g

The following preliminary result considers the case where the velocity s;R;v; is a control variable,
specifically, s;R;v; = pq.;.

Proposition 3. Consider the closed-loop dynamics (25), which consists of (1) and (4)—(8), and assume
that s; R;v; = pq,;. Assume that L + A is nonsingular. Then, the following statements hold:

i) For all (¢1,...,¢n) ER™ x --- x R™,

Voo, 0n) = =" B(6) | (L + A)TD+ D(L+4)) & L | B(6)9,
which is negative definite.
ii) ¢(t) =0 is a globally asymptotically stable equilibrium of (25) with s, R;v; = pa ;.
iii) For all ¢;(0) € R™, (O1)—(03) are satisfied.
iv) If (Al) is satisfied, then for all ¢;(0) € R™, (O4) is satisfied.

Proof. Since s;R;v; = pqq, it follows from (25) that

é:-BL+m®an@¢ (28)

Since D is diagonal, it follows from (26), (27), and (22) that

Vo1, 6n) = 23 kid! Ddio(61]2)67 b = 26" B(6) (D © L ) 6. (29)

i€
Evaluating (29) along the trajectories of (28) yields
Vo6, 8n) = —20"B(6) (D(L + A) © I B(9)¢
= ~6"B(6)|((L+A)"D + D(L + 4)) @ In| B(6)6. (30)



Since L + A is nonsingular, Lemma 2 implies that P = (L + A)TD + D(L + A) is positive definite. Thus, the
minimum eigenvalue of P, which is denoted by Apmin(P), is positive, and it follows from (22) and (30) that

Vo($1,- -+ 0n) < =Amin(P)O"B*(0)d = —Amin(P) D ki 0> ([|64]1*) 6] - (31)

i€l

Since Amin(P) > 0 and k; > 0, it follows from (4) and (31) that Vj is negative definite, which confirms i).
Since Vj is positive definite and radially unbounded, and V; is negative definite, it follows that the origin
is a globally asymptotically stable equilibrium of (25), which conﬁrms ii).
To show iii), it follows from (20) that ( = —[(L + A)~! ® I,,]¢. Since, in addition, lim; . ¢(t)
0, it follows that lim; .o, ((¢) = 0. Since R4(t) is bounded and lim;, C,( ) = 0, it follows from (18
)

H\,II

that lim;_, o Rg(t)[qi(t) —q;(t)] = limy_ oo Rg(t)[(i(t) — (j(t) + Rg(t)ds;j] = d;; and limy oo R ( )qi(t
limy o0 Rg(t)[{i(t) + Rg(t)d;] = 6;, which confirms (O1) and (03). Since s;R;v; = pq,; and hm,g_>OO oi(t)
it follows from (4) and (21) that lim, . ¢;(t) = 0, which confirms (02), thus verifying iii).

To show iv), assume that (Al) is satisfied. Thus, Proposition 1 implies that for all ¢ > 0, sq,(t) € Sq-
Since, in addition, s; = sq; and Sq; C S; it follows that for all ¢ > 0, s;(¢) € S;, which confirms iv). O

=)

Y

Remark 2. Proposition 3 relies on the assumption that L+ A is nonsingular, and Lemma 1 demonstrates
that this assumption holds if G = (Z, £) is quasi-strongly connected with a center vertex that has feedback of
the leader’s position (i.e., ay > 0 for the center vertex ¢). If no agent has feedback of the leader’s position (i.e.,
foralli € Z, a; = 0), then L+ A = L is singular. However, under the assumption that G is strongly connected,
it is possible to modify the proof of Proposition 3 to demonstrate that a subset of the formation objective are
satisfied. Specifically, [40] shows that if G is strongly connected, then there exists a positive-definite diagonal
matrix Dy € R™ " such that LT Dy + DL is positive semidefinite with a simple eigenvalue at zero and the
ones vector is the associated eigenvector. In this case, we can consider the Lyapunov-like function (26), where
D is replaced by Dy, and use steps similar to those in the proof of Proposition 3 to show that ¢(t) =0 is a
globally asymptotically stable equilibrium. However, since L + A = L is singular, it follows that the change of
variables (24) is not a bijection. Thus, although ¢; converges to zero, (; does not generally converge to zero.
Nevertheless, it can be demonstrated that (O1) and (0O2) are satisfied even though (03) is not. Additionally,
if (A1) is satisfied, then (O4) is satisfied.

Proposition 3 shows that if s; R;v; = pq i, then (O1)—-(03) are satisfied, and if, in addition, (A1) is satisfied,
then (O4) is satisfied. However, the speed s; and pointing direction R;v; are not controls. Instead, s; is
determined from (2), which has control input u;, and R;v; is determined from (3), which has control input ;.
Thus, the next two subsections examine the closed-loop speed dynamics and orientation kinematics. Then,
we analyze the full closed-loop dynamics (1)—(17). Note that the preliminary result Proposition 3 is not used
in any of the subsequent analysis, but the Lyapunov-like function (26) plays a critical role in analyzing the
full closed-loop dynamics.

4.2. Speed Dynamics

In this section, we examine the speed dynamics (2) and the associated control (15) to show that the speed
constraint (O4) is satisfied. Define the speed error
~ A

S; — S8; — Sd.4-

5

Differentiating $; and using (2) and (15) implies that

§¢ =——% _ ) |:Yihi(5ia 5d,i) + <ahi(si’sd’i) + ahi(si’sd’i)>5d,z’]- (32)

i (83, 8d,i 084 ds;

Consider the Lyapunov-like function Z; : R x Sg; — [0, 00) defined by

Zi(3i,8a,4) = =hi(si,84.4)52, (33)

N | =



and define the Lyapunov-like derivative

GZi(éi, Sd,i) 3 aZi(éi, Sd,i) .
93, S; + Dsas Sd,i-

Zi(gi, Sd,i) é (34)

The next result shows that if (Al) is satisfied and s;(0) € S;, then for all t > 0, s;(t) € S; and
limg_y o0 5:(t) = 0.

Proposition 4. Consider the closed-loop dynamics (32), which consists of (2), (4)—(15), and (17). Assume
that (A1) is satisfied. Then, the following statements hold:

i) For all (s;,84) € Si X Sa,i, Z (sz,st) = 'yzh (Siy5d,i)8 12 < —'yl-bf where h; = W > 0.
ii) For all s;(0) € S;, (04) is satisfied.
iii) For all 5;(0) € S;, lim; o0 5;(t) = 0.

Proof. Evaluating (34) along the trajectories of (32) yields

. hi(si, 8d.i) . hi(Siy8d,) . . .
Zi(8;,84,:) = hi(84,54,:)3i Ohi(ss, 5a, )Si + Ohilss, 54, )Sdi 5i+ hi(si,54,:)5
) , 881' 85d7i , ,

Oh;(Si,54,i Ohi(si, sd,i .
=h; (Susd 1)51 |:.u2(5178d 1)51 + Sz< ésd Ad7 ) + (68' g ))Sd z}

= f’ylh (Siy5d,i)S; 52. (35)

To show 1), let (s;,84,:) € Si X Sa,, and (12) implies

hi(si, sd,i) >

5 —8; — €d4)€d
(8i — si)(si — 54)

Furthermore, since the denominator of (36) is maximized over s; € S; at s; = (s; + §;)/2, it follows that
hi(si,84,4) > h;, which together with (35) confirms i).

To show ii), since s;(0) € S; and sq,;(0) € Sq;, it follows from (12) and (33) that Z;(5;(0), sa;(0)) is
finite. Since, in addition, (35) implies that Z;(5;, s4,;) is nonincreasing along (32), it follows that for all ¢t > 0,
Zi(8:(t), sa,:(t)) < Zi(5:(0), 54,:(0)) < 0o. Assume for contradiction that (O4) is not satisfied, which implies
that there exists t; > 0 such that s;(¢1) = §; or s;(¢1) = s;. Since, in addition, for all t > 0, sq(t) € Sq,,
it follows from (12) and (33) that Z;(5;(¢1), s4,i(t1)) = oo, which is a contradiction. Thus, for all ¢ > 0,
si(t) € S;, which confirms ii).

To show iii), since for all ¢ > 0, (s;(¢),sq,:(t)) € S; X Sa, it follows from i) that Z.i(éi(t),sdd(t)) <
—v;h?52(t). Thus, LaSalle’s invariance theorem implies that lim;_,~, 3;(¢) = 0, which confirms iii). O

(36)

4.8. Orientation Kinematics

In this section, we examine the orientation kinematics (3) and the associated control (16). Define the

desired pointing direction
1
A
ba,i = —Ppd,i;
Sd,i

and note that Proposition 1 implies that for all ¢ > 0, sq,(¢) > 0, which implies that by, is well defined.
Define the pointing direction error R
bi £ Ryvi — b,

and note that for all £ > 0, bi(t) € By, where By 2 {b € R™: ||b|| < 2}, which is the closed ball of radius 2.
Differentiating b; and using (3) and (16) implies

L 1 . . 7
bi = nisa,i (Pa,iv; vi — Rivipg ;Rivi) + e (Pa,iPdi — Pa,iPdi) Rivi — bai-
d,i

10



Since Pd,i = Sd,ibd,iu pd,i = éd,ibd,i + Sd,ii)d,iu 7);["[)1' =1, and bd,i = —Ei + R;v;, it follows that

bi = ’177;8(21’1- (—61 + (]. - bg,levz>szz> - i)d’i(l — bngzvz) - bd,ibg,iRivi~

Since bq; is a unit vector, it follows that l%dT’ibd,i = 0. In addition, note that 1 — de,iRifui = %B;FZBZ and
Riv; = Bl + bdﬂ'. Thus,
2 9 ~ ]_~T~ ~ 1. =15 >
b= s Bi = 50T (bi + bdﬂv) — 5baibTh = baibf i (37)
Consider the Lyapunov-like function W; : Bo — [0, 2] defined by
Wl(gl) é %Eg‘gl =1- de,iRiUi> (38)
and define the Lyapunov-like derivative
L 8Wl [;z %
Wi(b;) £ 85( )bi~ (39)

Define R; £ {R € SO(m): by ,(0)Rv; # 71}, which is the set of all orientations Rv; except those where the

angle from ¢;(0) to Ruv; is exactly 7 rad.
The next result shows that W; is nonincreasing along the trajectories of (37); and for almost all initial
conditions, that is, for all R;(0) € R;, the angle from ¢;(t) to pq,i(t) is bounded away from = rad for all ¢ > 0.

Proposition 5. Consider the closed-loop dynamics (37), which consists of (3)-(10) and (16). Assume
that (A1) is satisfied. Then, the following statements hold:

i) For all b; € B, Wl(lgl) = —%nis?jy-g?gi(l + de)Z-Rivi), which is nonpositive.

ii) For all R;(0) € Ry, there exists ; > 0 such that for all t >0, 14 bg,;(t)Ri(t)v; > e;.

Proof. Evaluating (39) along the trajectories of (37) yields
.- I 1o /- Lo e - s 1 -
Wibs) = —nys2 b, (1 - 507 (bi + bd,i)> — 5T ba bl = bTba b b = —misd B0 (1 + b3 Rovs),

which is nonpositive because deJRivi > —1, thus confirming i).

To show ii), since by ;(0)R;(0)v; # —1, it follows from (38) that Wi(bi(0)) =1— by ;(0)Ri(0)v; < 2. Define
g 22— W(b;(0)) € (0,2], and since W is nonincreasing along the trajectories of (37), it follows that for all
t>0, 1407, (H)Ri(t)vi = 2 — W (b;(t)) > e;, which confirms ii). O

4.4. Full Closed-Loop Dynamics

We now analyze the full closed-loop dynamics (1)—(17). Since s;R;v; — pa,; = §;Riv; + sq,:b; , it follows
from (25) that

b=~ |(L+A)& Ln| B@)d— D [(L+ A)di @ L] (5:Rivi + sa.bi ) (40)

i€

The next theorem is the main result, which shows that (G(t),51(t), ..., 8, (t),b1(t),...,ba(t)) = 0 is an
almost globally exponentially stable equilibrium of the closed-loop system (32), (37), and (40). More specifically,
the equilibrium is Lyapunov stable, and for almost all initial conditions (¢;(0), 5;(0), R;(0)) € R™ xS; x SO(m),
the state (¢;, 3;,b;) converges to zero exponentially and (O1)—(0O4) are satisfied. In fact, the only initial
conditions for which the state is not guaranteed to converge to zero are those where the angle from ¢;(0) to
pd,i(0) is exactly 7 rad, that is, R;(0) € SO(m)\ R;. Note that topological constraints associated with SO(m)

11



prevent global asymptotic stability of the equilibrium using a continuous time-invariant control [36]. The
proof of this main result relies on a Lyapunov function that is a weighted summation of the Lyapunov-like
functions (26), (33), and (38), which are used in each of the previous three subsections.

Theorem 1. Consider the closed-loop dynamics (32), (37), and (40), which consists of (1)-(17). Assume
that L+ A is nonsingular and (A1) is satisfied. Then, (¢(t), 51(t), ..., 8n(t),bi(t),...,ba(t)) = 0is a Lyapunov
stable equilibrium of (32), (37), and (40). Furthermore, for all initial conditions (g¢;(0), s;(0), R;(0)) €
R™ x §; X R;, the following statements hold:

i) @4, §i, b; and (; converge to zero exponentially.
i) (01)—(04) are satisfied.
Proof. Since D is diagonal, it follows from (26), (27), and (22) that
Vo(d1,- -1 00) =2 kid! Ddio(63]2)67 b; = 26" B(6) (D ® L ) 6. (41)
ieT

Evaluating (41) along (40) yields

V(61 6n) = —6"B(9) | (L +A)"D + D(L+ A)) © In| B(6)¢
- QZ(;STB [ L+A)d ® I } ( 5 Riv; +sd,i5i)

_ 7¢TB(¢)(P @ L) B(0)6 23 6" BO)Q" (4@ L) (5iRevi + saibi),  (42)

i€l

where P = (L+ A)TD+ D(L+ A) and Q £ (L + A)TD ® I,,,. Since L + A is nonsingular, it follows from
Lemma 2 that P is positive definite. Since L + A and D are nonsingular, it follows that @ is nonsingular.
Thus,

N 4n)\max(QTQ)
= ———F——F—>=>0. 43
“ )\min(P) ~ ( )

Next, note that
T
0< (\;EQBWW +V/c15i(d; ® Im)RiUz) <\/IEQB(¢)¢ +Veisi(di @ Im)Rivi>a

which implies that

2567 B@)Q" (s © ) Revi < 6" BO)QTQB(6)6 + 157, (44)

1

Similarly,

20,6 B()QT(di ® )b < échB(«é)QTQB(«ﬁ)qﬁ + 152 5T (45)

Substituting (44) and (45) into (42) and using (43) and (22) yields

Vo(91,- -+ 0n) < —6"B(6)(P & L) B ¢+Z( 6"B(6)QTQB(9)¢ + c1 (3 +stbTb))

IN

_<)\min(p)_2m‘(QQ)>¢TBQ ¢)+ch($ +Sdleb)

C
L 1€L

2T B2(¢ ¢+Zc1(s +sd2bTb)

€L

= 3" (~eaho 01207 01 + ea (32 + 3,575 ). o

i€L
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where c3 £ Apin(P)/2.

To show that (4(t), $1(t), ..., 8. (t), by (t),... ,I;n(t)) = 0 is a Lyapunov stable equilibrium of (32), (37),
and (40), consider the Lyapunov function V : R™ x - - - X R™ xSy X+ - X Sy x By X - - - X By X Sq,1 X - - - X Sq.py —
[0,00) defined by

- .= ~ 2cy - 4c ~
V(¢17"'?¢)n3317"'78n7b17'"7bn78d,17"'7sd,n) %(¢17'-'a¢n +Z< 37,7sd7,)+€_ 1Wi(bi)>7

€T _" i il

(47)
where &; € (0,2), and h; > 0 is given by i) of Proposition 4. Using i) of Proposition 4, i) of Proposition 5,
and (46) to evaluate V along the trajectories of (32), (37), and (40) yields

VEVo(d1,.- - 6n) +Z(261 (50 50) + S W, (5>)

i€l hii il

3 2(1 + bTiRm)
<-> (Czk?UQ(@IIZ)qSZ—T@ +asi +a (f" ) 53,01 bi ) (48)

.
ieT v

where we omit the arguments from V. Definer 2 4—2 >0 and B, £ {l;Z e R™: Z;ZTEl < r}. Since
1+ bgyiRivi =2 - ISITINJZ/Q, it follows from (48) that for all (¢i7§i,l~)i,sd,i) € R™ x §; x By x Say, V<
— > ez (c2k?0?(||¢5|2)oF s + c157), which is nonpositive. Thus, the origin is a Lyapunov stable equilibrium.

To show i), consider (47) with & = &;, where €; > 0 is given by ii) of Proposition 5. Thus, it follows from
(48), ii) of Proposition 5, and Proposition 1 that for all ¢ > 0,

st—ijGw%%¢wwm@wW+q§w+qﬁAm@mw)
1€L
s—ZQMZQ@MUMOW+m<HqﬂMwﬂ,
1€T

which implies that V is nonincreasing. Since, in addition, V is radially unbounded, it follows that ¢; is
bounded, which implies that there exists o, > 0 such that for all t > 0, o(||¢;(t)[|?) > omin. Thus,

V@s—}j@%&&ﬂ%@ﬁ+qsu+q¥w<mﬂ. (19)

€T

Next, note that vy + va||é;||? < v1 + 2us||éi]|? + Z? il = (/v /1?)2, and taking the square root of

each side implies that
VvV +e¢ill? — Vi <

f\l@llg (50)

Together, (26) and (50) imply that

Vo1, ..y bn) < 7 > " kid! Ddi||gill* < es Y k2 il|?, (51)

i€l €T

where c3 £ max;ez 2d} Dd; /(ki\/v1). Next, ii) and iii) of Proposition 4 implies that for all ¢ > 0, s,(t) € S;
and that lim; o 5;(t) = 0. Since, in addition, for all t > 0, sq,(t) € Sq,i, it follows from (12) that there
exists h; > 0 such that for all ¢ > 0, h;(s;(t), s4,:(t)) < h;. Thus, (33) implies that for all ¢ > 0,

>

2
52,

“l\’)

Zi(5i(t), s4,i(1)) < (52)

bol 3
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Therefore, combining (38), (51), and (52) with (49) yields

V(t) < —@Z—Smmvo(m(t), () = (

Zi(3i(t),84,:(t) + 2018?Wi(5i(t))> ;
i€l

hZ

and using (47) yields

V(t) < _C4V(¢1(t)? ) ¢n(t)7 §1(t)7 R gn(t)ﬂ bl(t)v ) bn(t)ﬂ Sd,l(t)’ AR Sd,n(t))7

where ¢4 £ min{%, hggl e, h%g", 5“721:9% e 5""2"§3’} is positive. Thus, V (t) < e~¢1*V(0), which implies
that V' converges to zero exponentially. Therefore, each term in (47) converges to zero exponentially, which
implies that Vy, Z;, and W; converge to zero exponentially. Since V{ converges to zero exponentially, (26)
implies that ¢; converges to zero exponentially. Since, in addition, L + A is nonsingular, it follows from (20)
that ¢; converges to zero exponentially. Next, since for all ¢t > 0, (s;(t), sa,:(t)) € S; X Sa, it follows that
hi(si(t), a,:(t)) > h;. Since, in addition, Z; converges to zero exponentially, (33) implies that §; converges to
zero exponentially. Finally, since W; converges to zero exponentially, (38) implies that b; converges to zero
exponentially, which confirms 1i).

To show ii), since lim;_,o (;(t) = 0 and R, is bounded, it follows that (O3) is satisfied, which implies
that (O1) is satisfied. Next, since sq,; is bounded, lim;_,o ¢(t) = 0, lim;_, o §;(¢) = 0, and lim;_, b; =0, it
follows from (40) that lim; ., () = 0. Since, in addition, L + A is nonsingular, it follows from (24) that
lim;_, o ¢(t) = 0, which confirms (O2). Lastly, (O4) follows from ii) of Proposition 4. O

Next, we present two specializations of Theorem 1, which address the cases where either the speed s;
or the pointing direction R;v; are control variables. The proofs of these results are similar to the proof of
Theorem 1. Note that Proposition 3 addresses the case where both speed s; and the pointing direction R;v;
are control variables.

Theorem 2. Consider the closed-loop dynamics (37) and (40), which consists of (1), (3)-(10), and (16),
where s; = sq,;. Assume that L + A is nonsingular and (A1) is satisfied. Then, (¢(t),b1(t),...,ba(t)) =0
is a Lyapunov stable equilibrium of (37) and (40) with s; = sq,;. Furthermore, for all initial conditions
(¢:(0), Ri(0)) € R™ x Ry, ¢4, b;, and (; converge to zero exponentially, and (O1)—(04) are satisfied.

Theorem 3. Consider the closed-loop dynamics (32) and (40), which consists of (1), (2), (4)—(15), and (17),
where R;v; = bq,;. Assume that L + A is nonsingular and (A1) is satisfied. Then, (¢(t), $1(t),...,38,(t)) =0
is a Lyapunov stable equilibrium of (32) and (40) with R,v; = bq,;. Furthermore, for all initial conditions
(¢:(0),5;(0)) € R™ x S;, &, 8, and (; converge to zero exponentially, and (O1)—(04) are satisfied.

5. Adaptive Formation Control Algorithm with Uncertainty in Speed Dynamics

In this section, we extended the formation control (4)-(17) to address uncertainty in the speed dynamics
(2), specifically, uncertainty in f;(s;, R;) and g;(s;, R;), which appear in (2). We develop and analyze an
adaptive controller, which is used in place of the non-adaptive controller (15). First, the functions f;(s;, R;)
and g;(s;, R;) are parameterized as

fi(siy Ri) = X Ti(si, Ri), (53)
9i(si, Ri) = rvi0i(si, Ri), (54)

where I'; : §; x SO(m) — R™ and ¢; : §; x SO(m) — R\ {0} are continuous, x.; € R™, and r,,; # 0.
We assume that I'; and 9; are known, and the sign of r, ; is known; however, x.; and |r, ;| are unknown.
Without loss of generality, let 7. ; > 0 and ; : S; x SO(m) — (0, 00).

The adaptive approach in this section uses the continuous projection operator. Here, we briefly review
this operator. For more details, see [41, Appendix E]. To define the continuous projection operator, let
w : R — R be a continuously differentiable convex function, and consider Vw: R — R defined by
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Vuw(z) £ [ow(z)/0z]". Let ep > 0 and let M € R%>*%w be positive definite, and consider the continuous
projection operator Proj,, y: Rfw x Rf» — Rl defined by

V' (z)y
VwT(z)MVw(x)’
Y, otherwise.

w(z) > 0 and yTVw(z) > 0,

Y — min{l, ws(:) }MVw(x)

Proj,, ar(2,) =

Define the unknown system parameters 6, ; £ X+,i/T«i € R™ and I, ; £ 1/re; > 0. Next, let w; : R™ — R
be a continuously differentiable convex function, and define ©; £ {6 € R™ : w; () < 0}, which is convex
and assumed to be such that 6, ; € ©;. Similarly, let z; : R — R be a continuously differentiable convex
function, and define L; = {I € R : z;(I) < 0}, which is convex and assumed to be such that I, ; € L;. Lastly,
define ©; = {# € R™ : w;(0) < ep} and L; = {l € R : 2;(I) < &}, which are convex supersets of ©; and L;,
respectively.

Let ; > 0, and consider the formation controller (4)—(14), (16), and (17) combined with the adaptive
speed controller

-1 vi(8i — Sa,i)hi(si, Sa,i) . lidavi(Si,8a,:)
= — = | 6T".(s:. R, ; ) od, , ) 8d, 55
i Vi(si, R;) ( i Tilsi, Ba) + (S, Sd,i) * i (i, 8d,i) ’ (55)

where v; : §; x §4, = R is defined by

Ohi(8s, 84,:)

— hi(si,54,i)s
Dsas (Si,5d,4) (56)

0;i(8i,84.4) = (8i — 8d.4)

and the adaptive parameters 6, : [0,00) — ©; and ; : [0,00) — L; satisfy

0; = Proj.,, (91‘7 (si — Sa,i)hi(siy 8a,:) i(Si, Sd,i) MiT'i (s, Ri)), (57)

l; = Prszi,ﬂ (li, Ti(si - Sd,i)hi(sia Sd,i)vi<5ia sd,i)«éd,i)a (58)

where 0;(0) € ©;, 1;(0) € L;, 7; > 0, and M; € R"*" is positive definite. Note that if I, = l.; and
0; = 0., then (55) and (56) are equivalent to the non-adaptive speed control (15), where the gain ~; in (15)
is replaced by v;/r.;. We also note that the adaptive laws (57) and (58) can be modified using standard
robust modification methods (e.g., normalization, dead-zone, e-modification); see [42] for more details.
To analyze closed-loop stability, define the parameter estimation errors
0; 20— 0.5, Li21i— 1

s

Differentiating §; and using (2) and (53)—(56) yields

- iSihi (S5, Sd.i 1;84.ivi(Ss, Sa i .
5 :Xz,iri(shRi) —T*,i(aiTFi(SuRi)‘F 2i8ihi(si, sa) | Lidaivils: dﬂ)) — 54,4

i(sis Sd,i) pi(8i, 5d,i)
~ T _ ~ Ui(Si Sd i) .
= =70/ Ti(si, R; —7’[1'1‘}% ir8d,i) T lida,ivi(si, i}_ — L+ 1|34, 59
7+,i0; Li(si, R;) roGon,san) L1 (sis8a,) + liSa,ivi(si; Sa,i) (550 + 1|34, (59)
Consider the Lyapunov-like function Z; : §; x Sq,; ©; x L; defined by
Zi(ss s 0 1) 2 — 12 (1, 50.)82 + ST MGy + 2 (60)
i\91 iy Uiy b 27"*’2' i \O1s )94 2 i i [ 2Ti )
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and define the Lyapunov-like derivative

aZz ~i7 77514[1 . aZl ~i7 iaéivii A
(51, 5a, )Sd_i+ (81, 54, )914- d
(Q)Sd’i ’ 00; ol;

82 (Slasdzag’ml ) aZi(§i75d,iaéi7Zi)l’
7

05;

S; +

Z (5175(1 z»ezal )

_ _ (61)
The next result shows that if (A1) is satisfied, s;(0) € S;, 0:(0) € ©;, and ;(0) € L;, then for all ¢ > 0,
Sl(t) €S, Hi(t) € 0,, and ll(t) € L;, and lim;_, §i(t) =0.

Proposition 6. Consider the closed-loop dynamics (57)—(59), which consists of (2), (4)—(14), (17),
and (53)—(58). Assume that (A1) is satisfied. Then, the following statements hold:
i) For all (si,84,,0i,1;) € Si x Sai x ©; x Li, Zi(si,5a,i,0i, i) = —vih?(si,84,4)37 < —v;h2323,
hi Ay 4(5‘1 slfsd)ed > 0

=T (5i—s1)2

ii) For all (s;(0),0:(0),1;(0)) € S; x ©; x L;, (O4) is satisfied.

where

iv) For all (s;(0),0;(0),1;(0)) € S; x ©; x L; and for all t > 0, §;(t) € ©; and I;(t) € L;.

Proof. Computing the partial derivatives in (61) and using (17) and (56) yields

B85 s o L) = h(sTsd)s [(ahi(g;sd,i)éi_i_ ahiésszjd,i)éd’i) 55 + hu(si, 5a.0)F } AT, + lrl,
= M&Tsfl)gz [Mz’(sivsd,i)gi + (Ui(Sian,i) + Ui(siysd,i))éd,z} +0F M7, + lTlZ (62)
and evaluating (62) along the trajectories of (57)—(59) yields
Zi(5i, 54,0, 05, 13) = —hi(si, 80,4)8i [lh‘(S, $a4,0)07 Ts(si, ) + vidiha(si, sa.6) + lisa,ivi(si, Sdz)}
+ 0 Mt Proj,, m, (9i> Sihi(siy8a,:)i(Si, Sd,i) MiTi(ss, Ri))
+ l;z Proj,. ., (li, TiSihi(si, $d,:)vi(S4, sd,i)édﬂ-). (63)

3

Next, it follows from [41, Lemma E.1] that for all y € R, §F M, Proj,,, ar, (05,y) < 0T M; 'y, and for all
a €R, TfllNZ- Proj,, ;. (li,a) < T[ll~ia. Thus, (63) implies that ZZ(@7 sd’i,éi,l;) = —v;hZ(si, 54,1)5:. Using the
same steps that are used after (35) in the proof of Proposition 4, it follows that i)-iii) are satisfied. Lastly,
iv) follows directly from [41, Lemma E.1]. O

The following theorem is the main result that addresses the case where the speed dynamics are uncertain
and the adaptive speed controller (55)—(58) is used in place of the non-adaptive speed controller (15)
in combination with the rest of the formatlon control algorithm (4)-(14), (16), and (17). This result
shows that (¢(t),51(0),...,8,(t),b1(t), .., bu(t),01(), ..., 0,(),11(t),...,I.(t)) = 0 is a Lyapunov stable
equilibrium of the closed—loop system (37)7 (40), and (57) ( 9), and for all (¢:(0), s;(0), R;(0),6;(0),1;(0)) €
R™ x &; x R; x ©; x L, (01)-(04) are satisfied. The proof is similar to the proof of Theorem 1 except (60)
is used in place of (33) for Z;, and Proposition 6 is used in place of Proposition 4.

Theorem 4. Consider the closed-loop dynamics (37), (40), and (57)—(59), which consists of (1 ) (14), (16),
(17),. and (53)—(58). Assume that L + A is nonsingular and (A1) is satisfied. Then, (¢(t),31(0),...5,(t), b1 (),

b (t),01(t), ..., 0, (t),11(t),...,1,(t)) = 0 is a Lyapunov stable equilibrium of (37), (40), and (57)—(59).
Furthermore, for all initial COHd{tlonS (¢:(0), 5:(0), R;(0),0:(0),1;(0)) € R™x8; xRy xO; X Ly, limy 00 (;(t) = 0,
lim; o 3;(t) = 0, and limy_, b;(t) = 0; (01)—(O4) are satisfied; and for all t > 0, 6;(t) € ©, and I;(t) €

Theorem 4 guarantees that (¢;,3;,b;) converges to zero, and (O1)-(04) are satisfied. Furthermore,
the result shows that the adaptive parameters 6; and [; are bounded; however, these parameters are not
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guaranteed to converge to the unknown values 6, ; and [, ;. The lack of guaranteed convergence for the
adaptive parameters is common in adaptive control schemes, where the control objective (e.g., convergence of
(¢i, 84, b;) to zero) can be achieved without perfect parameter estimation. In order for 6; and I; to converge to
0., and [, ;, the regressors I';(s;, sq4,;) and $q; in the adaptive laws (57) and (58) must be sufficiently rich (i.e.,
sufficiently exciting), which, in turn, depends on the exogenous leader trajectory (i.e., gz and Rg). For more
information on adaptive parameter convergence, see [41, 43, 44] for a discussion of persistency of excitation.
Finally, we note that Theorem 4 specializes to the case where the pointing direction R;v; is a control
variable and the speed dynamics are uncertain; similar to how Theorem 1 specializes to Theorem 3.

6. Numerical Simulations

For all examples, let n = 3 and m = 3, and for i € {1,2,3}, define ¢; = [01x;_1 1 O1x3_4]T € R3. Let
v; = e1, which implies that each agent’s velocity is in the body-fixed e;-direction. The speed bounds are
s; =8 m/s and §; = 18 m/s. Each agent’s initial position ¢;(0) and initial orientation R;(0) are selected
randomly, and each agent’s initial speed s;(0) is selected randomly such that s;(0) € S;.

The leader position g, and orientation R, satisfy (1) and (3) with ¢ replaced with g, where vy = ey,
sg = 12 m/s, ¢z(0) = 0 m, Rg(0) = I,,, and Qg is the skew-symmetric form of the angular velocity
vector [0 0.1cos0.5mt 0.1t + 0.2 cos 7t]T rad/s. The desired relative positions are 6; = [-5 5 1] m,
So=[-5 —5 2" m,and §3=[-10 —10 3]" m. Note that for all t > 0, ||Gz(t) + Rg(t)d;|| € (10.5,15.7).
Thus, (A1) is satisfied with x; = 2.3.

Let My = {3}, Ny = {1}, and N3 = {2}, which represents a cyclic feedback structure. For all j € NV, let
Bi; = 0.6. Let oy = 2 and ay = a3 = 0, which implies that only the first agent has access to a measurement
of its position relative to the leader (i.e., go — ¢1). The formation control is implemented with 11 = v, =1
and k; = 2, which satisfies k; € (0, m\/ﬁ). Each agent’s measurement of ¢;, s;, and the Euler angles that
parameterize R; are corrupted by additive zero-mean Gaussian white noise with intensities 2 x 1076 m?,
3 x 1077 m2/s?, and 5 x 10~ rad?, respectively.

The next two examples demonstrate the non-adaptive formation control (4)—(17).

Example 1. For this example, f;(s;, R;) = —s; and g;(s;, R;) = 1, which implies that the speed dynamics
are low-pass and linear with unity gain at dc. We implement the (non-adaptive) formation control (4)—(17),
where v; = 1 and and 7; = 0.3. Figure 1 shows the 3-dimensional trajectories of the leader and agents, and
Figure 3 shows that ¢; — g, approaches Ryd;, which implies that the formation control objectives are satisfied.
The relative positions converge to the desired values by approximately ¢ = 20 s. The root mean square (RMS)
of ||| from ¢ =30 s to t = 60 s is 0.00041 m, 0.00359 m, and 0.00193 m for agent 1, 2, and 3, respectively.
Note that if the sensor noise is absent, then the RMS errors converge to zero as stated in Theorem 1. Figure 2
shows that s; approaches sq;, and that s; is inside the speed bounds for all time. A

Example 2. For this example, f;(s;, R;) = —0.005|s;|s; + gex R;v; and g;(si, R;) = 0.5, where —|s;|s;
models aerodynamic drag on the agent (e.g., aircraft) and ges R;v; models the acceleration due to gravity
g = 9.81 m/s? that is in the direction of velocity. We implement the (non-adaptive) formation control
(4)—(17), where ~; = 10 and and »; = 0.3. Figure 4 shows the 3-dimensional trajectories of the leader and
agents, and Figure 6 shows that ¢; — g, approaches R,d;, which implies that the formation control objectives
are satisfied. The relative positions converge to the desired values by approximately ¢ = 25 s. The RMS of
I¢i]] from ¢t = 30 s to t = 60 s is 0.00045 m, 0.00306 m, and 0.00172 m for agent 1, 2, and 3, respectively.
Figure 5 shows that s; approaches sq ;, and that s; is inside the speed bounds for all time. A

The next example demonstrates the adaptive formation control (4)—(14), (16), (17), and (55)—(58).

Example 3. For this example, fi(s;, R;) = —0.005|s;|s; + gex R;v; and g;(s;, R;) = 0.5, which are the
same as in Example 2; however, we assume that these speed dynamics are uncertain. Specifically, f; and
g; are parameterized as (53) and (54), where n; = 2, I';(s;, R;) = [0.01|si|si gegRivi]T, and ¥(s;, R;) =1
are known, but x.; = [-0.5 1]T and r.; = 0.5 are unknown. Thus, 6.; = x../r«; = [-1 2] and
lei =1/r.; =2 are unknown.

To implement the projection operator used in the adaptive laws (57) and (58), we assume there exist
known bounds I;,l; € R such that [, ; isin L; = {l € R : [; <1 < [;}. Similarly, we assume there exist

17



ERE
()
Bz‘:’ -15 \ t=0.0s
200 “ s SN 100
150 0 50
5 S50 5 )
iy -100 4
e, 0
2 ()

Figure 1: Agent and leader trajectories ¢; and gg.

i=3 ——=Rg;

20 25 30

t (s) t(s)

Figure 2: Agent speed s; and desired speed sq ;. The upper
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agent achieves its desired relative position Rgd; by ¢ = 20 s.
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Figure 6: Agent position relative to the leader ¢; — gg. Each
and lower speed bounds are the limits of the vertical axis.

agent achieves its desired relative position Rgd; by t = 25 s.

known bounds 6;,0; € R™ such that 0. isin ©; £ {eR™:0, <0< f;, where < is defined element-wise}.
Next, we specify continuously differential convex functions z; and w; such that L; = {I € R : z;(I) < 0} and
i = {0 €R,, :w;(f) <0} are super sets of L; and ©;, respectively.
To develop z;, consider N;, : R — R defined by

Li+1 Li—1
o -28)/(552),

which is a scalar normalization that maps L; to [—1,1], that is, N;,(L;) = [-1,1]. Then, let z; : R — R be

the continuously differentiable convex function defined by z;(l;) £ NZ_ (I;) — 1, and it follows that L; = L,
which implies that I ; € L;.
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To develop w;, consider Ny, : R™ — R™ defined by

0; + 0; 0 — b;
o 1-458). (52)

where + is element-wise vector division. Note that Np, is a vector normalization that maps ©; to [—1,1]™.
Furthermore, we note that ©; = {6 € R™ : || Ny, (0)||%, — 1 < 0}; however, || Ny, (6;)||%, — 1 is not continuously
differentiable, and thus, it cannot be used as the function w;. Instead, let w; : R — R be the continuously

differentiable convex function defined by w;(6;) £ [Ny, (6;)||2 — n?/p, where || - ||, is the p-norm and p is
an integer greater than 1. Thus, ©; is a super set of ©;, which implies that 6. ; € ©;. Furthermore, as p
tends to infinity, ©; tends to ©;. In this example, we let p = 10, [; = 0.3, [; =5, §; = [-5 0.1]T, and

0, =[-0.1 5]T.

We implement the adaptive formation control (4)-(14), (16), (17), and (56)—(58), where ¢, = 0.1, 7; = 0.5,
M; = diag(2,4), v; = 10, and n; = 0.3. The initial conditions 6;(0) and /;(0) are chosen as uniform random
values in the sets ©; and L;. Figure 7 shows the 3-dimensional trajectories of the leader and agents, and
Figure 9 shows that g; — g, approaches Ryd;, which implies that the formation control objectives are satisfied.
The relative positions converge to the desired values by approximately ¢ = 25 s. The RMS of ||(;|| from
t =30s tot=60sis 0.00040 m, 0.00294 m, and 0.00165 m for agent 1, 2, and 3, respectively. Figure 8 shows
that s; approaches sq ;, and that s; is inside the speed bounds for all time. Figure 10 shows the adaptive
parameters 6; and [;. A
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Figure 8: Agent speed s; and desired speed sq ;. The upper Figure 9: Agent position relative to the leader ¢; — gg. Each
and lower speed bounds are the limits of the vertical axis. agent achieves its desired relative position Rgd; by t = 25 s.

The numerical examples illustrate that the formation control algorithms presented in this paper ap-
proximately achieve the objectives (O1)—(0O4) in the presence of sensor noise. If the sensor noise is absent,
then the RMS errors converge to zero for all examples and (O1)—(04) are achieved as stated in Theorem 1
(non-adaptive) and Theorem 4 (adaptive).
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