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Abstract— We present a formation-control algorithm for
agents with extended unicycle dynamics that include orienta-
tion kinematics on SO(m), first-order speed dynamics, and
a hard constraint on speed. The desired interagent positions
are expressed in a leader-fixed coordinate frame, which is
aligned with and rotates with the leader’s velocity vector. Thus,
the desired interagent positions vary in time as the leader-
fixed frame rotates. We assume that each agent has relative-
position feedback of its neighbor agents, where the neighbor
sets are such that the interagent communication (i.e., feedback)
structure represents an undirected and connected graph. We
also assume that at least one agent has access to a measurement
its position relative to the leader. The analytic result shows that
the agents converge to the desired relative positions with the
other agents and the leader, and we provide sufficient conditions
to ensure that each agent’s speed satisfies the speed constraints.
We also present an experiment with 3 fixed-wing unmanned air
vehicles (UAVs) that demonstrates the leader-fixed formation-
control algorithm.

I. INTRODUCTION

Autonomous multi-vehicle systems (e.g., multi-agent sys-
tems of fixed-wing UAVs) have a variety applications such as
distributed sensing [1], cooperative surveillance [2], precision
agriculture, and search and rescue. For formation control, each
agent typically relies on sensing or interagent communication
to determine necessary feedback information (e.g., interagent
positions). Then, each agent uses this feedback information
in combination with feedforward information (e.g., external
commands, mission objectives) to accomplish tasks such
as collision avoidance, cohesion, guidance, and velocity
matching.

Consensus algorithms have been extended to address
cohesion and collision avoidance (e.g., [3]–[7]). These ap-
proaches force agents into a predetermined formation by
specifying the desired relative position between pairs of agents.
Other examples of formation control algorithms include
[8]–[18]. Surveys of multi-agent formation-control methods
are presented in [19]–[21]. Experimental demonstrations of
formation-control algorithms include [2], [14], [22]–[29].
In particular, [2], [24], [26], [27] present formation-control
experiments with fixed-wing UAVs. Simulation results on
formation-control for fixed-wing UAVs are also provided in
[29]–[33].

This paper addresses formation control in a leader-fixed
frame for agents with extended unicycle dynamics that include
orientation kinematics on SO(m), first-order speed dynamics,
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and a hard speed constraint. Related models are used in
[10], [14], [26], [30], [32]–[36], but these models, with the
exception of [33], do not include orientation kinematics on
SO(m), and do not include a speed constraint.

In this paper, the desired interagent positions are expressed
in a leader-fixed coordinate frame, which is aligned with
the leader’s velocity vector. The leader can be a physical
agent or a virtual agent. The algorithm in this paper applies
to formations where: i) the neighbor sets are such that the
interagent communication structure represents an undirected
and connected graph; ii) at least one agent has access to
a measurement its position relative to the leader; and iii)
each agent also has feedforward of the leader’s velocity,
acceleration, and orientation and its first two derivatives. In
some applications, the higher-order feedforward signals (e.g.,
acceleration and angular acceleration) can be neglected. The
main analytic result shows that for almost all initial conditions,
the agents converge to the desired relative positions with
the other agents and the leader. We note that topological
constraints associated with SO(m) prevent global convergence
using a continuous time-invariant control [37]. Furthermore,
we provide sufficient conditions to ensure that each agent’s
speed satisfies the speed constraints.

We also present an experiment demonstrating the leader-
fixed formation-control algorithm with a group of fixed-
wing UAVs. To implement the leader-fixed formation-control
algorithm, we use middle-loop controllers to determine the
roll, pitch, and throttle commands based on the controls
computed by the formation-control algorithm. An onboard
Pixhawk autopilot provides inner-loop attitude stabilization,
failsafe functionality, and telemetry. Each UAV obtains
feedback of its position and velocity from its onboard Pixhawk
autopilot and transmits this feedback to other UAVs over a
secure ad-hoc wireless network. This experiment demonstrates
the leader-fixed formation-control method using three fixed-
wing UAVs.

II. PROBLEM FORMULATION

Let the positive number n be the number of agents,
and define the agent index set I , {1, 2, . . . , n}. Define
P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered
pairs. Unless otherwise stated, all statements that involve the
subscript i are for all i ∈ I, and all statements that involve
the subscripts i and j are for all (i, j) ∈ P .

For clarity of presentation, we first develop the extended
unicycle model in three-dimensional space. Thus, for the
moment, let m = 3. Let E be an inertial frame (e.g., the
Earth frame), and let oE be the origin of E. Let oi be the
location of the ith agent (e.g., the location of the ith vehicle’s



center of mass). The position of oi relative to oE is
⇀
qi, and

the ith agent’s position
⇀
qi is resolved in E as qi ,

⇀
qi|E. The

velocity of oi relative to oE with respect to E is
⇀
pi ,E·⇀qi.

Let Bi be a frame that is fixed to oi such that
⇀
pi resolved in

Bi is given by
⇀
pi|Bi

= sivi, where vi ∈ Rm is a unit vector,
and for all t ≥ 0, si(t) ∈ R is the speed of the ith agent,
which is subject to the constraint si(t) ∈ Si , (

¯
si, s̄i), where

0 <
¯
si < s̄i. Let Ri : [0,∞)→ SO(m) be the rotation matrix

from Bi to E. Thus, the ith agent’s velocity
⇀
pi resolved in

E is
⇀
pi|E = siRivi, which implies that

q̇i(t) = si(t)Ri(t)vi, (1)

where t ≥ 0; qi(t) ∈ Rm, si(t) ∈ Si, and RT
i (t) ∈ SO(m)

are the position, speed, and orientation of the ith agent; and
qi(0) ∈ Rm is the initial condition. Note that Rivi is the
unit vector in the direction of the velocity q̇i. The speed and
orientation of the ith agent satisfy

ṡi(t) = fi(si(t), Ri(t)) + gi(si(t), Ri(t))ui(t), (2)

Ṙi(t) = Ri(t)Ωi(t), (3)

where t ≥ 0; ui : [0,∞) → R and Ωi : [0,∞) → so(m)
are the control inputs; si(0) ∈ Si and Ri(0) ∈ SO(m) are
the initial conditions; and fi : Si × SO(m) → R and gi :
Si × SO(m)→ R \ {0} are continuous. Note that Ωi is the
skew-symmetric form of the angular velocity of Bi relative
to E resolved in Bi. The agent model (1)–(3) is an extended
unicycle model that includes both speed dynamics (2) and
orientation kinematics (3) on SO(m).

Let og be the location of the leader, which can be a physical
agent (e.g., a vehicle) or a virtual agent. The position of og
relative to oE is

⇀
qg, and the leader’s position

⇀
qg is resolved in

E as qg ,
⇀
qg|E, which is assumed to be twice continuously

differentiable. The velocity of og relative to oE with respect
to E is

⇀
pg ,E·⇀qg. Let Bg be a frame that is fixed to og and

has orthogonal unit vectors ı̂g, ̂g, and k̂g, where ı̂g is parallel
to the leader’s velocity vector

⇀
pg, and the rotation matrix

from Bg to E is Rg : [0,∞) → SO(m), which is assumed
to be twice continuously differentiable.

This paper addresses the problem of formation control
in the leader-fixed frame Bg. Let di ∈ Rm be the desired
position of oi relative to og resolved in Bg. Thus, for all
(i, j) ∈ P , dij , di− dj is the desired position of oi relative
to oj resolved in Bg. Our objective is to design controls ui
and Ωi such that:

(O1) For all (i, j) ∈ P , limt→∞RT
g (t)[qi(t)− qj(t)] = dij .

(O2) For all i ∈ I, limt→∞[q̇i(t)− q̇g(t)− Ṙg(t)di] = 0.
(O3) For all i ∈ I, limt→∞RT

g (t)[qi(t)− qg(t)] = di.
(O4) For all i ∈ I and for all t ≥ 0, si(t) ∈ Si.

Objective (O1) states that the interagent positions approach
the desired values. Objective (O2) states that each agent’s
velocity with respect to Bg approaches the leader’s velocity
with respect to Bg, and (O3) states that each agent approaches
its desired relative position with the leader. Objective (O4)
states that the agents’ speed constraints are satisfied. If (O3)
is satisfied, then (O1) is satisfied. However, we enumerate

these objectives independently because some results in this
paper show that if no agents have access to a measurement
of the leader’s position, then (O1) is satisfied but (O3) is not.

Although the physical (i.e., frame-based) formulation of the
formation control problem is described in three dimensions,
the methods in this paper apply to all m ∈ {2, 3, 4, . . .}. Thus,
for the remainder of this paper, we consider the extended
unicycle model (1)–(3) and the objectives (O1)–(O4), where
m ∈ {2, 3, 4, . . .}.

The interagent communication (i.e., feedback) structure is
represented using an undirected graph. The agent index set
I is the vertex set of the graph, and the n elements of I are
the vertices. Let E ⊂ I × I be the edge set. The elements
of E are the edges. The graph G = (I, E) is undirected if
for all (`1, `2) ∈ E , (`2, `1) ∈ E . The graph G = (I, E) has
a walk of length l from `0 ∈ I to `l ∈ I if there exists an
(l + 1)-tuple (`0, `1, . . . , `l) ∈ I × I × · · · × I such that for
all j ∈ {1, 2, . . . , l}, (`j−1, `j) ∈ E . The undirected graph
G = (I, E) is connected if for all distinct i, j ∈ I, there
exists a walk from i to j.

Define the neighbor set Ni , {j ∈ I : (j, i) ∈ E}. We
assume that for all i ∈ I , (i, i) 6∈ E , which implies that i 6∈ Ni.
We assume that G = (I, E) is undirected and connected, and
the ith agent has access to {qj}j∈Ni∪{i} and {q̇j}j∈Ni∪{i} for
feedback. In addition, we assume that each agent has access
to measurements of the leader’s velocity q̇g, the leader’s
acceleration q̈g, and Rg, Ṙg, and R̈g. However, we do not
assume that all agents have access to a measurement of the
leader’s position qg. In fact, the formation control algorithm
in this paper only requires that at least one agent has access
to a measurement of qg.

III. FORMATION CONTROL ALGORITHM

Consider σ : Rm → [0,∞) defined by

σ(x) , 1/
√
ν1 + ν2‖x‖2, (4)

where ν1, ν2 > 0, and ‖ · ‖ is the 2-norm. Furthermore,
consider ρ : Rm → Rm defined by

ρ(x) , σ(x)x, (5)

and note that supx∈Rm ‖ρ(x)‖ exists. Also, consider ρ′ :
Rm → Rm×m defined by ρ′(x) , ∂ρ(x)/∂x.

Define the ith agent’s desired velocity

pd,i , q̇g + Ṙgdi − αiρ(qi − qg −Rgdi)

+
∑
j∈Ni

βijρ(qj − qi +Rgdij), (6)

where αi ≥ 0, for all j ∈ Ni, βij = βji > 0, and for all
j /∈ Ni, βij = 0. It follows from (4) and (5) that all terms
in (6) are bounded with the possible exception of the leader
trajectory q̇g+RT

g di. The algorithm in this paper only requires
that there exists l ∈ I such that αl > 0, that is, at least one
agent has access to a measurement of qg.

Define the desired speed

sd,i , ‖pd,i‖. (7)



Note that (O1)–(O3) along with (O4) cannot be achieved for
an arbitrary leader trajectory q̇g + ṘT

g di. Thus, we make the
following assumption:
(A1) There exists ε > 0 such that for all t ≥ 0, sd,i(t) ∈

Sd,i , (
¯
si + ε, s̄i − ε).

The next result provides sufficient conditions such that (A1)
is satisfied. The proof is omitted for space considerations.

Proposition 1. Let κi > ε > 0. Assume that for t ≥ 0,
‖q̇g(t)+Ṙg(t)di‖ ∈ (

¯
si+κi, s̄i−κi). Let αi ≥ 0 and βij ≥ 0

be such that αi +
∑
j∈Ni

βij < (κi − ε)/ supx∈Rm ‖ρ(x)‖.
Then, for all qi(0) ∈ Rm, (A1) is satisfied.

Although Proposition 1 provides sufficient conditions on
the leader trajectory and the gains αi and βij such that (A1)
is satisfied, these conditions are not necessary. Thus, we
invoke (A1), which can be satisfied either through the design
in Proposition 1 or other means.

Next, define the time derivatives of pd,i and sd,i by

ṗd,i , q̈g + R̈gdi − αiρ′(qi − qg −Rgdi)(q̇i − q̇g − Ṙgdi)

+
∑
j∈Ni

βijρ
′(qj − qi +Rgdij)(q̇j − q̇i + Ṙgdij), (8)

ṡd,i ,
∂sd,i
∂pd,i

ṗd,i =
1

sd,i
pTd,iṗd,i. (9)

To enforce the speed constraint (O4), we consider the speed
barrier function hi : Si × Sd,i → (0,∞) defined by

hi(si, sd,i) ,
(s̄i − sd,i)(sd,i −

¯
si)

(s̄i − si)(si −
¯
si)

. (10)

Furthermore, define

∂hi(si, sd,i)

∂si
, − (s̄i +

¯
si − 2si)

(s̄i − si)(si −
¯
si)

hi(si, sd,i), (11)

∂hi(si, sd,i)

∂sd,i
,

(s̄i +
¯
si − 2sd,i)

(s̄i − si)(si −
¯
si)

. (12)

For notational convenience, we omit the arguments from
(10)–(12) for the rest of the paper.

Then, the formation control is given by

ui =
−1

gi(si, Ri)

[
fi(si, Ri) +

(
1

hi + (si − sd,i)∂hi

∂si

)

×

(
γi(si − sd,i)hi +

(
(si − sd,i)

∂hi
∂sd,i

− hi
)
ṡd,i

)]
,

(13)

Ωi = ηisd,i
(
RT
i pd,iv

T
i − vipTd,iRi

)
+

1

s2d,i
RT
i

(
ṗd,ip

T
d,i − pd,iṗTd,i

)
Ri, (14)

where γi > 0 and ηi > 0. Since (A1) is satisfied, it follows
that for all t ≥ 0, sd,i(t) ∈ Sd,i, which implies that Ωi is
well defined. In the next section, we show that for all t ≥ 0,
si(t) ∈ Si. Thus, the next result demonstrates that ui is well
defined. The proof is omitted for space considerations.

Proposition 2. For all (si, sd,i) ∈ Si × Sd,i, hi + (si −
sd,i)(∂hi/∂si) > 0; and hi, ∂hi/∂sd,i, and ui are finite.

IV. STABILITY ANALYSIS

In this section, we analyze the closed-loop dynamics
(1)–(14). Define the position error ζi , qi − qg − Rgdi.
Differentiating ζi and using (1) and (6) implies that

ζ̇i = siRivi − pd,i − αiρ(ζi) +
∑
j∈Ni

βijρ(ζj − ζi). (15)

Consider the Lyapunov-like function V0 : Rmn →
[0,∞) defined by V0({ζi}i∈I) ,

∑
i∈I ζ

T
i ζi, and define

V̇0({ζi}i∈I) ,
∑
i∈I

∂V0

∂ζi
ζ̇i. The following preliminary result

considers the case where the velocity siRivi is a control
variable, specifically, siRivi = pd,i. The proof is omitted for
space considerations.

Proposition 3. Consider the closed-loop dynamics (15),
which consists of (1) and (4)–(6), where siRivi = pd,i.
Assume that G = (I, E) is undirected and connected. Then,
the following statements hold:

i) V̇0 is negative semidefinite, and V̇0 is given by

V̇0({ζi}i∈I) = −
∑
i∈I

[
2αiσ(ζi)‖ζi‖2

+
∑
j∈Ni

βijσ(ζi − ζj)‖ζi − ζj‖2
]
. (16)

ii) The equilibrium {ζi(t)}i∈I ≡ 0 of (15) is Lyapunov
stable, and for all qi(0) ∈ Rm, ζi is bounded.

iii) For all qi(0) ∈ Rm, (O1) and (O2) are satisfied.
iv) If there exists l ∈ I such that αl > 0, then V̇0 is negative

definite and for all qi(0) ∈ Rm, (O3) is satisfied.
v) If (A1) is satisfied, then for all qi(0) ∈ Rm, (O4) is

satisfied.

Proposition 3 shows that if siRivi = pd,i and there exists
l ∈ I such that αl > 0 (i.e., at least one agent has a
measurement of qg), then (O1)–(O3) are satisfied, and if
(A1) is satisfied, (O4) is satisfied. However, the speed si
and pointing direction Rivi are not controls. Instead, si is
determined from (2), which has control input ui, and Rivi
is determined from (3), which has control input Ωi. Before
analyzing the full closed-loop dynamics (1)–(14), we examine
the speed dynamics (2) and the associated control (13) to
show that the speed constraint is satisfied.

Define the speed error s̃i , si − sd,i. Differentiating s̃i
and using (2) and (13) implies that

˙̃si =
−1

hi + s̃i
∂hi

∂si

[
γis̃ihi + s̃i

(
∂hi
∂sd,i

+
∂hi
∂si

)
ṡd,i

]
. (17)

Consider the Lyapunov-like function Zi : R → [0,∞)
defined by Zi(s̃i, sd,i) , 1

2h
2
i s̃

2
i , and define Żi(s̃i, sd,i) ,

∂Zi

∂s̃i
˙̃si+

∂Zi

∂sd,i
ṡd,i. The following result shows that that if (A1)

is satisfied and si(0) ∈ Si, then for all t ≥ 0, si(t) ∈ Si.
The proof is omitted for space considerations.

Proposition 4. Consider the closed-loop dynamics (17),
which consists of (2) and (4)–(13), where (A1) is satisfied.
Then, the following statements hold:



i) For all (si, sd,i) ∈ Si × Sd,i, Żi(s̃i, sd,i) = −γih2i s̃2i ≤
−γiais̃2i , where ai , 16ε2/(s̄i −

¯
si)

2 > 0.
ii) For all si(0) ∈ Si, (O4) is satisfied.

iii) For all si(0) ∈ Si, limt→∞ s̃i(t) = 0.

Define the desired pointing direction bd,i , pd,i/sd,i,
and define the pointing direction error b̃i , Rivi − bd,i.
Differentiating b̃i and using (3) and (14) implies

˙̃
bi = ηisd,i

(
pd,iv

T
i vi −RivipTd,iRivi

)
+

1

s2d,i

(
ṗd,ip

T
d,i − pd,iṗTd,i

)
Rivi − ḃd,i.

Since pd,i = sd,ibd,i, ṗd,i = ṡd,ibd,i + sd,iḃd,i, vTi vi = 1,
and bd,i = −b̃i +Rivi, it follows that

˙̃
bi = ηis

2
d,i

(
−b̃i +

(
1− bTd,iRivi

)
Rivi

)
− ḃd,i

(
1− bTd,iRivi

)
− bd,iḃTd,iRivi.

Since bd,i is a unit vector, it follows that ḃTd,ibd,i = 0. In
addition, note that 1−bTd,iRivi = 1

2 b̃
T
i b̃i and Rivi = b̃i+bd,i.

Thus,

˙̃
bi = −ηis2d,i

(
b̃i −

1

2
b̃Ti b̃i

(
b̃i + bd,i

))
− 1

2
ḃd,ib̃

T
i b̃i − bd,iḃTd,ib̃i. (18)

Using (15) and siRivi − pd,i = s̃iRivi + sd,ib̃i implies

ζ̇i = −αiρ(ζi) + s̃iRivi + sd,ib̃i +
∑
j∈Ni

βijρ(ζj − ζi). (19)

Next, define

Q , {({qi}i∈I , {si}i∈I , {Ri}i∈I) ∈ Rmn × S1 × · · · × Sn
×SO(m)n : for all i ∈ I, bTd,i(0)Ri(0)vi 6= −1

}
,

which is the set of initial conditions such that the angle from
q̇i(0) to pd,i(0) is not exactly π rad, and the initial speed is
in the admissible range.

The next theorem is the main result, which shows that the
equilibrium ({ζi(t)}i∈I , {s̃i(t)}i∈I , {b̃i(t)}i∈I) ≡ (0, 0, 0)
of the closed-loop system (17)–(19) is Lyapunov stable, for all
initial conditions in Q, ({ζi(t)}i∈I , {s̃i(t)}i∈I , {b̃i(t)}i∈I)
converges to zero, and (O1)–(O4) are satisfied. If the speed
constraint is absent, then Q consists of all initial conditions
except those where the angle from q̇i(0) to pd,i(0) is π rad. In
this case, the closed-loop system is almost globally asymptot-
ically stable. Note that topological constraints associated with
SO(m) prevent global asymptotic stability of the equilibrium
using a continuous time-invariant control [37]. The proof is
omitted for space considerations.

Theorem 1. Consider the closed-loop dynamics (17)–
(19), which consists of (1)–(14), where (A1) is satisfied.
Assume that G = (I, E) is undirected and connected, and
assume that there exists l ∈ I such that αl > 0. Then, the
equilibrium ({ζi(t)}i∈I , {s̃i(t)}i∈I , {b̃i(t)}i∈I) ≡ (0, 0, 0)
of (17)–(19) is Lyapunov stable. Furthermore, for all initial
conditions ({qi(0)}i∈I , {si(0)}i∈I , {Ri(0)}i∈I) ∈ Q, the

following statements hold:

i) For all i ∈ I and for all t ≥ 0, bTd,i(t)Ri(t)vi > −1.
ii) For all i ∈ I , limt→∞ ζi(t) = 0, limt→∞ s̃i(t) = 0, and

limt→∞ b̃i(t) = 0.
iii) (O1)–(O4) are satisfied.

V. HARDWARE PLATFORM

This section describes an experimental fixed-wing UAV
platform. The UAV is equipped with a Pixhawk flight con-
troller with the ArduPilot firmware, which provides attitude
stabilization, waypoint navigation, and state estimation, and
interfaces with a GPS receiver. An on-board Raspberry
Pi single board computer obtains state estimates from the
Pixhawk, communicates with other aircraft using WiFi, and
runs the formation control algorithm (4)–(14).

We use the Skywalker X8 flying wing foam airframe,
which consists of two wings attached to a fuselage section
and reinforced with carbon fiber wing spars. A propeller and
brushless motor are mounted to the aft end of the fuselage.
The motor is spun by an electronic speed controller (ESC),
producing thrust. The Pixhawk uses an extended Kalman
filter to fuse measurements from a built-in 9-DOF IMU and
barometer with the on-board GPS and airspeed sensor to
estimate the position, attitude, and velocity of the UAV, as
well as the wind velocity and calibration parameters of the on-
board sensors. These estimates are used for stabilization and
waypoint-based navigation, and are broadcast via a telemetry
radio and shared with the Raspberry Pi via a USB connection.

For formation flight, the Pixhawk on each follower UAV
is switched into Fly-By-Wire-A (FBWA) mode. In this mode,
we provide three radio control (RC) override commands that
simulate the pulse width modulation (PWM) signals that
would be received from an RC transmitter operated by a
human. The throttle PWM signal is passed directly to the
ESC, and the Pixhawk maps the roll and pitch PWM signals
linearly to desired attitude angles, where the minimum and
maximum PWM values correspond to the minimum and
maximum attitude angles stored in the Pixhawk. In this case,
the minimum and maximum roll angles are φ̂min,i = −50 deg
and φ̂max,i = 50 deg, and the minimum and maximum pitch
angles are θ̂min,i = −20 deg and θ̂max,i = 20 deg.

VI. FORMATION CONTROL IMPLEMENTATION

We apply the formation-control algorithm (4)–(14) to fixed-
wing UAVs, where vi = e1 and Ω̇g is small enough to neglect
for the control. Note that αi and βij can be generalized to
diagonal m×m matrices to allow independent tuning in the
ı̂E, ̂E, and k̂E directions. For convenience in describing the
rotation Rg, let ψg, θg, and φg be the yaw, pitch, and roll
Euler angles of a 3-2-1 rotation sequence which rotates E
to Bg. Thus, Rg can be parameterized by ψg, θg, and φg.
Similarly, Ri can be parameterized by ψi, θi, and φi. Let ψ̂i,
θ̂i, and φ̂i denote the yaw, pitch, and roll of the aircraft. In
the absence of wind and with angle-of-attack and side-slip
angles equal to zero, ψ̂i = ψi, θ̂i = θi, and φ̂i = φi. For
compatibility with the control inputs and feedback presented



by the autopilot, we convert between the aircraft’s angular
velocity Ωi and the Euler angle derivatives φ̇i, θ̇i, ψ̇i.

The hardware platform described in Section V does not
have the dynamics given by (1)–(3). However, we implement
middle-loop controllers so the closed-loop UAV dynamics
approximate the agent dynamics (1)–(3).

We use a PID controller with feedforward and anti-windup
to command the pitch angle θ̂d,i(t) ∈ [θ̂min,i, θ̂max,i] such
that the course angle θi tracks the desired course angle θd,i ,
arcsin−eT3 pd,i/sd,i. The feedforward is θd,i. Anti-windup
is achieved by preventing the integrator state from changing
if the pitch command θ̂d,i is outside (θ̂min,i, θ̂max,i) and the
pitch error θi − θd,i is such that integrating would drive θ̂d,i
further into saturation.

We use a PID controller with feedforward and anti-
windup to command the roll angle φ̂d,i(t) ∈ [φ̂min,i, φ̂max,i]
such that the course angle ψi tracks the desired course
angle ψd,i , atan2(eT2 pd,i, e

T
1 pd,i), where atan2 denotes

the four-quadrant arctangent. Anti-windup is achieved in
the same way as in the pitch controller. The feedforward
is arctan(ψ̇d,isi/g) cos θ̂i, where g = 9.81 m/s2 is the
acceleration due to gravity, and arctan(ψ̇d,isi/g) cos θ̂i is
the roll angle required to maintain a heading rate of ψ̇d,i at
a speed of si based on the assumption of a coordinated turn.
The feedforward is similar to that used in the ArduPlane L1
navigation controller and in [36].

To control the speed of the aircraft, we first convert the
speed dynamics input ui to a desired airspeed u′i , ui+sa,i−
si, where sa,i is the measured airspeed. We then saturate u′i
to the flight envelope of the aircraft to obtain

u′′i (t) ,


smin,i u′i(t) < smin,i

u′i(t) smin,i ≤ u′i(t) ≤ smax,i

smax,i u′i(t) < smax,i,

where smin,i is the ARSPD FBW MIN parameter of the
autopilot and smax,i is the ARSPD FBW MAX parameter
of the autopilot. We use a PID controller with feedforward
and anti-windup to command the throttle Ti(t) ∈ [0, 100]
such that the airspeed sa,i tracks u′′i . Thus, within the flight
envelope, si tracks ui. Anti-windup is achieved in in the same
way as in the pitch and roll controllers. The feedforward
is T0 + T1(u′′i − s0,i) + Tφ(cos−2 φ̂i − 1), where T0 is the
TRIM THROTTLE parameter of the autopilot, T1 ≥ 0, s0,i is
the TRIM ARSPD CM parameter of the autopilot converted
to m/s, Tφ is the TECS RLL2THR parameter of the autopilot,
and Tφ(cos−2 φ̂i− 1) is an estimate of the additional throttle
input required to maintain airspeed while turning. In practice,
u̇i, and ṡi are estimated using backward Euler differentiation
with a low-pass filter. The controller is tuned such that the
speed dynamics from ui to si approximate a first-order low-
pass filter with pole at −0.4. Thus, these dynamics are (2),
where fi(Ri, si) = −0.4si and gi(Ri, si) = 0.4.

The Raspberry Pi communicates with the Pixhawk via
the DroneKit Python API and stores the state estimates,
along with their timestamps in Python class instances. These
instances are serialized using the cPickle library, compressed

using zlib, and broadcast over the ad-hoc WiFi network via
UDP at approximately 10 Hz.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes a flight experiment using the
multi-loop implementation described in Section VI and the
hardware platform described in Section V. The experiment
was conducted at the Lexington Model Airplane Club flying
field located in Lexington, Kentucky on July 10, 2019.
The wind was approximately 2 m/s from the southwest.
Let n = 2 agents, and m = 3, and let fi(si, Ri) =
−0.4si and gi(si, Ri) = 0.4, which implies that the speed
dynamics are a low-pass filter with unity gain at dc. The
time constant 0.4 was estimated from the closed-loop step
response of the UAV with the middle-loop speed controller.
The desired positions are d1 = [−10 10 20]T m and
d2 = [−10 −10 −20]T m. Let αi = diag(105, 105, 31.5),
β12 = β21 = diag(50, 50, 15), γi = 1, ηi = 0.0003,
ν1 = 250000, ν2 = 1,

¯
si = −∞, and s̄i = ∞, and let

Ts = 0.1 s and φg(t) ≡ 0.
After all UAVs have been launched, UAVs serving as agents

are put into FBWA mode and formation-control is engaged
using a switch on each agent’s RC transmitter.

In this experiment, the leader UAV is commanded to follow
a rectangular flight path. Figure 1 shows the UAVs trajectories,
where the vertical axis is time. By t = 40 s, the UAVs have
achieved the formation and stay in formation for the remainder
of the experiment. Figure 2 shows the first rectangle in the
trajectory from an overhead view. Figure 3 shows the relative
position between the agents and the leader in the ı̂E, ̂E, and
k̂E directions. After t = 40 s, the RMS of the norms of the
position errors ‖ζi‖ are 8.80 m and 8.87 m, respectively.
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Fig. 1. Trajectories of leader and agents in the ı̂E − ̂E plane with time
as the vertical axis. The agents converge to the desired relative positions at
approximately t = 40 s.
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