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Abstract— We present a formation-control algorithm for
agents with extended unicycle dynamics that include orienta-
tion kinematics on SO(m), first-order speed dynamics, and
a hard constraint on speed. The desired interagent positions
are expressed in a leader-fixed coordinate frame, which is
aligned with and rotates with the leader’s velocity vector. Thus,
the desired interagent positions vary in time as the leader-
fixed frame rotates. We assume that each agent has relative-
position feedback of its neighbor agents, where the neighbor
sets are such that the interagent communication (i.e., feedback)
structure represents an undirected and connected graph. We
also assume that at least one agent has access to a measurement
its position relative to the leader. The analytic result shows that
the agents converge to the desired relative positions with the
other agents and the leader, and we provide sufficient conditions
to ensure that each agent’s speed satisfies the speed constraints.
We also present an experiment with 3 fixed-wing unmanned air
vehicles (UAVs) that demonstrates the leader-fixed formation-
control algorithm.

I. INTRODUCTION

Autonomous multi-vehicle systems (e.g., multi-agent sys-
tems of fixed-wing UAVs) have a variety applications such as
distributed sensing [1], cooperative surveillance [2], precision
agriculture, and search and rescue. For formation control, each
agent typically relies on sensing or interagent communication
to determine necessary feedback information (e.g., interagent
positions). Then, each agent uses this feedback information
in combination with feedforward information (e.g., external
commands, mission objectives) to accomplish tasks such
as collision avoidance, cohesion, guidance, and velocity
matching.

Consensus algorithms have been extended to address
cohesion and collision avoidance (e.g., [3]-[7]). These ap-
proaches force agents into a predetermined formation by
specifying the desired relative position between pairs of agents.
Other examples of formation control algorithms include
[8]-[18]. Surveys of multi-agent formation-control methods
are presented in [19]-[21]. Experimental demonstrations of
formation-control algorithms include [2], [14], [22]-[29].
In particular, [2], [24], [26], [27] present formation-control
experiments with fixed-wing UAVs. Simulation results on
formation-control for fixed-wing UAVs are also provided in
[29]-[33].

This paper addresses formation control in a leader-fixed
frame for agents with extended unicycle dynamics that include
orientation kinematics on SO(m), first-order speed dynamics,
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and a hard speed constraint. Related models are used in
[10], [14], [26], [30], [32]-[36], but these models, with the
exception of [33], do not include orientation kinematics on
SO(m), and do not include a speed constraint.

In this paper, the desired interagent positions are expressed
in a leader-fixed coordinate frame, which is aligned with
the leader’s velocity vector. The leader can be a physical
agent or a virtual agent. The algorithm in this paper applies
to formations where: i) the neighbor sets are such that the
interagent communication structure represents an undirected
and connected graph; ii) at least one agent has access to
a measurement its position relative to the leader; and iii)
each agent also has feedforward of the leader’s velocity,
acceleration, and orientation and its first two derivatives. In
some applications, the higher-order feedforward signals (e.g.,
acceleration and angular acceleration) can be neglected. The
main analytic result shows that for almost all initial conditions,
the agents converge to the desired relative positions with
the other agents and the leader. We note that topological
constraints associated with SO(m) prevent global convergence
using a continuous time-invariant control [37]. Furthermore,
we provide sufficient conditions to ensure that each agent’s
speed satisfies the speed constraints.

We also present an experiment demonstrating the leader-
fixed formation-control algorithm with a group of fixed-
wing UAVs. To implement the leader-fixed formation-control
algorithm, we use middle-loop controllers to determine the
roll, pitch, and throttle commands based on the controls
computed by the formation-control algorithm. An onboard
Pixhawk autopilot provides inner-loop attitude stabilization,
failsafe functionality, and telemetry. Each UAV obtains
feedback of its position and velocity from its onboard Pixhawk
autopilot and transmits this feedback to other UAVs over a
secure ad-hoc wireless network. This experiment demonstrates
the leader-fixed formation-control method using three fixed-
wing UAVs.

II. PROBLEM FORMULATION

Let the positive number n be the number of agents,
and define the agent index set Z = {1,2,...,n}. Define
P = {(i,j) €T xT:i# j}, which is the set of ordered
pairs. Unless otherwise stated, all statements that involve the
subscript ¢ are for all ¢+ € Z, and all statements that involve
the subscripts ¢ and j are for all (i,7) € P.

For clarity of presentation, we first develop the extended
unicycle model in three-dimensional space. Thus, for the
moment, let m = 3. Let E be an inertial frame (e.g., the
Earth frame), and let og be the origin of E. Let o; be the
location of the ith agent (e.g., the location of the ith vehicle’s



center of mass). The posmon of o; relative to OE 1s Qz’ and
the ith agent’s position g; is resolved in E as ¢; = q,|E The

velocity of o; relative to og with respect to E is p; = ql.

Let B; be a frage that is fixed to o; such that pl resolved in
B; is given by p; iV;, where v;
and for all ¢ > 0, s;(t) € R is the speed of the ith agent,
which is subject to the constraint s;(t) € S; £ (s;, 5;), where
0<s; <8§;.Let R; : [0,00) — SO(m) be the rotation matrix
from B; to E. Thus, the ¢th agent’s velocity pj resolved in
Eis E\E = s;R;v;, which implies that

qz(t) = Si(t)Ri(t)Ui, (1)

where t > 0; ¢;(t) € R™, s;(t) € S;, and R} (t) € SO(m)
are the position, speed, and orientation of the ¢th agent; and
¢i(0) € R™ is the initial condition. Note that R;v; is the
unit vector in the direction of the velocity ¢;. The speed and
orientation of the ith agent satisfy

5i(t) = fi(si(t), Ri(t)) + gi(ss(t), Ri())ui(t), (2)
Ri(t) = Ri(t)Qu(t), 3)

where ¢ > 0; u; : [0,00) = R and ©Q; : [0,00) — so(m)
are the control inputs; s;(0) € S; and R;(0) € SO(m) are
the initial conditions; and f; : S; x SO(m) — R and g; :
S; x SO(m) — R\ {0} are continuous. Note that §2; is the
skew-symmetric form of the angular velocity of B; relative
to E resolved in B;. The agent model (1)—(3) is an extended
unicycle model that includes both speed dynamics (2) and
orientation kinematics (3) on SO(m).

Let o4 be the location of the leader, which can be a physical
agent (e.g., a vehlcle) or a virtual agent. The posmon of og
relative to 0 is g, and the leader’s position g, is resolved in
Eas g = qg\E, which is assumed to be twice continuously
differentiable. The velocity of o, relative to op with respect
to E is py 2%¢,. Let B, be a frame that is fixed to o, and
has orthogonal unit vectors 2, jg, and l%g, where i, is parallel
to the leader’s velocity vector Eg, and the rotation matrix
from By to E is R, : [0,00) — SO(m), which is assumed
to be twice continuously differentiable.

This paper addresses the problem of formation control
in the leader-fixed frame Bg. Let d; € R™ be the desired
position of o; relative to oz resolved in Bg. Thus, for all
(1,7) € P, dij N d; is the desired position of o; relative
to o; resolved in Bg. Our objective is to design controls u;
and €; such that:

(O1) For all (i, j) € P, limy 00 By (t)[a:(t) — q;(1)]
(02) For all i € T, limy—yoo[di (1) — dg(t) — Ry(t)ds] =
(03) For all i € Z, limy_,o0 Ry (t)[qi () — qg(t )] d;.
(O4) For all i € Z and for all t > 0, s;(t) € S;.

Objective (O1) states that the interagent positions approach
the desired values. Objective (O2) states that each agent’s
velocity with respect to B, approaches the leader’s velocity
with respect to B, and (O3) states that each agent approaches
its desired relative position with the leader. Objective (04)
states that the agents’ speed constraints are satisfied. If (O3)
is satisfied, then (O1) is satisfied. However, we enumerate

€ R™ is a unit vector,

these objectives independently because some results in this
paper show that if no agents have access to a measurement
of the leader’s position, then (O1) is satisfied but (O3) is not.

Although the physical (i.e., frame-based) formulation of the
formation control problem is described in three dimensions,
the methods in this paper apply to all m € {2, 3,4, ...}. Thus,
for the remainder of this paper, we consider the extended
unicycle model (1)—(3) and the objectives (O1)-(04), where
m € {2,3,4,...}.

The interagent communication (i.e., feedback) structure is
represented using an undirected graph. The agent index set
T is the vertex set of the graph, and the n elements of Z are
the vertices. Let £ C Z x T be the edge set. The elements
of & are the edges. The graph G = (Z,&) is undirected if
for all (¢1,43) € &, ({3,¢1) € E. The graph G = (Z, &) has
a walk of length | from ¢y € T to ¢; € T if there exists an
(I + 1)-tuple (€o,01,...,4;) € Z XTI x---x T such that for
all j € {1,2,...,1}, (¢;_1,¢;) € €. The undirected graph
G = (Z,€) is connected if for all distinct i,j € Z, there
exists a walk from ¢ to j.

Define the neighbor set N; = {j € T : (j,i) € £}. We
assume that for all i € Z, (4,¢) & £, which implies that ¢ & N;.
We assume that G = (Z, ) is undirected and connected, and
the ith agent has access to {q; } jen;,ugiy and {G; } jen,uqqy for
feedback. In addition, we assume that each agent has access
to measurements of the leader’s velocity ¢g, the leader’s
acceleration §g, and Ry, Rg, and Rg. However, we do not
assume that all agents have access to a measurement of the
leader’s position g,. In fact, the formation control algorithm
in this paper only requires that at least one agent has access
to a measurement of gg.

III. FORMATION CONTROL ALGORITHM

Consider o : R™ — [0, 00) defined by

z) £ 1/y/v1 + 22, “4)

where vi,v5 > 0, and || - || is the 2-norm. Furthermore,
consider p : R™ — R™ defined by

p(x) £ o(z)z, &)

and note that sup,cpn ||p(x)|| exists. Also, consider p’
R™ — R™*™ defined by p'(x) = dp(x)/0x.
Define the ith agent’s desired velocity

Pd,i = Qg + Rgdz - azp(Qz - Qg - Rgdz)

+ Y Bigpla; = ¢i + Redij), (©)

JEN;
where «; > 0, for all j € N;, B;; = B;; > 0, and for all
j& N, Bi; = 0. It follows from (4) and (5) that all terms
in (6) are bounded with the possible exception of the leader
trajectory ¢ —i—Rgdi. The algorithm in this paper only requires
that there exists [ € Z such that «; > 0, that is, at least one
agent has access to a measurement of ¢,.
Define the desired speed

sdi = ||pa,ill- @)



Note that (O1)—(03) along with (04) cannot be achieved for

an arbitrary leader trajectory ¢g + R d;. Thus, we make the

following assumption:

(A1) There exists € > 0 such that for all t > 0, sq,(t) €
Sai = (si+¢e,5 —¢).

The next result provides sufficient conditions such that (A1)

is satisfied. The proof is omitted for space considerations.

Proposjtion 1. Let x; > € > 0. Assume that for ¢t > 0,
|‘qg(t)+Rg(t)d1” € (§i+/€i, gi—:‘{i). Let oy > 0 and Bij >0
be such that a; + > i, Bij < (ki —€)/supyepm (7).
Then, for all ¢;(0) € R™, (Al) is satisfied.

Although Proposition 1 provides sufficient conditions on
the leader trajectory and the gains «; and 3;; such that (Al)
is satisfied, these conditions are not necessary. Thus, we
invoke (A1), which can be satisfied either through the design
in Proposition 1 or other means.

Next, define the time derivatives of pq; and sq,; by

@ip'(¢i — 4z — Rgdi)(¢i — dg — Rgd)
—q; + Rgd”)(q] —q; + Rgdij)7 ®)

pd,i £ Qg + Rgdz -
+ Y Bip (g
JEN;

) 054d,i . 1 )
Sd,i £ Wﬂpd,i = ;pdT,ipd,z% 9
N

To enforce the speed constraint (O4), we consider the speed
barrier function h; : S; x Sq,; — (0, 00) defined by

)& (8i — 8d,)(Sa,i — i)

hi(8s, 84, - (10)

(51,50 (5: — 50)(s: — 51)
Furthermore, define
Ohi(si, Sd,i) a (5; + si — 2s4)

= = — hi(si sa), (11

0s; (5i — 84)(si — s4) (86, 5a.4) (b
(i 54 5. 9.

8hz(51a Sd,z) 2 (Sz + s; Sd,z) ) (12)

(8i — si)(si — 54)
For notational convenience, we omit the arguments from
(10)—(12) for the rest of the paper.

Then, the formation control is given by

1
Y (3 517 7 .
gz(szaRz) f ( ) (hv + (Si - 5(1,1‘)322)

Oh; .
X (%‘(Si — Sa,i)hi + ((Si - Sd,i)asid_ - hi>5d,i>] ,

Q; = n;sa,i (R} pa,iv;

85(“

U; =

- 'Uz‘pdT,iRi)

+ QLR;T (ﬁd,iPdT,i
54,
where v; > 0 and 7; > 0. Since (Al) is satisfied, it follows
that for all ¢ > 0, sq,(t) € Sq,;, which implies that €; is
well defined. In the next section, we show that for all ¢ > 0,
s;(t) € S;. Thus, the next result demonstrates that u; is well
defined. The proof is omitted for space considerations.

— pa,iba.q) Ri, (14)

Proposition 2. For all (s;,54;) € S; X Sa,i» hi + (si —
$d,i)(0h;/9s;) > 0; and h;, Oh;/dsq,;, and u; are finite.

IV. STABILITY ANALYSIS

In this section, we analyze the closed-loop dynamics

(1)~(14). Define the position error (; £ ¢; — gg — Rgd,;.
Differentiating (; and using (1) and (6) implies that
C - SszUz Pd,i — a;p Cz Z /8sz z (15)
JEN;
Consider the Lyapunov-like function Vj R™™ —

[0,00) defined by Vb({g}zez) £ ¥ .c7¢F¢, and define
Vol{Gtiez) 2 Xier 24 e 2¢;. The following preliminary result
considers the case where the velocity s;R;v; is a control
variable, specifically, s; R;v; = pq,;. The proof is omitted for
space considerations.

Proposition 3. Consider the closed-loop dynamics (15),
which consists of (1) and (4)—(6), where s;R;v; = pq .
Assume that G = (Z, £) is undirected and connected. Then,
the following statements hold:

i) Vp is negative semidefinite, and Vo is given by
Vo{Gitier) = =) [QOéiU(Ci)HCiz

i€l

+ Y Bio(¢

JEN;

-G = ¢lI?|- ae)

ii) The equilibrium {(;(t)}icz = 0 of (15) is Lyapunov
stable, and for all ¢;(0) € R™, (; is bounded.

iii) For all ¢;(0) € R™, (O1) and (O2) are satisfied.

iv) If there exists [ € Z such that o; > 0, then VO is negative
definite and for all ¢;(0) € R™, (03) is satisfied.

v) If (Al) is satisfied, then for all ¢;(0) € R™, (O4) is
satisfied.

Proposition 3 shows that if s;R;v; = pq ; and there exists
l € 7 such that oy > 0 (i.e., at least one agent has a
measurement of ¢g), then (O1)—(O3) are satisfied, and if
(A1) is satisfied, (04) is satisfied. However, the speed s;
and pointing direction R;v; are not controls. Instead, s; is
determined from (2), which has control input u;, and R;v;
is determined from (3), which has control input €2;. Before
analyzing the full closed-loop dynamics (1)—(14), we examine
the speed dynamics (2) and the associated control (13) to
show that the speed constraint is satisfied.

Define the speed error s; L — s4,;- Differentiating 5,
and using (2) and (13) implies that

. -1 Oh; Oh;
~i = T~ 9. | Vi 7h i S il 17
% 5, O [75 +S<8Sd’i+asi>8d7‘| a7)

Si 0s;

Consider the Lyapunov-like function Z; : R — [0, 00)
defined by Zi(8i,8a,i) = 2h?5%, and define Zi(8i,54.0) &
fﬂ Si+ a Z sd i- The following result shows that that if (A1)
is satisfied and $;(0) € S, then for all t > 0, s;(¢) € S;.

The proof is omitted for space considerations.

Proposition 4. Consider the closed-loop dynamics (17),
which consists of (2) and (4)—(13), where (A1) is satisfied.
Then, the following statements hold:



i) For all (s;,54,) € Si X Sa, Z'i(éi,sdyi) = —y;h35? <
—v;a;52, where a; = 162 /(5; — 5;)% > 0.
ii) For all s;(0) € S;, (O4) is satisfied.

Define the desired pointing directi0n~bdﬂv £ Dd,i/Sd.is
and define the~pointing direction error b; £ R,v; — ba,i.
Differentiating b; and using (3) and (14) implies

T T
bi = Misa,i (Pa,iv; vi — Rivipd ; Riv;)

1 . . :
+ 2 (Pd,iPdT,i - pd,ipg,i)Rm — bq ;.
d,i
Since pa,i = Sd,ibd,i» Pdi = Sd,iba,i + Sd.iba,i» vFvi = 1,
and bq,; = —b; + R;v;, it follows that

gi = 771‘5(21,!» (—Bi + (1 - biLRﬂ}L)Rﬂjz)
— i)dﬂ'(l — bglRl’Uz) — bd,ibg,iRiUi-

Since bq ; is a unit vector, it follows that Z}gjde = 0. In

addition, note that 1 — brdF’iRwi = %B?Bl and R;v; = b;+bg ;.
Thus,

2 ~ 1o~ 7/~
b = —mis?, (bi — 5b7h: (bi + bdﬂ-))

1. - R
— ibd}ib;rbi — ba,iby ;b;- (18)

Using (15) and s; Riv; — pa,; = 8i Riv; + sa ;b; implies

(i = —aip(G) + 5 Ryv; + sa,ib; + Z Biip(¢; — ). (19)
JEN;

Next, define

Q 2 {({gi}ier, {sitier, {Ri}ier) ER™ xS x --- x S,
xSO(m)"™: for all i € Z, b;{i(O)Ri(O)vi # -1},

which is the set of initial conditions such that the angle from
¢i(0) to pq,;(0) is not exactly 7 rad, and the initial speed is
in the admissible range.

The next theorem is the main result,~which shows that the
equilibrium ({G;(t) }iez, {3:(t) }icz, {bi(t) }icz) = (0,0,0)
of the closed-loop system (17)—(19) is Lyapunov stable, for all
initial conditions in Q, ({¢;(t)}iez, {5:(t) Yiez, {bs(t) Yie)
converges to zero, and (O1)-(04) are satisfied. If the speed
constraint is absent, then Q consists of all initial conditions
except those where the angle from ¢;(0) to pq ;(0) is 7 rad. In
this case, the closed-loop system is almost globally asymptot-
ically stable. Note that topological constraints associated with
SO(m) prevent global asymptotic stability of the equilibrium
using a continuous time-invariant control [37]. The proof is
omitted for space considerations.

Theorem 1. Consider the closed-loop dynamics (17)-
(19), which consists of (1)—(14), where (A1) is satisfied.
Assume that G = (Z,€) is undirected and connected, and
assume that there exists [ € 7 such tl~1at oy > 0. Then, the
equilibrium ({¢;(¢) }iez, {3:(t) }iez, {0:(t) }iez) = (0,0,0)
of (17)—(19) is Lyapunov stable. Furthermore, for all initial
conditions ({Qi(o)}ieIa{si(O)}ieI7 {Rz(())}zeI) € Q, the

following statements hold:

i) For all i € 7 and for all ¢ > 0, by ,(¢t)R;(t)v; > —1.
ii) For all ¢ € Z, lim;_, o, (;(¢) = 0, lim;, 5;(t) = 0, and
lim;_, o0 bi(t) = 0.
iii) (O1)—(04) are satisfied.

V. HARDWARE PLATFORM

This section describes an experimental fixed-wing UAV
platform. The UAV is equipped with a Pixhawk flight con-
troller with the ArduPilot firmware, which provides attitude
stabilization, waypoint navigation, and state estimation, and
interfaces with a GPS receiver. An on-board Raspberry
Pi single board computer obtains state estimates from the
Pixhawk, communicates with other aircraft using WiFi, and
runs the formation control algorithm (4)—(14).

We use the Skywalker X8 flying wing foam airframe,
which consists of two wings attached to a fuselage section
and reinforced with carbon fiber wing spars. A propeller and
brushless motor are mounted to the aft end of the fuselage.
The motor is spun by an electronic speed controller (ESC),
producing thrust. The Pixhawk uses an extended Kalman
filter to fuse measurements from a built-in 9-DOF IMU and
barometer with the on-board GPS and airspeed sensor to
estimate the position, attitude, and velocity of the UAV, as
well as the wind velocity and calibration parameters of the on-
board sensors. These estimates are used for stabilization and
waypoint-based navigation, and are broadcast via a telemetry
radio and shared with the Raspberry Pi via a USB connection.

For formation flight, the Pixhawk on each follower UAV
is switched into Fly-By-Wire-A (FBWA) mode. In this mode,
we provide three radio control (RC) override commands that
simulate the pulse width modulation (PWM) signals that
would be received from an RC transmitter operated by a
human. The throttle PWM signal is passed directly to the
ESC, and the Pixhawk maps the roll and pitch PWM signals
linearly to desired attitude angles, where the minimum and
maximum PWM values correspond to the minimum and
maximum attitude angles stored in the Pixhawk. In this case,
the minimum and maximum roll angles are (;Bmin,i = —50deg
and g?)maxy,; = 50deg, and the minimum and maximum pitch
angles are émin,i = —20deg and émax’i = 20 deg.

VI. FORMATION CONTROL IMPLEMENTATION

We apply the formation-control algorithm (4)—(14) to fixed-
wing UAVs, where v; = e; and Qg is small enough to neglect
for the control. Note that o; and 3;; can be generalized to
diagonal m x m matrices to allow independent tuning in the
iE, JE, and ch directions. For convenience in describing the
rotation Rg, let v, 05, and ¢, be the yaw, pitch, and roll
Euler angles of a 3-2-1 rotation sequence which rotates E
to Bg. Thus, R, can be parameterized by 1., 0, and ¢,.
Similarly, R; can be parameterized by v;, 6;, and ¢;. Let 1%,
éi, and gﬁl denote the yaw, pitch, and roll of the aircraft. In
the absence of wind and with angle-of-attack and side-slip
angles equal to zero, 1&1 = Y, 9}- = 0;, and (;ASZ = ¢;. For
compatibility with the control inputs and feedback presented



by the autopilot, we convert between the aircraft’s angular
velocity €2; and the Euler angle derivatives ¢§i, 0;, 1/)2

The hardware platform described in Section V does not
have the dynamics given by (1)—(3). However, we implement
middle-loop controllers so the closed-loop UAV dynamics
approximate the agent dynamics (1)—(3).

We use a PID controller with feedforward and anti-windup
to command the pitch angle éd’i(t) € [émin,ivémax,i] such
that the course angle 6; tracks the desired course angle 4 ; £
arcsin —e;,fpd7i /8a,;- The feedforward is 64 ;. Anti-windup
is achieved by preventing the integrator state from changing
if the pitch command éd,i is outside (émin’i, émax,i) and the
pitch error 6; — 64; is such that integrating would drive éd,i
further into saturation.

We use a PID controller with feedforward and anti-
windup to command the roll angle (&d,i(t) € [(;Aﬁmin,i, ngax,i]
such that the course angle ; tracks the desired course
angle g ; = atan2(ed pa.i,elpa.;), where atan2 denotes
the four-quadrant arctangent. Anti-windup is achieved in
the same way as in the pitch controller. The feedforward
is arctan(1q ;s;/g) cos 0;, where g = 9.81 m/s? is the
acceleration due to gravity, and arctan(d}dﬂsi /g) cos 0, is
the roll angle required to maintain a heading rate of ¢dz at
a speed of s; based on the assumption of a coordinated turn.
The feedforward is similar to that used in the ArduPlane L1
navigation controller and in [36].

To control the speed of the aircraft, we first convert the
speed dynamics input u; to a desired airspeed u, = u; +Sai—
si, where s, ; is the measured airspeed. We then saturate v,
to the flight envelope of the aircraft to obtain

Smin,i U;(t) < Smin,i
u;/(t) £ u;,(t) Smin,i S u;(t) S Smax,i
Smax,i U;(t) < Smax,is

where sy, is the ARSPD_FBW_MIN parameter of th
autopilot and sy ; is the ARSPD_FBW_MAX paramet
of the autopilot. We use a PID controller with feedforwai
and anti-windup to command the throttle T;(¢) € [0,10
such that the airspeed s, ; tracks «. Thus, within the flig
envelope, s; tracks u;. Anti-windup is achieved in in the san
way as in the pitch and roll controllers. The feedforwai
is T + Th (u} — s0;) + Ty(cos™2 (251 — 1), where T} is tt
TRIM_THROTTLE parameter of the autopilot, 77 > 0, sq ;
the TRIM_ARSPD_CM parameter of the autopilot converte
to m/s, Ty is the TECS_RLL2THR parameter of the autopil¢
and Ty(cos™2 ¢; — 1) is an estimate of the additional thrott
input required to maintain airspeed while turning. In practice,
u;, and §; are estimated using backward Euler differentiation
with a low-pass filter. The controller is tuned such that the
speed dynamics from u; to s; approximate a first-order low-
pass filter with pole at —0.4. Thus, these dynamics are (2),
where fl(Rl, Si) = —0.481' and gi(Ri; Si) =0.4.

The Raspberry Pi communicates with the Pixhawk via
the DroneKit Python API and stores the state estimates,
along with their timestamps in Python class instances. These
instances are serialized using the cPickle library, compressed

using zlib, and broadcast over the ad-hoc WiFi network via
UDP at approximately 10 Hz.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

This section describes a flight experiment using the
multi-loop implementation described in Section VI and the
hardware platform described in Section V. The experiment
was conducted at the Lexington Model Airplane Club flying
field located in Lexington, Kentucky on July 10, 2019.
The wind was approximately 2 m/s from the southwest.
Let n = 2 agents, and m = 3, and let f;(s;,R;) =
—0.4s; and g;(s;, R;) = 0.4, which implies that the speed
dynamics are a low-pass filter with unity gain at dc. The
time constant 0.4 was estimated from the closed-loop step
response of the UAV with the middle-loop speed controller.
The desired positions are d; = [-10 10 20]* m and
dy =[-10 —10 —20]T m. Let o; = diag(105, 105, 31.5),
,812 = 621 = diag(50, 50, 15), Yi = 1, N = 0.0003,
vy = 250000, v, = 1, s5; = —oo, and §; = oo, and let
Ts = 0.1 s and ¢4(t) = 0.

After all UAVs have been launched, UAVs serving as agents
are put into FBWA mode and formation-control is engaged
using a switch on each agent’s RC transmitter.

In this experiment, the leader UAV is commanded to follow
a rectangular flight path. Figure 1 shows the UAVs trajectories,
where the vertical axis is time. By ¢ = 40 s, the UAVs have
achieved the formation and stay in formation for the remainder
of the experiment. Figure 2 shows the first rectangle in the
trajectory from an overhead view. Figure 3 shows the relative
position between the agents and the leader in the ig, jg, and

Leader

—_—1

@300
-

1000

Fig. 1. Trajectories of leader and agents in the g — jg plane with time
as the vertical axis. The agents converge to the desired relative positions at
approximately ¢ = 40 s.
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