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Abstract— We present a formation control algorithm for
agents with extended unicycle dynamics that include orientation
kinematics on SO(m) and first-order speed dynamics. The
desired interagent positions are expressed in a leader-fixed
coordinate frame, which is aligned with and rotates with the
leader’s velocity vector. Thus, the desired interagent positions
vary in time as the leader-fixed frame rotates. We assume
that each agent has relative-position feedback of its neighbor
agents, where the neighbor sets are such that the interagent
communication (i.e., feedback) structure represents a strongly
connected directed graph. We assume that at least one agent has
access to a measurement its position relative to the leader. The
analytic result shows that for almost all initial conditions, the
agents converge to the desired relative positions. We also present
results from software-in-the-loop simulations with 3 fixed-wing
unmanned air vehicles (UAVs) that demonstrate the leader-fixed
formation-control algorithm.

I. INTRODUCTION

Autonomous multi-vehicle systems have a variety applica-
tions such as distributed sensing [1], cooperative surveillance
[2], precision agriculture, and search and rescue. For coordi-
nated formation control, each agent typically relies on sensing
or interagent communication to determine necessary feedback
information (e.g., interagent positions). Then, each agent uses
this feedback information in combination with feedforward
information (e.g., external commands, mission objectives)
to accomplish tasks such as collision avoidance, cohesion,
guidance, and velocity matching.

Consensus algorithms have been extended to address cohe-
sion and collision avoidance (e.g., [3]–[6]). These approaches
force agents into a predetermined formation by specifying the
desired relative position between pairs of agents. Other exam-
ples of formation control algorithms include [7]–[17]. Surveys
of multi-agent formation-control methods are presented in
[18]–[20]. Experimental demonstrations of formation-control
algorithms include [2], [13], [21]–[26]. In particular, [2], [23]–
[25] present formation-control experiments with fixed-wing
UAVs. Simulation results on formation-control for fixed-wing
UAVs are also provided in [27]–[30].

This paper addresses formation control in a leader-fixed
frame for agents with extended unicycle dynamics that
include orientation kinematics on SO(m) and first-order speed
dynamics. Related models are used in [9], [13], [24], [27],
[29], [31]–[33], but these models do not include orientation
kinematics on SO(m). The desired interagent positions are
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expressed in a leader-fixed coordinate frame, which is aligned
with the leader’s velocity vector. The leader can be a physical
agent or a virtual agent. The algorithm in this paper applies
to formations where: i) the neighbor sets are such that the
interagent communication structure represents a strongly
connected directed graph; ii) at least one agent has access
to a measurement its position relative to the leader; and
iii) each agent also has feedforward of the leader’s velocity,
acceleration, and orientation and its first two derivatives. The
main analytic result shows that for almost all initial conditions,
the agents converge to the desired relative positions. Note
that topological constraints associated with SO(m) prevent
global convergence using a continuous control [34].

We also present results from software-in-the-loop (SITL)
simulations with 3 fixed-wing UAVs that demonstrate the
leader-fixed formation-control algorithm. In these SITL sim-
ulations the agent UAVs maintain a desired formation as
the leader performs course maneuvers. To implement the
formation-control algorithm, we use middle-loop controllers,
which accept as commands the controls computed by the
formation control algorithm. A Pixhawk autopilot provides
inner-loop attitude stabilization.

II. PROBLEM FORMULATION

Let the positive number n be the number of agents,
and define the agent index set I , {1, 2, . . . , n}. Define
P , {(i, j) ∈ I × I : i 6= j}, which is the set of ordered
pairs. Unless otherwise stated, all statements that involve the
subscript i are for all i ∈ I.

For clarity of presentation, we first develop the extended
unicycle model in three-dimensional space. Thus, for the
moment, let m = 3.

Let E be an inertial frame (e.g., the Earth frame), and let oE
be the origin of E. Let oi be the location of the ith agent (e.g,
the location of the ith vehicle’s center of mass). The position
of oi relative to oE is

⇀
qi, and the ith agent’s position

⇀
qi is

resolved in E as qi ,
⇀
qi|E. The velocity of oi relative to oE

with respect to E is
⇀
pi ,E·⇀qi. Let Bi be a frame that is fixed

to oi such that
⇀
pi resolved in Bi is given by

⇀
pi|Bi

= sivi,
where vi ∈ Rm is a unit vector and for all t ≥ 0, si(t) ∈ R is
the speed of the ith agent. Let Ri : [0,∞)→ SO(m) be the
rotation matrix from Bi to E. Thus, the ith agent’s velocity
⇀
pi resolved in E is

⇀
pi|E = siRivi, which implies that

q̇i(t) = si(t)Ri(t)vi, (1)

where t ≥ 0; qi(t) ∈ Rm, si(t) ∈ R, and RT
i (t) ∈ SO(m)

are the position, speed, and orientation of the ith agent; and
qi(0) ∈ Rm is the initial condition. Note that for all t ≥ 0,



Ri(t)vi is unit vector in the direction of the velocity q̇i(t).
The speed and orientation of the ith agent satisfy

ṡi(t) = fi(si(t), Ri(t)) + gi(si(t), Ri(t))ui(t), (2)

Ṙi(t) = Ri(t)Ωi(t), (3)

where t ≥ 0; ui : [0,∞) → R and Ωi : [0,∞) → so(m)
are the control inputs; si(0) ∈ R and Ri(0) ∈ SO(m) are
the initial conditions; and f : [0,∞) × SO(m) → R and
g : [0,∞) × SO(m) → R \ {0}. Note that Ωi is the skew-
symmetric form of the angular velocity of Bi relative to
E resolved in Bi. The agent model (1)–(3) is an extended
unicycle model that includes both speed dynamics (2) and
orientation kinematics (3) on SO(m).

Let og be the location of the leader, which can be a physical
agent (e.g., a vehicle) or a virtual agent. The position of og
relative to oE is

⇀
qg, and the leader’s position

⇀
qg is resolved in

E as qg ,
⇀
qg|E, which is assumed to be twice continuously

differentiable. The velocity of og relative to oE with respect
to E is

⇀
pg ,E·⇀qg. Let Bg be a frame that is fixed to og and

has orthogonal unit vectors ı̂g, ̂g, and k̂g, where ı̂g is parallel
to the leader’s velocity vector

⇀
pg, and the rotation matrix

from Bg to E is Rg : [0,∞) → SO(m), which is assumed
to be twice continuously differentiable.

In this paper, we address the problem of formation control
in the leader-fixed frame Bg. Let di ∈ Rm be the desired
position of oi relative to og resolved in Bg. Thus, for all
(i, j) ∈ P , dij , di− dj is the desired position of oi relative
to oj resolved in Bg. Our objective is to design controls ui
and Ωi such that:
(O1) For all (i, j) ∈ P , limt→∞RT

g (t)[qi(t)− qj(t)] = dij .
(O2) For all i ∈ I, limt→∞[q̇i(t)− q̇g(t)− Ṙg(t)di] = 0.
(O3) For all i ∈ I, limt→∞RT

g (t)[qi(t)− qg(t)] = di.
Objective (O1) states that each agent approaches its

desired relative positions with the other agents. Objective
(O2) states that each agent’s velocity with respect to Bg

approaches the leader’s velocity with respect to Bg. Objective
(O3) states that each agent approaches its desired relative
position with the leader. Note that if (O3) is satisfied, then
(O1) is satisfied. However, we enumerate these objectives
independently because some results in this paper show that
it is possible to satisfy (O1) but not (O3) under weaker
interagent communication assumptions.

Although the physical (i.e., frame-based) formulation of the
formation control problem is described in three dimensions,
the methods in this paper apply to all m ∈ {2, 3, 4, . . .}. For
example, m = 2 is for planar motion. Thus, for the remainder
of this paper, we consider the extended unicycle model (1)–(3)
and the objectives (O1)–(O3), where m ∈ {2, 3, 4, . . .}.

The interagent communication (i.e., feedback) structure is
represented using a directed graph. The agent index set I is
the vertex set of the directed graph, and the n elements of
I are the vertices. Let E ⊂ I × I be the directed edge set.
The elements of E are the directed edges. Then, the directed
graph is G = (I, E). The directed graph G = (I, E) has a
walk of length l from v0 ∈ I to vl ∈ I if there exists an
(l + 1)-tuple (v0, v1, . . . , vl) ∈ I × I × · · · × I such that

for all j ∈ {1, 2, . . . , l}, (vj−1, vj) ∈ E . The directed graph
G = (I, E) is strongly connected if for all distinct i, j ∈ I,
there exists a walk from i to j.

Define the neighbor set Ni , {j ∈ I : (j, i) ∈ E}. We
assume that for all i ∈ I, (i, i) ∈ E , which implies that
i ∈ Ni. We assume that G = (I, E) is strongly connected,
and the ith agent has access to {qj}j∈Ni and {q̇j}j∈Ni

for feedback. In addition, we assume that each agent has
access to measurements of the leader’s velocity q̇g, the
leader’s acceleration q̈g, and Rg, Ṙg, and R̈g for feedforward.
However, the formation control algorithm presented in this
paper only requires that at least one agent has access to a
measurement of qg.

III. FORMATION CONTROL ALGORITHM

Define the ith agent’s desired velocity

pd,i , q̇g + Ṙgdi + αi(qg − qi +Rgdi)

+
∑
j∈Ni

βij(qj − qi +Rgdij), (4)

where αi ≥ 0, for all j ∈ Ni \ {i}, βij > 0, and for all
j /∈ Ni \ {i}, βij = 0. Note that the ith agent’s desired
velocity depends on a measurement of qg if and only if
αi > 0. The formation control algorithm in this paper only
requires that there exists l ∈ V such that αl > 0, that is, at
least one agent has access to a measurement of qg.

Define the desired speed

sd,i , ‖pd,i‖, (5)

where ‖ · ‖ denotes the 2-norm. For simplicity, we make
the technical assumption that the leader’s translational and
rotational trajectories (i.e., qg, q̇g, Rg, and Ṙg) are such that
the desired speed is bounded away from zero. Specifically,
we make the following assumption:
(A1) There exists ε > 0 such that for all t ≥ 0, sd,i(t) > ε.

Next, consider the formation control

ui =
1

gi(si, Ri)

[
ṡd,i − fi(si, Ri)− γi(si − sd,i)

]
, (6)

Ωi = ηisd,i
(
RT
i pd,iv

T
i − vipTd,iRi

)
+

1

s2d,i
RT
i

(
ṗd,ip

T
d,i − pd,iṗTd,i

)
Ri, (7)

where γi > 0, ηi > 0, and

ṗd,i , q̈g + R̈gdi + αi

(
q̇g − q̇i + Ṙgdi

)
+
∑
j∈Ni

βij

(
q̇j − q̇i + Ṙgdij

)
, (8)

ṡd,i ,
∂sd,i
∂pd,i

ṗd,i =
1

sd,i
pTd,iṗd,i. (9)

Note that (A1) guarantees that ui and Ωi are well defined.

IV. STABILITY ANALYSIS

In this section, we analyze the closed-loop dynamics (1)–
(9). Define the position error ζi , qi − qg − Rgdi, and
differentiating and using (1) implies that



ζ̇i = pd,i − pd,i + siRivi − q̇g − Ṙgdi. (10)

Substituting (4) into (10) yields

ζ̇i = −αiζi + siRivi − pd,i +
∑
j∈Ni

βij(ζj − ζi). (11)

Define ζ(t) , [ζT1 (t) · · · ζTn (t)]T ∈ Rmn, and it follows
from (11) that

ζ̇ = −[(A+ L)⊗ Im]ζ +
∑
i∈I

(Ei ⊗ Im)(siRivi − pd,i),

(12)
where

A , diag(α1, . . . , αn) ∈ Rn×n,

Ei ,
[

01×i−1 1 01×n−i
]T ∈ Rn,

and for all (i, j) ∈ P , the (i, j)th element of L ∈ Rn×n
is ET

i LEj = −βij , for all i ∈ I, the (i, i)th element of
L ∈ Rn×n is ET

i LEi =
∑
j∈Ni

βij , and diag(·) is a diagonal
matrix whose diagonal elements are given by the arguments
of the operator. Note that L is the Laplacian of the directed
graph G = (I, E), where for all (i, j) ∈ E , we associate the
weight βij .

Let 1n ∈ Rn denote the n×1 vector of ones. The following
result, which is from [35], is used to analyze stability.

Lemma 1. Assume that G = (I, E) is strongly connected.
Then, there exists a positive-definite diagonal matrix D ∈
Rn×n such that the following statements hold:

i) DL+ LTD is positive semidefinite.
ii) 0 is a simple eigenvalue of DL + LTD and (DL +

LTD)1n = 0.

Consider V0 : Rmn → [0,∞) defined by V0(ζ) ,
ζT(D ⊗ Im)ζ, where D ∈ Rn×n is the positive-definite
diagonal matrix given by Lemma 1, which exists because
G = (I, E) is strongly connected. The following preliminary
result considers the case where the velocity siRivi is a control
variable. Specifically, this result addresses the case where
siRivi = pd,i. The proof is omitted for space considerations.

Proposition 1. Consider the closed-loop dynamics (12),
which consists of (1) and (4), where siRivi = pd,i. Assume
that G = (I, E) is strongly connected. Then, the following
statements hold:

i) V̇0(ζ) , ∂V0(ζ)
∂ζ ζ̇ = −ζT[(DL + LTD + 2DA) ⊗ Im]ζ

is negative semidefinite.
ii) The equilibrium ζ(t) ≡ 0 of (12) is a Lyapunov stable.

iii) For all i ∈ I and qi(0) ∈ Rn, (O1) and (O2) are satisfied.
iv) If there exists l ∈ I such that αl > 0, then DL +

LTD + 2DA is positive definite and for all i ∈ I and
qi(0) ∈ Rn, (O3) is satisfied.

Proposition 1 shows that if siRivi = pd,i and there exists
l ∈ I such that αl > 0 (i.e., at least one agent has a
measurement of qg), then (O1)–(O3) are satisfied. However,
the speed si and pointing direction Rivi are not controls.
Instead, si is determined from (2), which has control input

ui, and Rivi is determined from (3), which has control input
Ωi. We now analyze the full closed-loop dynamics (1)–(9).

Define the desired pointing direction bd,i , 1
sd,i

pd,i, and
define the speed and pointing direction errors

s̃i , si − sd,i, (13)

b̃i , Rivi − bd,i. (14)

Next, note that siRivi − pd,i = s̃iRivi + sd,ib̃i. Thus, it
follows from (12) that

ζ̇ = −[(A+ L)⊗ Im]ζ +
∑
i∈I

(Ei ⊗ Im)
(
s̃iRivi + sd,ib̃i

)
.

(15)
Differentiating (13) and using (2) and (6) implies

˙̃si = fi(si, Ri) + gi(si, Ri)ui − ṡd = −γis̃i, (16)

Similarly, differentiating (14) and using (3) and (7) implies

˙̃
bi = ηisd,i

(
pd,iv

T
i vi −RivipTd,iRivi

)
+

1

s2d,i

(
ṗd,ip

T
d,i − pd,iṗTd,i

)
Rivi − ḃd,i.

Since pd,i = sd,ibd,i, ṗd,i = ṡd,ibd,i + sd,iḃd,i, vTi vi = 1,
and bd,i = −b̃i +Rivi, it follows that

˙̃
bi = ηis

2
d,i

(
−b̃i +

(
1− bTd,iRivi

)
Rivi

)
− ḃd,i

(
1− bTd,iRivi

)
− bd,iḃTd,iRivi.

Since bd,i is a unit vector, it follows that ḃTd,ibd,i = 0. In
addition, note that 1−bTd,iRivi = 1

2 b̃
T
i b̃i and Rivi = b̃i+bd,i.

Thus,

˙̃
bi = −ηis2d,i

(
b̃i −

1

2
b̃Ti b̃i

(
b̃i + bd,i

))
− 1

2
ḃd,ib̃

T
i b̃i

− bd,iḃTd,ib̃i. (17)

Next, define

Q ,{({qi}i∈I , {si}i∈I , {Ri}i∈I) ∈ Rmn × Rn × SO(m)n

: for all i ∈ I, bTd,i(0)Rivi 6= −1
}
,

which is the set of initial conditions such that the angle from
initial velocity q̇i(0) to the initial desired velocity pd,i(0) is
not exactly π rad.

The following theorem is the main analytic result of
this paper. This result demonstrates that the equilibrium
(ζ(t), {s̃i(t)}i∈I , {b̃i(t)}i∈I) ≡ (0, 0, 0) of the closed-loop
system (15)–(17) is almost globally asymptotically stable,
and for almost all initial conditions, (O1)–(O3) are satisfied.
Note that topological constraints associated with SO(m)
prevent global asymptotic stability of the equilibrium using
a continuous control [34]. The proof is omitted for space
considerations.

Theorem 1. Consider the closed-loop dynamics (15)–
(17), which consists of (1)–(9), where (A1) is satisfied.
Assume that G = (I, E) is strongly connected, and assume
that there exists l ∈ I such that αl > 0. Then, the
equilibrium (ζ(t), {s̃i(t)}i∈I , {b̃i(t)}i∈I) ≡ (0, 0, 0) of (15)–



(17) is Lyapunov stable. Furthermore, for all initial conditions
({qi(0)}i∈I , {si(0)}i∈I , {Ri(0)}i∈I) ∈ Q, the following
statements hold:

i) For all i ∈ I and for all t ≥ 0, bTd,i(t)Ri(t)vi > −1.
ii) For all i ∈ I , limt→∞ ζi(t) = 0, limt→∞ s̃i(t) = 0, and

limt→∞ b̃i(t) = 0.
iii) (O1)–(O3) are satisfied.

Next, we present two specializations of Theorem 1, which
address the cases where either the speed si or the pointing
direction Rivi are control variables. Note that Proposition 1
addresses the case where both speed si and the pointing
direction Rivi are control variables.

Theorem 2. Consider the closed-loop dynamics (15)
and (17), which consists of (1), (3)–(5), (7), and (8), where
si = sd,i and (A1) is satisfied. Assume that G = (I, E) is
strongly connected, and assume that there exists l ∈ I such
that αl > 0. Then, the equilibrium (ζ(t), {b̃i(t)}i∈I) ≡ (0, 0)
of (15) and (17) with si = sd,i is Lyapunov stable. Further-
more, for all i ∈ I and all (qi(0), Ri(0)) ∈ Rm×SO(m) such
that bTd,i(0)Ri(0)vi 6= −1, the following statements hold:

i) For all i ∈ I and for all t ≥ 0, bTd,i(t)Ri(t)vi > −1.
ii) For all i ∈ I, limt→∞ ζi(t) = 0 and limt→∞ b̃i(t) = 0.

iii) (O1)–(O3) are satisfied.

Theorem 3. Consider the closed-loop dynamics (15)
and (16), which consists of (1), (2), (4)–(6), (8), and (9), where
Rivi = bd,i and (A1) is satisfied. Assume that G = (I, E) is
strongly connected, and assume that there exists l ∈ I such
that αl > 0. Then, the equilibrium (ζ(t), {s̃i(t)}i∈I) ≡ (0, 0)
of (15) and (16) with Rivi = bd,i is Lyapunov stable.
Furthermore, for all i ∈ I and all (qi(0), si(0)) ∈ Rm × R,
the following statements hold:

i) For all i ∈ I, limt→∞ ζi(t) = 0 and limt→∞ s̃i(t) = 0.
ii) (O1)–(O3) are satisfied.

V. NUMERICAL RESULTS

For all examples in this section, let n = 3 agents,
and let m = 3. For all i ∈ {1, 2, . . . ,m}, define ei ,
[01×i−1 1 01×m−i]

T ∈ Rm. Let vi = e1, which implies
that each agent’s velocity is in the body-fixed e1-direction.
Let fi(si, Ri) = −0.4si and gi(si, Ri) = 0.4, which implies
that the speed dynamics are low pass with unity gain at dc.

The desired positions are d1 = [−5 5 1]T m, d2 =
[−5 −5 2]T m, and d3 = [−10 −10 3]T m. Let N1 =
{1, 3}, N2 = {1, 2}, and N3 = {2, 3}, which represents a
cyclic feedback structure. For all j ∈ Ni \ {i}, let βij = 0.6,
and let α1 = 2 and α2 = α3 = 0, which implies that only
the first agent has access to a measurement of qg. Let γi = 1
and ηi = 0.01.

We present numerical examples where the formation control
algorithm (4)–(9) is implemented with sampled data. All
feedback is sampled with sample time Ts = 0.05 s, and a
zero-order hold is applied to the control inputs Ωi and ui.

For convenience in describing the rotation Rg, let ψg, θg,
and φg be the yaw, pitch, and roll Euler angles of a 3-2-1

rotation sequence, which rotates E to Bg. Thus, Rg can be
parameterized by ψg, θg, and φg.

The sampled-data measurements of ψ̇g, θ̇g, qg, and qi are
corrupted by zero-mean Gaussian white noise with variances
4× 10−4 rad2/s2, 4× 10−4 rad2/s2, 0.25 m2, and 0.25 m2.

Example 1. The leader’s initial position is qg(0) =
0 m, and its velocity is q̇g(t) = 10Rg(t)e1 m/s, where
ψg(t) = 0.1t, θg(t) ≡ 0, and φg(t) ≡ 0. The agents start
with randomly selected initial positions and orientations,
and si(0) = 18 m/s. Figure 1 shows the desired Rgdi
and actual qi − qg relative positions in the e1, e2, and e3
directions. Note that the desired relative positions Rgdi are
not constant because the leader’s orientation changes with
time. The relative positions converge to the desired values by
approximately t = 10 s. After t = 10 s, the root-mean-square
(RMS) magnitude ‖ζi‖ of the position errors are 0.057 m,
0.103 m, and 0.080 m for agent 1, 2, and 3, respectively. 4
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Fig. 1. Desired and actual relative positions of agents with respect to leader.
Desired relative positions are achieved by approximately t = 10 s.

Example 2. The leader’s initial position is qg(0) = 0 m,
and its velocity is q̇g(t) = 10Rge1 m/s, where ψg(t) =
0.1t + 0.2 cosπt, θg(t) = 0.2 cos 0.2π, and φg(t) ≡ 0. The
agents start with randomly selected initial positions and
orientations, and si(0) = 18 m/s. Figure 2 shows Rgdi
and qi − qg. The relative positions converge to the desired
values by approximately t = 10 s. After t = 10 s, the RMS
magnitude ‖ζi‖ of the position errors are 0.069 m, 0.105 m,
and 0.094 m for agent 1, 2, and 3, respectively. 4

These numerical examples illustrate that the control (4)–
(9) approximately achieves the objectives (O1)–(O3) with
sampled data and sensor noise. If the sensor noise is removed
and the sample time approaches zero, then the average power
of the position errors tends to zero in both examples.

VI. APPLICATION TO FIXED-WING UAVS

We apply the formation control algorithm (4)–(9) to fixed-
wing UAVs, where vi = e1. Let ψi, θi, and φi be the Euler
angles of a 3-2-1 rotation sequence, which rotates E to Bi.
Thus, Ri is parameterized by ψi, θi, and φi. Let ψ̂i, θ̂i, and φ̂i
denote the yaw, pitch, and roll of the aircraft. In the absence
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Fig. 2. Desired and actual relative positions of agents with respect to leader.
Desired relative positions are achieved by approximately t = 10 s.

of wind and with angle-of-attack and side-slip angles equal
to zero, ψ̂i = ψi, θ̂i = θi, and φ̂i = φi.

We consider an aircraft equipped with an ArduPlane
compatible autopilot that provides state estimates and ac-
cepts desired pitch angle θ̂d,i, desired roll angle φ̂d,i, and
throttle Ti commands through the DroneKit Python API. For
compatibility with the control inputs and feedback presented
by the autopilot, we convert between the aircraft’s angular
velocity Ω and the Euler angle derivatives φ̇i, θ̇i, ψ̇i.

A. Formation Control Implementation

The aircraft described in above does not have the dynamics
given by (1)–(3). However, we implement middle-loop
controllers so the closed-loop UAV dynamics approximate
the agent dynamics (1)–(3).

We use a PID controller with feedforward to command a
pitch angle θ̂d,i(t) such that the course angle θi tracks the
desired course angle θd,i , arcsin−eT3 pd,i/sd,i.

We assume the aircraft makes coordinated turns, and use
the resulting kinematic equation to command a roll angle
φ̂d,i from the desired heading rate ψ̇d,i. Specifically,

φ̂d,i(t) = arctan

(
ψ̇d,i(t)si(t)

g

)
cos θ̂i(t),

where g = 9.81 m/s2 and ψ̇d,i is computed from (7).
We use a PID controller with feedforward to command

the throttle Ti such that si tracks ui. This controller is tuned
such that the closed-loop speed dynamics from ui to si
approximate a first-order low-pass filter that can be written in
the form (2), where fi(Ri, si) = −aisi and gi(Ri, si) = ai.
The controller also has provisions to keep the airspeed inside
the flight envelope of the aircraft.

B. Software-in-the-Loop Simulation Results

We present software-in-the-loop (SITL) simulation results
using the formation-controller and middle-loop controllers
described above. In these simulations, one instance of the
Python implementation of the algorithm is run for each UAV,
and it communicates with a corresponding instance of the

ArduPlane firmware running on a PC. These firmware in-
stances communicate with corresponding JSBSim simulations
of the JSBSim default aircraft model, Rascal110. All software
runs on a single virtual Ubuntu machine.

For all examples in this section, let n = 2 agents, and
m = 3. Let fi(si, Ri) = −0.4si and gi(si, Ri) = 0.4, which
implies that the speed dynamics are a low-pass filter with unity
gain at dc. The time constant 0.4 is estimated from the closed-
loop step response of the UAV with the middle-loop speed
controller. The desired positions are d1 = [−10 10 0]T m,
d2 = [−10 −10 0]T m. Let αi = 0.35, β12 = β21 = 0.1,
γi = 1, ηi = 0.001, and let Ts = 0.1 s, and φg(t) ≡ 0.

Example 3. The leader moves to a location away from the
launch site and loiters in a 120m radius circle. The agents start
from circling the launch site and enter formation. Figure 3
shows the trajectories of the leader and agents in the e1–e2
plane plotted with time as the vertical axis, and Figure 4
shows Rgdi and qi − qg. The relative positions converge to
the desired values by approximately t = 70 s. After t = 70 s,
the RMS magnitude ‖ζi‖ of the position errors are 4.36 m
and 4.49 m for agent 1 and 2, respectively. 4
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Fig. 3. Trajectories of leader and agents with time as the vertical axis. The
agents converge to the desired relative positions at approximately t = 70 s.
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Fig. 4. Desired and actual relative positions of agents with respect to leader.
Desired relative positions are achieved by approximately t = 70 s.

Example 4. The leader moves in a square pattern. The
agents start from circling the launch site and enter formation.
Figure 5 shows the trajectories of the leader and agents in
the e1–e2 plane plotted with time as the vertical axis, and
Figure 6 shows Rgdi and qi−qg Note that the desired position
is approximately maintained through the abrupt turns in the



leader trajectory. After t = 60 s, the RMS magnitude ‖ζi‖ of
the position errors are 5.58 m and 4.14 m for agent 1 and 2,
respectively. 4
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Fig. 5. Trajectories of leader and agents with time as the vertical axis. The
agents converge to the desired relative positions at approximately t = 60 s.
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Fig. 6. Desired and actual relative positions of agents with respect to leader.
Desired relative positions are achieved by approximately t = 60 s.
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