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ABSTRACT
Serverless computing is a rapidly growing paradigm that
easily harnesses the power of the cloud. With serverless
computing, developers simply provide an event-driven func-
tion to cloud providers, and the provider seamlessly scales
function invocations to meet demands as event-triggers oc-
cur. As current and future serverless o�erings support a
wide variety of serverless applications, e�ective techniques
to manage serverless workloads becomes an important issue.
This work examines current management and scheduling
practices in cloud providers, uncovering many issues includ-
ing in�ated application run times, function drops, ine�cient
allocations, and other undocumented and unexpected be-
havior. To �x these issues, a new quality-of-service function
scheduling and allocation framework, called Sequoia, is de-
signed. Sequoia allows developers or administrators to easily
de�ne how serverless functions and applications should be
deployed, capped, prioritized, or altered based on easily con-
�gured, �exible policies. Results with controlled and realistic
workloads show Sequoia seamlessly adapts to policies, elimi-
nates mid-chain drops, reduces queuing times by up to 6.4⇥,
enforces tight chain-level fairness, and improves run-time
performance up to 25⇥.
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1 INTRODUCTION
In serverless computing, also referred to as Functions-as-
a-Service (FaaS), application developers provide an event-
driven function to cloud providers, and the cloud provider
is responsible for seamlessly scaling function invocations to
meet demands as event triggers occur. Serverless is powerful
and expressive, with applications designed for video process-
ing [29, 41], HPC and scienti�c computing [36, 51, 89, 93],
machine learning [35, 39, 50], data analytics [44, 55], chat-
bots [103], backends [31, 67], IoT [69, 102], and even general
applications [40, 92]. Indeed, a recent study of a production
serverless o�ering indicates applications range from single
functions to hundreds of functions in size, with function exe-
cution times ranging from less than a second to the order of
minutes [88]. Therefore, the future promises a fast-growing
serverless-native ecosystem [71], in which diverse serverless
function chains, where serverless functions call subsequent
serverless functions to create compositions, must be sup-
ported over a common infrastructure.

As serverless function chains become more common, com-
plex, and relied upon, tools must be provided to ensure ad-
ministrators and serverless developers can e�ectively man-
age these new workloads. Better manageability will more
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easily enable serverless applications to achieve service-level
agreements (SLAs) by ensuring predictable and e�cient
cloud performance and hencemaximizing revenue [27, 37, 60,
95]. Beyond SLAs, management is important to developers or
administrators for a variety of reasons. For example, manag-
ing where functions or chains can run (e.g., public or private
cloud) is important for privacy and regulatory reasons. Man-
agement ensures how multiple applications, or functions
within applications, can consume resources, ensuring im-
portant workloads or functions are prioritized when needed.
Additionally, controlling consumption simpli�es budgeting
operational expenditures.
As shown in this paper, the current state of serverless

function chain management leaves much to be desired. Poli-
cies to manage serverless functions and function chains are
relatively simple: scheduling policies today typically imple-
ment basic �rst-come-�rst-served algorithms. When limits
are imposed on serverless workloads running in parallel, ei-
ther from hard concurrency limits enforced by the provider
or soft concurrency limits observed due to ine�cient re-
source allocation, this leaves little �exibility to dictate how
serverless applications should be managed under challeng-
ing conditions. Our measurements (Section 2) show current
management practices can lead to a variety of issues with
serverless performance, including inconsistent and incor-
rect limitations, ine�cient resource allocation, in�ated run
times, mid-chain function drops, concurrency collapse, and
undocumented function prioritization.

To help alleviate these problems, as well as provide a more
mature deployment ecosystem, we introduce a Quality-of-
Service (QoS) scheduler for serverless functions and chains.
Our framework, called Sequoia, allows policies to dictate how
or where function chains, or functions within chains, should
be prioritized, scheduled, or queued. Our QoS scheduler is
implemented as a drop-in frontend so its performance can be
analyzed across �ve di�erent commercial and open-source
serverless o�erings. Sequoia’s design enables �exible poli-
cies to be easily de�ned and realized without changes to the
serverless functions themselves. We show how management
policies can avoid performance issues and enable rich sched-
uling techniques such as seamlessly scheduling over a hybrid
private-public cloud or managing performance at a chain (i.e.,
application) level. In short, we aim to make QoS a �rst-class
citizen in serverless deployments. The contributions of our
work are as follows:

• Ameasurement study showing the current state of QoS
scheduling for serverless function chains over �ve ma-
jor providers. The measurements show how current
techniques can adversely a�ect function chain perfor-
mance, leading to drops, in�ated completion times, and
unexpected behavior.

• A new drop-in QoS function chain scheduler that alle-
viates problems uncovered in the measurement study.
The scheduler can accurately realize a variety of �exi-
ble policies to make serverless function chain manage-
ment more e�ective. Our code is published at:
https://github.com/CU-BISON-LAB/sequoia.

• Evaluation of controlled and realistic workloads show-
ing Sequoia eliminates mid-chain drops, reduces queu-
ing times by up to 6.4⇥, enforces tight chain-level
fairness, and improves run-time performance up to
25⇥.

2 BACKGROUND
This section �rst details how function chains are supported
across serverless platforms and then presents a QoS-related
measurement study.

Serverless Function Chains Serverless function chains,
consisting of one or more serverless functions, can be re-
alized via three main invocation mechanisms. First, with
synchronous function calls, developers call a serverless func-
tion from within the current function directly. Examples
include an HTTP request or an output from a load balancer.
Second, in asynchronous function calls, a serverless function
will output some event, which then triggers a subsequent
function call. Examples include adding elements to a storage
service or using a pub/sub system. Last, a special case of syn-
chronous chains exists with composition frameworks, such
as AWS Step Functions [2], Azure Durable Functions [6], or
IBM Composer [14]. In composition frameworks developers
specify a call graph, and the provider ensures functions are
called accordingly.

2.1 QoS in Serverless O�erings
While many FaaS o�erings exist [3, 4, 10, 12, 15, 17, 18, 20],
relatively basic techniques to manage serverless function
invocations are provided today. As function requests are re-
ceived, the cloud provider schedules functions, mostly in
a �rst-in-�rst-out manner. Opportunities to invoke a more
informed scheduling policy are missed, however, in chal-
lenging scenarios such as when incoming demands cannot
be satis�ed by currently available resources. Such scenarios
occur when providers cannot accommodate a rise of invo-
cations due to cold starts or ine�cient resource allocation
or alternatively when function invocation limits are imposed.
Function invocation limits bound the number of functions
running either instantaneously or over a time period. Be-
cause serverless technologies automatically scale to meet
demands, function invocation limits ensure a bug or miscon-
�guration in tenant workloads does not inappropriately scale.
In addition, limits help developers manage costs and better
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understand expected workload characteristics. Changing lim-
its requires out-of-band approval from support centers [5, 7].
To better understand issues with serverless QoS, �ve major
serverless providers are detailed below.

AWS Lambda AWS Lambda provides users with a total
concurrency threshold shared by all serverless functions. In-
dividual serverless functions can further be con�gured to use
a dedicated concurrency share which is deducted from the
total concurrency threshold. For synchronous tra�c, AWS
Lambda does not provide any queuing mechanism and there-
fore any demand or invocations above the concurrency limit
gets dropped or returns with an error. For asynchronous
workloads, AWS Lambda can queue when concurrency lim-
its are exceeded, running queued functions when current
concurrency levels drop below the threshold. Every function
is run in isolation (its own micro-VM [9, 65]), although the
same VM can later be reused for another instance of the same
function. Existing VMs are destroyed automatically after a
timeout period of up to a few hours [30].

IBM Cloud Functions IBM Cloud Functions follows a to-
tal concurrency threshold model similar to AWS. According
to o�cial documentation [13], a 1,000 concurrency limit is
enforced across all running functions. As with AWS, IBM en-
ables queuing of asynchronous functions when concurrency
limits cross the threshold.

ApacheOpenWhisk ApacheOpenWhisk is an open-source
serverless platform very similar to IBM Cloud Functions as
both share a similar design. OpenWhisk follows a total con-
currency pool model.

Google Cloud Functions (GCF) GCF divides serverless
functions into HTTP functions and background (i.e., asyn-
chronous) functions [11]. GCF enforces concurrency limits
on individual functions as opposed to a total concurrency
pool. For HTTP functions, there is no mentioned limit on
the concurrency however, in practice we observe a varying
concurrency limit between 1,000 & 2,000 (Section 2.2). All
requests beyond this are queued and run in-turn. For back-
ground functions, a strict concurrency limit is enforced per
function. Unlike the previous providers, GCF provides vari-
ous con�guration options for its users to limit resource usage,
with limits available on total CPU or memory usage over all
functions. GCF uses a 100 second interval for assessing and
enforcing resource limits. GCF handles synchronous work-
loads in best e�ort fashion: it seems to perform queuing but
doesn’t ensure zero drops (Section 2.2). For asynchronous
workloads, GCF provides queuing just as other platforms do.

Azure Function Apps Azure Function Apps group func-
tions into “Function Apps" which automatically add VMs,

or “instances," to match the current load on all of the func-
tions within the app. A single function app may have up
to 200 VMs allocated at once, and each VM can host mul-
tiple functions running in parallel based on the resource
demand of each function [8]. Users have the option to con-
�gure various other quotas as well, such as HTTP function
concurrency, outstanding function queue sizes, and timeouts
for long-running functions. If the Function App does not
have enough instances allocated to support a sudden burst
of function invocations, we found some of the invocations
will be enqueued or dropped.

2.2 Measurement Study

1

2 3

1

2 3

3
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1

Fan-2 Linear-3 Combo

Figure 1: Example function
chains in study

This section presents a
measurement study to
better understand the
current state of QoS in
today’s serverless plat-
forms. Our study con-
sists of results from No-
vember 2019 to May
2020. Figure 1 shows the
tested workloads. Func-
tions in the workload al-
locate 256 MB memory and sleep for 15 seconds. The work-
loads are as follows: Single: This is the simplest workload,
consisting of individual independent requests. Linear-N: A
serverless chain where every serverless function invokes up
to one new serverless function. Fan-N: Another chain where
multiple tasks depend on a previous function’s completion.
Single, Linear-N and Fan-N are important to study because
they serve as building blocks for more complex applications.
Combo: This chain includes combinations of Single, Linear-
N, and Fan-N (unless otherwise stated, Combo refers to the
chain in Figure 1). MixedChain: A workload in which the
chains in Figure 1 are run simultaneously. Note the chains
share similar functions, e.g., �1 is run in all three chains and
�3 is run twice in Combo.
The above workloads are run under di�erent demands.

Burst-N sends a burst of N simultaneous requests at once.
Some initial studies have shown burst workloads to be com-
mon in serverless applications [40, 52, 56]. Continuous-N
sends constant N requests per second. An open-loop Pois-
son process, which has been extensively used in serverless
evaluations [25, 63, 70, 87, 91] and approximates large-scale,
web-driven workloads [86]. Cold start issues are mitigated by
running all results multiple times in succession and verifying
trends hold.
We conduct a series of experiments in which functions

and chains are assigned identi�ers and function start and end
times are logged to enable reverse engineering of provider
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queuing policies. Although results are omitted due to space,
we �nd (i) scheduling across frameworks follows a simple
FIFO queuing model and (ii) scheduling is performed on a
per-function basis (instead of other policies like per-chain).

2.2.1 Limitations. This section shows limitations in exist-
ing serverless o�erings and how these impact QoS for in-
coming requests and overall performance. Speci�cally, it is
shown that inconsistent and incorrect concurrency limits
are prevalent, mid-chain function drops occur, workloads
such as bursts are not easily supported, HTTP functions are
prioritized without documentation, ine�cient resource allo-
cation is common, and concurrency collapses under certain
conditions.
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(a) IBM Cloud Functions (b) Azure Functions
Figure 2: Incorrect concurrency limits

Inconsistent and incorrect concurrency limits We �nd
numerous issues with concurrency limits on serverless plat-
forms. IBM su�ers from a simple issue: default concurrency
limits are documented to be 1,000, but up to 1,200 concurrent
functions are run in parallel. Figure 2a shows a burst of 1,200
Single functions. The x-axis is time, the y-axis is number
of concurrently running functions, the dotted line tracks
completions, and the solid line shows up to 1,200 functions
running simultaneously.
In the worst case, no enforcement can occur in Azure. A

workload is created in which demand is slowly ramped up
over time. Azure does not limit the number of concurrent
HTTP functions, which was con�gured to 1,000, or the num-
ber of instances, which is 200 by default. During the test,
the Function App’s Live Metrics Stream reported up to 440
instances allocated to the Function App with up to 8,000
concurrent requests run at a time, as shown in Figure 2b.

Last, GCF does not limit total CPU consumption in a tight
manner. GCF caps total CPU usage over all functions to a
speci�ed threshold over a 100 second period. CPU consump-
tion is tracked during the period, and when the threshold
is reached, no new functions are invoked. We �nd two is-
sues, however. First, any outstanding functions are able to
complete after the limit is reached, violating CPU limits. Sec-
ond, a slow trickle of invocations still occurs after the CPU
limit is reached. Figure 3 shows CPU usage is more than
doubled in the MixedChain workload: CPU limits were set
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Figure 3: GCF: MixedChain workload CPU usage

to 40M MHz/s, but over 90M MHz/s consumption was en-
countered (dotted red line). Concurrency for each � and total
concurrency, the sum of all � concurrencies, are also shown.
The above �ndings indicate concurrency limits are of-

ten inconsistent or incorrect, placing additional burden on
serverless developers.When limits are under intended values,
workloads may unexpectedly encounter poor performance
or increased drops. Dealing with such issues increases server-
less application complexity. When limits are over intended
values, developers may incur higher costs than budgeted for.
And when limits are inconsistent, developers can have di�-
culty managing and reasoning about serverless performance.

Mid-chain drops Some serverless platforms provide a hard
concurrency limit (AWS and IBM) beyond which all subse-
quent requests are dropped. When demand rises above a
speci�ed function invocation limit, functions can be queued
(up to 4 days in the case of AWS [81]), silently dropped [82],
or returned with an error (in the synchronous case only).
This is problematic for several reasons. First, developers may
rely on function chain completion, and when function chains
drop mid-chain, incorrectness may arise. Alternatively, de-
velopers can solve the problem at the application layer, but
this increases complexity and developer burden, two prob-
lems serverless aims to solve. Third, drops mid-chain result
in ine�ciency because the resources spent running func-
tions before the drop are wasted and could have been better
used to �nish some other outstanding function chain. And
last, if providers queue requests mid-chain, then the total
function chain running time variance can be signi�cantly
increased, impacting SLAs or otherwise negatively a�ecting
performance.
To assess the impact of mid-chain drops, a Fan-2 Burst

workload is run on AWS Step Functions and IBM Cloud
Functions, where the burst is the size of the concurrency
limit. Note the “fan” portion of Fan-2 invokes twice as many
functions after �1 completion, meaning a burst of 1,000 Fan-
2’s will ultimately result in 2,000 concurrent functions (i.e.,
�2 & �3) and a violation of concurrency limits. Figure 4 shows
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a timeseries of the number of completed chains. The �gure
shows signi�cant loss, with only 48-54% chains successfully
completing.
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Figure 4: Mid-chain drops

Burst intolerance Bursts
are di�cult workloads
to support because cold
start issues and other in-
e�ciencies with quickly
scaling infrastructure can
cause delays and even
loss. GCF documenta-
tion indicates there is
no concurrency limit on
functions invoked via
HTTP requests. In practice, however, concurrency ranges
from approximately 1,000-2,000 when a large burst of 6,000
HTTP requests is invoked (not shown). Even if bursts are
repeated over �ve iterations (to avoid cold starts in the subse-
quent four burst runs), there still exists inconsistent achiev-
able concurrency, which results in 3%-65% HTTP requests
returning with error codes, as shown in Figure 5a.
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Figure 5:Workload burst intolerance; in Figure 5b blue
bars are cold starts and red bars are warm starts

Similar measurement results on Azure indicate burst work-
loads su�er from extraneous loss and low concurrency limits,
as shown in Figure 5b. Signi�cant losses occur when Burst-
1000 workloads are repeated over �ve iterations, shown as
cold starts in the blue bars. However, if invocation frequency
gradually increases over time (instead of a sending a burst),
then achievable concurrency can grow and loss can be elimi-
nated, as shown in the warmed bar plots, colored red. Burst
intolerance limits achievable concurrency, which in turn
creates loss or queuing when demands spike.

HTTP prioritization As serverless providers often have
a queue for HTTP invocations and a queue for background
invocations, a simple test is designed to understand interfer-
ence between HTTP and background invocations. First, a
Continuous-23 Fan-2 workload is started (23 Fan-2 requests
per second translates to a concurrency of 1035 functions
in the steady state, just above the invocation limit). From
t = 500 � 1000, a Continuous-46 Single workload (�4) is also
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Figure 6: HTTP prioritization

run, increasing the total demand to overrun concurrency lim-
its. Figure 6a shows function concurrency in AWS. Ideally,
all functions within Fan-2 should have equal concurrency,
as demonstrated in the �rst 500 seconds. Instead, when de-
mands rise at t = 500 the �rst function in the chain, �1,
which is invoked via HTTP, has larger concurrency than
the background functions (�2 and �3). In addition, �4 (the
Single workload, invoked by HTTP) and �1 see their concur-
rency increasing over time relative to �2 and �3. Hence, AWS
prioritizes HTTP invocations over background invocations.

The HTTP prioritization problem also incurs on IBM. The
same test is repeated and the results are shown in Figure 6b.
Again, �1, which is invoked via HTTP, has larger concur-
rency than the background functions. Unlike AWS, the di�er-
ence converges instead of increases over time. In both AWS
and IBM, we ran di�erent workloads and found the trends to
hold. We were unable to �nd documentation detailing this
prioritization, even though prioritization can signi�cantly
impact the behavior of serverless workloads.

Ine�cient resource allocation For serverless platforms,
using a much higher VM/container pool than the concur-
rency limit ensures faster scale-up and less cold-starts. This
can, however, lead to ine�cient resource allocation within
the serverless platform. Using the methodology from [99],
the number of unique VMs created over �ve iterations of a
Burst-1000 workload are tracked for Linear-N, with N rang-
ing from 2-6. The resulting graph in Figure 7a shows the total
number of unique VMs used over all iterations for each chain.
Instead of reusing existing in-memory VMs, ine�cient VM
usage is common. For example, in a perfect reuse scenario,
Linear-2 would utilize a total of 2,000 VMs (1,000 for �1 and
1,000 for �2), but instead almost 10,000 VMs are used.
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Figure 7: Ine�cient resource allocation
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IBM also showed ine�cient container usage, as shown in
Figure 7b. A Continuous-67 Single function workload (which
corresponds to the concurrency limit) sees the number of con-
tainers increase over time even though reuse is possible after
a function completes. Note IBM reuse seemed inconsistent:
a repeated Burst workload (a burst, followed by a timeout,
followed by a burst) did indicate high levels of container
reuse. Ine�cient VM/container reuse can increase overheads
such as cold start and also ine�ciently utilize memory.

Concurrency collapse On AWS, a phenomena we denote
concurrency collapse, where concurrency reaches the limit
but then drops and does not immediately recover, can occur.
A Burst-1000 workload for Fan-2 and Fan-5 are shown in
Figure 8a and Figure 8b, respectively. The concurrency sig-
ni�cantly drops after the �1’s complete, but the demand from
the invoked �2 and �3 should saturate concurrency.While we
were unable to debug the reason for such collapse on AWS,
we suspect the issue arises from ine�cient resource alloca-
tion. We reproduced the problem in OpenWhisk by limiting
the number of available containers to service functions. Here,
�1’s burst consumes all available containers, resulting in the
collapse because no containers are readily available to ser-
vice �2 and �3. Regardless, we show collapse can prevented
in Section 5.
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Figure 8: AWS Lambda concurrency collapse

Issue AWS IBM GCF Azure OW
Concurrency limit issues N Y Y Y Y
Ine�cient allocation Y Y N N N
Burst intolerance N N Y Y N
Mid-chain drops Y Y N N Y

Concurrency drops Y Y Y N Y
HTTP prioritization Y Y N N N

Table 1: Summary of issues discovered on providers

Summary Table 1 summarizes the issues discovered over
each cloud provider. Note that due to space, graphs for all
problematic instances cannot be shown. The �ndings in this
section indicate QoS o�erings in modern serverless ecosys-
tems fall short and motivate the need for a new design. In the
next section, we detail our QoS framework to better enable
QoS.
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Figure 9: Sequoia architecture

3 ARCHITECTURE
This section details the architecture of Sequoia. Sequoia is a
standalone scheduling framework that can be deployed as a
proxy to existing cloud services or directly integrated into
platforms such as OpenWhisk. The framework consists of
three main logical entities (Figure 9): a QoS Scheduler, a Log-
ging Framework, and a Policy Framework. The QoS Scheduler
decides where, when, and how to run speci�c functions or
function chains. The QoS Scheduler integrates tightly with
the Logging Framework, whose responsibility is to store
real-time metrics that describe the current and historical
state of the serverless environment. Both the QoS Scheduler
and Logging Framework interface with the Policy Frame-
work to make scheduling decisions. All three components
are highlighted below.

QoS Scheduler The QoS Scheduler, which is composed of
a Producer, a Queue Infrastructure, and a Resource Manager,
follows a producer-consumer model. The Producer is respon-
sible for enqueuing new function chain invocations into the
QoS Scheduler’s Pending Queue (PQ), and measuring the
volume of incoming tra�c for the Policy Framework. In
the Producer, function chains are de�ned as directed acyclic
graphs (DAGs) where each node contains a serverless func-
tion to invoke and a unique ID to distinguish the node to
the Policy Framework. Whenever the Producer receives a
function chain invocation, it initializes a ChainState object
for tracking the invocation with a unique invocation ID and
a pointer into the function chain’s DAG. These ChainState
objects are enqueued into the PQ and read by the Resource
Manager (described below) to track each chain’s current
position in the DAG.
The Resource Manager acts as the consumer in the in-

frastructure, pulling function requests from the queues to
schedule functions on the server pool.Worker Threads in the
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thread pool are the main driver within the infrastructure
and are responsible for dequeuing functions and schedul-
ing them on the serverless infrastructure. When a thread
schedules a function it blocks until its function completes
and afterwards makes itself available to the thread pool. A
simple example follows. Assume an initialized state with
only one worker in the thread pool (concurrency limit = 1)
and two just-arrived Fan-2 function chains in the PQ. The
thread pulls one of the Fan-2 function chains from the PQ
and runs �1 to completion. When �1 completes, the thread
enqueues �2 and �3 into the Chain Running Queue (CRQ).
The CRQ’s job is to hold subsequent functions within the
chain. The thread then exits and goes back into the thread
pool. Next, the thread is re-activated and can schedule an-
other function. In this case, �1 can be scheduled from the
second enqueued function chain or �2 or �3 can be scheduled
from the �rst chain. Such scheduling decisions are left to
policy, so the Resource Manager integrates tightly with the
Policy Framework.

Logging Framework In order to make e�ective scheduling
decisions, a serverless function-chain management infras-
tructure needs to have a clear, live overview of the state of
the serverless environment. The Logging Framework ingests
state information from live metric streams such as serverless
provider logs, function wrappers, and the QoS Scheduler
itself. This gives the framework access to live and historical
information such as function performance, error reporting,
and details about the underlying containers and VMs host-
ing the functions [99], which it then provides to the Policy
Framework in a platform-agnostic API. Note provider-based
logging frameworks are generally not real-time and hence
inadequate for many scheduling policies.

Policy Framework The Policy Framework engine inte-
grates tightly with the QoS Scheduler and Logging Frame-
work. The Policy Framework serves as an entry point to add,
remove, or alter policies in the system. Individual threads
in the Resource Manager can consult the Policy Framework
when making scheduling decisions. The Policy Framework
has access to rich state information from the Logging Frame-
work, enabling many di�erent kinds of policies to be ex-
pressed and applied regardless of the serverless platform in
use.

4 IMPLEMENTATION
We implemented a proof-of-concept to show Sequoia’s ben-
e�ts. The implementation was written in Python, includes
an instance of Kafka, and uses simple serverless function
wrappers that send information to the Logging Framework.
The design is �exible and modular, and hence other packages
and services can be used for implementation. A description
of each architectural component follows.

QoS Scheduler Asmentioned, the QoS scheduler consists of
a Producer and a Resource Manager. The Producer converts
input function chain invocations into ChainState objects
containing an ID for the invocation and a pointer into the
DAG of the function chain. These ChainState objects are
serialized using Protocol Bu�ers [22] and published to a
Kafka queue, the Pending Queue, which may be read by
the Policy Framework when selecting a function to invoke.
Separately, arrival times of each invocation are logged and
submitted to the Arrival Logging Queue (ALQ), which is read
by the Logging Framework and is used in realizing policies,
such as reactive scheduling.

The Resource Manager is composed of a Coordinator and
many worker threads. The Coordinator follows a simple
loop: the Policy Framework is called to make a scheduling
decision, which returns a function to invoke, and the Coordi-
nator schedules this invocation to occur on a worker thread.
Each worker thread, on receiving a function URL, invokes
the function over HTTP and sends the start time to the Log-
ging Framework. When the function �nishes execution and
returns an HTTP response, the ending timestamp is sent to
the Logging Framework and the function’s DAG is checked
to see if there are any child functions to invoke next in the
chain. These child functions are added to the in-memory
CRQ, which the Policy Framework may read when selecting
a function to invoke.

Logging Framework The Logging Framework gathers real-
time logs from the QoS Scheduler and serverless functions
while they run. The QoS Scheduler’s Producer sends times-
tamps for the arrival times of each function chain invocation
and the Resource Manager sends the start and end times
of each function being invoked. The serverless functions
also report their start and end times to the Logging Frame-
work. In practice, it is useful to track functions’ start and end
times both on the Resource Manager and in the functions
themselves: after the Resource Manager invokes a function,
the invocation may spend time in a queue on the serverless
platform or be dropped entirely. Consequently, the consumer-
side logging represents end-to-end function latency, while
the function-side logging represents actual function runtime
(which is useful for computing the total concurrent functions
at any given time or the monetary cost of executing each
function).
As the Logging Framework receives logs from each of

its sources, it computes running metrics such as total con-
currency of speci�c functions and chains, number of drops
observed in the serverless framework, and inter-arrival times
of function chains tracked by the Producer. These metrics
are available to be read at any time by the Policy Framework
and can be exported to long-term storage to be available for
post-hoc analysis.
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FunctionWrapper The Logging Framework requires server-
less functions to send reports from within the serverless
platform. These per-function reports contain unique func-
tion identi�ers combined with a timestamp and are sent at
the function start and end. These reports can easily be ob-
tained through third-party libraries (which are agnostic to
function code and runtimes) or function wrappers. Python3
introduced function annotations [1] that enable adding arbi-
trary metadata to function parameters which makes adding
a wrapper as concise as a single annotation above the native
function.

Policy Framework The Policy Framework provides: (1) a
set of con�gurable policies that can be used to exercise more
control over function scheduling than current serverless
platforms o�er; (2) an intuitive programming interface to
express new policies when the provided policies are not
su�cient for a speci�c use case. We have implemented eight
policies:
Function-level Allocation: Divide the total function con-

currency of the serverless platform equally across all active
functions. This policy can be con�gured to be an unequal
split (e.g., limit �a to half of the concurrency limit of �b ), and
can be used to prevent lower priority functions, such as log-
gers, from consuming resources needed by other functions.

Chain-level Allocation: Similar to function-level allocation,
but track concurrency of each chain rather than the individ-
ual functions composing each chain. This policy can also be
con�gured for an unequal split. Chain-level allocation en-
ables an important single chain function to obtain an appro-
priate share of the concurrency pool when sharing the pool
with lower-priority chains consisting of multiple functions.
In addition, developers could use chain-level allocations to
ensure fairness amongst their customers/users.

Reactive Concurrency Allocation: At initialization, enforce
equal chain-level allocation. Using metrics from the Logging
Framework, compute the arrival rate of each function chain
and adjust the concurrency limit of each function chain pro-
portionally to the rate. A minimum concurrency allocation
is assigned to uncommon chains to prevent starvation. This
policy facilitates demand-based chain allocation, rather than
FCFS-based function policies deployed on serverless plat-
forms today.
Ongoing Chain Prioritization: Prioritize �nishing chains

that have been started over new chain invocations, dequeu-
ing from the CRQ before the PQ. This can be used to ensure
chains are completed with minimal interruption between
beginning and ending the chain.

Shortest Job First: Run the chain with the least-remaining
run time. Alternatives, such as lottery scheduling to mitigate
unfairness or deadline-aware scheduling to maintain SLAs
can also be implemented.

Algorithm 1 Ongoing Chain Prioritization pseudocode
1: for queue in List(CRQ, PQ) do
2: if queue.notEmpty() then
3: return queue.pop()
4: end if
5: end for
6: return None

Explicit Priority Assignment: Assign priorities to functions
and chains. At runtime, the highest priority function is cho-
sen �rst. This policy also supports weighted priority enforce-
ment (e.g., for every n �a ’s invoked, invoke n

2 �b ’s). Priority
scheduling bene�ts cases when user-facing, latency-sensitive
applications share a framework with long-lived background
applications.
Hybrid Scheduler: Hybrid scheduling allows developers

to specify where a function should run, for example in an
edge/cloud setting. Such policies reduce latencies for cer-
tain workloads, ensure privacy or regulatory compliance, or
simply to keep costs low in a private cloud.

Resource-aware Scheduler: A resource-aware scheduler can
incorporate available containers/VMs or other available re-
sources such as CPU, concurrency, or memory when schedul-
ing. For example, armed with knowledge of burst intolerance,
a resource-aware scheduler could slowly ramp up demands.
Alternatively, resource-aware schedulers can take concur-
rency limits into account and schedule chains accordingly
(e.g., only let 333 Fan-2 workloads run at a time with a 1000
concurrency limit, since 333⇥3 functions will run in a steady
state).

In addition to each of these policies, users can implement
custom policies as they see �t. Each policy is currently ex-
pressed as a Python function that is calledwhenever aworker
thread on the QoS Scheduler is ready to invoke another func-
tion. The function has access to all of the serverless envi-
ronment state provided by the Logging Framework, as well
as the PQ and CRQ, and it must return a function to invoke
from one of these queues.
Sample psuedocode from two policies are shown in Al-

gorithms 1 and 2. In Algorithm 1, the Ongoing Chain Pri-
oritization �rst dequeues from CRQ when possible, other-
wise defaults to PQ (List(CRQ, PQ), line 1). A ChainState
object is returned (line 3), which contains the remaining
DAG, and allows the correct function to be scheduled. In
the Chain-level Allocation code in Algorithm 2, the func-
tion getChainsWithAlreadyUsedQuota() keeps track of
chains that have used their fair share quota, and function
getQueuesSortedByPriority() simply iterates over a list
of queues sorted by priority and pulls the next ChainState
object from the highest non-empty queue.
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Algorithm 2 Chain-level Allocation pseudocode
1: chainsToAvoid  getChainsWithAlreadyUsedQuota()
2: for queue in getQueuesSortedByPriority() do
3: for chain in queue do
4: if chain not in chainsToAvoid then
5: return chain
6: end if
7: end for
8: end for
9: return None

5 EVALUATION
This section evaluates Sequoia. First, microbenchmarks are
presented to understand proxy overheads. Second, limita-
tions in Section 2 are revisited, with policy-based solutions
implemented to �x the problems. Third, our scheme is shown
to adhere to policies in production environments. Last, real-
istic application workloads are evaluated. Unless otherwise
stated, all results are on AWS, with Sequoia deployed as a
proxy.

5.1 Microbenchmarks
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Figure 10: Sequoia overhead

This subsection
investigates the
overhead of Se-
quoia. Figure 10
presents the la-
tency of a func-
tion request travers-
ing our frame-
work for three
di�erent poli-
cies. In aMixed-
Chainworkload,
a burst of 1,000 for each chain is sent to the proxy simul-
taneously. The plot shows a CDF of the time it takes from
the start of the policy framework making a decision to the
moment before the function is invoked. Latencies are less
than 4.1 ms for the 90th-percentile over all three policies. We
believe these overheads can be further reduced with a more
optimized implementation.

To measure the overhead of Sequoia logging on serverless
functions, we recorded the time spent collecting function
logs and sending them to the Logging Framework. Over a
burst of 1,000 invocations we observed 99% of the invocations
completed logging within 3.34 milliseconds. The median log-
ging time was 2.17 milliseconds. In the case of AWS Lambda,
functions are priced per 100 milliseconds [28], so logging
overheads minimally e�ect the cost of most workloads.

5.2 Mitigating previous limitations
This subsection shows Sequoia’s policies can mitigate the
limitations observed in Section 2.

Inconsistent/incorrect concurrency limits As de�ned
in Section 4, our scheme can limit concurrent invocations.
While explicit results are not shown due to brevity, Sequoia
ensures concurrency limits are correctly enforced over all
providers.

Ine�cient resource allocation Next, the performance of
linear chains is examined in Figure 11. The x-axis varies the
chain length, and the y-axis shows total number of VMs
allocated over all �ve runs.
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Figure 11: Resource allocation in
linear chain analysis

Storage-based
chains are an-
alyzed under nor-
mal (AWS) and
QoS (Sequoia)
scheduling. For
Linear-n, theQoS
scheduler admits
�1’s at a rate
of 1000/n. The
graph shows a
trade-o� exists
in scheduling:
by limiting func-
tion chain admission, the QoS scheduler uses signi�cantly
less VMs than the normal scheduler. This occurs because
limiting function chain admission allows for more opportu-
nities of VM reuse. In the normal case, bursts are allowed
for which a burst-worth of VMs must be provisioned to han-
dle the load. Sequoia takes longer to complete because of
the limiting (not shown; up to 50% longer in Linear-6 case).
This, however, provides a new point in the design space,
in which cloud providers can rate limit when under heavy
load, or simply rate limit certain customers (e.g., such as free-
tier customers) to provision less VMs. Note maintaining idle
VMs consumes memory, which is an expensive bottleneck
in cloud deployments.

Mid-chain drops Mid-chain drops are caused by exceeding
concurrency on platforms with strict concurrency limits.
Concurrency over�ow can be controlled by rate-limiting
chain invocations. We reran the experiment on AWS and
IBM with storage triggers in Figure 4 with Resource-aware
Scheduling and achieved 97% chain completions on IBM and
100% on AWS without compromising concurrency (�gure
omitted for space).

Abrupt concurrency drops Figure 8a shows concurrency
collapse for Fan-N workloads in AWS. Our uncon�rmed
suspicion is the burst causes issues with resource allocation.
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Figure 12: Resource-aware policy
prevents concurrency drop

Figure 12 shows
the performance
of a Resource-
awareOngoing
policy for Fan-
2. The invoca-
tion rates are
limited under
the concurrency
limit with the
Resource-aware
policy. This sim-
ple limiting is very e�ective: the total time to complete the
burst is 55 seconds, whereas the time is over 330 seconds in
the collapse case, a 5.5⇥ in�ation.

5.3 QoS-based policy realization
This section shows Sequoia accurately realizes various poli-
cies in a performant manner. Tests in this section utilize a
MixedChain workload.
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Figure 13: AWS MixedChain baseline

Figure 13 shows the results of Burst-1000, meaning each
chain sends a burst of 1,000 requests. The graph is a baseline
case with no proxy. The existing platform performs poorly:
average concurrency utilization is low (< 30%), which in-
creases runtimes by 3⇥ compared to the ideal case. In ad-
dition, nearly 70% of the demand is not completed. Below,
Sequoia-implemented policies are applied to the same work-
load.
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Figure 14: QoS policy validation

Function-level Allocation Figure 14a shows the results
of a fair function scheduler. In MixedChain there are 10 total
functions across the 3 chains, so each function within a chain
should receive one-tenth the concurrency limit. Since �1
appears 3

10 , �2 appears
3
10 , and �3 appears

4
10 , the concurrency

should be 300, 300, and 400 respectively. The �gure shows
convergence to these numbers.

0

250

500

750
100

0

250 500 750 100
0

C
on
cu
rre
nc
y

Time (sec)

�1
�2
�3
�4

Total

Figure 15: Reactive Concurrency
Sharing with adaptive workload

Chain-levelAl-
location Fig-
ure 14b shows
the results of
a fair chain sched-
uler.MixedChain
has three chains
and individual
chains should
receive equal share
even though each
chain has a dif-
ferent number
of functions. The
graph shows how chains with three functions (Fan-2 and
Linear-3) consume the same share of concurrency as the
Combo chain with 4 functions (y-axis shows the real-time
concurrency of all functions within each chain).

Reactive Concurrency Scheduling Figure 15 shows how
the Reactive Concurrency policy converges when demands
change. First, a Fan-2 and Single function (�4) are started
with equal demands (17 invocations per second, or IPS). At
t = 200 Fan-2 becomes 20 IPS and �4 becomes 8 IPS (a 2.5:1
ratio). Then, at t = 400 IPS ratios again become equal (17
IPS). At t = 600 the �4 IPS becomes 3⇥ the Fan-2 IPS. Finally,
at t = 800 ratios are again equal. As shown, the realized
concurrency of each chain closely tracks the changes in
incoming requests.
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Figure 16: Ongoing Chain
Prioritization completion
times

This shows our scheme
can be reactive to changes
in demands. It also shows Se-
quoia can e�ectivelymit-
igate the HTTP prioriti-
zation problem outlined
in Figure 6a by con-
sidering resources re-
quired for background
functions (note �1, �2,
and �3 obtain similar
concurrency).

Ongoing Chain Prior-
itization Figure 16 shows a CDF of chain completion times
for a Resource-aware Ongoing Chain Prioritization scheme
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and a baseline with no proxy for a Burst-1000 MixedChain
workload. The Ongoing scheme signi�cantly decreases func-
tion chain completion times. The baseline scheme only �n-
ishes 33% of its chains, whereas Ongoing sustains no chain
loss. At the 25th-percentile, the chains with no QoS take 2.5⇥
longer than the QoS policy.

Explicit Priority Assignment Figure 17 shows the results
from an explicit priority assignment in Fan-2 where �1’s are
assigned the highest priority, �2’s the second highest, and
�3’s the lowest. Here, strict scheduling is enforced, with �’s
running in appropriate order. When invoking a function,
the current implementation checks the next 100 functions
currently queued and picks the �rst function with highest
priority.

Hybrid Scheduler Figure 18 shows a hybrid scheduling pol-
icy. Here, there exists two deployments that can run server-
less functions: a local edge cloud running OpenWhisk and
AWS. The edge cloud has a capacity of 200 concurrent func-
tions and a demand of 225 concurrent functions is applied.
Our proxy limits concurrency on the edge cloud to 200 func-
tions, while sending the 25 additional concurrent functions
to the remote cloud.
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Figure 17: Explicit Prior-
ity in Fan-2 Burst-1200
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Figure 18: Hybrid in
MixedChain

Chain Ave function run times (s)
NLP �1: 1.6
CV �1: 0.2; �2: 1.1 �3: 8.7

Video �1: 2.1; �2: 1.1; �3: 0.9
Compile �1: 0.5; �i : 19.6-20.5

Table 2: Summary of realistic chain run times

5.4 Realistic Workloads
This section evaluates the following workloads:

NLP: A single function that builds a trigram bag-of-words
model from an input text �le.

CV:AFan-2 chainwhich performs object classi�cation [49]
(�2) and detection [79] (�3) on an input image.

Video: A Linear-3 chain that generates a preview of a
sample video clip, grayscales, and then reverses the clip.
Compilation: A Fan-7 chain that compiles sample source

code to seven di�erent architectures.

Functions within the workloads run from 200 ms to over
20 seconds, shown in Table 2. The goal is to have a mix of
short and long chains with varying run times.
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Figure 19: Execution latency for real workloads. Bars
for SJF are solid and FIFO are dashed.

Runtime analysis The above workloads are run simulta-
neously for shortest-job �rst (SJF) and FIFO queuing, with
the Resource-aware rate limiting applied to both algorithms
for fair comparison. Two workloads are considered: each
chain invokes a burst of 1,000 requests and Poisson arrivals
where all chains receive 30 request/sec on average. Figure 19a
shows the average queuing latency, de�ned as the time be-
tween when the Producer receives the request and the time
the consumer schedules the request on AWS, and standard
deviation. NLP, the shortest workload, has 2.7-6.4⇥ less queu-
ing times in SJF (solid bars) than FIFO (dashed bars). FIFO
does not prioritize, hence queuing is the same for all chains.
Figure 19b shows the average execution latency, de�ned

as the time between the �rst function in the chain starting
and the last function in the chain ending. Again, SJF correctly
prioritizes workloads and achieves signi�cant bene�ts over
FIFO: Video ranging from 5.3-25⇥ faster, CV ranging from
2.7-7.3⇥, and Compile from 3.4-3.5⇥. Video sees larger bene�t
because it is a three-function linear chain and SJF reduces
queuing between dependent functions in the DAG. NLP, a
single function, shows no di�erence.
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Figure 20: Fairness with realistic
workloads: Compile (solid), sCV
(dashed)

Fairness anal-
ysis We mod-
ify the work-
load to demon-
strate fairness.
Two computa-
tionally expen-
sive applications
are chosen since
suchworkloads
are likely to con-
sume signi�cant
resources and
may cause is-
sues if left unchecked. The Compile workload is run with
a single-function object detection workload (denoted sCV).
For Burst, sCV invokes 500 bursts and Compile invokes 3000
bursts. For Poisson, sCV invokes 60 requests per second and
Compile invokes 10 requests per second. Demands are sat-
urated in both cases. Figure 20 shows average concurrent
invocation rates of each chain, de�ned as the sum of all
functions running concurrently within the chain. The fair
chain scheduler is compared to a FIFO scheduler, both with
Resource-aware rate limiting. The fair chain scheduler prop-
erly ensures large chains do not consume an unfair share of
the available concurrency, showing an equal concurrency for
sCV (dashed bars) and Compile (solid bars). FIFO, however,
schedules on the function-level, and hence Compile, with
a large Fan-7, consumes 1.62-1.86⇥ more of the available
concurrency than sCV (which has a single function).

6 DISCUSSION
This section discusses assumptions, limitations, and motiva-
tions for our work.

Measurement study Measurements in Section 2 were per-
formed November 2019 toMay 2020. The results motivate the
need for quality-of-service o�erings, which is the focus of
our paper. We fully expect trends, results, and architectures
to change as serverless providers improve their ecosystems.
For example, Google deprecated the CPUMilliSeconds quota
outlined in Section 2 and substituted it with a maximum
number of instances quota system on September 8, 2020 [76].
While recent advances continue to improve serverless o�er-
ings [88], the need for QoS persists as functions increasingly
face spatial and temporal restrictions (such as privacy-based
functions running at the edge only, or limited edge resources
being prioritized for interactive functions) or require di�er-
ent customers or functions within an application to obtain
di�erential treatment. As such, Sequoia can help developers
and providers further manage their serverless workloads.

Known chains We assume known function chains. This
holds true over many scenarios. For example, developers
may supply providers with a chain’s call graph. In the case of
composition frameworks (e.g.,AWS Step Functions), develop-
ers already specify the call graph. Even in non-composition
cases, developers upload function source code to providers,
as well as con�guration �les to specify event-triggers. Here,
providers can co-opt chain analysis techniques to derive
chains [45, 46, 74, 101]. In addition, service mesh frame-
works [16, 21, 42, 62, 90] monitor, secure, debug, and connect
components within a microservice. Service meshes exploit
RPCs to generate dependency graphs between microservice
components, which can also aid in serverless call chain iden-
ti�cation. Finally, our Logging Framework can be augmented
to learn chain behavior over time.

Serverless workloads As serverless proliferates, we be-
lieve more complex function chains will quickly emerge.
Recent studies indicate this trend may hold. In Azure, 46% of
serverless applications contain more than one function [88].
And while one study [91] �nds few multi-function server-
less applications in the AWS Serverless Application Reposi-
tory [23], we analyze the IBM Serverless Code Pattern data-
base [24] and �nd roughly 52% contain more than one func-
tion. Regardless of chain size, our QoS framework bene�ts
both single and multi-function chains. As serverless matures,
function execution times may also lengthen. Currently, 50%
of functions execute for longer than one second in Azure [88],
and other studies present use cases for functions that execute
for 10-100 seconds [41, 51, 89]. We believe diverse workloads,
from chain sizes to function run times, motivates the need
for better QoS because all must execute over a common
infrastructure.

Increasing concurrency limits One may ask if increasing
concurrency limits can solve some of the issues outlined in
this paper. Such solution has several limitations. First, devel-
opers rely on concurrency limits to manage their workloads–
one study found 88% of organizations have a concurrency
limit de�ned for at least one function [80]. Cost can be man-
aged with concurrency limits, and the e�ect of bugs or mis-
con�gurations can be mitigated. In addition, raising limits
may not be immune to an unusual rise in demand. Even in
the absence of limits, we �nd many cloud providers do not
scale immediately to meet demand (e.g., with bursts) and
hence queuing and QoS scheduling are inevitable.

Drop-in design Studying QoS on black-box actual deploy-
ments (i.e., AWS) is di�cult because control is limited. As
such, our evaluation features a proxy-based solution. Se-
quoia’s drop-in design, however, could be implemented in
a variety of ways: via an as-a-Service o�ering from a third-
party, implemented by the developer, or integrated into the
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cloud provider’s framework. Our design highlights the log-
ical components necessary for QoS, and our work studies
unique challenges and solutions for serverless-based QoS.

7 RELATEDWORK
This section details major classes of related work.

Serverless platform measurements Many studies have
provided measurements of serverless platform performance
and architectures. Preliminary serverlessmeasurementworks
study throughput and performance of serverless platforms [58,
61, 66]. Wang et al [99] present a detailed study of three ma-
jor serverless providers and characterizes their architectures
and performances. Shahrad et al [88] study serverless ap-
plication characteristics and workload patterns. Our study
focuses on QoS-related measurements, such as concurrency
limits, queuing and scheduling techniques, and reliability.

Serverless scheduling and resource allocation Many
works consider scheduling and resource allocation in server-
less environments. Archipelago [91] is a latency-sensitive
serverless framework that scales scheduling, proactively cre-
ates sandboxes, and schedules functions with a shortest-
remaining slack �rst algorithm [47, 85]. Archipelago is com-
plementary to Sequoia, in that we can utilize its architecture
to further scale, and Archipelago can implement our pol-
icy framework to enable more generalized QoS. Similar to
Archipelago, GrandSLAm [53] reorders function requests to
prioritize execution of functions with lower remaining slack
time. Real-time serverless workloads are supported in [70]
via predictive container management and admission con-
trol on application requests. FnSched [96] manages invoker
resources (VMs/containers that run functions) to ensure un-
necessary latency is not incurred, while minimizing cost. Fi-
nally, [52] centrally schedules lambdas on CPU cores instead
of servers to reduce latency. While some of the above works
provide SLAs and function reordering (which Sequoia also
provides), none of the works holistically study QoS to the ex-
tent our work does. Previous works do not study QoS-related
issues presented in Section 2 nor enumerate serverless QoS
policies as in Section 4 such as fair chain scheduling.
Other works design new primitives for serverless appli-

cations [26] or examine serverless function chains in more
detail, such as merging functions to reduce costs [38], opti-
mizing function placement [64], or describing trade-o�s in
building function chains [32]. These works do not provide a
general QoS scheduling framework as we do.

Cold starts Many of the aforementionedmeasurement stud-
ies analyze the cold start problem. In addition, studies show
the overheads invoking function chains across platforms [43],
measure overheads within cold start and Docker network-
ing [59], and analyze di�erent cold start states [59]. None of

these works, however, explicitly examine QoS-based limita-
tions as our study does.
To mitigate cold start latencies, many techniques have

been proposed [33, 34, 72, 73, 83]. These techniques are
mostly complementary to our study as resource-aware poli-
cies can take into consideration cold-start overheads.

Serverless storage and communication Many works ex-
amine improvements and issues with serverless storage and
communication [25, 54, 56, 57, 77, 84, 94, 104]. Our study does
not consider storage and communication, but implementing
policy frameworks for such mechanisms is interesting future
work.

General cloud schedulers A variety of task and cluster
management systems include scheduling subsystems. Many
architectures have been designed, from distributed [68, 75, 78,
78, 100] to centralized [48, 97, 98] techniques. Kubernetes can
assign QoS to pods [19], but cannot provide function-level
QoS. Serverless workloads provide many unique challenges,
such as short-lived ephemeral entities that must be packed
tightly for e�ciency. Techniques used in previous works,
such as migration, may not easily be utilized in serverless
workloads. As a result, our work designs a serverless-native
solution.

8 CONCLUSION
This paper studies quality-of-service (QoS) scheduling frame-
works for serverless platforms. A measurement analysis indi-
cates current serverless QoS o�erings are relatively nascent
and there exist numerous issues with scheduling, limiting,
and managing a rich ecosystem of serverless applications
today. To address these issues, a system called Sequoia allows
administrators or developers to specify and enforce �exible
policies. Sequoia is designed as a drop-in framework that im-
proves overall management by enabling QoS in a lightweight
and low overhead manner. Evaluations with controlled and
realistic workloads show Sequoia e�ectively mitigates issues
uncovered in the measurement study, eliminating mid-chain
drops, reducing queuing times by up to 6.4⇥, enforcing tight
chain-level fairness, and improving run-time performance
up to 25⇥.
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