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Abstract: The vegetative life cycle in the model filamentous fungus, Neurospora crassa, relies on
the development of conidiophores to produce new spores. Environmental, temporal, and genetic
components of conidiophore development have been well characterized; however, little is known
about their morphological variation. We explored conidiophore architectural variation in a natural
population using a wild population collection of 21 strains from Louisiana, United States of America
(USA). Our work reveals three novel architectural phenotypes, Wild Type, Bulky, and Wrap, and shows
their maintenance throughout the duration of conidiophore development. Furthermore, we present
a novel image-classifier using a convolutional neural network specifically developed to assign
conidiophore architectural phenotypes in a high-throughput manner. To estimate an inheritance
model for this discrete complex trait, crosses between strains of each phenotype were conducted,
and conidiophores of subsequent progeny were characterized using the trained classifier. Our model
suggests that conidiophore architecture is controlled by at least two genes and has a heritability of
0.23. Additionally, we quantified the number of conidia produced by each conidiophore type and
their dispersion distance, suggesting that conidiophore architectural phenotype may impact N. crassa
colonization capacity.

Keywords: Neurospora crassa; natural variation; complex trait; conidiophore development; phenomics;
convolutional neural network; generalized linear model; spore shadow

1. Introduction

Neurospora crassa propagates asexually through the dissemination of haploid spores, conidia,
which develop via specialized aerial structures called conidiophores [1]. Macroconidiophores give rise
to macroconidia and are morphologically and developmentally distinct from their smaller counterparts,
microconidiophores, which give rise to uninuclear microconidia [2]. Since macroconidiophores are
the subject of this work, they are hereafter referred to simply as conidiophores. Development of
conidiophores is under strict environmental and temporal control, requiring cues such as desiccation,
nutrient deprivation, and light exposure for its induction [3]. After exposure to these environmental
triggers, aerial hyphae grow perpendicular to the preceding mycelial mat to stimulate conidiophore
development. The organism subsequently undergoes a series of constriction budding followed by
crosswall formations until eventual sporulation, roughly 10 hours (h) following the beginning of this
process [4]. It is through this dissemination of conidia that the vegetative life cycle can propagate,
thus allowing new filaments to germinate after a period of dormancy. Conidiophore development
is under strict circadian control, requiring activation of the white collar complex (WCC) by light for
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activation of fluffy (fl), a necessary regulator of conidiophore development [5,6]. While environmental,
temporal, and genetic components of conidiophore development in N. crassa have been well
characterized [7], little is known about morphological variation of these structures, particularly in
natural populations.

In other filamentous fungal species, conidiophore architecture has been shown to directly
impact the ability of an organism to disseminate throughout an environment and infect host tissues.
For example, conidiophore morphology is altered in Aspergillus niger following deletion of velvetA,
directly impacting both spore dispersion and colonization capacity of the organism [8]. Additionally,
mutating the acropetal locus of Magnaporthe grisea modifies arrangement of the developing spores in
a conidiophore, resulting in spores that are nonpathogenic [9]. Given these known effects in other
fungal species, we sought to characterize natural conidiophore architectural variation in N. crassa,
estimate heritability of these phenotypes, and examine their potential impact on sporulation. To do this,
we employed a wild population collection of 21 N. crassa strains collected from Louisiana, United States
of America (USA) [10]. These isolates have been used in previous population genetics studies to
elucidate local adaptations to cold tolerance and circadian rhythm [11] and characterize novel functions
of loci [12,13]. Our work reveals three novel and distinct conidiophore architectural phenotypes
among these wild populations. These phenotypes persist throughout the duration of conidiophore
development and are described here as Wild Type (WT), Bulky, and Wrap. By conducting crosses
between each phenotype and characterizing subsequent progeny conidiophores, we were able to fit
a model for heritability of the discrete complex trait, conidiophore type. Our model suggests that
at least two genes control conidiophore architectural phenotype and estimates a heritability of 0.23.
We explored the potential impact of conidiophore phenotype on sporulation by quantifying the number
of conidia produced and their dispersal distance. Furthermore, we present a novel approach with an
accurate image-classifier using a convolutional neural network [14] specifically developed to assign
conidiophore architectural phenotypes in a high-throughput manner.

2. Materials and Methods

2.1. Strains and Media

Wild Louisiana isolates were obtained from the Fungal Genetics Stock Center (FGSC, Manhattan,
KS, USA) [15] and are listed in Table A1 (Appendix A). Strains were maintained on 1.8% glucose/1.8%
fructose/1.5% agar slants with 1× Vogel’s media and recommended biotin and trace element
supplements. To isolate conidiophores, strains were inoculated on 1.8% glucose/1.8% fructose/1.5%
agar plates (100 × 15 millimeters (mm)) with 1× Vogel’s media, biotin, and trace element supplements
and incubated at 30 ◦C for 20 h. Cultures were then harvested onto a 82 mm diameter nitrocellulose
membrane with 0.45 micron (µm) pore size (Whatman Protran BA-85, Maidstone, England),
inverted onto a new agar plate as described above, and placed under light for aerial hyphae to
penetrate the membrane. After 20 h, membranes were removed from the agar and secured on a flat
surface for imaging of conidiophores. Method was adapted from Bailey-Shrode and Ebbole, 2004 [6].

Cultures for time-course images were grown following the same protocol with nitrocellulose
membranes removed at 20, 25, or 35 h for imaging of conidiophores at different stages of development.

2.2. Crosses and Progeny Screening

Crosses were performed in the dark on cornmeal crossing medium, after which ascospores were
plated on sorbose + fructose + glucose (SFG) media. Colonies were subsequently picked to isolate
random ascospore progeny. Strains selected for crossing were FGSC8872 (WT) × FGSC3943 (Bulky),
FGSC8872 (WT) × FGSC8876 (Wrap), and FGSC2229 (Bulky) × FGSC8876 (Wrap). Crosses were
conducted in duplicate with 25 progeny selected from each. To isolate and image conidiophores in a
high-throughput manner while preventing fusion of different progeny sharing a plate, each strain was
inoculated on a 1 mL 1.5% agar droplet containing 1.8% glucose/1.8% fructose with 1× Vogel’s media
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and recommended biotin and trace element supplements. Each 150 × 15 mm petri dish contained eight
agar droplets evenly spaced roughly 2.5 cm apart. Each droplet was inoculated with progeny conidia
and incubated at 30 ◦C for 20 h to allow sufficient mycelial growth without hyphal fusion between
droplets. Each droplet was then harvested onto a separate nitrocellulose membrane with 0.45 µm pore
size. Each membrane was inverted onto a new agar droplet as described above and placed under light
for aerial hyphae to penetrate the membrane. After 25 h, membranes were removed from the agar and
secured on a flat surface for imaging of conidiophores.

2.3. Microscopy and Image Deconvolution

Nitrocellulose membranes containing conidiophores were visualized on an inverted microscope
(Axio Observer A1, Carl Zeiss Microscopy, LLC, Thornwood, NY, USA) at 20× magnification
and brightfield images were taken with a charge-coupled device (CCD) camera (AxioCam HRm,
Carl Zeiss Microscopy, LLC, Thornwood, NY, USA). Multiple z-slices were captured and
overlaid in ImageJ [16] to convey a complete representation of each three-dimensional structure.
Augmentation including contrast enhancement and noise and background subtraction was conducted
on image stacks to isolate conidiophores from underlying mycelia and/or aerial hyphae [17].

2.4. Automated Phenotype Classification

Residual nets (ResNet) was used to classify brightfield images into the three phenotypic classes
by transfer learning [14]. After some hyperparameter searching, ResNet-50 pretrained on ImageNet
was chosen as the starting neural network for image classification [18]. Training parameters were
as follows: batch size, 15; initial learning rate, 0.001; stochastic gradient decent as the optimizer.
The training process did not update parameters before module 3 in ResNet, and the parameters
were only updated for the last 27 convolutional layers and the fully connected layer. Learning rates
decayed when plateau was used for modifying learning. Augmentation including random rotation,
random horizontal flip, and random gray was introduced in the training to simulate realistic diversity
and prevent overfitting. Before augmentation, all images went through padding and resize to fit the
ResNet input size. All images were converted to tensor and normalized.

We balanced the three classes of conidiophore phenotypes and separated the dataset into training
(543), validation (66), and test sets (66). An external test set generated from progeny conidiophore
images was collected in a separate batch and used for further validation (WT: 40; Bulky: 60; Wrap: 49).
The training set was used to train the neural network and update its parameters. The validation set
was used for updating learning rates and finding the final model to alleviate overfitting (Figure A1
in the Appendix A). The test set was not used until the final performance evaluation. We calculated
accuracy and macro definition of precision and recall for multiclass classification [19]. The model
training and inference used PyTorch [20], torchvision, and CUDA. P100 at Sapelo2 of GACRC was
used for model training.

Feature importance was also evaluated on the test set. Features were evaluated on an integrated
gradient [21], and the noise tunnel method [22] smoothed the result. We chose the maximal value
as baseline instead of regular choices (constant black) because, in our brightfield images, a lighter
background indicated the absence of features [23]. In noise tunnel, the noise was added 10 times,
and the means of squared attributions were used.

The codes for training and visualization are shared on GitHub (https://github.com/michaelSkaro/

image_classification/tree/master/src).

2.5. Sporulation Quantification

Representative strains for each phenotypic class (FGSC8872, FGSC8876, and FGSC3943) were
inoculated on 1.8% glucose/1.8% fructose/1.5% agar plates with 1× Vogel’s media, biotin, and trace
element supplements and incubated at 30 ◦C for 30 h. Three biological replicates of each strain were
performed. Cultures were then harvested onto an 82 mm diameter nitrocellulose membrane and
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inverted onto a new agar plate as previously described above. Plates were placed under light for 32 h
to allow penetration of aerial hyphae, development of conidiophores, and subsequent sporulation.
Nitrocellulose membranes were then removed, and conidia were suspended into 50 mL of water and
counted and sized with the Cellometer Auto 2000 (Nexcelom, Inc., Lawrence, MA, USA) [24,25].

To compare dispersal distance traveled by spores of each phenotype, the same representative
strains listed above were inoculated onto the same growth medium. After 20 h at 30 ◦C, cultures were
harvested onto a 60 mm diameter nitrocellulose membrane, inverted onto a new plate, and set under
light for 30 h. Membranes were then removed and placed at the center of a 245 mm square bioassay
dish, where SFG medium surrounded a 60 mm diameter blank space now occupied by the membrane.
The dish was placed under light for 48 h to allow for sporulation and subsequent colonial growth.
At this time, pictures of each plate were taken with an iPhone XS, and contrast enhancement was
performed in ImageJ. ImageJ was used to measure distance from the center of each nitrocellulose
membrane to the center of each colony. Two biological replicates were conducted for each strain.

3. Results

3.1. Wild N. crassa Isolates Exhibit Three Conidiophore Architectural Phenotypes

Conidiophores from 21 wild Louisiana populations of N. crassa (Table A1) were isolated and
imaged, and we identified striking architectural variation both within and between populations.
Conidiophores were classified by their morphology into three groups that are hereafter referred to
as Wild Type (WT), Bulky, and Wrap. The WT phenotypic class is characterized by linear chains of
developing conidia that extend and branch outward from the aerial hypha. Developing spores in Bulky
conidiophores, however, form crowded clusters that inhibit the ability to distinguish linear chains.
These spores also display more variation in their size and shape. In the Wrap phenotype, conidia cling
to and/or wrap around a hyphal filament rather than extending and branching outward as in the other
phenotypic groups (Figure 1).

Figure 1. The three conidiophore architectural phenotypes. The Wild-Type (WT) phenotype is depicted
in the first panel with FGSC2489, followed by the Bulky phenotype with FGSC8878, and Wrap with
FGSC8876. Scale bar, 100 microns (µm).

Each brightfield image was manually classified into one (or two) of the phenotypic classes using
the guidelines described above (Table 1). Many strains had one phenotype demonstrating a clear
majority, although every population had representation from at least two of the three phenotypes.
All strains developed conidiophores with WT and Wrap phenotypes. Most strains also had Bulky
conidiophores, with the exception of five populations (FGSC0847, FGSC2222, FGSC2228, FGSC3199,
FGSC8872) lacking such individuals. Among the population set of 21 wild strains, 13 showed a majority
of WT conidiophores, while five had a majority of Bulky, and three had a majority of Wrap.
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Table 1. Classifications of conidiophores belonging to each wild isolate (chi-squared test for
independence: X2 = 380.92, df = 40, p < 2.2 × 10−16). Individual conidiophore counts vary with
each strain. Phenotypes are balanced for classifier training described below.

Strain WT Bulky Wrap Total

FGSC0847 22 0 4 26
FGSC2221 26 1 3 30
FGSC2222 13 0 8 21
FGSC2223 10 2 3 15
FGSC2224 16 23 6 45
FGSC2228 39 0 5 44
FGSC2229 14 54 48 116
FGSC2489 32 7 1 40
FGSC3199 17 0 2 19
FGSC3200 30 5 23 58
FGSC3211 20 16 7 43
FGSC3212 54 2 6 62
FGSC3943 32 80 52 164
FGSC8870 19 2 9 30
FGSC8871 16 6 17 39
FGSC8872 14 0 4 18
FGSC8873 8 11 13 32
FGSC8874 20 3 14 37
FGSC8876 15 21 42 78
FGSC8878 20 26 12 58
FGSC8879 6 12 11 29

Total 443 271 290

3.2. Architectural Phenotypes Are Consistent throughout Conidiophore Development

To ensure the three phenotypes were not just representations of different time points along the same
developmental trajectory, we captured images of strains strongly representing each phenotype at 20, 25,
30, and 35 h after transferring cultures to the nitrocellulose membrane, with 30 h as the initial reference
point for mature conidiophore images. It is important to note that each time point was collected from
a separate set of cultures, and these are not time-series images. WT, Bulky, and Wrap phenotypes
were presented as early as 20 h and maintained until sporulation captured at 35 h, suggesting that the
three architectural phenotypes are not a result of temporal disparity along the same developmental
trajectory (Figure 2).

Figure 2. Development of conidiophore architectural phenotypes over time. Individual cultures were
imaged at 20, 25, 30 and 35 h after being transferred to a nitrocellulose membrane and placed under
light. Development of the conidiophore begins at roughly 20 h and concludes with sporulation by
35 h. Representative strains used were as follows: WT, FGSC2489; Bulky, FGSC8879; Wrap, FGSC8876.
Scale bar, 100 µm.
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3.3. There Is No Dependence of Phenotype on Strain Collection Environment

Next, we investigated whether or not there was a correlation between the environment from
which a strain was collected and its most prominent conidiophore phenotype. We found no statistically
significant dependence of phenotype on collection substrate as reported by the Fungal Genetics Stock
Center (FGSC) [15] (chi-squared test for independence; X2 = 4.9196, df = 10, p = 0.8965) (Figure 3).
Interestingly, all strains with a majority of Wrap conidiophores (n = 3) were collected from sugarcane,
although WT and Bulky strains were also found on this substrate. WT strains were found on all six
substrates (sugarcane, grass burn, burned stump, pine burn, bonfire, and unknown), and Bulky strains
were found on sugarcane, grass burn, and pine burn. We also did not find any clear relationship
between most prominent phenotype and the town from which each strain was collected, as reported
by FGSC (Figure 4).

Figure 3. There is no significant correlation between the substrate from which a strain was collected
and its most prominent phenotype (X2 = 4.9196, df = 10, p = 0.8965) from Table 1. Collection substrate
as reported by the Fungal Genetics Stock Center (FGSC).

Figure 4. There is no clear relationship between most prominent phenotype and collection site.
Louisiana town names were reported by the FGSC and are depicted here as geographical coordinates.
Overlapping datapoints depict multiple strains collected from the same town.
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3.4. Architectural Phenotypes Can Be Automatically Classified and Corresponding Features Can Be Extracted

Manually categorizing conidiophores into phenotypic classes is time-consuming and introduces
potential bias. To streamline the future classification of additional conidiophore images, an automated
classification process was developed. We demonstrated that an accurate image classifier could be
constructed based on the limited conidiophore image dataset of 543 training samples and presents
reasonable performances (Tables 2 and 3).

Table 2. Performance of ResNet-50 classification on training, validation, and test sets. Accuracy, precision,
and recall are used for evolution.

Accuracy Precision Recall

Training 0.9632 0.9644 0.9632
Validation 0.7879 0.7890 0.7879

Test 0.7576 0.7540 0.7576
External test set 0.6779 0.6802 0.6639

Table 3. Confusion table for the test set. Each row indicates different true labels, and each column indicates
different predictions. In the test set, the accuracies are 0.9545 (Bulky), 0.5909 (Wrap), and 0.7273 (WT).

Bulky Wrap WT

Bulky 21 1 0
Wrap 4 13 5
WT 2 4 16

Images from both the test and the validation set can be accurately classified at rates of 76% and
79%, respectively (Figure 5). Testing on an external dataset from a separate batch showed slightly worse
performance at 68% accuracy. Feature importance is also evaluated (Figure 5), confirming that the
program is properly identifying the conidiophore within an image for classification. This method was
used to classify images of progeny conidiophores in a high-throughput manner to estimate potential
heritability of these phenotypes, as described below.

Figure 5. Automatic classification of phenotypes. Model performance on test and validation sets is
depicted in the first two columns. The far-left column shows a selected test set, followed by an example
validation set in the second column. The third and fourth columns show feature importance evaluation
for a few test samples. The third column shows the original image (after padding and resize) with the
last column identifying feature importance. A higher value (black) in the last column indicates greater
feature importance. All images are labeled with the model predicted phenotype first and manually
identified phenotype second.
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3.5. Crosses Suggest at Least 2–3 Genes Involved in Conidiophore Architectural Phenotypes

Three crosses were performed between representative strains for each architectural phenotype:
FGSC8872 × FGSC8876 (WT × Wrap), FGSC8876 × FGSC2229 (Wrap × Bulky), and FGSC 8872 ×
FGSC3943 (WT×Bulky). A total of 50 progeny were selected from each cross, from which conidiophores
were isolated and imaged. For efficiency, these 1932 images were each assigned a phenotype by
automatic classification as described above. These phenotype counts were then used to estimate an
inheritance model for this discrete complex trait, described below (Table 4).

Table 4. The cell probabilities for the fully epistatic inheritance model with three genes in three crosses.
The probability of phenotype j from cross i is Kij.

A (WT) B (Wrap) C (Bulky)

A × B K11 = eλeαe−βeαβ K12 = eλe−αeβeαβ K13 = eλe−αe−βe−αβ

B × C K21 = eλe−βe−γe−βγ K22 = eλeβe−γeβγ K23 = eλe−βeγeβγ

A × C K31 = eλeαe−γeαγ K32 = eλe−αe−γe−αγ K33 = eλe−αeγeαγ

The inheritance model is summarized in the table above and motivated by classic models for
quantitative traits [26]. In this model, each cross contributes the effect of one dominant allele at each of
three loci. For example, in Emericella (Aspergillus) nidulans, at least three genes control conidiophore
development [27]. The main effects of the three loci are denoted by α, β, and γ for the A (WT), B (Wrap),
and C (Bulky) loci and associated phenotype, respectively. In each cross, there are two dominant alleles
(one from each parent) being contributed that epistatically interact to determine the conidiophore
architectural phenotype. In principle, these pairwise interactions could result from environmental
interactions among progeny in the cross and/or developmental interactions within developing progeny.
By isolating progeny in their own agar droplet (see Section 2), the former possibility could be eliminated.
The pairwise interactions are denoted by αβ, βγ, and αγ. In addition, in this model, there is one grand
mean λ that is adjusted so that all these probabilities of a progeny phenotype, Kij, sum to 1. The data
tabled below are the multinomial counts of progeny from each of the three crosses (Table 5):

Table 5. Multinomial counts of progeny phenotypes from each of the three crosses.

A (WT) B (Wrap) C (Bulky)

A × B N11 = 156 N12= 205 N13 = 253

B × C N21 = 94 N22= 155 N23= 275

A × C N31 = 202 N32= 230 N33= 198

A denotes an allele associated with the WT phenotype, B denotes an allele associated with the
Wrap phenotype, and C denotes an allele associated with the Bulky phenotype. These counts are
stored in a 9 × 1 vector N, the “dependent variable” to be explained by the allelic and epistatic effects.
The sum of these nine progeny counts is N. Under this model, the log of the expectations of these
counts E(Y) are linear in the parameters of the model, such as the allelic effects; thus, the model is
sometimes referred to as a loglinear model [28]. Much as in a probit model, the goal of this discrete
trait model is to associate an underlying quantitative trait through the log of the expected counts
with the allelic and epistatic effects. Under the simplest hypothesis, all nine of these cell probabilities
are equal. Departures from this hypothesis (H0) summarize the variation in the counts as measured
by the Pearson X2

0. Departures from the next simplest hypothesis (H1) summarize the additive
variation in the counts as measured by the Pearson X2

1. Departures from the last, most complicated
hypothesis (H2) with all three interactions summarizes the additive and epistatic variation by the
Pearson X2

2. The heritability is summarized by the ratio of the additive variation to the total variation:
H2 = (X2

0 −X2
1)/X2

0. Many intervening models can be envisioned in a hierarchy of possible inheritance
models (Figure 6).



Microorganisms 2020, 8, 1760 9 of 18

Figure 6. The above hierarchy of models contained particular models that fit the phenotypic counts
on three crosses between parents with different conidiophore phenotypes. At the top of the model
hierarchy is the full epistatic model (F) with a grand mean, three additive allelic effects, and three
epistatic interactions. At the bottom of the hierarchy is an environmental model with no genetic effects
on conidiophore phenotype (E). Intervening models in the hierarchy drop one or more parameters
describing the additive and epistatic effects of genes A, B, and C associated with the conidiophore
phenotypes, A, B, and C.

Each model was fitted by the Method of Maximum Likelihood using iteratively reweighted least
squares (IRLS) [29,30]. Under this approach, the information A about the counts is denoted by A,
and the derivatives of the cell probabilities in the model above are stored in the array X tabled below
(Table 6). The matrix NX’AX is the information about the parameters in the model. The score vector S
represents the derivatives of the log of the cell probabilities and can be written as S = AY, where A is a
9 × 9 diagonal matrix where A(i,i) = 1/K(i,i).

Table 6. The derivatives of the model cell probabilities are stored in the below 9 × 7 derivative matrix
X. Each row captures the parameters present in an expected cell probability Kij of one of the three
phenotypes j in cross i (Table 4). The X matrix captures the structure of the model. Dropping/adding
columns corresponds to dropping/adding parameters in a model.

Parameters/K λ α β γ αβ βγ αγ

K11 1 1 −1 0 1 0 0
K12 1 −1 1 0 1 0 0
K13 1 −1 −1 0 −1 0 0
K21 1 0 −1 −1 0 −1 0
K22 1 0 1 −1 0 1 0
K23 1 0 −1 1 0 −1 0
K31 1 1 0 −1 0 0 1
K32 1 −1 0 −1 0 0 −1
K33 1 −1 0 1 0 0 1
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The fitting of this model with seven parameters or a simplification of this inheritance model
was obtained from solving the below weighted least squares problem where Y = S + NAXN is the
provisional quantitative dependent variable, X is the regression matrix of independent variables,
such as allelic effects, A is the weight matrix, and the parameters are β′ = ( λ, α, β,γ,αβ, βγ,αγ).
The parameters are found by solving the following normal equation iteratively:

NX′AXβ∗ = X′Y. (1)

The matrix A and vector Y are evaluated with the current provisional parameter estimate β,
and then the normal equations are solved for the updated parameter vector β∗. The process is repeated
until the relative error is less than 10−8. The process is initialized by solving the multiple regression
problem with log

(N
N

)
= Xβ+ ε, where ε is a normally distributed error vector with nine independent

components. Goodness of fit was assessed by Pearson X2. The only thing to be changed for simplified
models is the X matrix by removing the appropriate column(s) to eliminate a parameter or parameters
not in a simplified model. The results for fitting the models with IRLS [29] computed with relative
error <10−8 after nine iterations of IRLS are summarized in the table below.

The full epistatic model with three genes fitted the ratios from three crosses (Table 7). The only
epistatic interaction that could possibly be dropped was between the A (WT) and B (Wrap) genes (αβ).
This raised the question of whether or not any one of the additive allelic effects could be dropped
altogether. This turned out to be the β allelic effect (for Wrap). A model without the B gene for Wrap
did fit the progeny counts of the three crosses (X2 = 9.96, df = 5, p = 0.08). The conclusion was that
at least two genes control conidiophore phenotype. An additive model and the model without gene
effects was then used to assess the heritability. The heritability of H2 was typical for quantitative
traits [26], namely, about 0.23.

The maximum likelihood estimates of parameters for the inheritance model are tabled (Table 8).
The two promising models are fairly consistent across model parameters. One of these models has
three loci, and the other has only two loci.

The allelic and epistatic effects are fairly stable between the two models. The C (Bulky) gene
appears to have the largest effect both additively and epistatically with both B (Wrap) and A (WT).
There also appears to be a strong epistatic interaction between B (Wrap) and C (Bulky) alleles.

Table 7. A nested hierarchy of inheritance models was successfully fitted with at least two genes
controlling the conidiophore architectural phenotype to the counts of progeny phenotypes from three
crosses (Table 5). Nine iterations were necessary to achieve the desired error tolerance of 10−8 with
iteratively reweighted least square (IRLS). Recommended models are bolded along with their goodness
of fit to the counts of phenotypes in crosses. A null hypothesis (H0) is tested against an alternative
(HA) with the chi-squared test having degrees of freedom (df).

Model X2 df p X2
HA − X2

H0 df p for HA vs. H0 Notes

Full epistatic 0.98 2 0.61 - - - H0 = full epistatic
αβ = 0 8.39 3 0.04 8.39 − 0.98 = 7.41 1 0.004 H0 = full epistatic
αβ = α = 0 25.31 5 0.001 25.31 − 0.98 = 24.33 2 <0.00001 H0 = full epistatic
αβ=β=0 9.96 5 0.08 9.96 − 0.98 = 8.98 2 0.01 H0 = full epistatic
βγ = 0 9.32 3 0.02 9.32 − 0.98 = 8.34 1 0.004 H0 = full epistatic
αγ = 0 84.57 3 <0.0001 84.57 − 0.98 = 83.59 1 <0.00001 H0 = full epistatic

αβ = βγ = αγ = 0
additive 95.76 4 <0.0001 95.76 − 0.98 = 94.78 3 <0.00001 H0 = full epistatic

environmental 124.46 8 <0.0001 124.46 − 0.98 = 123.48 7 <0.00001 H0 = full epistatic

heritability
H2 = (124.46 − 95.76)/124.46 = 0.23

H0 = environmental model
H1 = full additive model
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Table 8. Maximum likelihood estimates of allelic effects and epistatic effects in a two or three locus
model of inheritance. The full epistatic model with three genes has three allelic effects and three
epistatic interactions. The two-gene model with gene B (Wrap) removed has two allelic effects for A
(WT) and C (Bulky) and two epistatic interactions between A (WT) and C (Bulky) and between B (Wrap)
and C (Bulky). The standard errors were obtained from the square roots of the diagonal elements of the
inverse of the information matrix NX′AX.

Parameters Full Epistatic
3 Genes

αβ=β=0
2 Genes

λ 5.32 ± 0.0040 5.32 ± 0.0030
α −0.08 ± 0.0048 0.02 ± 0.0048
β 0.05 ± 0.0061 0
γ 0.53 ± 0.0047 0.53 ± 0.0044
αβ −0.15 ± 0.0060 0
βγ 0.20 ± 0.0067 0.23 ± 0.0061
αγ −0.60 ± 0.0064 −0.58 ± 0.0062

3.6. Architectural Phenotype May Impact Colonization Capacity in N. crassa

Previous work conducted in Aspergillus has shown that conidiophore architecture impacts the
colonization capability of the organism [8]. To investigate whether this may also be true in N. crassa,
we quantified the average number of conidia produced by each conidiophore phenotype, using a
representative strain for each. There was no statistically significant difference in the number of conidia
produced by each phenotype when suspended in liquid culture (Figure 7). Additionally, we found
no statistically significant difference in average conidium diameter produced by each phenotype
(Figure 8).

Figure 7. Number of conidia suspended in water from an 82 mm diameter nitrocellulose membrane
by each conidiophore phenotype. The dataset includes three biological replicates. The box shows the
25th and 75th percentiles, with the median denoted as a line inside. The whiskers represent the range
of data. The t-test results for pairs are as follows: WT–Wrap, p = 0.09541; Wrap–Bulky, p = 0.06079;
WT–Bulky, p = 0.505.
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Figure 8. Average conidium diameter in microns when suspended in water for each architectural
phenotype. The dataset includes three biological replicates. The box shows the 25th and 75th percentiles,
with the median denoted as a line inside. The whiskers represent the range of data. The t-test results
for pairs are as follows: WT–Wrap, p = 0.125; Wrap–Bulky, p = 0.3219; WT–Bulky, p = 0.3995.

We also explored sporulation behavior on SFG medium, where mature conidiophores were
placed at the center of a plate to allow for sporulation and subsequent colonial growth. Interestingly,
fewer WT colonies (n = 334) developed compared to Wrap and Bulky (n = 1113 and n = 1252,
respectively), suggesting a difference in sporulation behavior in an aerial versus aqueous environment.
We quantified the distance from the center of each nitrocellulose membrane to the center of each
colony. The distribution of these distances are referred to as the spore shadow. Two replicate datasets
were combined, as there was no significant difference between replicates of a phenotype following a
two-sample Kolmogorov–Smirnov test [30]. Sporulation by Wrap conidiophores resulted in colonies at
a significantly closer distance when compared to that of Bulky colonies (p = 3.101 × 10−5) (Figure 9).
No significant sporulation distance difference was found for the other pair combinations; however,
differences in the distribution of colony distances were found between pairs WT and Wrap (D = 0.090973,
p = 0.02849) and Wrap and Bulky (D = 0.09624, p = 3.702 × 10−5) by two-sample Kolmogorov–Smirnov
tests (Figure 10).

Figure 9. Distance in mm to the center of each colony on sorbose + fructose + glucose (SFG) medium
from the center of each nitrocellulose membrane. The dataset includes two biological replicates. The box
shows the 25th and 75th percentiles, with the median denoted as a line inside. The whiskers represent
the range of data. The t-test results for pairs are as follows: WT–Wrap, p = 0.0587; Wrap–Bulky,
p = 3.101 × 10−5; WT–Bulky, p = 0.3466.
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Figure 10. Histogram of distances in mm to the center of each colony from the center of each
nitrocellulose membrane. Total colony counts combining two replicates are as follows: WT = 334,
Wrap = 1113, Bulky = 1252. Results of two-sample Kolmogorov–Smirnov tests for each pair are as
follows: WT–Wrap D = 0.090973, p = 0.02849; Wrap–Bulky D = 0.09624, p = 3.702 × 10−5; WT–Bulky
D = 0.055465, p = 0.3922.

4. Discussion

Conidiophore development in N. crassa has been thoroughly documented over decades of
study [31]. Genetic, temporal, and environmental signals guiding this process are well understood [4,31];
however, little is known about conidiophore morphological variation, particularly in natural
populations. The N. crassa collection of Louisiana isolates provides a convenient tool for characterizing
variation in a natural population and has previously been used to describe local adaptations and reveal
novel gene functions [11–13]. Following their collection from nature, these strains underwent conidial
plating to remove possible fungal contaminants and were maintained vegetatively at the FGSC [32].
It is entirely likely that these isolates are heterokaryotic, reflective of the genetic variation observed in
the wild. By using these populations as is, we aimed to capture the full spectrum of natural variation
in conidiophore architecture.

By utilizing this population set of 21 wild strains to explore morphological variation in the
conidiophore, we identified three novel architectural phenotypes: Wild Type, Bulky, and Wrap.
These three phenotypes are consistently displayed throughout conidiophore development and are
likely not the result of temporal disparity along the same growth trajectory. Interestingly, no clear
dependence of phenotype on collection location or substrate was observed, suggesting a genetic
component to this variation. To further explore this, we conducted crosses between representative
strains for each phenotype. By quantifying the subsequent progeny conidiophores of these crosses,
we were able to fit a model for inheritance. Our resulting model suggests that at least two genes control
conidiophore architectural phenotype with an estimated heritability of 0.23.

Future work should seek to identify these genetic variants and characterize transcriptional profiles
for conidiophores of different architectural phenotypes. Many key genetic players of conidiophore
development have already been identified and thoroughly characterized, most notably the con genes [33],
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and transcriptomic data have elucidated gene expression profiles throughout wild-type conidiophore
development [7]. Interestingly, the Bulky conidiophore phenotype resembles that of the attenuated
(at) knockout mutant, where conidia form in dense aggregates [34]. However, we do not observe
slowed growth and pigmentation in the Bulky wild isolates as is seen in at mutants. Identifying and
characterizing additional genes possibly underlying WT, Bulky, and Wrap phenotypes would provide
greater understanding of conidiophore development through a morphological lens and perhaps lend
insight into the natural population structure of these wild isolates.

To investigate a potential environmental impact of conidiophore architecture, we evaluated
the effect of conidiophore phenotype on sporulation in both an aqueous suspension and aerial
environment. No significant effect was detected on the number of conidia or average conidium
diameter when suspended in water, nor was there any difference in wettability of conidia while
washing off a plate. This indicates that the conidiophore architectural phenotype is not due to difference
in hydrophobicity of the conidia. In an aerial environment, fewer conidia from Wrap conidiophores
germinated compared to Bulky. Additionally, spore shadows by conidia from Wrap conidiophores fit a
different distribution compared to that of both WT and Bulky groups. This suggests that conidiophore
architectural phenotype may impact colonization capacity of the organism. Sporulation experiments
should be conducted at a larger scale to more effectively determine the maximum dispersal distance
of each conidiophore phenotype and, hence, effective population size and neighborhood size [35,36].
Furthermore, it is possible that conidiophore phenotype may contribute to microspatial variation
through altering effective population size and neighborhood size, as some strains exhibiting different
architectural phenotypes were collected from the same substrate in the same location [37].

It remains a challenge to relate complex traits describing growth and form to their underlying
genes [1]. Doing so requires genomics [13,38], transcriptomics [12], and/or metabolomics [39], as well
as high-throughput approaches to phenotyping. Morphological diversity presents an attractive
opportunity for image analyses and phenotyping at a large scale, as shown in other model fungal
systems such as yeast [40,41]. Phenomics tools like Digital Imaging of Root Traits (DIRT) have been
developed specifically to quantify architectural features in plant root systems [42]. Although filamentous
fungi bear some similarities to roots, the unique morphology of conidiophores is best characterized
with a tool specifically designed for their structure. We presented a novel method to classify brightfield
images of conidiophores into three architectural phenotypes and extract important features for their
classification. This same approach can be applied to characterize conidiophores of other filamentous
fungi and may even be used in conjunction with DIRT to characterize morphology in the symbiotic
relationship between roots and arbuscular mycorrhiza [43,44]. To further improve our method,
automation in sample collections and blurred region removal could be implemented. Performance in
model training was also limited by the sample size in our study and domain-specific features.
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Appendix A

Table A1. Population of wild Louisiana isolates of N. crassa. Strains used in this study were obtained
from the FGSC. Mating type (Mat) of each strain is denoted by A or a.

Strain Number FGSC Perkins Mat Strain Provenance Collection Site Substrate/Annotation

Wild Strains
D110 8870 4448 A Dettman, J. Franklin, LA sugarcane
D111 8871 4449 a Dettman, J. Franklin, LA sugarcane
D112 8872 4453 A Dettman, J. Franklin, LA sugarcane
D114 8874 4464 A Dettman, J. Franklin, LA sugarcane
D116 8876 4481 a Dettman, J. Franklin, LA sugarcane
D118 8878 4491 a Dettman, J. Franklin, LA sugarcane
JW09 2229 A Welch, J. Welsh, LA burned grass
JW10 2229 A Welch, J. Welsh, LA burned grass
JW59 3200 a Welch, J. Coon, LA burned stumps
JW66 3211 a Welch, J. Sugartown, LA Pine burn
JW70 3199 A Welch, J. Coon, LA burned stumps
JW75 3943 a Welch, J. Houma, LA sugarcane burn

847 A Lein Louisiana sugarcane burn
D113 8873 4454 a Dettman, J. Franklin, LA sugarcane
D119 8879 4500 a Dettman, J. Franklin, LA sugarcane
JW20 3212 A Welch, J. Ravenswood, LA bonfire
JW76 3943 a Welch, J. Houma, LA sugarcane burn
JW159 2221 a Welch, J. Houma, LA sugarcane burn
JW160 2222 A Welch, J. Iowa, LA grass burn
JW162 2223 a Welch, J. Iowa, LA grass burn
JW164 2224 a Welch, J. Marrero, LA wood burn
JW167 2228 a Welch, J. Roanoke, LA grass burn
OR74A 2489 A FGSC Marrero, LA unknown

Figure A1. Model accuracies through training. Accuracies of the training (solid line) and validation
(dotted line) sets is plotted through epochs. The final model was chosen on the basis of the accuracy of
the validation set.
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