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Abstract—Due to the inherent broadcast nature of the wireless
medium, Wireless Local Area Networks (WLANs) are targets of
a variety of malicious attacks, for example, MAC identity spoof-
ing, rogue AP attack, and network freeloading. These attacks
invite security and privacy threats and hinder the worry-free
deployment of WLAN networks. To thwart these attacks, existing
research has proposed to use hardware-specific imperfections
as a unique unforgeable fingerprint for the APs and/or clients.
Unfortunately, existing solutions are limited to static and stable
environments or use customized hardware preventing their wide-
scale adoption. To overcome the limitations, in this work, we pro-
pose to use the distribution of relative phase differences between
MIMO-radio transmitter oscillators as a distinguishing trait or
fingerprint. More specifically, we show that the nonidealities of
the multiple RF chains on a single MIMO-OFDM (Multiple Input
Multiple Output-Orthogonal Frequency Division Multiplexing)
transmitter can be extracted and utilized as a reliable device
fingerprint. Each transmitter RF chain has a random initial
phase offset, and their difference relative to one another is
stable over time, differs uniquely for each transmitter device and
cannot be altered by the adversary without significant effort and
cost. Our functional prototype measures these unknown phase
differences using PHY-layer Channel State Information (CSI) of
the in-band channel obtained from off-the-shelf hardware. Our
design eliminates expensive custom-built hardware, is invariant
to environmental variations and supports device mobility making
it practical and deployable in real indoor settings. Experimen-
tal evaluation using 17 Intel Network Interface Cards (NICs)
resulted in 97% and 92% device identification accuracy for
static and mobile device states respectively. Such promising
results with identical model and manufacturer devices wherein
underlying manufacturing variations are typically low showcase
the effectiveness of our design and suggest even higher accuracy
across multi-model and multi-manufacturer cards because of the
higher manufacturing variations.

Keywords—Fingerprinting, CSI, Carrier Phase Offset (CPO), De-
vice identification and authentication

I. INTRODUCTION

Wireless networks are becoming increasingly prevalent and
are playing an increasingly important role in our daily lives. As
WiFi usage continues to surge, associated threats and security
breaches continue to emerge. WiFi networks are particularly
vulnerable because of their inherent open medium and easy
programmability. Among all WiFi security threats, the rogue
APs are the most perilous. A rogue AP is an unauthorized
access point masquerading as a trusted original AP, created
for launching malicious attacks. When the victim connects
to a rogue AP, the adversary can eavesdrop and manipulate
user’s traffic stealing sensitive and confidential data such as
login credentials and bank account information. To counter

such identity (impostor) attacks, WLAN administrators rely on
cryptographic mutual authentication schemes between clients
and APs (e.g. 802.11i RSNA). While these measures do
strengthen security, unfortunately, they are not free from
vulnerabilities as pointed out by previous studies [1]–[3]. For
this reason, many research studies have used indispensable
but benign transmitter imperfections manifested in the emitted
signal and measurable remotely, as an additional mechanism
for device authentication. Certainly, this is a promising direc-
tion because the cost of forging hardware impairments is the
deterrent thereupon providing reliable and robust means for
identification [4].

Limitations of Prior Art: Over the past decade, multiple
solutions have been proposed to utilize the hardware imper-
fections as a means for distinguishing the identity of the users.
For instance, ref [5] uses IQ offset and SYNC correlation
as an identification feature. They reported 99% identification
accuracy using custom hardware (VSA, USRP). However,
customized hardware hinders the wide-scale deployment and
usability of the system. Another system [3] identifies wireless
transmitters by measuring imperfections of a digital-to-analog
converter (DAC) and the power amplifiers (PA). The nonlin-
earities of the PA are measured using a commercial power
amplifier, but nonlinear variations of the DAC were simulated.
Although simulation provides new knowledge without hands-
on experiments, it is difficult to validate the usability in real ap-
plications. Recently, Hua et. al. [2] found a way to use custom
hardware for device identification by mining carrier frequency
offset (CFO) from CSI measurements. CFO is a hardware-
specific feature that arises because of the mismatch of carrier
frequency between TX and RX oscillators. It is distinct for
different wireless devices. They eliminate the need for custom
hardware and achieve a high identification accuracy of 94%.
Unfortunately, their system is sensitive to channel fluctuations
and device movement. This is because, they use consecutive
packets to filter the channel and during the measurement
process, if the channel is changing the estimated CFO will
be corrupted by the channel residues. Yet another constraint
of their system is the stationarity of TX and RX. These
constraints make the authentication process uncomfortable and
error-prone in real-life settings. The restraint in movement
results because in addition to the mismatch between oscillator
carrier frequencies, the Doppler effect also contributes to CFO,
thus making it variable and sensitive to movement.
Motivation and Proposed Approach: To make the system
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robust to fluctuating channel and movement, in this study
we propose an alternative but insensitive hardware noise for
fingerprinting. Specifically, we propose to use the difference
of relative phase differences of multiple RF oscillators on
a single commodity transmitter as a distinctive identifying
feature. Modern commodity cards support multiple antennas,
for example, Intel 5300 card has three antenna ports each with
a different analog front-end. The RX and TX local oscillators
(LO) are not perfectly synchronized in time, frequency and
phase. However, according to research on phased-array local-
ization [6]–[8], RF oscillators on a single commodity wireless
NIC are frequency-and time-locked preventing their relative
phases drifting over time (packets) and frequency (OFDM
subcarriers). But, across antennas (space) they have unknown,
absolute phase offset relative to one another. Our insight is to
exploit this relative phase difference as the signature of the
transmitter device. This hardware signature is buried in the
raw CSI data of the in-band channel measured at the receiver.
It serves as an attractive feature for fingerprinting since it is
unaffected by mobility and time. In particular, multiple RF
chains within one system experience the same randomness due
to movement or channel fluctuations as illustrated in Fig. 2.
We extract this transmitter RF phase difference remotely at the
receiver using commercial off-the-shelf (COTS) hardware and
additionally support mobility in contrast to previous solutions.
To the best of our knowledge, no previous study can provide
both benefits simultaneously, i.e., support commodity (non-
custom) hardware and tolerance to movements within a single
system.
Our Contribution: The following summarizes the main con-
tributions of this paper:

• We design the first system that extracts the relative phase
differences across multiple RF oscillators within a single
commodity TX NIC as a unique device signature.

• We build our system using inexpensive commodity de-
vices and eliminate the use of expensive custom hard-
ware.

• We conducted comprehensive experiments in diverse real
environmental settings and results show that our approach
is highly effective in determining the device identity even
when the devices are moving.

• Our algorithm, using 17 Intel NICs achieves accuracy
of 97% and 92% for static and mobile device states
respectively.

The rest of the paper is organized as follows. In Section II, we
present an overview of CSI and various sources of hardware
impairments. Based on this understanding, Section III explains
the new technique to generate the fingerprint. In Section IV, we
present our experimental results and discuss the effectiveness
of the proposed method. Finally, Section V presents future
research direction and Section VI concludes the paper.

II. OVERVIEW OF CSI AND SOURCES OF ERRORS

Our prototype uses COTS 802.11n hardware platform sup-
porting three TX and RX antennas/RF chains as shown in
Fig. 1. OFDM receivers continuously monitor wireless channel

Fig. 1: Illustration of basic components of wireless transre-
ceiver; imperfections of each component adds to the total
phase noise.

Fig. 2: The framework for isolating the TX signature by
removing the effects of ToF, CFO, SFO and STO.

variations using a fine-grained PHY-layer information (CSI)
measured just after the Inverse Fast Fourier Transform (IFFT)
block (see Fig. 1). It characterizes the channel properties of the
communication link between TX and RX antennas for each
OFDM subcarrier. More specifically, if NTX and NRX are
the number of transmit and receive antennas respectively, then
for Intel 5300 card, CSI is reported for selected 30 OFDM
subcarriers resulting in a measurement matrix dimension of
NTX × NRX × 30 for each successfully decoded receiver
packet. The received OFDM complex signal vector is modeled
as Y = HX + N . H is the channel frequency response (or
true CSI), X is the transmitted symbol vector and N is the
AWGN complex noise vector. In an ideal scenario, the matrix
H captures the amplitude and phase distortion (H = |H|e−jψ)
caused by a wireless channel. But in practice, it is mixed with a
variety of phase noises contributed by hardware imperfections
and signal processing delays. Previous research studies [9]–
[11] corroborate that the reported measurements are mixed
with the following hardware errors (also shown in Fig. 1):

Ĥt,k,s = |Ĥ|t,k,se−jφt,k,s (1)
φt,k,s = ψt,k,s︸ ︷︷ ︸

ToF

+ αt,k︸︷︷︸
STO

+ γt,k︸︷︷︸
SFO

+ βt︸︷︷︸
CFO

+ ζs︸︷︷︸
CPO

+ ε︸︷︷︸
AWGN

(2)

where, Ĥt,k,s is the reported noisy CSI matrix. φt,k,s is
the total phase measured that characterizes both channel and
hardware noise for a given packet (t), subcarrier index (k) and

Phase Error Sources CPO SFO,STO CFO
Time constant variable variable

Frequency constant linear constant
Space variable constant constant

TABLE I: Dimension vs phase error across multiple RF chains
for a single commodity device.
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Fig. 3: Wired experimental setup in order to measure the
ground truth phase difference for individual NICs .

RF antenna (s). Although the first term due to Time of Flight
(ToF) (ψt,k,s) is usually the dominant term of the sum, other
summands are non-negligible. Below we briefly explain each
of the noise terms. Refer to papers [2], [6], [9]–[11] for more
elaborate phase noise information.
ψt,k,s : it is the phase shift introduced by the air, also known
as the ToF. This phase varies with time even when the TX-
RX are stationary due to diverse multipath fading. It linearly
increases with the subcarrier index k. Due to the physical sep-
aration of antennas, each antenna receives a slightly delayed
version of the signal, i.e., the signal arrives with a different
phase resulting in the phase offset across antennas. This offset
is a function of antenna separation, the frequency of the carrier
signal and the angle of arrival (AoA) and angle of departure
(AoD) of the received and the transmitted signal.
αt,k : it is the phase shift due to Sampling Frequency Offset
(SFO). It is caused by a mismatch of the sampling frequencies
of the sender and receiver DAC and analog to digital converter
(ADC) respectively. SFO linearly increases with the subcarrier
index. It is given by αt,k = 2πkτo/N , where τo is the delay
due to sampling frequency mismatch and N is the IFFT length.
γt,k : Due to lack of tight time-synchronization between
sender and receiver, Symbol Time Offset (STO) occurs.
Within, a single device, STO varies linearly with the subcarrier
index, is constant across antenna arrays but again varies across
samples or time [8]. It is given by, γt,k = 2πkτd/N , where
τd is the symbol samples offset.
βt : The receiver must lock to the carrier frequency of the TX
for decoding the message correctly. The central frequencies
cannot be perfectly synchronized. The offset between the TX-
RX carrier frequency is termed CFO. It can be modeled as
βt = 2π∆fct. This quantity is not a function of subcarrier
index (k) and is same across 3 receiver antenna elements, but
varies across time or frames.
ζs : Apart from frequency and time mismatch, the TX and RX
mismatch in the initial carrier phase and is termed as carrier
phase offset (CPO). Multiple RF elements in a single commod-
ity TX have different initial phase shifts [9] leading to relative
constant difference across time and subcarrier frequency. This
difference causes a problem in WiFi localization algorithms.
Ref. [9] calibrated this error by using equal length coaxial
cables as shown in Fig. 3. Another study [7] used specialized
vector network analyzer (VNA) equipment for precisely mea-
suring the CPO error. Table I shows the relationship of various
phase errors with time, frequency and space for multiple RF
chains within a single commodity device.

III. METHODOLOGY

As discussed above, the measured phase using commodity
hardware is a complex mixture of phase shift caused by
the propagation path (medium) as well as noise-induced by
a variety of hardware components at sender and receiver
devices. Previous research methods based on hardware-specific
fingerprinting utilize a single or combination of these hard-
ware noises to fingerprint. For example, most recent work
[2] used CFO as the fingerprint of a device. They have an
elegant system design. However, the time-sensitivity of CFO
restricts mobility hindering usability. We note from Eq. (2)
that, excluding CPO all other phase terms vary either with
time and/or frequency. Only CPO is constant for a given RF
oscillator with time and frequency. When a single TX chain is
used, it is difficult to filter out CPO from the received phase
mixture. However, modern transmitters and receivers support
multiple chains that are frequency and time locked. We exploit
this extra spatial dimension offered by modern MIMO devices
to extract the relative difference of CPO as our fingerprint.
We filter out other time-varying phase factors and keep only
the relative phase offset solely contributed by the multiple
RF chains within a single transceiver as a device signature.
Since this offset is constant with time and frequency, it is an
attractive choice for fingerprinting.

A. Design Rationale: Physical Modeling of MIMO channel

Transmitter sends three streams per symbol time
[x1(t), x2(t), x3(t)] as shown in the block diagram Fig.1.
Transmission rate such as 0x1c911 forces all three TX
chains to be used for sending the data. Geographically-
separated transmit antennas causes different AoD of the
transmitted signal. Similarly, the antenna separation at the
receiver, causes AoA at the receiver. For MIMO channel,
with spatially separated antennas the channel matrix H
incorporates the extra phase due to AoA and AoD. Since,
we are interested in measuring the phase difference across
the transmitter antennas, we slice the measured CSI matrix
as shown in Fig. 2. The total phase for each antenna can be
modeled as:

φt,k,1 = ψt,k,1 + αt,k + γt,k + βt + ζ1 + ε1 (3)
φt,k,2 = ψt,k,2 + αt,k + γt,k + βt + ζ2 + ε2 (4)
φt,k,3 = ψt,k,3 + αt,k + γt,k + βt + ζ3 + ε3 (5)

Please refer to Section II for meaning of each of the symbols
in the above equations. When there is no separation between
antennas or channel is highly correlated, there is no AoA or
AoD, and the phase due to channel is the same for all antennas
i.e. ψt,k,1 = ψt,k,2 = ψt,k,3. This implies, that the relative
difference between the TX chains can be calculated just by
taking difference of CSI across MIMO antennas.

∆φt,k,21 = φt,k,2 − φt,k,1 = ζ2 − ζ1 + ∆ε21 (6)
∆φt,k,32 = φt,k,3 − φt,k,2 = ζ3 − ζ2 + ∆ε32 (7)

Eq. (6) and (7) contains relative hardware phase noise mixed
with some added normal white noise. To access this hardware
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Fig. 4: Wired experiment: phase offset between RF chains. (a)The measured phase difference between antenna 1 and 2
(Off21), and antenna 2 and 3 (Off32) for 5000 packets. Note the phase shift of ±π. (b) Histogram of phase difference before
preprocessing (c) Histogram of measured phase difference after preprocessing step.

noise is dominant and extract-able, we observe the distribution
of a large number of samples using multipath free wired
experiments. If this metric is differentiable from Gaussian
noise, it should manifest a steady structure across packets
while the Gaussian noise is likely to have a more random
structure. To test our hypothesis, we conduct preliminary wired
experiments which we describe next.

B. Observation with Wired Experiments

We conducted controlled wired experiments using three-way
power splitter and coaxial cables with a setting shown in Fig.
3, wherein complex multipath is not present (or minimized).
To ensure that the splitter and cables did not contribute extra
phase noise in our measurements, we tested them using VNA.
This step is not necessary and is used just for verifying that
no extra noise was being added by these components. We
transmitted 5000 packets using a carrier frequency of 5.59
GHz (channel 116 HT 40+) using packet injection mode. We
repeated the experiment with 9 Intel Mini card and 8 Intel Half
Mini card form factor (see Fig. 6(c)). From our experiment
results, we could see stable phase difference between antennas,
however, they clustered in different bands as shown by Fig.
4. We noticed these bands were ± π apart (see Fig. 4(a)). A
similar observation was made in [12], [13]. The cause of this
ambiguity is specific to Intel 5300 card. Its firmware reports
the phase of the channel modulo π/2 (instead of the modulo
2π) as reported by [9], [14]. To fix this ambiguity we simply
add or subtract ±π from the phase difference between the two
antennas, if the measured phase difference is smaller or bigger
than the maximum possible phase difference range of [-π/2
+π/2]. After this preprocessing step, only one cluster remains
as shown in Fig. 4(c). We calculate the phase difference for
17 NICs using Eq. (6) and Eq. (7) and visualize the result via
2D plot (see Fig. 5). From visual inspection, we see that the
Mini and Half Mini Intel NICs form two different clusters
and are distinguishable. Also within each cluster, most of
the devices have different features and are separable. Only
a few of them overlap considerably and we use a standard
neural network to separate their identity with higher accuracy.
While the wired setup is not practical for real-world device
identification, it suggests a promising direction toward using
the relative phase difference of RF oscillators as a unique
MIMO-device identification feature.

-80 -60 -40 -20 0 20 40 60 80
-100

-50

0

50

Mini NIC Cluster

Half Mini NIC Cluster

Fig. 5: Estimated phase difference Off21 (TX2 - TX1) and
Off32 (TX3 - TX2) for 9 Intel Mini card and 8 Half Mini
card. The bottom cluster corresponds to the Half Mini card.

C. Cancellation of Multipath Effects

In indoor, multipath rich setting, with perfect antenna sep-
aration of λ/2, Eq. (6) and Eq. (7) changes to following:

∆φt,k,21 =

L∑
l=1

πsin(Θl) + ζ2 − ζ1 + ∆ε21 (8)

∆φt,k,32 =

L∑
l=1

πsin(Θl) + ζ3 − ζ2 + ∆ε32 (9)

where, L represent number of multipaths, and Θl is the angle
of departure of the multipath signal l. From above Eq. (8)-
(9), it is clear that we cannot directly use the relative phase
offset as our fingerprint because it is influenced by the spatial
signature or AoD of the transmitted signal. To get rid of the
influence of the AoD, we subtract Eq. (8) from Eq. (9) and
use this remaining residue as our input to the neural network.

TX Signature,∆φ = 2ζ2 − ζ1 − ζ3 + ∆ε (10)

Above Eq. (10), is the transmitters fingerprint and in deriving
it, we assume that antennas have perfect equal separation and
that they receive same set of multipaths. In reality, there may
be minute difference in distance between antennas and each
antenna may see slightly different set of multipaths. These
unavoidable errors may hurt extraction of our signature process
and therefore such modeling errors must be compensated for.

D. Fully connected Neural Network for RF fingerprinting

We use a standard fully connected deep neural network
to do the classification. We calculate higher-order statistical
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Fig. 6: Wireless experimental setup a) Indoor hallway. b) Small
office room (c) Intel adaptor with PCIe Mini Card and Half
Mini Card form factor used for data collection.

parameters mean, variance, skewness, and kurtosis for each
receiver antenna. These parameters are calculated using a
group of 20 samples. Distortions in a metric due to transmit-
ter hardware should manifest themselves consistently across
multiple packets, while channel-specific noise and Gaussian
thermal noise are likely to have more random structure. There-
fore, averaging 20 random samples, we expect to amplify the
features caused by the hardware impairments while reducing
the effects of the wireless channel and ambient noise. Before
feeding this higher-order data, we normalize it using standard
score (X−µ

σ ). The input layer of the neural network is thus a
one-dimensional vector that has 12 float numbers:( RX1: mean,
variance, skewness, kurtosis; RX2: mean, variance, skewness,
kurtosis; RX3: mean, variance, skewness, kurtosis). There are
five fully connected hidden layers with the Relu activation
function. The output layer uses Softmax activation function
and is a one dimensional vector that has probability for each
device:(prob(device1),prob(device2),. . . prob(device17)).

It is worth pointing out that it was not our goal to find the
best-performing algorithm for classification. Instead, we used
a simple structure as a proof of concept. In the future, we shall
conduct more extensive experiments and we plan to explore
the best performing neural network for classification.

IV. RESULTS AND EVALUATION METHODOLOGY

Settings: Wireless experiments are more challenging as
compared to the wired due to the complex multipath envi-
ronment. To appropriately handle multiple noise sources we
transmitted 100,000 packets and used spatial multiplexing
(injection code of 0x1c911) to extract the relative phase
between the TX antennas. We used 85,000 samples for train-
ing and 15,000 for prediction. We experienced, ±π phase
uncertainty similar to wired case and employed the same
preprocessing technique described earlier. We conducted static,
non-line-of-sight (NLOS) and mobile experiments in different
indoor room environments (e.g. a hallway, small office room).
For our experiments, we manually move the receiver while
the transmitter is transmitting packets. When transmitter and
receiver are not moving, we obtain an accuracy of 97-98 %
while distinguishing among all 17 MIMO transceivers in static
indoor settings. And for the mobile case, we obtain 92 %
device identification accuracy. Fig. 7 shows the training and
validation loss for static and mobile experiments conducted in
different indoor rooms. We present the accuracy in Table II.

Fig. 7: Wireless results a) Accuracy vs Epochs for Hallway
(distance between RX-TX is 8m). b) Accuracy for small office
room (distance between RX-TX is 4m). c) Accuracy when the
device is mobile (distance between the RX-TX is 3-4m).

Fig. 8: Visualization of the raw wireless data. Each color
represents a different Intel NIC card and each axes represents
the residue phase of each RX antenna.

The 3D visualization of the raw data in Fig. 8, clearly shows
a structure similar to our wired experiment.

Experiment Setting Accuracy
Hallway LOS (8 m distance) 97 %
Hallway LOS (4 m distance) 97 %

Small Room NLOS (4 m distance) 98 %
Small Room LOS (4 m distance) 98 %

Small Room, device mobile (4m distance) 92%
TABLE II: Identification accuracy using 17 Intel TX NICs.

V. RELATED WORK

A wide variety of hardware imperfections have been used
for fingerprinting and different extracting methods lead to
different approaches. In [15], [16], authors use the received
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signal strength (RSS) to differentiate devices to detect MAC
spoofing. They use the received power as a parameter to fit
the Gaussian mixture models. In another work [17], authors
use a black-box based fingerprinting approach. Here, the input
to the black box (AP) is a packet train, and the output is
the same packet train shifted in time, shifting pattern being
unique to each AP. Although the results were promising the
experiments were conducted using emulated traffic. Authors
in [18], [19], utilized network traffic features such as data
rate, inter-arrival time, frame size e.t.c. for classifying devices.
These features however are not related to the device itself and
can be exploited by the adversary. In [20] small deviations
of the clock skews are proposed as a unique parameter for
characterizing physical devices. They use custom hardware
for measuring the clock skews. In [21], followed the hardware
fingerprinting approach and used machine learning tools on
collected modulation data to train classifiers that are then able
to distinguish wireless cards, even when produced by the same
vendor. Another system called PriLa [22], extracts the CFO
and spatial signatures to verify the truthfulness of the users
in LBS systems. Most recent work on device fingerprinting
[2], mines CFO from CSI eliminating the need for custom
hardware and has good accuracy. However, their system is
intolerant to the movement and dynamic multipath channel.

VI. DISCUSSION AND FUTURE WORK

We have investigated a novel approach for fingerprinting
utilizing neural networks. The current investigation showcased
promising results using a basic neural network. But, the design
of the neural network to accommodate different vendors and
other real-world impairments during the fingerprinting process
should be a matter of further investigation. In future work,
we aim to construct a comprehensive database using multiple
vendors and do extensive field experiments.

VII. CONCLUSION

In this work, we presented a new wireless fingerprinting
technique for device identification for commodity WiFi equip-
ment supporting the 802.11n protocol. Our results undoubtedly
indicate the practical potential of using the difference of the
TX chain carrier phase offset as a valid feature for differentiat-
ing wireless devices. We fixated on a single vendor as an initial
step towards using the phase difference between the antenna
chains as a signature. Our optimistic results open up the door
to do follow-on studies. In the future, we would like to validate
the experimental results with more field experiments, see the
effect of aging, temperatures and try out different vendors
showing that the system is robust and works in all settings.
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