PEERING: Virtualizing BGP at the Edge for Research

Brandon Schlinker® Todd Arnold*

T University of Southern California

ABSTRACT

Internet routing research has long been hindered by obstacles to
executing the wide class of experiments necessary to characterize
problems and opportunities, and evaluate candidate solutions.
Prior works proposed a platform that would provide experiments
with control of an Internet-connected AS. However, because BGP
does not natively support multiplexing or the requisite security
policies for building such a platform, prior works were ultimately
unable to realize this vision.

We present PEERING, a community platform that provides
multiple parallel experiments with control and visibility equivalent
to directly operating a production AS. PEERING is built atop vBGP,
our design for virtualizing the data and control planes of a BGP
edge router while simultaneously enforcing security policies
to prevent experiments from disrupting the Internet and each
other. With PEERING, experiments operate in an environment
qualitatively similar to that of a cloud provider, and can exchange
routes and traffic with hundreds of neighboring networks and the
broader Internet at locations around the world. To date, PEERING’s
rich connectivity and flexibility have enabled it to support over
40 experiments and 15 publications in key research areas such as
security, traffic engineering, and routing policies.

CCS CONCEPTS

« Networks — Network architectures; Programmable net-
works; Network security; Network manageability; Public Internet.

KEYWORDS

Research platform, virtualization, BGP, experimentation, routing

ACM Reference Format:

Brandon Schlinker, Todd Arnold, Italo Cunha, and Ethan Katz-Bassett. 2019.
PEERING: Virtualizing BGP at the Edge for Research. In CoNEXT ’19: Inter-
national Conference On Emerging Networking Experiments And Technologies,
December 9-12, 2019, Orlando, FL, USA. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3359989.3365414

1 INTRODUCTION

Recent changes to the Internet’s topology are renewing interest
in the routing ecosystem, as large content and cloud providers
build out private intercontinental backbones and interconnect di-
rectly with thousands of peer networks [26, 29, 55, 81, 85, 104]. This
change is spurring innovation at Internet eXchange Points (IXPs)

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6998-5/19/12...$15.00
https://doi.org/10.1145/3359989.3365414

¥ Columbia University

51

Ethan Katz-Bassett*

i Universidade Federal de Minas Gerais

Italo Cunha®*

[12, 43, 44]. The growth in connectivity is seen as an opportu-
nity to improve performance, but the improvements come at a
cost: increased complexity of network configuration and traffic
engineering, accompanied by increased security risks [87]. Due
to the shortcomings of the Border Gateway Protocol (BGP), the
protocol responsible for inter-Autonomous System (AS) communi-
cation, content and cloud providers build sophisticated, customized
controllers and measurement systems to handle the additional com-
plexity [80, 81, 100, 104].

Researchers and network operators are well aware of BGP’s
limitations and their impact on performance [44, 47, 60, 81, 101],
availability [54, 66, 104], and security [69, 87], but progress to-
wards overcoming these challenges is slow. A significant barrier to
exploring solutions is that BGP does not lend itself well to support-
ing experimentation. Emulation and simulation cannot accurately
model the Internet due to the lack of transparency in BGP and the
proprietary nature of routing policies [28, 53, 54, 59, 86]. Existing
tools that provide visibility into the current state of BGP [42, 73, 76]
or perform measurements [27, 62, 67, 72] cannot interact with the
routing ecosystem, so they can only provide limited insight into
the current policies and connectivity of an AS [13, 49].

To gain better insight into how solutions will perform, experi-
ments need to interact with and affect the Internet’s routing ecosys-
tem. Interacting with the actual routing ecosystem would require
researchers to take control of a real production AS and its resources:
connectivity, policies, and traffic. Few network administrators are
willing to allow experimentation on a production network due
to the potential wide-ranging, negative effects [75], and few re-
searchers have the resources required to deploy a network with a
footprint similar to that of a large cloud or content provider.

Resource multiplexing and virtualization have repeatedly come
to the rescue in similar scenarios to provide researchers with access
to necessary resources: EmuLab, CloudLab, and XSEDE provide
access to compute resources [2, 3, 10], PlanetLab shares machines
around the world [8], and FlowVisor enables multiplexing layer 2
networks [84]. No equivalent for BGP exists.

Multiplexing control of a BGP router’s interactions with other
networks introduces control and security challenges. A BGP router
applies policy and makes routing decisions locally, routes all traffic
to a destination via a single “best” route, and only informs other
routers of (at most) that single option which limits visibility of avail-
able connectivity. For an experiment to change a policy or decision
would traditionally require manually modifying the router’s con-
figuration; granting that ability is equivalent to giving root access
to experiments, which is untenable from a security perspective.

Transit Portal [96] and our earlier workshop paper [82] shared
our vision of multiplexing the connectivity, traffic, and policies of
an AS, with the workshop paper further proposing the creation
of a community AS and platform to support Internet routing re-
search experiments. However, neither work had fully developed or
implemented the technologies required to multiplex an AS. As a

https://doi.org/10.1145/3359989.3365414
https://doi.org/10.1145/3359989.3365414

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

result, both systems had limited fidelity and flexibility. For instance,
the designs proposed made use of non-standard mechanisms, such
as out of band signaling for route selection, that are incompatible
with standard routers, BGP implementations, and tooling used in
production networks. In addition, limitations in their approaches
to multiplexing made it impossible to support a variety of experi-
ments, such as those requiring fine-grained control over which BGP
announcements and traffic are sent to which neighbors of the AS.

Further, operating a community AS and platform that enables
turn-key Internet routing research presents a number of operational
challenges. Infrastructure and tooling must be developed to model
and actualize the configurations required to support experiments,
maintain safety, and manage interconnections—all of which are key
to enabling the platform to safely scale. The platform must also be
able to safely evolve over time as researchers identify new capabili-
ties required to execute experiments. The prototype designs and im-
plementations of prior work [82, 96] required considerable manual
intervention to support each experiment and were unable to reliably
support or scale to the needs of a community platform (§2.3).

This paper presents VBGP, a framework for virtualizing the data
and control planes of a BGP router (§3). Akin to a hypervisor multi-
plexing resources across VMs, vBGP virtualizes a router’s data and
control plane interactions with other networks, delegating them to
multiple experiments (§3.2). It provides control and visibility equiv-
alent to if each experiment had its own (non-virtual) router with a
BGP session to each neighbor, and provides safety by interposing
between experiments and the Internet on both planes (§3.3).

VBGP is the first approach to delegate control of a BGP router
to experiments running as BGP routers themselves, including the
ability for parallel experiments to specify routing decisions at a
per-packet level. We use a novel combination of IP and layer 2 ma-
nipulation and intradomain BGP advertisements to expose data and
control plane interfaces (§3.2). Because the mechanisms are proto-
col compliant, they are fully compatible with existing routers and
BGP implementations: experiments that run on vBGP are directly
transferable to native networks, and vice versa.

We use VBGP as the foundation of PEERING (§4), a globally dis-
tributed AS open to the research community with routers, or Points
of Presence (PoPs), at thirteen locations (§4.2). Each PEERING PoP
connects with at least one AS on the Internet, a subset of PoPs
are connected to tens or hundreds of other ASes via IXPs, and a
subset are interconnected via a backbone network (§§ 4.3 and 4.4).
PEERING provides experiments with turn-key access to a global
AS (§4.6) with connectivity qualitatively similar to that of cloud
or content providers and is capable of supporting any exchange
of routes and traffic that an experiment could perform with dedi-
cated control over the PEERING infrastructure. PEERING employs
strict security policies on both the data and control planes to pre-
vent experiments from disrupting the Internet (§4.7). We employed
a principled approach to development, testing, deployment, and
configuration management that eases operation and supports ex-
tensibility (§5). Our current software stack can be deployed at even
the largest IXPs for the foreseeable future on off-the-shelf servers
(§6). PEERING has been used to support 15 publications to date
[13, 15, 18-20, 38, 57, 69, 79, 81, 83, 87-90] (§7).

52

B. Schlinker et al.

2 GOALS AND CHALLENGES
2.1 Goals

Our overarching goal is the design, implementation, and deploy-
ment of a platform for routing experimentation that can delegate
control of a real AS to researchers, allowing them to exchange
routes and traffic with real networks on the Internet. We decom-
pose this high-level goal into the following subgoals:

Maintain safety. An experiment should be prevented from dis-
rupting other experiments, the platform, and, critically, the broader
Internet. BGP allows for disruptive behaviors including prefix hi-
jacks, route leaks, interception attacks, blackholes, routing oscil-
lations, and spoofed traffic. It is a challenge even for experts to
design BGP configurations that operate as intended [35, 39, 61], so
the platform must prevent even well-intentioned experiments from
causing problems.

Allow parallel experiments. To support long-running studies,
iteratively-refined experiments, and the synchronized demand be-
fore conference submission deadlines, the platform should support
parallel experiments while isolating them. It should do so without
compromising the degree of control given to experiments, and with-
out requiring coordination between experiments or administrators.

Support a wide range of experiments. Since we cannot anticipate
the full range of experiments researchers may want to run, our goal
is a flexible platform that provides researchers with the same control
over the data and control planes as they would have operating their
own network (subject to the safety requirements). The platform
should be able to support the following (and more):

e Supporting experiments that use existing routers, to allow
fidelity and transitioning of experiments from the platform
to non-multiplexed environments.

¢ Allowing experiments to host services (e.g., an HTTP or DNS
server) which are accessible from the Internet.

e Supporting settings qualitatively similar to content or cloud
providers, with PoPs at geographically diverse locations,
including IXPs with many interconnections, and a backbone
that interconnects PoPs with data centers, since this setting
is increasingly important to academia and industry [26, 29,
43, 44, 55, 81, 104]. This complex setting will also suffice for
a range of experiments not specific to cloud providers.

2.2 Native Delegation with BGP and IP

Achieving our high-level goal requires developing an approach for
multiplexing and delegating control of an AS to experiments. In
developing our approach, we consider that (1) the interface between
the platform and the Internet must be BGP and IP, since those are
the protocols used by every AS, and (2) to flexibly support a wide
range of experiments, experiments should be able to perform any
(safe) action that they could do with direct control of an AS using
standard protocols, and should be able to use standard routing
implementations.

As such, we posit that the interface between experiments and
the platform should also be BGP and IP: an experiment should get
visibility by receiving BGP announcements and IP traffic, and it

PEERING: Virtualizing BGP at the Edge for Research

Experiments : Internet (5rii 797, 168.0.0/24
: ASPath: AS(N1)

Router X1

Controller [
*2 e

(e.g. Espresso) _

: ASPath: AS(N2)
Figure 1: Basic scenario for what our platform should support: two
parallel experiments (X1, X2) competing to use the resources of a
single BGP edge router (E1). E1 connects to two neighbor routers
(N1, N2). Both X1 and X2 announce prefixes, while N1 and N2 an-
nounce a path for the same prefix and E1 selects N1’s path.

should control its announcements and route its outgoing traffic just
as it would with direct control of the router.

However, the design of BGP presents a number of challenges
to using it as an interface—in particular, BGP does not natively
support multiplexing or delegating control. Understanding how
BGP’s design complicates multiplexing and delegation requires
understanding the basic design of BGP, how BGP makes routing
decisions, how those decisions impact IP forwarding, and the in-
teractions between BGP speakers. In this section, we discuss these
topics in detail. In Section 2.3 we discuss why, despite these chal-
lenges, native delegation is a superior option to other approaches,
such as custom protocols and out-of-band interfaces.

2.2.1 BGP basics. BGP conveys reachability information to other
BGP speakers while providing network operators with the ability
to control route selection and propagation via static policies [102].
Each BGP router makes decisions locally based on information
received from its neighbors and defined policy. By design, BGP’s
route selection process ensures the router selects a single “best”
route for each prefix, regardless of the number of routes available.
Once the router selects the single route, it may inform its BGP
neighbors of the single path it selected according to its export
policies. From this point forward, the router forwards all packets
destined for the prefix along the single path.

2.2.2 Why delegating with native BGP and IP is challenging. In this
section, we examine why delegating control without requiring a
separate interface is challenging. Consider the scenario illustrated
in Figure 1, in which a single edge router (E1), has two neighbors
(N1 and N2). The envisioned platform should be able to support
delegating visibility and control to two experiments (X1 and X2).
Further, our design should be able to accommodate various types
of experiments without having to customize an interface for each.
For instance, in our example scenario, X1 is an experiment using
a standard software router and making BGP announcements to
uncover backup routes [13], and X2 is evaluating the benefits of a
more sophisticated routing control system, such as Espresso [104],
and thus requires flexible per-packet forwarding.

Challenges in controlling announcements. In our example, each
experiment is assigned a prefix to announce, 10.1.0.0/24 for X1
and 10.2.0.0/24 for X2. If each experiment had direct control of
E1, it would be able to define policies to control what it announced
to each neighbor on a per-prefix basis. For instance, experiment X1
could manipulate the AS-path to perform prepending [25] or BGP
poisoning [21] for announcements forwarded to N1, and perform a
different set of manipulations (or none at all) for announcements

53

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

forwarded to N2. Likewise, X1 could decide to only announce a
route to a subset of neighbors (e.g., just N1).

However, standard BGP advertises at most a single path for each
destination to neighbors, and thus X1 can only advertise a single
route to E1. By default, controlling announcement propagation or
modifying announcement attributes would require configuration
changes at E1, which does not meet our goal of providing experi-
ments with dynamic control.

Challenges in controlling packet forwarding. In our example,
both neighbors announce a route to the same destination
(192.168.0.0/24). Again, if each experiment had direct control
of E1, it could define policies to control which route is used. For
instance, experiment X2 could choose to send a subset of its traffic
via the route provided by N1, and the rest via N2.

However, per BGP’s default behavior, E1 will select a route (in
this case, the route through N1), forward only this route to experi-
ments, and route all traffic via the chosen route. There is no native
mechanism in BGP that can be used to allow earlier hops (such as X1
or X2) to signal how they want E1 to route traffic to the destination.

The ADD-PATH option [98] solves part of this problem, but is not a
complete solution. While standard BGP advertises at most a single
path to neighbors, ADD-PATH allows a BGP speaker to advertise
multiple routes. However, ADD-PATH does not provide a method for
experiments to override E1’s local decision to forward all traffic
destined for the Internet via N1, and thus while ADD-PATH extends
visibility, it does not delegate control. This is because ADD-PATH is
primarily intended for scenarios where there is value in learning
multiple routes, such as when an aggregator (a route reflector or
route server) collects each route from a different router to pass on
as a collection. In such a scenario, the aggregator is on the control
plane but not the data path, and a route is selected by forwarding
traffic on a distinct data path. This scheme does not work for our
scenario, when E1 must be on the data path for both routes. It is
not feasible to deploy a distinct router for each neighbor, especially
at IXPs with hundreds of neighbors.

2.3 Alternative Approaches to Delegation

The previous section proposed using native BGP and IP to multiplex
and delegate control to experiments and explored the associated
challenges. In this section, we explore alternative approaches and
explain why we do not choose to pursue them.

By far, the simplest approach to delegate a router would be to give
experiments direct access to the router’s configuration interface.
This approach, however, makes it impossible to guarantee safety
and significantly complicates execution of parallel experiments.
Having administrators configure routers on behalf of experiments
addresses some of these concerns, but does not scale to shared
environments and makes it impossible to run experiments that
require dynamic control of routes or traffic.

Providing indirect control of the router via a separate protocol
can solve some of the problems in simpler solutions. For instance,
the platform could require that experiments communicate their
routing decisions using OpenFlow; prior work provides a founda-
tion for multiplexing control of forwarding decisions with Open-
Flow [84]. However, BGP routing engines (e.g., BIRD, Quagga, and
hardware routers) expect to receive routes via BGP and then enact

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

their decisions via local mechanisms (e.g., BIRD programs the Linux
kernel via Netlink [77]). Requiring decisions to be enacted via Open-
Flow or other non-standard interfaces would necessitate either the
complex modification of existing routing engines, or development
of a custom routing engine, both of which would decrease fidelity
and neither of which is practical. In addition, BGP (or yet another
protocol) would remain necessary to exchange route information.

Another approach involves using tags or tunnels to signal rout-
ing decisions. For example, Google’s Espresso encapsulates packets
with MPLS to convey which route should be used [104], and Transit
Portal attempted delegation by having clients maintain multiple
VPN tunnels, each corresponding to a single BGP neighbor (send-
ing traffic via a specific tunnel would send it to the corresponding
neighbor) [96]. However, these approaches introduce additional
complexity and may not be supported by existing routing engines.
For instance, using MPLS labels requires a separate label redistribu-
tion protocol, an MPLS enabled kernel (only recently available [95]),
and a routing engine that supports MPLS (not natively supported by
BIRD or Quagga). Likewise, using tunnels requires communicating
a mapping of tunnel to BGP neighbor (or tunnel to route) via an
out-of-band protocol and necessitates the use of a custom routing
engine to select and install routes (existing routing engines do not
support such mappings), or manual installation of routes.

In addition to their inherent challenges, these approaches only
address delegation of the data plane. BGP or other custom protocols
would remain necessary for the control plane. We conclude that
maintaining conformity and compatibility by devising solutions to
support delegation natively with existing BGP and IP is ideal given
the overhead and challenges these alternate solutions present.

3 VIRTUALIZING THE EDGE WITH vBGP

To address the challenges of multiplexing control of a single BGP
router for multiple experiments, we present vBGP, a framework to
virtualize the data and control planes of a BGP router by providing
(1) mechanisms for delegating complete visibility and control of
data and control planes to experiments and (2) an architecture capa-
ble of enforcing sophisticated security policies required to prevent
experiments from performing unsafe actions. Analogous to hypervi-
sors in other virtualization domains, vBGP multiplexes experiments
over the same BGP router to support parallel experiments; provides
safety by isolating experiments from the underlying router and
each other, and interposing on experiment interactions with the
rest of the Internet; and exposes data and control plane interfaces
to experiments that are equivalent to having sole control over the
router’s BGP process (akin to a hypervisor exposing x86).

We use VBGP at all PoPs in our implementation of PEERING,
described in §4. VBGP is generalizable and compatible with hardware
or software routers; our deployment instantiation of VBGP runs atop
Linux and uses an open-source software router.

3.1 Key Design Decisions for vBGP

Three architectural decisions are key to realizing our goals:

Untether experiment logic from router infrastructure (§3.2). Vir-
tualization for experimentation traditionally involves partitioning
a machine’s resources and then granting an experimenter control
of a partition. In comparison, vBGP virtualizes a router’s data and

54

B. Schlinker et al.

control plane decisions and delegates them to a system under the
control of the experimenter. Decoupling experiment logic from the
router enables VBGP to support a variety of experimental setups,
letting researchers enact their experiment logic via hardware or
software routers or SDN controllers, at their university, in the
cloud, or in a container on the vBGP router.

Devise protocol-compliant mechanisms to natively provide com-
plete data and control plane visibility and control (§3.2). As stated
in §2.2, our interface between experiments and vBGP should be
BGP and IP, since this is the interface any native (non-virtualized)
experiment would have with the Internet. We developed mecha-
nisms within BGP and layer 2 protocols to let experiments innately
convey their decisions to vBGP without modifying protocol logic,
or using out-of-band communication. From the perspective of an
experiment, interactions with vBGP “just work” as they would if
the experiment was the edge router, exposing the complete range of
(security-policy-compliant) data and control plane interactions with
the rest of the Internet.

Interpose on experiment data and control plane activity (§3.3). Ex-
periments can exchange data and control plane traffic with the
Internet, so VBGP must take measures to mediate between experi-
ments and the Internet to enforce security policies, prevent danger-
ous activity, and perform logging necessary for attribution [48]. In
particular, vBGP must be able to (1) enforce a wide range of secu-
rity policies that are atypical (due to our use case) on the data and
control planes and (2) to intercede in ways that let us prevent prohib-
ited activities without otherwise affecting experiment control and
capabilities. Supporting these requirements is challenging, as our
security policies require functionality beyond what is provided by
existing router policy frameworks. Our solution is platform-specific
software that interposes between experiments and the Internet on
both the data and control planes, separately, to enforce security.

3.2 Delegation to Experiments

VBGP delegates both the data and control plane decisions of a BGP
edge router to experiments, which are logically (and can be phys-
ically) separate from the vBGP router. The control plane mecha-
nisms we employ involve adapting existing BGP mechanisms for
our setting and are not particularly groundbreaking on their own.
However, they combine with our novel data plane mechanisms to
delegate control in a way that addresses longstanding limitations
in BGP routing.

3.2.1 Delegating the control plane. BGP has no intrinsic mecha-
nisms for delegating visibility or control. We adapt two mechanisms,
one for inbound announcements from the Internet and one for
outbound announcements from experiments.

Announcements from the Internet to experiments. A BGP router
may receive routes for the same destination from multiple BGP
neighbors. For instance, Figure 1 shows E1 receives a route from
both N1 and N2, but E1 would only forward its preferred route to
X1 and X2, limiting their visibility (§2.2.2).

VBGP uses the BGP ADD-PATH extension [98] to send each exper-
iment all received routes within a single BGP session. As a result,
experiments see multiple routes coming from the vBGP node, as
depicted in Figure 2a.

PEERING: Virtualizing BGP at the Edge for Research

Announcements from experiments to the Internet. vBGP delegates
control of which BGP neighbors an experiment’s announcement
will propagate to through the use of BGP communities. Communi-
ties are labels that a router can attach to a BGP announcement [24].
VBGP defines whitelist/blacklist BGP communities for neighbors
at every PoP, and experiments label prefix announcements with
communities that specify whether or not to announce the prefix to
specific neighbors. If no communities are attached, vBGP forwards
the announcement to all neighbors.

Experiments can couple this control with BGP ADD-PATH to send
different announcements for the same prefix to different neighbors
to support more sophisticated policies, such as those described in
§2.2.2. For example, in Figure 1, X1 can announce an update for its
prefix, 10.1.0.0/24, with AS-path prepending and tagged with a
community to export the announcement only to N1. The experiment
can also make an announcement for the same prefix, without any
prepending, tagged with a community to export only to N2.

Communities could be used to signal behavior such as prepend-
ing or poisoning, but to maximize flexibility and realism we chose
to allow experiments to directly announce the routes they want.

3.22 Delegating the data plane.

Routing traffic to the Internet. Although BGP ADD-PATH provides
X1 and X2 with visibility of all BGP routes and updates at E1, it alone
does not empower the experiments to control which route is used
for traffic; outgoing traffic from X1 and X2 remains subject to the
routing decision(s) made at E1 based on E1’s configuration (§2.2.2).!

We want experiments to be able to control how their traffic
is routed in a manner that “just works,” and thus do not want
to introduce additional protocols, encapsulation, or out-of-band
communication that is incompatible with existing routers, BGP
implementations, and production tooling (§2.3). Realizing a solution
that operates within these constraints is non-trivial; previous work
claimed that “forwarding traffic on different paths requires the data
packets to carry an extra header or label” [45].

Our key insight is that routers already add an extra header to
packets: the layer 2 header. We develop a technique that encodes an
experiment’s decision of how to route a packet via the layer 2 header
and results in existing routers automatically encoding the decision
via their normal behavior. While the technique only conveys the
decision across a single layer 2 domain, our target setting naturally
bridges a single domain, from an experiment router to a vBGP router.
In §4.4 we extend the technique across multiple domains, although
it is still not completely general.

Understanding our approach requires considering how a router
typically enacts forwarding for its choice of a route. Although
platforms can optimize the process to minimize lookups, the process
is generally as follows: a router performs a lookup on the packet’s
destination to find its preferred route, which maps to a next-hop IP
address from the route’s BGP announcement. The router forwards
the packet towards the next-hop, which it must be able to reach
without BGP (e.g., directly connected or via an IGP). Typically, a

'We have found that there is sometimes confusion over whether BGP communities can
be used to address this challenge. BGP communities can be used to signal policies for
routes announced by experiments, not select which route (received from an upstream
neighbor) to use for forwarding traffic from an experiment to a neighbor.

55

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Experiments : Internet
Prefix: 192.168.0.0/24;
Next Hop: 1.1.1.1; ASPath: AS(N1)

127.65.0.1; AsPath: AS(N1)[:
As(N2)[:

Router X1

Controller 2_{
(e.q. Esgressn»x By <

Prefix: 192.168.0.0/24;
Next Hop: 127.65.0.1; AsPath: AS(N1)
(@)|Next Hop: 127.65.0.2; ASPath: AS(N2),

Routing Table (at X1)
() |Prefix: 192.168.0.0/24
Next Hop: 127.65.0.2

®

Prefix: 192.168.0.0/24;
Next Hop: 2.2.2.2; ASPath: AS(N2)

(a) Control Plane

Experiments : Internet

:[N1 Routing Table (at E1)
«|Prefix: 192.168.0.0/24, NH: 1.1.1.1

®

2
Router X1 S

*[N2 Routing Table (at E1)
Prefix: 102.168.0.0/24, NH: 2.2.2.2

Controller —
X2

[IAC to Routing Table
(e.g. Espresso)

(at €1)

(b) Data Plane

Figure 2: Figure 2a shows how vBGP overwrites BGP next-hops to
delegate control to experiments. The next-hop for announcements
from the neighbors N1 and N2 (@D, (2)) are rewritten to IP addresses
thatare local to E1 (3, ®). Figure 2b shows how vBGP forwards pack-
ets from experiments. X1 prefers to route via N2 (%)), so when send-
ing a packet to 192.168.0.1, it first ARPs for the MAC of the next-
hop ((®), to which E1 responds with the MAC it locally assigned to
N2 (@). When the frame arrives at E1 ((®), it knows based on the
destination MAC (DMAC) to look up the route in its local routing
table for N2 (9, @9).

router announcing BGP routes to a neighbor either keeps the next-
hops unchanged (if the neighbor can reach them, which they cannot
in the VBGP setting) or sets them all to a specific local IP addresses
(e.g., a loopback address).

In our design, VBGP systematically modifies next-hop IP ad-
dresses and manipulates layer 2 interactions in a manner that results
in the experiment’s routing choices being naturally conveyed per
packet to the router. Specifically, vBGP assigns distinct private IP
and MAC addresses for each BGP neighbor. It also maintains one
routing table per BGP neighbor. As depicted in Figure 2a, when a
VBGP router receives an announcement from a neighbor (0, (2)), it
stores the route in the table for the neighbor, then rewrites the next-
hop to the IP address it assigned to the neighbor before exporting
the route to experiments ((3), ().

When an experiment selects a route to send a packet towards a
destination, it resolves the next-hop’s MAC address, just as any BGP
router would to forward a packet. The vBGP instance offering the
next-hop responds to an ARP or NDP query with the MAC, and the
experiment forwards a layer 2 frame containing the packet to that
MAC. Since the process is identical to standard BGP forwarding,
the experiment can use a standard software or hardware router
(X1) or a more sophisticated controller that uses BGP to interface
with the Internet (X2). Once the vBGP router receives the frame, it
inspects the destination MAC to determine which BGP neighbor’s
route the experiment selected. vBGP then routes the packet using
the table corresponding to the neighbor.

Figure 2 illustrates the process. In Figure 2a, X1 and X2 receive
routes from E1 with a next-hop of 127.65.0.1 and 127.65.0.2
which correspond to neighbors 1.1.1.1 (N1) and 2.2.2.2 (N2),
respectively. X1 has configured policy to prefer routes to the des-
tination network via N2. In Figure 2b, when X1 wants to forward
a packet to 192.168.0.1, it looks up the next-hop in its routing

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Legend
Control Plane = ==-=->
Data Plane "

Control Plane Enforcement

i vBGP

Data Plane Enforcement

................ > »

Experiment Routing Engine Neighbor

Figure 3: Logical locations of the enforcement engines as they in-
terpose on the data and control planes between an experiment and
the Internet.

table (() and sends an ARP query for the next-hop ((©)), equivalent
to what it would do if directly connected to N2. E1 responds with
MAC(127.65.0.2) (D), which X1 sets as the destination for its
frame ((®)). Upon receipt of the frame, E1 uses that MAC to deter-
mine which routing table to use ((9)). E1 performs a lookup in the
routing table corresponding to N2 (@0) and forwards the packet to
next-hop 2.2.2.2 (@).

Although X2 uses a more sophisticated process to decide which
route to use (such as deciding per application), it still uses BGP to
exchange routing information and performs the same process as
X1 to encapsulate a packet within a frame to forward. Because all
routing decisions are delegated to experiments, the vBGP node does
not need to make any routing decisions of its own.

Routing traffic to experiments. vBGP forwards traffic received
from neighbors towards the experiment announcing the corre-
sponding address space. Normally the source MAC address of the
frame that arrives at the experiment will be MAC(E1), not the MAC
address of E1’s neighbor that delivered the traffic. To provide ex-
periments with visibility into which neighbor delivered the traffic,
VBGP rewrites the source MAC address of each packet received from
a neighbor with the MAC address it assigned to the neighbor, e.g.,
MAC(127.65.0. 2).

3.2.3 Summary of contribution. Although the building blocks used
in VBGP are standard (e.g., BGP ADD-PATH, BGP communities) or
equivalent to functionality available in routers (e.g., Virtual Routing
and Forwarding [31], Routing Instances [51], and Policy-Based
Routing [30]), they have not been synthesized to achieve the same
goals, and the delegation provided by vBGP does not follow from
their simple combination, and the functionality we provide was
previously seen as requiring additional protocols or mechanisms
outside BGP [45]. Our approach does not rely on custom software,
encapsulation, or changes to protocol headers, and thus supports
experiments using existing hardware and software routers, and
modern controllers that speak BGP. vBGP has operational uses
outside of PEERING and influenced the design of part of Facebook’s
BGP control system (§7.2).

3.3 Security and Isolation

In order to maintain safety and isolation, vBGP supports limiting ex-
periment data and control plane activity based on any discretionary
stateful or stateless policy, not just those supported by conventional
routers. This approach supports more sophisticated policies that
balance experimenter control with the need to maintain safety, en-
ables evolution of policy to account for new capabilities or concerns,
and allows capabilities to be enabled on a per-experiment basis, in
keeping with the principle of least privilege.

56

B. Schlinker et al.

Policy enforcement architecture. vBGP uses policy enforcement
engines that operate alongside the routing engine and interpose on
all experiment activities. The engines have non-volatile storage to
maintain state.

VBGP separates policy enforcement from the router for two rea-
sons. First, most router implementations can only support a limited
set of policies. Decoupling the enforcement engine and implement-
ing it separately allows vBGP maximum flexibility in the policies it
supports, including stateful policies, and ensures vBGP is not tied
to a specific router implementation. This allows VBGP to use a vari-
ety of industry standard, hardened software and hardware routing
engines to communicate with neighbors without being limited by
the routing engine’s policy capabilities.

Second, it is difficult to validate the correctness/behavior of
policies enforced by traditional router implementations; testing
frequently requires setting up an emulated network with multiple
BGP routers to create the desired test conditions [17, 37]. In compar-
ison, we can validate the behavior of our decoupled implementation
using unit tests that inject test conditions. Figure 3 depicts where
the data and control plane enforcement engines fall logically in the
vBGP architecture.

Control plane enforcement. The enforcement engine receives
all routes announced by experiments from the router, evaluates
whether each route is policy-compliant, and announces only com-
pliant routes back to the router. The router only forwards announce-
ments received from the enforcer to its neighbors. Our implementa-
tion uses ExaBGP [4], which is a BGP engine that allows execution
of Python code inside the BGP pipeline. We capture the policy in
Python, allowing a great deal of flexibility in what the administrator
of the VBGP instance can enact and facilitating easier testing. For
instance, state can be synchronized among VBGP instances to enable
AS-wide policies, such as limiting the total number of times a prefix
can be announced or withdrawn across all PoPs during a 24 hour
period. Our current policies are defined in Section 4.7.

Data plane enforcement. vBGP’s data plane is run in an isolated
container, so it can either be collocated with a software router or
run on a separate server. It interposes on experiment data plane
traffic through the use of extended Berkeley Packet Filters (eBPF),
which allows loading simple programs into the kernel to inspect
packets. The eBPF program can make a stateless or stateful decision
to allow, transform, or block each packet, enabling policies such as
rate limiting experiment traffic on a per PoP or per neighbor basis.

4 PEERING: FROM A ROUTER TO AN AS

While the design of vBGP is generally applicable to different in-
frastructures, we used VBGP to build PEERING, a platform for rout-
ing research that we make available to the community. Figure 4
shows an overview of PEERING’s architecture. PEERING maintains
infrastructure at PoPs around the world, and each consists of a
commodity server running vBGP, from which we interconnect with
one or more networks using BGP. We implement vBGP using com-
mon open source software, i.e., the BIRD software router [9] for
our BGP routing engine and OpenVPN [6] for VPN tunnels with
experiments. Section 5 presents engineering aspects of PEERING,

PEERING: Virtualizing BGP at the Edge for Research

some of which would benefit other networks. vBGP adds manage-
able overhead, allowing a commodity server to virtualize a router at
even the largest IXPs today and in the foreseeable future. Section 6
demonstrates scalability.

4.1 Key Design Decisions for PEERING

Previous Internet routing research platforms were limited in the
type of research experiments they could support, their ease-of-use
and accessibility to experimenters, and their long-term maintain-
ability. Our approach accounts for these challenges and focuses on
addressing them in multiple ways.

Deploy at IXPs and universities (§4.2). To achieve a good represen-
tation of today’s widely interconnected content and cloud providers
[22, 29, 81, 104], our approach for deploying PEERING focuses on
a mix of both university and IXP sites. This allows us to sidestep
the limitations of each by combining their strengths. In particular,
IXP sites provide many interconnections and university sites al-
low easy federation with other resources that offer complementary
functionality.

Federate with other platforms (§§ 4.3 and 4.4). To better approx-
imate the cloud provider setting—interdomain connectivity at lo-
cations around the world, data centers providing computational
resources, and a backbone connecting them all-PEERING feder-
ates with CloudLab [2] to provide researchers with cloud-like data
centers, and with educational networks to provide slices of their
multiplexing backbones to interconnect PEERING PoPs. These feder-
ations support a wider range of experiments while ensuring that the
platform’s resources remain predominantly focused on expansion
of the AS and its connectivity.

Low-overhead, turn-key experiment and infrastructure setup and
deployment (§§ 4.5 and 4.6). To democratize Internet routing re-
search, we designed and implemented standardized workflows to
allow easy provisioning and deployment of new experiments, new
VBGP sites, and new peer networks. Further, we provide experi-
menters with a toolkit that can be used to instantiate a wide variety
of experimental setups without requiring prior experience with
BGP, vBGP, or PEERING.

Follow the principle of least privilege (§§ 4.6 and 4.7). To balance
our goals of maintaining safety while supporting a wide range of
experiments, by default we tightly restrict what an experiment
can do, especially in terms of the range of announcements it can
make to the Internet. We carefully review experiments that need
more functionality, including consulting commercial network oper-
ators for feedback as needed, and PEERING supports per-experiment
capabilities for those that can safely justify richer functionality.

4.2 Footprint and Connectivity

Numbered resources. PEERING has 8 AS numbers (ASNs), includ-
ing three 4-byte ASNs, and is allocated a total of 40 /24 IPv4 prefixes
and one /32 IPv6 prefix. We dedicate one or more prefixes to each
approved experiment for a specified duration.

PoPs. As of June 2019, PEERING has thirteen operational PoPs
on three continents, four at IXPs and nine at universities. PEERING
servers at five additional PoPs are projected to come online. At

57

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Points of Presence

== VBGP

> @ PEERING Server

Location: Internet Exchange Point

@ PEERING Server

Location: Universit

7y
i Backbone (AL2S)
v

|
I

|

|

|

I @ PEERING Server
| Location: University
I

I

l

I

|

I

Experiments PoP Neighbors

(Interconnections)

‘ Experiment Toolkit ‘

VPN

‘ BIRD H OpenVPN ‘ |

& Experiment #1
Allocation: 184164.2240/23

% AS300

@ AS400

‘ Control Plane

Data Plane ‘

Security Enforcement Engines

‘ BIRD

OpenVPN ‘

‘ Network Controller ‘

Figure 4: PEERING’s architecture. Experiments connect via VPN to
one or more PEERING servers, or PoPs, and use a software router to
establish BGP sessions with a vBGP router at each PoP. Experiments
exchange routes and traffic via the tunnels and the corresponding
BGP session, where vBGP delegates data and control plane decisions
while enforcing policy. All PoPs run vBGP, which consists of the
networking controller (§5), routing engine (§3.2), OpenVPN (§§ 4.5
and 4.6), and enforcement engines (§3.3).

IXPs, we establish bilateral peering with tens or hundreds of net-
works and to many more via interconnections with route servers,
and we pursue partnerships to obtain transit interconnections. At
universities, the platform has a transit interconnection with the
university’s AS. The sites have different tradeoffs: IXPs offer richer
connectivity, but universities can present opportunities such as
our CloudLab federation. Universities add operational overhead to
debug connectivity (Appendix A), whereas IXPs add operational
overhead to negotiate hosting and transit.

Getting from the initial agreement to a server inside of a coloca-
tion facility with connectivity was the biggest challenge to getting
connectivity at IXPs; the business aspects, bureaucratic procedures
on both sides of placing a server within the colocation facility, and
negotiating transit consumed months on average. Once the paper-
work was completed, it took very little time to connect the server
and to establish peering links.

Peer networks. Obtaining bilateral peering agreements with other
members of the IXP was easier than we expected. Most member
ASes at an IXP have open peering policies, but that is not a guar-
antee that they will peer blindly with everyone. Taking a direct
approach and reaching out to the other IXP members resulted in
several hundred direct peering connections. PEERING currently has
12 transit providers and 923 unique peers (129 via bilateral BGP
sessions and the rest only via IXP route servers [70]). We peer with
854 ASes at AMS-IX (106 bilaterally), 306 (63) at Seattle-IX, 140 (10)
at Phoenix-IX, and 129 (6) at IX.br/MG in Brazil.

According to PeeringDB [7], our peers are balanced across di-
verse types of networks: 33% of our peers are transit providers,
28% are cable/DSL/ISPs, and 23% are content providers. Of the re-
maining 17%, 8% cannot be classified, and the rest are a mix of
education/research networks, enterprise networks, non-profits, and
route servers. An industry study published in 2016 reported that 60%

@ AS100

P Switch @A5200

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

of traffic comes from a small number of content delivery networks.
PEERING connects directly to 7 of the 10 named [63].

PEERING announcements can reach all ASes via transit providers,
so experiments can exchange traffic with all ASes. If network P is
a transit provider for network C (either directly or transitively), C
is in P’s customer cone. ASes in the customer cones of our peers
receive announcements made by experiments to peers. This reach
is of interest to researchers due to the importance of peering routes
on today’s Internet [12, 29, 44, 80, 81] and because it reflects ASes
towards which PEERING has “extra” route diversity, as they are
reachable both via all PEERING transits and via at least one peer.

4.3 Emulating a Cloud Provider

To support experiments in environments similar to those used
by content and cloud providers, experimenters need to be able
to pair PEERING’s rich interdomain connectivity with backbone
connectivity and compute resources.

4.3.1 Backbone connectivity. We worked with research and educa-
tion networks, such as Internet2, to establish backbone connectivity
between PEERING PoPs and configured vBGP routers on the back-
bone to exchange routes in a BGP mesh. Our US PoPs connect to
Internet2’s Advanced Layer 2 Services (AL2S) [1], and our Brazilian
site uses RNP’s equivalent in Brazil [74]. These services allow us
to create VLANSs between sites (including bridging between the
US and Brazil), with provisioned capacity across the educational
networks. In the future, we will use Geant [5] to integrate our Eu-
ropean PoPs. An experiment connected to one PoP has visibility
into routes at all other PoPs in the BGP mesh, and it can direct
announcements and traffic across the backbone to BGP neighbors
at any of the PoPs (§4.4). Section 6 provides an overview of TCP
throughput over the backbone.

4.3.2 Federation with CloudLab. CloudLab provides researchers
with access to bare-metal systems for establishing their own clouds
to conduct experiments. PEERING has PoPs with backbone con-
nectivity at all CloudLab locations. By colocating PEERING PoPs
at CloudLab sites, CloudLab experiments can select from routes
available at any PEERING PoP to reach destinations across the In-
ternet, then route across the backbone to reach the selected PoP.
Combined, PEERING and CloudLab provide experiments with edge
PoPs, a backbone, and compute resources, enabling experiments to
operate in environments that are qualitatively similar to those of
large content or cloud providers.

4.4 vBGP Across the Backbone

An experiment needs the ability to use the backbone. For example,
in Figure 5, experiment X1 is controlling vBGP instance E1 and
should be able to send traffic to N2 via the backbone link between
E1 and E2. For this to work, N2’s BGP announcement must reach
E1 and X1 with next-hops they can reach, either via layer 2 or
via an IGP. Neither approach works out of the box. With an IGP,
the next-hop would be an interface on E2, and X1 would make a
forwarding decision by looking up the next-hop in its IGP table
to learn that it should forward to E1. It would then forward a
frame with a destination MAC belonging to E1. In order to avoid
losing X1’s decision, this MAC would have to uniquely encode

58

B. Schlinker et al.

Prefix: 192.168.0.0/24
Next Hop: 1.1.1.1; Aspath: As(N)| NI

Prefix: 192.168.0.0/24
X1 [Next Hop: 127.65.0.1; Aspath: as(ni)| E1
Next Hop: 127.65.0.2; ASPath: AS(N2) <
Prefix: 192.168.0.0/24 @(}
Next Hop: 127.127.0.2; ASPath: AS(N2)

Figure 5: Example connectivity for an experiment (X1) using PEER-
ING’s backbone connectivity. E1 and E2 are vBGP routers in PEERING,
and each has a single neighbor (N1 and N2). The prefix announce-
ments demonstrate how vBGP’s delegation rewrite’s next-hops to en-
able X1 to control E2’s connectivity to N2.

Prefix: 192.168.0.0/24
Next Hop: 2.2.2.2; ASPath: AS(N2)

the next-hop and egress (E2 and N2), which would add significant
complexity to the IGP configuration. However, making an interface
on E2 reachable via layer 2 from X1 would require tunneling (e.g.,
VLAN:Ss), additional complexity.

Instead, we extend our next-hop-based control hop-by-hop with-
out requiring an IGP. We use a common pool of IPs to assign a
unique global (to PEERING) IP to each external neighbor. This al-
lows E1 to recognize E2’s next-hop 127.127.0. 2 and overwrite it
with IP 127.65.0.2 from its local pool, prior to announcing the
prefix to X1. It maintains a separate routing table for this local IP
(and its corresponding MAC), containing the routes with next-hop
127.127.0.2.

When X1 wants to send a packet to 192.168.0.0/24 via N2, it
uses its routing table to find the next-hop 127.65.0.2 and sends an
ARP request, to which E1 responds with the MAC address. X1 sets
this as the destination for its frame, then E1 uses the routing table
corresponding to the MAC to look up the route to 198.168.0.0/24,
which has next-hop 127.127.0. 2. The process now repeats as E1
sends an ARP request for 127.127.0.2, and E2 responds with a
MAC. E1 transmits the frame, E2 performs its lookups based on the
MAC, and forwards the frame to N2.

4.5 Experiment Toolkit

We provide experimenters with a toolkit to connect to PEERING
and execute experiments. Experiments establish BGP sessions with
PEERING routers over VPN tunnels. The toolkit contains wrappers
for OpenVPN and BIRD that implement a turn-key interface for
common tasks such as establishing BGP sessions or making prefix
announcements. Table 1 provides a full list of the functionality
provided by the wrapper software. Advanced features such as per-
packet routing (§3.2.2) must be configured by experimenters.

While the toolkit is open source and designed around OpenVPN
and BIRD, experiments are free to use any software that can es-
tablish BGP sessions and VPN tunnels with PEERING servers (past
experiments have used Quagga and ExaBGP for BGP). Because
security policies are enforced at PEERING servers, we do not need
to enforce any behavior at the experiment side.

4.6 Deploying Experiments

Experiments execute on infrastructure that is separate from PoPs.
This decoupling promotes flexibility and enables the platform to
support a variety of experimental setups. For instance, the BGP
announcements of a measurement experiment can be managed
by custom logic executed from a laptop. Experiments can also run
applications such as a web server or a Tor relay, or combine PEERING
connectivity with emulated intradomain topologies using tools

PEERING: Virtualizing BGP at the Edge for Research

Category [Functionality

OpenVPN Open/close/check status of tunnels
Start/stop BIRD v4 and v6 sessions

BGP/BIRD Status of BGP connections

Access BIRD CLI
Announce/withdraw prefix
Manipulate community attribute
Manipulate the AS-path attribute

Prefix Management

Table 1: A list of capabilities provided by the PEERING experiment
software to simplify and abstract basic tasks to configure and set up
experiments.

such as Mininet [56]. Experiments requiring more computational
resources can run on CloudLab [2] or cloud providers.

Before receiving access and prefixes to execute an experiment, ex-
perimenters must submit a proposal that outlines the experiment’s
goals, resource requirements, and execution plan via a simple web
form. This process of manual approval mimics the one that was
successful for PlanetLab, except PlanetLab outsources approval
to the PIs at individual sites. We considered automatic approval
and allocation of an IPv6 prefix (which are plentiful and will let
experimenters start to use PEERING), since VBGP’s security archi-
tecture and filters will prevent misbehavior. However, the current
rate of proposals is manageable with manual review, so we have
not invested the development effort to automate limited approval.

Once we approve the experiment via a simple management web
interface, the management system we built automatically generates
credentials for the experimenters that enable VPN connections to
VBGP routers. The system updates the policies and configuration
each VBGP router needs to allow the experiment (and to filter dis-
allowed traffic and announcements that the experiment might try
to send). It pushes the updates to vBGP routers without disrupting
ongoing experiments or running BGP sessions, since we are only
modifying configurations relative to individual experiments.

Although the number of experiments varies over time, during
the past 12 months PEERING typically hosts from 3 to 6 concurrent
experiments. Concurrency is limited by available IPv4 address space:
although PEERING controls plenty of IPv6 space, most experiments
to date concentrated on IPv4. Fortunately, no experiment has had
to wait due to insufficient IPv4 address space thus far.

4.7 PEERING Security Policies

PEERING experiments exchange routes and traffic with other pro-
duction networks on the Internet that are outside of our control. As
a result, we cannot formally verify the safety of PEERING because
we cannot guarantee that all possible interactions are safe, even
if they comply with all relevant protocol specifications. This fun-
damental challenge exists in any environment in which there are
interactions between varying implementations and configurations
of a protocol standard [65]. For instance, it is fundamentally impos-
sible to guarantee that BGP announcements will not trigger bugs
in remote routers. Even announcements that are fully compliant
with the BGP specification can cause widespread outages due to
bugs in router implementations [58, 75, 94], and it is not feasible to
test whether a given announcement may cause disruption given
the plethora of implementations and configurations.

59

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Because we cannot formally verify PEERING’s safety, our ap-
proach is to define conservative security policies which match cur-
rent best practices and verify correct enforcement. vBGP’s design
supports data and control plane policies. For PEERING we define
two dimensions for security policies: the rate of traffic and BGP
updates, and the content of packets and BGP updates.

Policing rate. PEERING shapes traffic at (two) sites with band-
width constraints to the rates agreed upon with the sites’ operators.
To date, no experiments exercised these bandwidth limits, and
experiments that would could still be deployed on sites without
bandwidth constraints. To limit overhead on routers in the Inter-
net, PEERING limits experiments to 144 BGP updates/day for each
prefix and PoP pair. This corresponds to an average rate of one
update every 10 minutes, which amounts to a small fraction of the
“background noise” in the interdomain routing system [99].

Policing content. PEERING prevents experiments from performing
activities that are harmful or preventing attribution back to the ex-
periment. An experiment cannot announce a BGP update or source
traffic using address space that is not part of the experiment’s alloca-
tion (hijacking and spoofing), which also means experiments cannot
transit non-experiment traffic; cannot originate announcements
from an ASN it is not authorized to use; and cannot manipulate
BGP attributes in ways not allowed by our capability framework.
We do not currently police dataplane content beyond verifying the
source IP address.

Capability framework. In keeping with the principle of least priv-
ilege, the management system has a capability-based framework
that defaults to limiting experiments to “basic” announcements
and supports adding capabilities on a per-experiment basis. Ex-
periments request capabilities via the experiment web form, and
admins can simply add the capability on the approval web form.
Current capabilities include:

e Allow a limited number of poisoned ASes [21].

o Allow attaching a limited number of BGP communities or
large communities to announcements [24, 46, 87].

o Allow optional BGP transitive attributes [75].

e Allow experiments to announce routes learned from one
network to another network, for experiments that require
legitimately providing transit for an experimental prefix.

Our existing capabilities suffice for most experiments. When an
experiment requires novel capabilities, we work with experimenters
to deploy them and add them to our capability framework for future
experiments. For example, an experiment recently required the
ability to announce 6to4 IPv6 addresses [23].

Implementation. On the control plane, we implement security
policies in BIRD whenever possible, as it provides better perfor-
mance than the general ExaBGP engine. We currently use the Ex-
aBGP engine to limit the rate of announcements from experiments
and to filter BGP updates with disallowed (any non-standard) BGP
attributes. Similarly, we implement data plane security policies
using Linux’s built-in tools whenever possible.

Testing security policies. In the interest of safety, we do not verify
enforcement of our security policies by executing adversarial tests
against the production PEERING platform. Instead, we deploy our

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

production configurations and software stack in a test environment
(§5) that includes (emulated) PEERING experiments, servers, and
BGP neighbors, and then use a custom framework to execute au-
tomated tests of our security policies and handling of experiment
capabilities. Through this process, we verify that our security im-
plementations correctly enforce the expected policies in terms of
what traffic and announcements are (dis)allowed.

For each capability, we deploy two (emulated) experiments in
our controlled environment: one that does not require the capability
and one that does. We execute both experiments twice, with and
without the capability. We check that the routes exported and traffic
exchanged in each execution match the configured policy and are
safely handled by the software routers we test them against within
the test environment. For example, we deploy an experiment that
makes announcement with BGP communities with and without the
corresponding capability, and check that communities are stripped
from exported announcements when the capability is missing.

Impact of misbehaving experiments. PEERING’s security engine
and deployed policies protect the Internet from misbehaving ex-
periments. However, misbehaving experiments may put strain on
PEERING’s infrastructure and negatively impact its performance.
For example, experiments sending an excessive rate of updates
could overwhelm our control plane security engine (§3.3), impact-
ing other experiments. To the extent possible, we designed PEERING
to isolate the performance experienced by our upstreams from
that experienced by experiments, and our security mechanisms
are designed to protect our upstreams and the broader Internet,
even if it leads to an outage of the platform itself. For instance, if
the security enforcement engine was to become overloaded due
to a misbehaving experiment, the enforcement engine would fail
closed, thereby blocking any experimental announcement from
propagating upstream. However, as of November 2019, we have
not experienced any scenario in which a misbehaving experiment
caused a platform outage.

5 DEVELOPMENT AND DEPLOYMENT

PEERING’s design requires weaving together many components, and
building PEERING required addressing a number of technical and
logistical challenges that arose as we scaled the testbed in terms of
the number of PoPs, experiments supported, and experiment capa-
bilities. With a growing number of heterogeneous servers deployed
over multiple years into highly diverse environments, it has been
essential for us to invest in tooling that enables us to maintain a
standardized deployment and automate the numerous processes
required to support experiments.

In this section we describe three pillars of PEERING’s engineer-
ing, some of which we believe can be applied to other networks
to positive effect. Our solutions allow a small research team to
develop and operate a distributed infrastructure with hundreds
of interconnections that services a dynamic and sophisticated set
of research experiments. These solutions were key to enabling
a production platform and are distinguishing elements from the
prototype designs and implementations in prior work.

Intent-based Configuration. PEERING’s components have com-
plex configuration files; for example, the configuration files for

60

B. Schlinker et al.

BIRD alone can exceed over 10,000 lines at large PoPs. PEERING
configuration files are dynamic; for example, BGP sessions must be
enabled and disabled on BIRD whenever an experiment connects
and disconnects from a PoP. Finally, PEERING configuration files
have specificities; for example, only two PEERING PoPs have traffic
bandwidth limits. As a result, it is not possible to maintain these
complex and dynamic configurations by hand.

We employ intent-based configuration best-practices [91] to trans-
form a model containing desired configuration (such as experiment
capabilities) into service-specific (e.g., network controller, BIRD,
OpenVPN, and policy enforcers in Figure 4) configuration files. The
desired configuration is stored on a centralized database accessible
through a web service. The database has information including
approved experiments and their capabilities (§4.7), network con-
figuration at each PoP, and interconnection information for BGP
sessions with peers at each PoP. The desired configuration in the
database is used to generate service configuration files automati-
cally through a templating engine, and the resulting configuration
files are used by the services.

As an example, consider how control plane capabilities vary by
experiment. When we add support for a new experiment capability,
such as AS-path poisoning, we add support for expressing the
capability in our desired configuration model. Then we identify
how the configurations of different services (Figure 4) need to
be transformed so that the capability is enabled for authorized
experiments (and blocked for others). We use the resulting insights
to modify the configuration template, and then use the templating
engine to generate configurations and test in an offline development
environment (discussed later in this section) to ensure that the
generated configuration works as expected. Following local testing,
we update the production templating configuration and regenerate
configuration files for all PEERING servers.

All configuration files deployed to PEERING servers are stored in
a version-control system where they can be inspected and rolled
back if needed. When we make templating changes, we canary the
new configuration on a subset of our production fleet as a safeguard.
We use Ansible to fetch configuration files from the version-control
system, deploy them to a subset of servers, and then reload the
impacted services. Once we are confident in the new configuration,
we instruct Ansible to deploy updated configurations to all PEERING
servers. A similar templating process is used at the servers to update
BGP session configuration as experiments connect / disconnect.

Network Configuration with Transactional Semantics. In order
to maintain BGP sessions with PoP neighbors and delegate the
data plane, vBGP must configure (1) physical interfaces used for
interconnecting with upstream neighbors, (2) virtual interfaces
used for delegating control of the data plane to experiments, (3)
routing tables and rules, and (4) filters used to enforce security
policies (§§ 3.2.2 and 4.4).

Given that VBGP network configuration is dynamic, we developed
a network controller program that updates the server’s network
configuration such that it aligns with the high-level, intent-based
description modeled in our centralized configuration database. How-
ever, the interface to configure Linux networking (Netlink) does not
support expressing intents; it provides a request-response interface
that allows querying, adding, and removing network configuration

PEERING: Virtualizing BGP at the Edge for Research

(e.g., routes and addresses). When the network controller receives
a configuration update, simply resetting the network configura-
tion and applying the new configuration from scratch would reset
BGP sessions and VPN connections, interrupting ongoing experi-
ments and interdomain connectivity with PoP neighbors. Instead,
the controller attempts to minimize the amount of configuration
changes by implementing logic, unavailable in Linux’s networking
tools, that (i) removes configuration that is incompatible with the
intended state, (ii) keeps any configuration compatible with the
intended state, and (iii) adds any missing configuration.

Two requirements complicate our network controller’s design
further. First, we enforce transactional semantics, where either all
configuration changes are successfully applied or no changes are
applied (e.g., partially complete changes are rolled back) to ensure
that a server is never in an inconsistent state. Second, Linux network
interfaces can have one primary address and an arbitrary number of
secondary addresses. PEERING needs to control the primary address
asitis used when generating ICMP error messages, particularly TTL
Exceeded replies to traceroute probes. Because the Linux kernel
does not support changing the primary address (it is set based
on the order in which addresses are added), PEERING’s network
controller verifies each interface’s primary address and, if incorrect,
removes and readds the interface’s addresses in the proper order.

Standardization and Isolation. We standardize configuration, de-
ployment, and upgrades to our infrastructure by running servers
with stripped down operating systems and packaging PEERING ‘s
services (e.g., OpenVPN, BIRD, and PEERING’s network controller
service and enforcement engines) into containers. Linux name-
spaces isolate specific functionality of the Linux kernel, which
container and lightweight virtualization technologies employ to
control resource sharing. PEERING uses containers to isolate vBGP
services’ process, file system, and network namespaces from that
of the host, allowing us to isolate each service and its dependencies,
preventing conflicts and easing upgrades.

This isolation is key given that implementing VBGP requires tight
integration with Linux’s networking stack (§§ 3.2.2 and 4.4). If vBGP
made configuration changes to the host’s networking namespace,
then configuration errors, software bugs, or failures in vBGP could
put the host’s networking stack in a dysfunctional state and prevent
all in-band access. However, because VBGP configures an entirely
separate networking namespace, it is logically isolated from the
host’s network configuration, significantly reducing risk and also
enabling our tooling to reset the state of the namespace if needed.

We deploy containers to servers using Ansible. Our Ansible
playbooks reset the server’s operating system to a known, desired
state, including managing the host’s networking stack. Ansible
is executed periodically and verifies that every PEERING server is
in compliance, redeploying out of date containers and upgrading
configuration files as needed (when configuration files are updated,
BGP sessions are not reset and thus experiments are not impacted).
This results in a single Ansible and operating system configuration
for all servers, while supporting diverse PoPs.

In addition to maintaining standardization in production, using
containers simplifies platform development and testing. During
development, we need to be able to execute experiments and test
changes in an environment that is representative of a PEERING PoP.

61

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Thus, the environment must have the same packages and config-
uration that are used in production, must run the vBGP network
controller, and must also have interactions between a PEERING
PoP, its neighbors, and experiments. We accomplish this by using
the same containers and automatically-generated configurations
used in production on our personal development machines, and
using additional containers running software routers and PEERING’s
client toolkit (§4.5) to emulate a PoP’s neighbors and experiments.
This allows us to systematically test changes to PEERING (such as a
new experiment capability) in an environment that is guaranteed
to be representative (in both software and configuration) of our
production environments without the risk of problems on our devel-
opment machines due to (for instance) the vBGP network controller
reconfiguring the machine’s network interfaces.

6 SCALABILITY OF PEERING

We evaluate the performance of our vBGP instantiation used in PEER-
ING, implemented using the BIRD software router. Despite BIRD’s
limitations (most notably running a single thread), PEERING can sup-
port hundreds of peers and thousands of updates per second. Our
implementation can virtualize routers in the largest IXPs today and
in the foreseeable future. We also evaluate the achievable through-
put of our interconnectivity across our backbone, and conclude that
our backbone capacity can support a variety of experiments.

Known routes and memory utilization. vBGP employs BGP
ADD-PATH to inform experiments of all available routes. This
makes the number of routes managed by vBGP, and the memory
requirements in PEERING, proportional to the number of routes
learned across all upstream interconnections. Figure 6a shows
the memory utilization of BIRD’s routing tables as a function of
the number of known routes. The control plane line corresponds
to a minimal configuration with a single global Routing Infor-
mation Base (RIB), required for BGP operation (but without the
Forwarding Information Base (FIB) necessary to forward traffic).
The per-interconnection data plane line adds in the overhead of
vBGP, which maintains one FIB entry (in the Linux kernel) for each
known route to allow experiments to choose their own routes when
sending traffic. The per-interconnection data plane with default line
additionally adds in the overhead of the router maintaining its own
best-path routing table and keeping it synchronized with a kernel
FIB. This additional overhead is not necessary for PEERING because
VBGP experiments receive all routes via ADD-PATH and make their
own routing decisions, but would be necessary if the vBGP node
was also routing production traffic. Memory use in BIRD scales
linearly with the number of routes, at a rate of approximately
327B/route, allowing a server with 32GiB of RAM to support 100
million routes. PEERING’s VBGP router at AMS-IX, one of the largest
IXPs in the world, exchanges routes with all 4 route servers, 2
transit providers, plus 235 routers in 104 member networks, and
currently has 2.7 million routes from 854 ASes (combining route
server and bilateral peers).

Rate of updates and CPU utilization. vBGP needs to rewrite the
BGP next hop of announcements received from the Internet and
filter invalid announcements from experiments (§3), which incurs
additional CPU overhead in PEERING. We focus our analysis on

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

2500
9000 - -I Per-interconnection data plane w/ default
g -¥- Per-interconnection data plane 7
< 1500 1 —@— Control plane
< e N NPT %
g 10004 o o=
s
500 4
0 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
Routes (thousands)
(a) Memory vs known routes
60
5850 A
§ 40+
iS5
8 30+
= z ~F+ Multi-router vBGP
= 20 1 .
> -¥- Single-router vBGP
o
O 107 + Accept
0 - T

1500 2000 2500 3000 3500 4000

Updates per Second

0 500 1000

(b) CPU vs rate of updates
Figure 6: Memory consumption and CPU utilization grow linearly

with number of routes and rate of updates. Results indicate vBGP
can be deployed using commodity servers in the largest IXPs.

BIRD’s CPU utilization for two reasons: (i) most of our route pro-
cessing filters are implemented in BIRD (§4.7) and (ii) only experi-
ment announcements are processed by the ExaBGP-based security
engine (which is invoked infrequently as we limit experiments to
144 announcements/day per prefix).

Figure 6b shows BIRD’s CPU utilization for different filter con-
figurations as a function of the rate of BGP updates processed. We
consider different filter configurations in a worst-case scenario
where BIRD runs all filters to completion without rejecting any
routes. The accept line shows results when BIRD is configured to
simply accept all routes without any checks (the lower bound on
CPU utilization). The single-router vBGP line shows the CPU utiliza-
tion for the filters VBGP applies to announcements from experiments.
This overestimates the complexity in actual vBGP deployments, as
filters applied to updates received from the Internet (the major-
ity) are significantly simpler than filters applied to announcements
from experiments to the Internet. Finally, the multi-router vBGP line
shows the CPU utilization for BIRD in the BGP mesh configuration
on PEERING’s backbone, which requires a more complex handling
of BGP next hops (§4.3).

The results show that CPU utilization grows linearly with the
rate of updates and, more importantly, is not significantly impacted
by VBGP’s safety filters. During an 18h period in March 2018, PEER-
ING’s VBGP router in AMS-IX processed an average of 21.8 up-
dates/sec (with a 99th percentile of approximately 400 updates/sec).
Although filters incur additional propagation delays for BGP update
messages, this applies to any implementation and is small relative
to global propagation delays [54] and delays imposed by BGP’s
built-in minimum route advertisement interval (MRAI) [102].

62

B. Schlinker et al.

Data plane performance. PEERING relies on Linux’s networking
stack for data plane forwarding, with PEERING-specific configura-
tion for virtual interfaces, multiple routing tables, and our BPF-
based security framework. PEERING’s performance benefits from
any improvements to the Linux networking stack. Significantly bet-
ter performance could be achieved by techniques such as kernel by-
pass [92, 93] and offloading our security framework to BPF-capable
NICs [64]; to date no experiments have required such capabilities
and thus we leave these optimizations as future work.

To verify forwarding performance of our backbone between
PoPs, we conducted throughput measurements using iperf3. Be-
tween sites, the average TCP throughput measurement was approx-
imately 400 Mbps, with a minimum of 60 Mbps and a maximum
of 750 Mbps between all PoP pairs. While not equivalent to the
capacity available from the dedicated fiber connectivity for large
content providers, the backbone connectivity between PEERING
locations has sufficient capacity available for supporting various
experiments (including all experiments proposed to date) except
those requiring enormous data transfers.

7 PEERING IN PRACTICE
7.1 How PEERING Has Been Used

Since 2015, PEERING has supported experiments with different goals,
exposing an array of different behaviors to the Internet (including
AS-path poisoning, AS-path prepending, and controlled hijacks
(of PEERING’s own address space)), and from teams with varying
degrees of experience with BGP and the Internet routing ecosys-
tem. We rejected as risky an experiment proposal that required a
large number of AS poisonings and one that planned to announce
AS-paths with thousands of ASes. We granted all other requests for
access to the testbed, with many experiments running for months
at a time. The research performed on PEERING was part of 15 pub-
lications: 3 at SIGCOMM, 2 at IEEE S&P, 2 at IMC, 2 at Usenix
Security, and 1 each at ToN, SOSR, HotPETS, TMA, CCS, and CCR
[13, 15, 18-20, 38, 57, 69, 79, 81, 83, 87-90]. In addition, PEERING
supported multiple projects at a BGP hackathon [33]. The majority
of these experiments were conducted by researchers not affiliated
with PEERING. Earlier studies used a rudimentary version of our
infrastructure that did not support multiplexing and helped inspire
PEERING’s requirements [44, 49, 52, 54, 66, 97].

Almost all experiments announce routes (a small set have used
PEERING as a looking glass) and many exchange traffic. Several
experiments have used BGP poisoning [13, 15, 18, 38, 90]. A few ex-
periments have used BGP communities [20, 79, 87] and fine-grained
control of announcements or traffic [20, 57, 69, 83], capabilities more
recently added to the platform. We find that PEERING offers the
following key benefits to research using it:

Controlled experiments. Barriers exist to conducting controlled
experiments on the Internet because it is a huge system with proper-
ties reliant on the complex interactions among tens of thousands of
ASes with opaque topologies and policies. This challenge frequently
manifests in two ways.

First, researchers rely on uncontrolled, natural experiments, in
which conditions of interest vary outside of the control of the re-
searchers and independent of the current research question. These

PEERING: Virtualizing BGP at the Edge for Research

experiments can lead to challenges in isolating the cause of ob-
servations, as measurements are often consistent with multiple
explanations, especially given researchers’ limited visibility. For
example, a recent study relied on passive observation of Internet
routes to identify networks that deployed BGP security techniques
to prevent prefix hijacks [41], but, because it relied on uncontrolled
experiments without isolating security policy as the cause for rout-
ing decisions, it could misdiagnose unrelated traffic engineering as
evidence of security policies [69].

Second, and closely related, researchers often lack ground truth
to use in evaluating the accuracy of a system’s inferences. Both
cases are compounded in situations when the phenomena of interest
are rare or hard to identify.

PEERING gives researchers the ability to control aspects of rout-
ing as a means to conduct controlled experiments or systematically
generate ground truth data. A recent study demonstrated how to
use PEERING to manipulate announcements in order to probe the se-
curity policies of ASes in a controlled manner, isolating the cause of
decisions by varying only whether an announcement was valid [69].
Other work issued requests to a Content Delivery Network (CDN)
over different paths while concurrently manipulating the perfor-
mance of each path to measure the sensitivity of a traffic engineer-
ing system [81], and to generate known, ground-truth events for
evaluating a system to protect Tor from routing attacks [89].

In-the-wild demonstrations. To have a better chance of adop-
tion, extensions or alternate approaches to the Internet routing
system must be incrementally deployable, backwards compatible,
and should provide benefit to early adopters. Traditionally, how-
ever, evaluations are limited to emulation or simulation, and the
community’s limited ability to measure or model the Internet’s
topology or policies means that the fidelity of the evaluations can
be unclear. PEERING allows prototypes to interact with the real
Internet to show their compatibility and capabilities, such as con-
necting an intradomain network to the Internet to measure the
benefits of ingress traffic engineering for a multihomed AS [88],
assessing a technique to identify and neutralize BGP prefix hijack-
ing [83], or evaluating the BGP-compatibility of future Internet
architectures [78]. Such demonstrations can lend credibility and
encourage adoption, especially since network operators can often
be conservative about change. They can also uncover pragmatic
concerns that would not turn up in a lab setting.

The security community places value on real-world demonstra-
tions of attacks, and researchers used our platform to demonstrate
traffic interception attacks [20] and attacks on applications such as
Tor [90], TLS certificate generation [18], and cryptocurrencies [15].
This line of work demonstrates how vulnerabilities in BGP can be
exploited to create attacks on Internet-based systems for anonymity,
security, and currency. The real-world demonstrations led to the
adoption of countermeasures by Tor and by Let’s Encrypt, the
world’s largest certificate authority.

Measurements of hidden routes. The design of BGP leads to routes
only showing up in measurements if they are being used, provid-
ing limited visibility into backup routes, route diversity, or the
underlying topology. PEERING can manipulate which routes are
available to reach it by using selective advertisements, AS-path

63

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

prepending, BGP poisoning, or BGP communities for traffic engi-
neering. Researchers used this ability to reverse engineer routing
policy preferences at finer granularities [13] than was possible
previously [40, 59].

7.2 Native Delegation is a Cornerstone
for Generality

The decision to seek out flexible solutions using existing layer 2 pro-
tocols, IP, and BGP instead of non-native approaches (§§ 2.2 and 2.3)
proved to be a good design decision that enabled a wide range of ex-
periments. Many experiments focused on the interactions between
applications and BGP and required flexibility and full delegation
of both the data and control planes [15, 18, 19, 57, 81, 88-90]. Al-
ternative interfaces, such as a custom out-of-band mechanism or
an API with a BGP beacon [71], would not suffice for many ex-
periments and would need to be extended for each experiment
with new requirements. In addition, we find that experimenters
are generally familiar with and expect to be able to use an existing
routing engine (such as BIRD)—because our approach is inherently
compatible with existing BGP deployments and tooling, PEERING
can support these experiments without modification.

A transit provider could adapt our approach to allow customers
to choose among multiple routes. It is a possible deployment path-
way for flexible routing schemes proposed in research [45, 101]
or SDN control over BGP via existing devices, whereas other ap-
proaches, like Espresso [104], require replacing infrastructure. For
instance, our approach inspired a variation that we helped deploy in
production at Facebook to route traffic via alternate routes [81]. The
variant uses per-packet data plane signaling and multiple routing
tables at routers, but a centralized controller decides which routes
to use and injects them into tables at routers.

7.3 Cooperation with Network Operators

Researchers must push boundaries to test and evaluate protocols,
implementations, and potential solutions. Safely conducting experi-
ments is challenging due to the large variation in implementations
and configurations of routers [36, 75]. Conversely, the operational
community’s primary goal is stability and security. Although the
goals seem diametrically opposed, operators are supportive and
appreciative of research in the area, especially when researchers
announce experiments and take feedback prior to execution.
PEERING provides an environment for “white-hat” hackers to con-
duct experiments that rely on BGP manipulation [15, 18, 87, 90]. The
experiment review process, conservative security policies, and co-
operation with the operator community combine to enforce ethical
use of the platform. When in doubt, we err on the side of safety. For
example, one recent experiment requested feedback from NANOG
in advance and proceeded to make (standards-compliant) announce-
ments on a fixed schedule [58]. The announcements identified a
vulnerability in an open-source routing daemon which caused BGP
sessions to reset [94]. Although the majority of operator responses
on the NANOG mailing list supported continuing the experiment,
the experiment was halted until affected systems could be patched.

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

7.4 Experiments PEERING Does Not Support

No direct control over other networks. Although PEERING dele-
gates its data and control planes to experiments, an experiment’s
announcements and traffic are subject to policies enforced by other
networks in the Internet, which experiments have no control over.
This limitation is not specific to PEERING, it is intrinsic to the Inter-
net’s architecture. Experiments need to plan for the lack of control;
e.g., an experiment that studied routing policies deployed hundreds
of different announcement configurations to exercise and observe
policies in different scenarios [13]. However, even without direct
control over other networks, PEERING can still influence their routes
and traffic towards its prefixes.

PEERING can support limited types of experiments with multiple
ASes: PEERING operates multiple ASNs, which allows experiments
to emulate multiple networks that interact with the Internet as
customers of PEERING’s main AS or of each other.

No high volume, production, or transit traffic. PEERING employs
servers as routers and does not operate any network links. PEER-
ING’s backbone links are provisioned on top of other networks’
infrastructures, and researchers connect their experiments to PEER-
ING routers using VPN tunnels over the Internet. Although peering
can support experiments that exchange traffic at moderate rates
(hundreds of Mbps, §6), capacity varies by PoP and is ultimately
limited. PEERING, as a research platform, also does not provide any
guarantees on availability. PEERING also blocks announcements and
traffic for prefixes outside its IP space, and so experiments cannot
transit traffic that is neither from nor to a PEERING address.

Limited support for latency-sensitive or real-time experiments. Ex-
periments connect to PEERING PoPs via an OpenVPN tunnel. As a
result, experiment traffic traverses the tunnels, incurring additional
latency and impacting latency-sensitive or real-time experiments.
Experiments desiring low latency can deploy on (and tunnel from)
CloudLab (with which we federate and colocate PoPs) or cloud
providers with low-latency paths to PEERING PoPs (e.g., PEERING
peers directly with some cloud providers). We also have a prelim-
inary implementation of an extension to our platform to support
lightweight applications on experiment-controlled containers run-
ning directly on PEERING servers [50].

8 RELATED WORK

Existing tools such as BGP collectors [73, 76, 103] and looking glass
services [42] directly measure the Internet control plane, while
ping and traceroute indirectly measure control plane state via data
plane measurements. In comparison, PEERING enables experiments
to interact with the Internet’s control plane.

Prior work that interacted with the Internet’s control plane es-
tablished ad-hoc ASes that did not support parallel experiments
[16, 21, 34, 96]. Each network had five to nine routers with a single
upstream provider each. Establishing an AS per experiment repre-
sents an insurmountable barrier for many researchers, especially
those who want rich connectivity and a global footprint similar to
content and cloud providers.

FlowVisor [84] has similar goals to our work, but enables exper-
iments within a single domain. Its OpenFlow-based design is not
directly applicable to our interdomain setting, which introduces

64

B. Schlinker et al.

new challenges related to the need to interoperate with other net-
works via BGP, a protocol with intrinsic limitations. SDX [44] uses
layer 2 signaling to forward traffic in an IXP switch, but the partici-
pants convey policy to the IXP to enact decisions. vBGP delegates
decisions to the experiment and conveys the decision via the header.

PEERING has been under development since 2014, and in parallel
other network operators and researchers discovered opportunities
to use layer 2 mechanisms (and specifically MAC addresses) for
signaling [11, 14, 44]. However, these efforts use SDN solutions,
which are applicable within a single domain, but require additional
signaling mechanisms. Instead we sought seamless compatibility
with existing routing engines using standard protocols.

9 CONCLUSION

Internet routing research has been limited by obstacles in executing
experiments in the Internet. Without control of an AS, researchers
are limited to simulations, which cannot realistically capture In-
ternet properties, and measurements, which can observe routes as
they are but cannot manipulate them to study the impact.

We presented PEERING, a production platform that realizes our
vision of enabling turn-key Internet routing research. PEERING is
built atop VBGP, a system that we designed to virtualize the data
and control planes of a BGP edge router, while providing security
mechanisms to prevent experiments from disrupting the Internet or
each other. VBGP supports parallel experiments, each with control
and visibility equivalent to having sole ownership of the router,
using standard interfaces, which provide realism and flexibility.

With PEERING, experiments operate in an environment that is
qualitatively similar to that of a cloud provider, and can exchange
routes and traffic with hundreds of other networks at locations
around the world. To date, PEERING’s rich connectivity and flexi-
bility have enabled it to support over 40 experiments and 15 publi-
cations in research areas such as security, network behavior, and
route diversity.

Acknowledgements. Our work benefited from the contributions
and vision of collaborators on earlier iterations, including Vytau-
tas Valancius, Nick Feamster, Kyriakos Zarifis, and Christopher
Hanford. PEERING would not be available without the researchers
and network administrators at the sites, Internet2, and RNP; the
generous hosting provided by AMS-IX, Phoenix-IX, and the SIX;
and transit provided by Randy Bush, Coloclue, and BIT.BV. We ap-
preciate the valuable feedback from our shepherd Xenofontas Dim-
itropoulos, the reviewers, and network operators who helped with
experiment design. This work was partly funded by NSF awards
CNS-1740883, CNS-1835252, CNS-1413978, and CNS-1836872; RNP
project 2955; CNPq award 311049; and CAPES award 88881.171646.

PEERING: Virtualizing BGP at the Edge for Research

A CHALLENGES IN DEBUGGING
AND OPERATION

Debugging route propagation. We found instances of PEERING
announcements not being globally reachable due to improperly con-
figured or out-of-date filters in other networks. Networks employ
route import and export filters to prevent route leaks and prefix
hijacks [32, 68]. When debugging these situations, our goal is to
identify the network that is incorrectly filtering, but the process is
manual and relies heavily on looking glass servers [42]. Although
looking glasses help, they cannot accurately pinpoint filters because
they only provide a restricted command line interface. Even in the
optimistic scenario where two directly-connected networks A and
B have looking glasses, if network A has the route and network
B does not, the looking glasses do not allow us to disambiguate
between (1) network A not exporting the route to B or (2) network
B filtering the route received from A. In practice, debugging usually
requires emailing our transit providers. They, in turn, may have to
email their providers.

As future work, we plan to investigate the more general problem
of identifying whether networks do not appear on routes to our
prefixes because they are misconfigured or because they are less
preferred than other providers. We plan to evaluate methods for
automated filter troubleshooting.

Debugging Layer 2 Connectivity. Systems like AL2S promote au-
tomation in educational backbones. However, at university sites,
PEERING servers may be deployed to facilities (e.g., ‘server rooms’
or labs) that are not managed by the university’s core network oper-
ators. PEERING servers may also interact with equipment that is not
under complete control of the university’s networking team, such
as when federating with other testbeds (e.g., CloudLab switches).
These facilities are often out of the reach of automated manage-
ment, and relatively straightforward tasks, like trunking a VLAN
from a core router connected to Internet?2 to a server at a (possibly
unmanaged) location, can be surprisingly difficult. Operators would
benefit from tools to ease debugging and network management
systems suited to these environments.

REFERENCES

[1] [n.d.]. Advanced Layer 2 Services. https://www.internet2.edu/products-
services/advanced-networking/layer-2-services/.

[2] [n.d.]. CloudLab. http://www.cloudlab.us/.

[3] [n.d.]. Emulab. https://www.emulab.net/.

[4] [n.d.]. ExaBGP. https://github.com/Exa-Networks/exabgp.

[5] [n.d.]. GEANT. https://www.geant.org/.

[6] [n.d.]. OpenVPN. https://openvpn.net/.

[7] [n.d.]. PeeringDB. https://www.peeringdb.com/.

[8] [n.d.]. PlanetLab. https://www.planet-lab.org/.

[9] [n.d.]. The BIRD Internet Routing Daemon. http://bird.network.cz/.

[10] [n.d.]. XSEDE. https://www.xsede.org/.

[11] Kanak Agarwal, Colin Dixon, Eric Rozner, and John Carter. 2014. Shadow MACs:
Scalable Label-switching for Commodity Ethernet. In Proceedings of the Third
Workshop on Hot Topics in Software Defined Networking (HotSDN ’14).

[12] Bernhard Ager, Nikolaos Chatzis, Anja Feldmann, Nadi Sarrar, Steve Uhlig, and
Walter Willinger. 2012. Anatomy of a Large European IXP. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
’12).

[13] Ruwaifa Anwar, Haseeb Niaz, David Choffnes, Italo Cunha, Phillipa Gill, and

Ethan Katz-Bassett. 2015. Investigating interdomain routing policies in the wild.
In Proceedings of the ACM Internet Measurement Conference (IMC ’15).

[14] Jo ao Taveira Aratjo. 2016. Building and scaling the Fastly network, part 1:
Fighting the FIB. https://www.fastly.com/blog/building-and-scaling-fastly-
network-part-1-fighting-fib.

65

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

[15] Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. 2017. Hijacking Bitcoin:
Routing Attacks on Cryptocurrencies. In IEEE Symposium on Security and Privacy
(S&P ’17).

Hitesh Ballani, Paul Francis, and Sylvia Ratnasamy. 2006. A Measurement-
Based Deployment Proposal for IP Anycast. In Proceedings of the ACM Internet
Measurement Conference (IMC ’06).

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A General
Approach to Network Configuration Verification. In Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication (SSGCOMM
17).

Henry Birge-Lee, Yixin Sun, Annie Edmundson, Jennifer Rexford, and Prateek
Mittal. 2017. Using BGP to Acquire Bogus TLS Certificates. In Privacy Enhancing
Technologies Symposium (HotPETS ’17).

Henry Birge-Lee, Yixin Sun, Annie Edmundson, Jennifer Rexford, and Prateek
Mittal. 2018. Bamboozling Certificate Authorities with BGP. In 27th USENIX
Security Symposium (USENIX Security ’18).

Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. SICO:
Surgical Interception Attacks by Manipulating BGP Communities. In 2019 ACM
SIGSAC Conference on Computer and Communications Security (CCS °19).
Randy Bush, Olaf Maennel, Matthew Roughan, and Steve Uhlig. 2009. Internet
Optometry: Assessing the Broken Glasses in Internet Reachability. In Proceedings
of the ACM Internet Measurement Conference (IMC "09).

Matt Calder, Ryan Gao, Manuel Schréder, Ryan Stewart, Jitendra Padhye, Ratul
Mahajan, Ganesh Ananthanarayanan, and Ethan Katz-Bassett. 2018. Odin:
Microsoft’s Scalable Fault-Tolerant CDN Measurement System. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’18).

B. Carpenter and K. Moore. 2005. Connection of IPv6 Domains via IPv4 Clouds.
RFC3056.

R. Chandra and R. Traina. 1996. BGP Communities Attribute. RFC1997.
Rocky K.C. Chang and Michael Lo. 2005. Inbound Traffic Engineering for
Multihomed ASes Using AS Path Prepending. IEEE Network 19, 2 (2005), 18-25.
Nikolaos Chatzis, Georgios Smaragdakis, Anja Feldmann, and Walter Willinger.
2013. There is More to IXPs than Meets the Eye. SSIGCOMM Comput. Commun.
Rev. (CCR) (2013).

Kai Chen, David R. Choffnes, Rahul Potharaju, Yan Chen, Fabian E. Bustamante,
Dan Pei, and Yao Zhao. 2009. Where the Sidewalk Ends: Extending the Internet
AS Graph Using Traceroutes from P2P Users. In Proceedings of Conference on
emerging Networking EXperiments and Technologies (CONEXT "09).

Marco Chiesa, Daniel Demmler, Marco Canini, Michael Schapira, and Thomas
Schneider. 2017. SIXPACK: Securing Internet eXchange Points Against Curi-
ous onlooKers. In Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies (CONEXT °17).

Yi-Ching Chiu, Brandon Schlinker, Abhishek Balaji Radhakrishnan, Ethan Katz-
Bassett, and Ramesh Govindan. 2015. Are We One Hop Away from a Better
Internet?. In Proceedings of the ACM Internet Measurement Conference (IMC ’15).
[30] Cisco. 2005. Understanding Policy Routing.

[31] Cisco. 2008. Virtual Route Forwarding Design Guide.

[32] Jim Cowie. 2013. The New Threat: Targeted Internet Traffic Misdirection. Dyn
Research Blog. http://research.dyn.com/2013/11/mitm-internet-hijacking/
Alberto Dainotti, Ethan Katz-Bassett, and Xenofontas Dimitropolous. 2016. The
BGP Hackathon 2016 Report. (2016).

Wouter B. de Vries, Ricardo de O. Schmidt, Wes Hardaker, John Heidemann,
Pieter-Tjerk de Boer, and Aiko Pras. 2017. Broad and Load-aware Anycast
Mapping with Verfploeter. In Proceedings of the ACM Internet Measurement
Conference (IMC ’17).

Dyn. [n.d.]. Pakistan hijacks YouTube. https://dyn.com/blog/pakistan-hijacks-
youtube-1/.

Dyn. [n.d.]. Reckless Driving on the Internet. https://dyn.com/blog/the-flap-
heard-around-the-world/.

Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Millstein, Vyas
Sekar, and George Varghese. 2016. Efficient Network Reachability Analysis
Using a Succinct Control Plane Representation. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’16).

[38] Julidn Martin Del Fiore, Pascal Merindol, Valerio Persico, Cristel Pelsser, and
Antonio Pescapé. 2019. Filtering the Noise to Reveal Inter-Domain Lies. In Proc.
of the Network Traffic Measurement and Analysis Conference (TMA ’19).

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd D Millstein. 2015. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’15).

Lixin Gao. 2001. On inferring autonomous system relationships in the Internet.
IEEE/ACM Transactions on Networking (ToN) 9, 6 (2001), 733-745.

Yossi Gilad, Avichai Cohen, Amir Herzberg, Michael Schapira, and Haya Shul-
man. 2017. Are We There Yet? On RPKI's Deployment and Security. In Proceed-
ings of Network and Distributed System Security Symposium (NDSS ’17).
Vasileios Giotsas, Amogh Dhamdhere, and Kimberly C. Claffy. 2016. Periscope:
Unifying Looking Glass Querying. In Proceedings of International Conference on
Passive and Active Network Measurement (PAM ’16).

[16]

[17]

[18

[19

[20

[21

[22

[23

[24
[25

[26

[27

[28

[29

[33

[34]

[35

[36

[37

[39

[40

[41

[42

https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
https://www.internet2.edu/products-services/advanced-networking/layer-2-services/
http://www.cloudlab.us/
https://www.emulab.net/
https://github.com/Exa-Networks/exabgp
https://www.geant.org/
https://openvpn.net/
https://www.peeringdb.com/
https://www.planet-lab.org/
http://bird.network.cz/
https://www.xsede.org/
https://www.fastly.com/blog/building-and-scaling-fastly-network-part-1-fighting-fib
https://www.fastly.com/blog/building-and-scaling-fastly-network-part-1-fighting-fib
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-calder.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-calder.pdf
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/10116-36.html
http://research.dyn.com/2013/11/mitm-internet-hijacking/
https://dyn.com/blog/pakistan-hijacks-youtube-1/
https://dyn.com/blog/pakistan-hijacks-youtube-1/
https://dyn.com/blog/the-flap-heard-around-the-world/
https://dyn.com/blog/the-flap-heard-around-the-world/

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

(43]

(44

(45

'S
&

(47

[48

[49

‘o
S

[55

[56

[57

(58]

[59

(60

[61

o
o,

[63

(64

[65

[66]

Arpit Gupta, Robert MacDavid, Riidiger Birkner, Marco Canini, Nick Feamster,
Jennifer Rexford, and Laurent Vanbever. 2016. An Industrial-Scale Software
Defined Internet Exchange Point. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’16).

Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean P. Donovan, Brandon
Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan
Katz-Bassett. 2014. SDX: A Software Defined Internet Exchange. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’14).

Jiayue He and Jennifer Rexford. 2008. Toward Internet-Wide Multipath Routing.
IEEE Network 22, 2 (March 2008), 16-21.

J. Heitz, J. Snijders, K. Patel, I. Bagdonas, and N. Hilliard. 2017. BGP Large
Communities Attribute. RFC8092.

Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. SWIFT: Predictive Fast Reroute. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM ’17).

Mark Huang, Andy Bavier, and Larry Peterson. 2006. PlanetFlow: Maintaining
Accountability for Network Services. In ACM SIGOPS Operating Systems Review
(SOSR *06).

Umar Javed, Italo Cunha, David R. Choffnes, Ethan Katz-Bassett, Thomas E.
Anderson, and Arvind Krishnamurthy. 2013. PoiRoot: Investigating the Root
Cause of Interdomain Path Changes. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM °13).

Brivaldo Junior, Ronaldo A. Ferreira, Italo Cunha, Brandon Schlinker, and Ethan
Katz-Bassett. 2018. High-Fidelity Interdomain Routing Experiments. In ACM
SIGCOMM Posters and Demos (SIGCOMM °18).

Juniper. 2017. Routing Instances Overview.

Ethan Katz-Bassett, David R Choffnes, Italo Cunha, Colin Scott, Thomas An-
derson, and Arvind Krishnamurthy. 2011. Machiavellian Routing: Improving
Internet Availability with BGP Poisoning. In Proceedings of the 10th ACM Work-
shop on Hot Topics in Networks (HotNETS °11).

Ethan Katz-Bassett, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy,
David Wetherall, and Thomas Anderson. 2008. Studying Black Holes in the
Internet with Hubble. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI "08).

Ethan Katz-Bassett, Colin Scott, David R. Choffnes, Italo Cunha, Vytautas Valan-
cius, Nick Feamster, Harsha V. Madhyastha, Thomas Anderson, and Arvind
Krishnamurthy. 2012. LIFEGUARD: Practical Repair of Persistent Route Fail-
ures. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’12).

Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. 2010. Internet Inter-domain Traffic. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
’10).

Bob Lantz, Brandon Heller, and Nick McKeown. 2010. A Network in a Laptop:
Rapid Prototyping for Software Defined Networks. In Proceedings of the 9th
ACM Workshop on Hot Topics in Networks (HotNets '10).

Zhihao Li, Dave Levin, Neil Spring, and Bobby Bhattacharjee. 2018. Internet
Anycast: Performance, Problems, & Potential. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication (SIGCOMM
°18).

NANOG Mailing List. 2019. BGP Experiment — Thread. https://mailman.nanog.
org/pipermail/nanog/2019-January/098761.html

Matthew Luckie, Brian Huffaker, Amogh Dhamdhere, Vasileios Giotsas, and kc
claffy. 2013. AS Relationships, Customer Cones, and Validation. In Proceedings
of the ACM Internet Measurement Conference (IMC °13).

Ratul Mahajan, David Wetherall, and Thomas Anderson. 2005. Negotiation-
based routing between neighboring ISPs. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI "05).

Ratul Mahajan, David Wetherall, and Tom Anderson. 2012. Understanding BGP
Misconfiguration. In Proceedings of the Conference of the ACM Special Interest
Group on Data Communication (SIGCOMM ’12).

Zhuogqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H. Katz. 2003.
Towards an Accurate AS-level Traceroute Tool. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM *03).
Stefan Meinders. 2016. In RIPE NCC Regional Meeting: Eurasia Network Operators
Group (ENOG 11).

Metronome Systems Inc. 2018. eBPF Offload Getting Started Guide. https://www.
netronome.com/m/documents/UG_Getting_Started_with_eBPF_Offload.pdf.
Luis Pedrosa, Ari Fogel, Nupur Kothari, Ramesh Govindan, Ratul Mahajan, and
Todd Millstein. 2015. Analyzing Protocol Implementations for Interoperability.
In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’15).

Simon Peter, Umar Javed, Qiao Zhang, Doug Woos, Arvind Krishnamurthy,
and Thomas Anderson. 2014. One Tunnel is (Often) Enough. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’14).

66

[67]

[68

[69

[70

[71]

[72
[73

,—,
3
B, 9,

[75

[76

(7]

[78

[79

[80

[81

[82

[83

[84]

[85

[86

[87

[88

[89

[90

[o1]

[92

[93

B. Schlinker et al.

Larry Peterson, Andy Bavier, Marc E. Fiuczynski, and Steve Muir. 2006. Experi-
ences Building PlanetLab. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI "06).

Alex Pilosov and Tony Kapela. 2008. Stealing The Internet: An Internet-Scale
Man In The Middle Attack. In DEFCON 16.

Andreas Reuter, Randy Bush, Italo Cunha, Ethan Katz-Bassett, Thomas C.
Schmidt, and Matthias Wihlisch. 2018. Towards a Rigorous Methodology for
Measuring Adoption of RPKI Route Validation and Filtering. SIGCOMM Comput.
Commun. Rev. (CCR) (2018).

Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Nikolaos Chatzis, Jan
Boettger, and Walter Willinger. 2014. Peering at Peerings: On the Role of IXP
Route Servers. In Proceedings of the ACM Internet Measurement Conference (IMC
'14).

RIPE NCC. 2018. Current RIS Routing Beacons. https://www.ripe.net/analyse/
internet-measurements/routing-information-service-ris/current-ris-routing-
beacons.

ripeatlas [n.d.]. RIPE Atlas. https://atlas.ripe.net/.

riperis [n.d.]. RIPE Routing Information Service (RIS). http://www.ripe.net/ris/.
rnp [n.d.]. Rede Nacional de Ensino e Pesquisa. https://www.rnp.br/.

Erik Romijn. 2010. RIPE NCC and Duke University BGP Experiment. https:
//labs.ripe.net/Members/erik/ripe-ncc-and- duke-university-bgp-experiment
routeviews [n.d.]. The University of Oregon Routeviews Project. http://www.
routeviews.org.

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov. 2003. Linux Netlink as an IP
Services Protocol. RFC3549.

Raja R Sambasivan, David Tran-Lam, Aditya Akella, and Peter Steenkiste. 2016.
Bootstrapping Evolvability for Inter-domain Routing with D-BGP. In CMU-CS-
16-117 Tech Report.

Raja R Sambasivan, David Tran-Lam, Aditya Akella, and Peter Steenkiste. 2017.
Bootstrapping Evolvability for Inter-Domain Routing with D-BGP. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM °17).

Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan, and Ethan
Katz-Bassett. 2019. A View of Internet Performance from a Global Content
Provider’s Edge. In Proceedings of the ACM Internet Measurement Conference
(IMC °19).

Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. 2017. Engineering Egress with Edge Fabric. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SSIGCOMM °17).
Brandon Schlinker, Kyriakos Zarifis, Italo Cunha, Nick Feamster, and Ethan
Katz-Bassett. 2014. Peering: An AS for Us. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (HotNets ’14).

Pavlos Sermpezis, Vasileios Kotronis, Petros Gigis, Xenofontas Dimitropoulos,
Danilo Cicalese, Alistair King, and Alberto Dainotti. 2018. ARTEMIS: Neutraliz-
ing BGP Hijacking within a Minute. IEEE/ACM Transactions on Networking 26,
6 (Dec 2018).

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. 2009. Flowvisor: A network virtualization
layer. OpenFlow Switch Consortium, Tech. Rep 1 (2009), 132.

Ben Treynor Sloss. [n.d.]. Expanding our global infrastructure with new regions
and subsea cables.

Neil T. Spring, Ratul Mahajan, and Thomas E. Anderson. 2003. The Causes of
Path Inflation. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM °03).

Florian Streibelt, Franziska Lichtblau, Robert Beverly, Anja Feldmann, Cristel
Pelsser, Georgios Smaragdakis, and Randy Bush. 2018. BGP Communities: Even
more Worms in the Routing Can. In Proceedings of the ACM Internet Measurement
Conference (IMC ’18).

Peng Sun, Laurent Vanbever, and Jennifer Rexford. 2015. Scalable Programmable
Inbound Traffic Engineering. In Proceedings of the 1st ACM SIGCOMM Sympo-
sium on Software Defined Networking Research (SOSR ’15).

Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateek Mittal.
2017. Counter-RAPTOR: Safeguarding Tor Against Active Routing Attacks. In
IEEE Symposium on Security and Privacy (SP ’17).

Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,
Mung Chiang, and Prateek Mittal. 2015. RAPTOR: Routing Attacks on Privacy
in Tor. In 24th USENIX Security Symposium (USENIX Security 15).

Yu-Wei Eric Sung, Xiaozheng Tie, Starsky HY Wong, and Hongyi Zeng. 2016.
Robotron: Top-down Network Management at Facebook Scale. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM °16).

The Linux Foundation. 2018. Data Plane Development Kit. https://www.dpdk.
org.

The Linux Kernel Documentation. 2018. AF_XDP Overview. https://www.
kernel.org/doc/html/latest/networking/af xdp.html.

https://www.juniper.net/documentation/en_US/junos/topics/concept/routing-instances-overview.html
https://mailman.nanog.org/pipermail/nanog/2019-January/098761.html
https://mailman.nanog.org/pipermail/nanog/2019-January/098761.html
https://www.netronome.com/m/documents/UG_Getting_Started_with_eBPF_Offload.pdf
https://www.netronome.com/m/documents/UG_Getting_Started_with_eBPF_Offload.pdf
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/current-ris-routing-beacons
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/current-ris-routing-beacons
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/current-ris-routing-beacons
https://atlas.ripe.net/
http://www.ripe.net/ris/
https://www.rnp.br/
https://labs.ripe.net/Members/erik/ripe-ncc-and-duke-university-bgp-experiment
https://labs.ripe.net/Members/erik/ripe-ncc-and-duke-university-bgp-experiment
http://www.routeviews.org
http://www.routeviews.org
https://blog.google/topics/google-cloud/expanding-our-global-infrastructure-new-regions-and-subsea-cables/
https://blog.google/topics/google-cloud/expanding-our-global-infrastructure-new-regions-and-subsea-cables/
https://www.dpdk.org
https://www.dpdk.org
https://www.kernel.org/doc/html/latest/networking/af_xdp.html
https://www.kernel.org/doc/html/latest/networking/af_xdp.html

PEERING: Virtualizing BGP at the Edge for Research

[94] The Mitre Corporation. 2019. CVE-2019-5892. http://cve.mitre.org/cgi-bin/

[95

[96

[97
[98
[99

[100

]

cvename.cgi?name=CVE-2019-5892.

Linus Torvalds. 2015. Linux Kernel 4.1—Release Notes. https://kernelnewbies.
org/Linux_4.1.

Vytautas Valancius, Nick Feamster, Jennifer Rexford, and Akihiro Nakao. 2010.
Wide-Area Route Control for Distributed Services. In USENIX Annual Technical
Conference (USENIX ATC ’10).

Vytautas Valancius, Bharath Ravi, Nick Feamster, and Alex C. Snoeren. 2013.
Quantifying the Benefits of Joint Content and Network Routing. In SIGMETRICS.

D. Walton, A. Retana, E. Chen, and J. Scudder. 2016. Advertisement of Multiple
Paths in BGP. RFC 7911.

Robin Whittle. [n.d.]. [rrg] Geoff Huston’s BGP/DFZ research. https://www.
ietf.org/mail-archive/web/rrg/current/msg06163.html.

Florian Wohlfart, Nikolaos Chatzis, Caglar Dabanoglu, Georg Carle, and Walter
Willinger. 2018. Leveraging Interconnections for Performance: The Serving
Infrastructure of a Large CDN. In Proceedings of the Conference of the ACM

67

[101

[102

[103

[104

CoNEXT ’19, December 9-12, 2019, Orlando, FL, USA

Special Interest Group on Data Communication (SIGCOMM ’18).

Wen Xu and Jennifer Rexford. 2006. MIRO: Multi-path Interdomain ROuting.
In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM "06).

Y. Rekhter and T. Li and S. Hares. 2006. A Border Gateway Protocol 4 (BGP-4).
RFC4271.

He Yan, Ricardo Oliveira, Kevin Burnett, Dave Matthews, Lixia Zhang, and Dan
Massey. 2009. BGPmon: A real-time, scalable, extensible monitoring system. In
Conference For Homeland Security, 2009. CATCH 09. Cybersecurity Applications
& Technology. IEEE, 212-223.

Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeceun Kim, Ashok Narayanan, Ankur Jain,
et al. 2017. Taking the Edge off with Espresso: Scale, Reliability and Programma-
bility for Global Internet Peering. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SSIGCOMM °17).

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5892
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5892
https://kernelnewbies.org/Linux_4.1
https://kernelnewbies.org/Linux_4.1
https://www.ietf.org/mail-archive/web/rrg/current/msg06163.html
https://www.ietf.org/mail-archive/web/rrg/current/msg06163.html
http://doi.acm.org/10.1145/3230543.3230576
http://doi.acm.org/10.1145/3230543.3230576
https://tools.ietf.org/html/rfc4271

	Abstract
	1 Introduction
	2 Goals and Challenges
	2.1 Goals
	2.2 Native Delegation with BGP and IP
	2.3 Alternative Approaches to Delegation

	3 Virtualizing the Edge with BGP
	3.1 Key Design Decisions for vBGP
	3.2 Delegation to Experiments
	3.3 Security and Isolation

	4 PEERING: From a Router to an AS
	4.1 Key Design Decisions for
	4.2 Footprint and Connectivity
	4.3 Emulating a Cloud Provider
	4.4 BGP Across the Backbone
	4.5 Experiment Toolkit
	4.6 Deploying Experiments
	4.7 Security Policies

	5 Development and Deployment
	6 Scalability of PEERING
	7 PEERING in Practice
	7.1 How Has Been Used
	7.2 Native Delegation is a Cornerstonefor Generality
	7.3 Cooperation with Network Operators
	7.4 Experiments Does Not Support

	8 Related Work
	9 Conclusion
	A Challenges in Debuggingand Operation
	References

