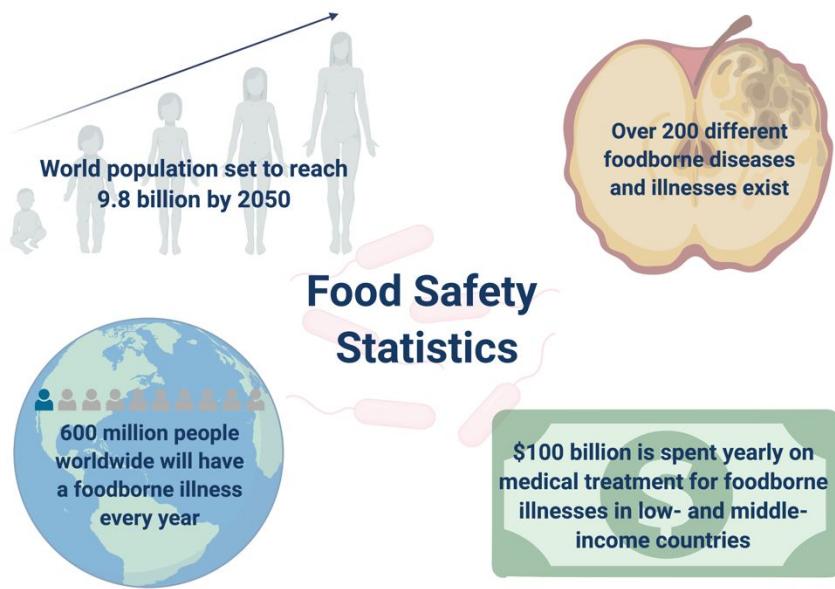


1
2
3 **Sensing food contaminants: advances in analytical methods and techniques**
4
5

6 *Rebeca S. Rodriguez,[†] Tana L. O'Keefe,[†] Clarice Froehlich,[†] Riley E. Lewis,[†] Trever R. Sheldon,[†]*
7 *Christy L. Haynes^{†*}*
8

9 [†] Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis,
10 Minnesota 55455, United States
11


12 * Corresponding author: chaynes@umn.edu
13
14

15
16 It is estimated that approximately 600 million people (equivalent to 1 in 10 people
17 worldwide) succumb annually to foodborne illnesses due to food contamination.¹ Changes in
18 the global environment due to urbanization and climate change add variability in overall crop
19 yield and distribution, leading to both direct and indirect impacts on food safety.² These erratic
20 changes affect rainfall patterns, microbial ecology, and the emergence of new plant diseases-
21 all impacting the food production chain.³ This food production chain, "from farm to table,"⁴
22 presents multiple opportunities for food contamination to occur.⁵ Food production, processing,
23 distribution and transport, and preparation, with the added pressure of food globalization, all
24 contribute to more than 200 distinct foodborne diseases and illnesses.⁶
25
26

27 As a direct result of food contaminants, food safety and food security are intimately
28 connected. Food contamination exposure levels in developing countries are much higher than
29 those in the United States or Europe.⁷ Lack of proper food storage, which can lead to food
30 contamination, or insufficient access to safely processed foods is linked to malnourishment and
31 hunger in these countries.^{8,9,10} According to the World Health Organization (WHO),
32 approximately \$100 billion is spent yearly on medical expenses from the consumption of
33 contaminated food in low- and middle- income countries.¹ This food safety market continues to
34 expand drastically and will for the foreseeable future, with the world population projected to
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 reach 9.8 billion by 2050.¹¹ While it is difficult to manage the food production chain globally and
4 prevent contamination,¹² generating novel ways to detect food contaminants has the potential
5 to reduce the adverse impacts that food contamination has on the global population.¹³
6
7

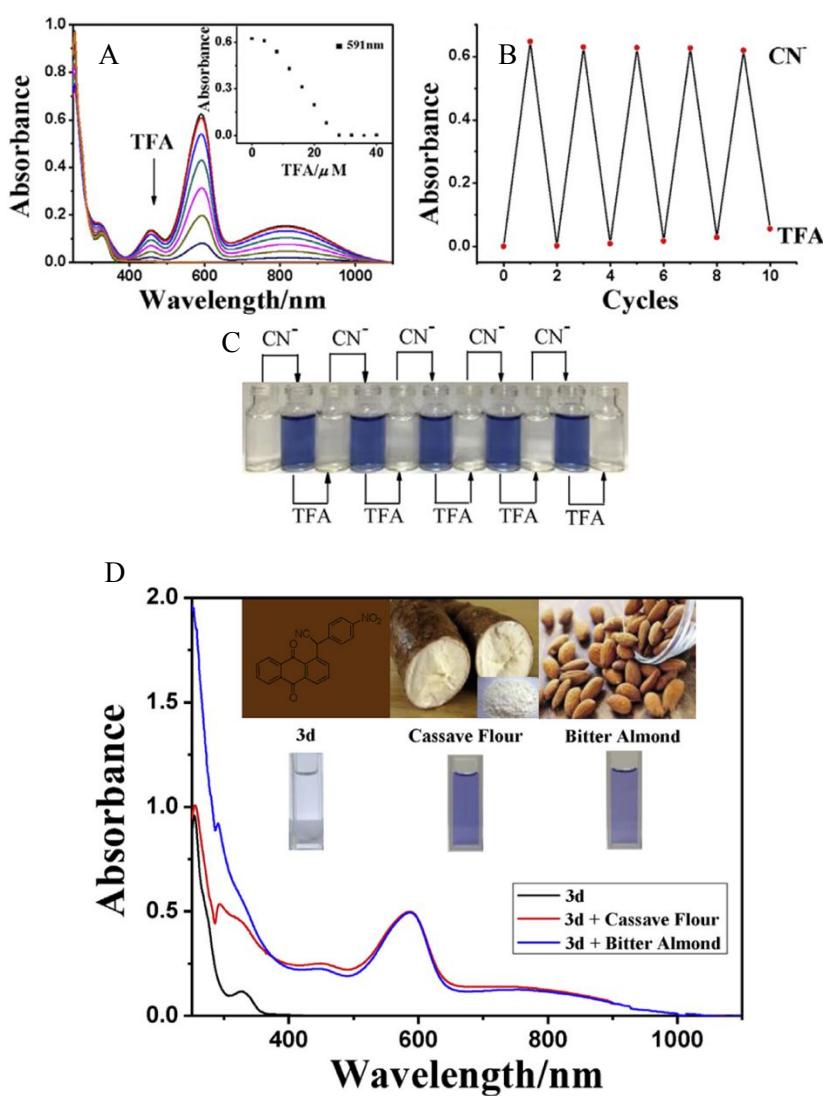
8
9
10 Food contaminants can generally be categorized into six classifications: (1) chemical
11 contamination, such as pesticides,¹⁴ fertilizers,¹⁵ small molecule toxins,¹⁶ or chemical residue
12 from cleaning products,¹⁷ (2) bacterial/microbial contamination, such as *Salmonella*,¹⁸ *Listeria*,¹⁹
13 and *E. coli*,²⁰ (3) viral contamination, such as norovirus²¹ and hepatitis A,²² (4) protein
14 contamination, such as biotoxins²³ (ricin, botulin, shellfish neurotoxins²⁴) or allergens²⁵ (peanut,
15 wheat, etc.), (5) parasite contamination²⁶ such as tapeworms²⁷ or *Toxoplasma gondii*²⁸, and (6)
16 fungal contamination,^{29,30} such as mold³¹ or yeasts³², which can also produce other toxic
17 chemicals naturally on the food surface. While there are numerous reviews and articles that go
18 into detail regarding various ways to detect each specific contaminant, this review article will
19 focus on the overall advances made in analytical techniques and methodology for food safety
20 detection in the last four years. Herein, we will discuss advances and technical gaps for the
21 most common techniques used for contaminant detection: UV-visible spectroscopy and other
22 colorimetric techniques, immunoassays and lateral flow assays, chromatography, surface-
23 enhanced Raman spectroscopy, and electrochemical field-effect transistors. While a lot of these
24 techniques yield reasonable limits of detection for various food contaminants, work still needs
25 to be done to address sensing in complex food matrices, multiplex sensing of contaminants,
26 and the ability to perform in-field measurements in real-world and low resource settings.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 1. Infographic displaying relevant food safety statistics. Figure created with BioRender.com

UV-visible Spectroscopy/Colorimetric Techniques

Introduction to UV-visible Spectroscopy. Ultraviolet-visible spectroscopy or UV-visible (UV-vis) spectroscopy is a very common absorption spectroscopy technique relevant for food contaminant detection. Generally, molecules interact with light in the ultraviolet or visible regions, exciting electrons within the molecule and absorbing particular wavelengths depending on the molecular structure. The absorbed wavelengths provide specific information about the extent of conjugation and functional groups present in the molecule. This phenomenon is particularly of interest when detecting organic food contaminants, and when combined with the Beer-Lambert law,³³ one can also directly correlate intensity or integrated area of the absorption peak to concentration of the analyte. While UV-vis absorption spectroscopy has been used for many years to perform direct detection of organic and biomolecules, including

1
2
3 those relevant in food contamination,^{34,35,36,37} its use in combination with nanoparticles (NPs) is
4
5 beneficial to the food sensor world as well. UV-vis can be used to infer the sizes of various
6
7 NPs,³⁸ and this has been particularly of interest in the sensing field due to NPs ability to
8
9 facilitate sensing of a wide variety of targets. In fact, it is UV-vis extinction spectroscopy, where
10
11 extinction is the sum of absorption and scattering, that is measured with NP samples. A
12
13 theoretically calculated extinction coefficient, derived from the refractive index and dependent
14
15 on the λ_{max} of the spectrum, can be used to calculate NP diameter or geometry (thus, making it
16
17 possible to identify varied nanoparticle tags). The UV-vis extinction observation of nanoparticle
18
19 size is comparable to that observed with transmission electron microscopy (TEM) when an
20
21 average size is calculated from a large number of imaged NPs;³⁹ however, UV-vis extinction
22
23 measurements are much simpler than TEM analysis. Different sizes and shapes of particles can
24
25 label different food contaminants during sensing.^{40,41} Not only does UV-vis extinction
26
27 spectroscopy provide insight on sizing of nanospheres or other nanostructures, but shifts in the
28
29 extinction peak can be monitored when specific ligands and/or targets associate with the NPs,
30
31 changing the local refractive index. Additionally, while there are numerous biological
32
33 colorimetric assays that reveal the presence (but not the amount) of a food contaminant such
34
35 as *Listeria*⁴² and *Salmonella*,⁴³ these assays must be combined with quantitative polymerase
36
37 chain reaction (qPCR) techniques^{44,45,46} to amplify and quantify bacterial presence in food. A
38
39 variety of review articles have been published describing the advantages and disadvantages of
40
41 qPCR assays in food safety.^{47,48,49,50} Here, we will focus on the use of traditional UV-visible
42
43 spectroscopy for the detection of organic contaminants and leveraging UV-vis for NP-enabled
44
45 detection schemes.


46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4 **UV-visible Spectroscopy Detection of Absorbing Molecules.** Cyanide (CN⁻) is a toxic ion that can
5 cause death in humans at low doses.⁵¹ It is a toxin of interest in food security due to its
6 presence in the pits of fruit, bitter almonds, and plants.⁵² These molecules have the ability to
7 leach from the pits of fruit into jams or marmalades during the food production process, and
8 once consumed, CN⁻ can easily inhibit enzymes in the body.⁵³ To address this concern, Zhu et al.
9 worked to create a colorimetric sensor to detect cyanide with UV-visible spectroscopy.⁵⁴ The
10 authors synthesized four anthraquinone derivatives that can conjugate CN⁻ with a metallized C-
11 H group via intramolecular hydrogen bonding. Without the presence of CN⁻, the anthraquinone
12 solutions appear clear and do not exhibit large absorption peaks in the UV-visible spectrum.
13
14 Once the CN⁻ binds to the anthraquinone molecule, the solution appears blue due to an
15 electron transfer, and a large absorption peak is observed at 588 nm. Using this assay, the
16 authors were able to reach a limit of detection (LOD) of 29.48 μ M (7.67 ppm) CN⁻; this is 10x
17 less than the LD₅₀ of cyanide for humans (100-200 ppm). The LD₅₀ is a toxicological statistic
18 stating the lethal dose at which 50% of animals or humans would die at the dosage listed.
19
20

21 To ensure specificity, the anthraquinone derivatives were screened against other anions
22 such as fluoride, phosphate, sulfide, and chloride. These anions are not food contaminants
23 themselves, but the authors wanted to confirm that any anions that may be present in food
24 would not bind to the anthraquinone. The UV-visible spectra showed broadened, less intense
25 peaks around 800 nm, and none of the anions masked or affected the absorbance intensity of
26 the cyanide peak at 588 nm in the competitive assay. Additionally, the authors showed the
27 sensor's reversible performance when titrated and deprotonated with trifluoroacetic acid (TFA)
28 as shown in Figure 2A-C. To test sensor viability in food, the anthraquinone was deposited onto
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 a testing strip to do in-solution analysis of CN⁻ in food sources. Both cassava flour and bitter
4
5 almonds were infused into a sodium hydroxide solution and spiked with 20 μ M CN⁻. New
6
7 absorption peaks were observed in the presence of both cassava flour and bitter almonds, but
8
9 they did not overlap nor interfere with the CN⁻ binding absorption peak (Figure 2D). In
10
11 conclusion, this work leveraged UV-visible spectroscopy and anthraquinone's ability to act as a
12
13 chromophore in the presence of CN⁻ in order to monitor cyanide contamination in a relevant
14
15 food matrix. Unfortunately, if the target is not able to bind to the sensor in a way that promotes
16
17 changes in its absorption of light in the UV or visible regime, UV-visible spectroscopy is not a
18
19 viable option for sensing. For this reason, the intense UV-vis extinction by nanoparticles are
20
21 often employed to detect food contamination where the nanoparticle and contaminant
22
23 interaction is mediated with an affinity agent.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 2. A. UV-Visible spectra of TFA titration cycling in the binding and unbinding of CN^- . B. Absorbance vs. number of cycles before and after titration. C. Image of clear to blue color change in the presence of CN^- . D. UV-visible spectra of CN^- spiked cassava flour and bitter almonds in solution. Reproduced from Zhu, T.; Li, Z.; Fu, C.; Chen, L.; Chen, X.; Gao, C.; Zhang, S.; Liu, C. *Tetrahedron* **2020**, *76* (38), 131479. (ref. 54). Copyright 2020 Elsevier.

As previously mentioned, the UV-vis extinction properties of nanomaterials are frequently exploited for sensing applications. Plasmonic metal NPs, in particular, have extinction properties in the UV-vis that are very sensitive to local refractive index (RI) changes and/or nanoparticle aggregation due to their localized surface plasmon resonance (LSPR).⁵⁵ The LSPR is the oscillation of conduction electrons excited by absorption of incident light at a

1
2
3 particular wavelength.^{56,57} Plasmonic sensors that exploit this LSPR phenomena can use UV-
4 visible spectroscopy as a signal transduction mechanism.⁵⁸ The position of the LSPR peak is very
5
6 sensitive to changes in the RI near the noble metal NP surface which can be associated with
7
8 either biological or chemical binding or association.⁵⁹
9
10

11
12
13
14
15 **UV-visible Spectroscopy and Nanotechnology.** Recent work done by Loiseau et. al⁶⁰ explored
16 the use of core-shell metal NPs (Au@Ag NPs and Ag@Au NPs) to detect staphylococcal
17 enterotoxin A (SEA) based on observed LSPR shifts. SEA is a small protein, only 28 kDa, that is a
18 food toxin causing most staphylococcal-related food contamination.⁶¹ It is known to cause
19 severe gastroenteritis and sometimes even death in humans.⁶² Thus, the researchers
20 synthesized these metal NPs and bioconjugated a SEA antibody on the outer shell of the NPs.
21
22 While nanosensors often rely on very slight shifts in the extinction maximum (1-5 nm), the
23 authors observed large red shifts (100-150 nm) in their UV-visible spectra once the SEA bound
24 to the SEA antibody. These nanosensors had such a distinct shift in the spectra that the NP
25 solutions changed color in a way that could be observed by the naked human eye. The
26 Ag@AuNPs changed from an orange color to a red color in the presence of SEA and the
27 Au@AgNPs changed from red to pink. They were able to reach LODs of 0.4 nM (0.01 ppm) and
28 0.2 nM (0.006 ppm), respectively, limited by the background noise in the UV-vis spectrometer.
29
30 SEA can start showing adverse effects to the human body at around 175 nM (4.9 ppm), so these
31 LODs are more than sufficient.⁶¹ Additionally, their responses were sensitive enough to build a
32 dose-response curve based on the change in the λ_{max} of the extinction peak versus the
33 concentration of SEA added to the nanoprobe.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5 **UV-visible Spectroscopy Sensing Conclusions.** While UV-visible spectroscopy is a useful and
6 effective technique for food contaminant detection, many sensors rely on relatively small shifts
7 in the spectra to reveal target detection. The addition of a food matrix may also complicate or
8 mask the observed absorption peak due to other small molecules in solution that are active in
9 the UV or visible regime or larger matrix components that may non-specifically scatter UV-
10 visible light. For this reason, UV-visible spectroscopy is less of a stand-alone technique viable for
11 this type of sensing. UV-visible spectroscopy will continue to serve as an initial screening
12 technique or supplementary technique to much more specific technologies for food
13 contamination detection.

28 **Chromatography Techniques**

29
30 **Introduction to Chromatography Techniques.** Chromatographic separation techniques are
31 advantageous for detecting food contaminants and residues, most frequently organic
32 molecules like mycotoxins, toxins naturally produced by fungi, and pesticides. Gas
33 chromatography (GC) and liquid chromatography (LC) are two very established
34 chromatographic techniques used to detect and quantify these small molecule food
35 contaminants due to their ability to separate complex mixtures.^{63,64} Both techniques are based
36 on the partitioning of the target analytes into a stationary phase within the column as a mobile
37 phase flows/carries it through. Partitioning occurs due to favorable interactions between the
38 stationary phase and the target analytes; thus, the time required to elute the analytes
39 (retention time) varies, allowing for several compounds to be separated during this process.⁶⁵

40
41 Numerous types of columns that contain different stationary phases are available for the
42

1
2
3 detection of various target analytes. In GC, the mobile phase is a chemically inert carrier gas,
4 such as helium or nitrogen, while the stationary phase is a microscopic liquid or polymer layer
5 coated on the inside of the column walls. This technique is often used for the detection of small
6 organic compounds as it requires volatile samples. In contrast, LC involves the use of a liquid
7 mobile phase (commonly water or methanol) with solid adsorbents as the stationary phase,
8 allowing for the analysis of non-volatile compounds. Oftentimes, these chromatographic
9 techniques are coupled with mass spectrometers or other detectors that have extremely low
10 limits of detection for the quantification needed for food contaminants and residues.⁶⁶
11
12

13 Some of the first work using GC for food contamination was done by Coulson et al. in
14 1959 and focused on detecting pesticides.⁶⁷ While this study only proposed a method for
15 detecting vegetable extracts and did not verify the technique in a food matrix, by 1964, GC had
16 become the gold standard at the FDA for detecting chlorinated pesticides, such as DDT, aldrin,
17 and heptachlor, with detection limits around 0.002 ppm.⁶⁸ In 1973, high performance (also
18 known as high pressure) LC (HPLC) was proposed as an alternative technique to GC by
19 Eisenbeiss and Sieper for pesticide residue analysis to detect less volatile substances and those
20 that may decompose at higher temperatures.⁶⁹ This was successfully carried out in 1976 by
21 Dolphin et al. to detect organochlorine pesticides in milk at the ~0.1 ppm level,⁷⁰ and by
22 Lawrence to detect carbamate pesticides in crops at levels ranging from 0.004 – 0.3 ppm.⁷¹

23 Around this time, HPLC was increasingly used for mycotoxin detection due to its
24 advantages with speed, resolution, accuracy, and precision. Mycotoxin detection using HPLC
25 was quickly applied to foodstuffs like grain samples,⁷² nuts,⁷³ wine,⁷⁴ milk,⁷⁵ and cottonseed
26 (grain used for livestock),⁷⁶ and was able to detect mycotoxins at concentrations as low as 5
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

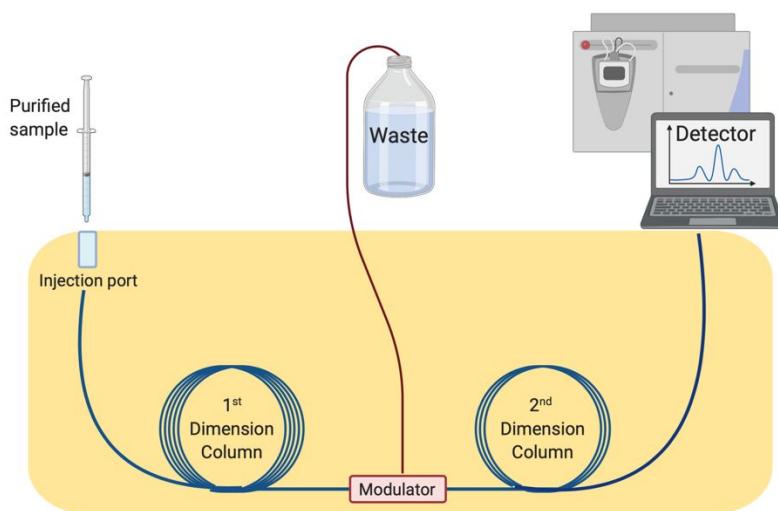
1
2
3 $\mu\text{g/kg}$ (0.005 ppm). By the 1980's, GC and LC had become gold standards for detecting
4 mycotoxin food contamination.^{77,78,79,80} Since then, many advances have been made to both
5 techniques to improve LODs and LOQs (limit of quantitation), address issues with sample
6 preparation, and move towards complex matrix and multiplexing for detection of food
7 contaminants. Herein, we will highlight these advancements to the food sensor world.
8
9
10
11
12
13
14
15

16 **QuEChERS.** The need for thorough sample preparation for chromatography stems from the
17 instrument needing relatively pure samples to properly use the technique. Thus, in highlighting
18 some of the advances made to chromatographic techniques, sample preparation plays a key
19 role in being able to sense contaminants found in complex mixtures. These sample preparation
20 techniques focus mainly on extracting and cleaning the sample for further analysis. By far, one
21 of the greatest advancements in preparatory techniques was the development of QuEChERS
22 (Quick, Easy, Cheap, Effective, Rugged, and Safe), which revolutionized how multiresidue and
23 multiclass analysis was done. QuEChERS was developed in 2002 by Anastassiades et al.,⁸¹ and
24 verified in 2003 by Schenk et al.⁸² Briefly, it uses acetonitrile to extract the target meant to be
25 detected from a complex solvent matrix. This sample is centrifuged to create a liquid-liquid
26 partition to easily extract out the sample, which is then purified by dispersive solid-phase
27 extraction (d-SPE). d-SPE is a sorbent purification technique used to eliminate any remaining
28 contaminants from the sample with anhydrous salts and/or black carbon. This is then extracted
29 once more, leaving the sample clean of any other sample contaminants.⁷⁷ QuEChERS and d-SPE
30 can extract food contaminants such as mycotoxins, pesticides, or other organic toxins from
31 their complex food source sample within 20-30 minutes.^{83,78,79,80,84} Additionally, these
32 preparatory techniques have drastically increased sample throughput and have proved capable
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 of adapting to a wide variety of analytes and food matrices while maintaining reasonable
4
5 analysis times.⁷⁷ Despite this, the technique remains a manual procedure that requires a level
6
7 of technical expertise to conduct and works best for organic contaminants.
8
9

10
11 ***Solid-phase microextraction (SPME).*** Similar to QuEChERS and d-SPE, solid-phase
12 microextraction or SPME is another common sample preparation technique for
13 chromatography. SPME is of particular interest in chromatography for food contaminant
14 detection because it uses little to no organic solvent. First developed in the 1990's, Pawliszyn et
15 al.⁸⁵ used this preparation technique to target volatile and nonvolatile compounds in complex
16 samples. Briefly, traditional SPME devices are made of thin, fused silica fibers coated with a
17 type of sorbent material. This material is then placed in a complex sample matrix and allowed
18 to reach equilibrium with the adsorbed targeted compounds.⁸⁶ This is then directly injected into
19 the chromatography column. There are three different modes of SPME: direct-insertion SPME
20 (DI-SPME) which is the standard that has been described, head-space SPME (HS-SPME) which is
21 where the device is placed above the liquid sample to allow volatile compounds to adhere to
22 the fibers, and membrane-protected SPME where it follows the same protocol as HS-SPME, but
23 the device has a protective membrane to prevent diffusion of large molecules.⁸⁷ Over the past
24 10 years, there have been many advancements to SPME devices along with changes in the
25 sorbent material, changes in membranes, and various coatings that can promote adherence of
26 particular targets onto the SPME device surface.^{88,89} These advancements have been specifically
27 of interest in the food sensing field with the detection of organic volatile and non-volatile toxins
28 in wine, meats, cereals, fruits, and juices - all of which present very complicated matrices and
29 do not require organic solvent for extraction.⁹⁰ Both QuEChERS and SPME in particular are
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 pivotal methods needed to properly use chromatography as a food sensing technique. Herein,
4
5 we will describe the use of extraction techniques in conjunction with the new standard of
6
7 chromatography, ultra-performance liquid chromatography, and what appears to be the future
8
9 of chromatography in food sensing: multi-dimensional chromatography.
10
11


12
13
14 ***Ultra-performance Liquid Chromatography.*** In 2004, ultra-performance liquid chromatography
15 (UPLC), also referred to as ultra-high-performance liquid chromatography (UHPLC) was first
16 introduced.⁹¹ As the name suggests, this improvement relies on high pressures (up to 1,000 bar)
17 within the column to improve the speed, sensitivity, and peak separation, or resolution, of the
18 separation. These higher pressures can be attained due to the size of the particles used as the
19 stationary phase within the column.⁹² Typically, HPLC relies on particles with a diameter of 3 to
20 5 μm ; however, UPLC uses particles with a diameter of less than 2 μm , reducing the distance
21 between the target analytes and the stationary phase to allow for better sensitivity. Today,
22 UPLC is commonly used for the detection of food contaminants due to the advantages that it
23 has to offer over GC and HPLC.⁹³
24
25

26 In 2019, Zhang et al. employed UHPLC with tandem mass spectrometry (MS/MS)
27
28 detection for the simultaneous determination of 58 pesticides in eggs.⁹⁴ Pesticides can
29 bioaccumulate through the food chain and pose hazards to humans when consumed in
30 contaminated foods. This study performed a clean-up step using a multi-functional filter that
31 was based on QuEChERS before injecting the sample into the UHPLC. The LOD and LOQ for the
32 58 pesticides were 0.1-1.0 $\mu\text{g/kg}$ (0.0001-0.001 ppm) and 0.2-5.0 $\mu\text{g/kg}$ (0.0002-0.005 ppm),
33 respectively. Additionally, 70% of the compounds had LODs that were significantly lower than
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 what can be detected with LC-MS/MS.^{95,96} This method was then successfully applied for the
4
5 determination of pesticides in real egg samples.
6
7

8 Another study performed by Castro et al. utilized solid phase extraction (SPE), similar to
9
10 SPME, and UPLC-MS/MS to detect 50 pesticides in red and white wines, as there is evidence
11
12 that pesticides can transfer from grapes to wine during the fermentation process.⁹⁷ Wine
13
14 samples were passed through the SPE sorbent to adsorb the target analytes that were then
15
16 eluted with an acetonitrile/methanol mixture. Next, the extract was directly injected into the
17
18 UPLC for analysis. This method provided LODs below 1 ng/mL (0.001 ppm) for 48 out of the 50
19
20 tested pesticides and had an analysis time of only 10 minutes. This analysis time is four times
21
22 less than the time needed for previous methods dealing with a similar number of analytes.^{98,99}
23
24 The method was also applied to 25 wines and found that all samples, except for one, contained
25
26 residues from at least one pesticide. Both of these methods show the utility of sample
27
28 preparation techniques and UPLC for the detection of food contaminants along with their
29
30 advantages over other LC methods.
31
32
33

34 ***Multi-dimensional Chromatography.*** Multi-dimensional chromatography is a way to increase
35 separation performance in complex matrices. The sample passes through two different
36
37 separation stages accomplished through the use of multiple columns with different stationary
38
39 phases. This allows for an added degree of separation, which is especially important in food
40
41 contamination analysis due to significant sample complexity. This can be applied to both GC
42
43 and LC techniques^{100,101} with a schematic of this technique shown in Figure 3.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 3. Schematic of multi-dimensional chromatography instrument set up. The purified and prepped sample is injected into the injection port and the sample passes through columns in the first and second dimension with different mobile phases orthogonal to one another. The sample is then detected, often with MS. Figure created with BioRender.com

Recent work by Ruiz del Castillo and coworkers studied the use of SPME alongside multi-dimensional gas chromatography-mass spectrometry (MDGC-MS) to detect pesticides in commercial and homemade strawberry jam.¹⁰² The motivation behind MDGC for pesticide separation is that this technique allows for a wide variety of polarities of molecules to be separated due to varied affinity for the multiple columns. Therefore, their goal was to detect and quantify sixteen different pesticides in strawberry jam. First, the authors determined what peaks in their first-dimension chromatogram were associated with typical flavor and aroma compounds in the jam after SPME, to understand the background matrix. The jams were spiked with all sixteen pesticides, and first- and second-dimension chromatograms were recorded. Although two of the pesticides peak signals overlapped with the background matrix, the added separation allowed these peaks to be resolved in the second dimension to allow quantitation despite peak overlap.

1
2
3 The LODs for the pesticides were found to be 0.11-0.42 ng/kg (1.1×10^{-7} – 4.2×10^{-7}
4
5 ppm) in the first-dimension and 0.013-0.093 ng/kg (1.3×10^{-8} – 9.3×10^{-8} ppm) in the second-
6
7 dimension after the first column's separation. There is no regulation of pesticides in jams, but
8
9 compared to the regulatory limits on strawberries, MS-detected pesticides eluted from the
10
11 second column were detected at LODs much lower than required. In fact, ten of the pesticides
12
13 were able to be identified in the complex matrix based on the MS data, revealing the strength
14
15 of specialized analysis to do multiplex detection of pesticides in a complex food matrix.
16
17

18 Although the measured chromatograms are complicated and rely on efficient sample
19
20 preparation to distinguish the target analyte from the overall matrix, it does show how
21
22 multiplexing is possible for organic food contaminants when adding another layer of
23
24 instrumentation and analysis.
25
26

27
28 ***Chromatography Techniques Conclusions.*** Chromatography techniques have long served as the
29
30 gold standard for organic compound separation. Paired with other instrumentation, such as
31
32 MS, fluorescence, or UV-vis absorption, it can be a powerful tool for quantitative analysis of
33
34 organic food contaminants. However, chromatography is limited to a small range of analytes
35
36 and is only appropriate when detecting pesticides, mycotoxins, or other small molecule
37
38 compounds that contaminate food sources, leaving out bacteria, proteins, and other larger
39
40 food contaminants. While some of the greatest advancements to these techniques are their
41
42 work in sample preparation, the need for a considerable amount of sample preparation makes
43
44 these techniques less viable for food contamination detection outside of a laboratory.
45
46

47 Multiplexing is possible with multi-dimensional chromatography, but it is important to note
48
49 that this analysis is complicated and requires specialized personnel to perform analysis,
50
51

1
2
3 quantify targets, and maintain these instruments.¹⁰³ The added cost makes these methods and
4 instruments most suitable in academic and industrial settings rather than other analytical
5 techniques that enable robust, in-field measurements.
6
7
8
9

10 11 **Immunoassays and Lateral Flow Assays** 12

13
14 ***Introduction to Immunoassays.*** Immunoassays are a bioanalytical method used to measure the
15 presence or concentration of analytes ranging from small molecules to macromolecules. This
16 method relies on the use of an antibody or antigen as a biorecognition agent.¹⁰⁴ There are
17 several types of immunoassays including: radioimmunoassays, chemiluminescence
18 immunoassays, counting immunoassays, enzyme or enzyme-linked immunosorbent assays, and
19 lateral flow immunoassays. While several of these methods and their applications have been
20 reviewed elsewhere,¹⁰⁵⁻¹¹¹ this section will mainly focus on lateral flow immunoassays and
21 enzyme-linked immunosorbent assays as these methods are most commonly used for the
22 detection of food contaminants, and they are considered the gold standards in this field.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38 ***Introduction to Lateral Flow Immunoassays.*** Lateral flow immunoassays (LFIA), also known as
39 lateral flow immunochromatography assays, are diagnostic tests intended to detect the
40 presence of a target analyte within a complex liquid sample. This simple technique is widely
41 used for home testing, point of care, and laboratory use due to its rapid detection (5-30 min) at
42 low concentrations.¹¹² A typical lateral flow device (LFD) consists of four components: sample
43 pad, conjugate pad, nitrocellulose membrane, and an absorbent pad that are assembled to
44 create a continuous flowing channel between the four sections that exploit capillary forces.¹¹³
45 The sample is initially placed on the sample pad that allows for filtering of large unwanted
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

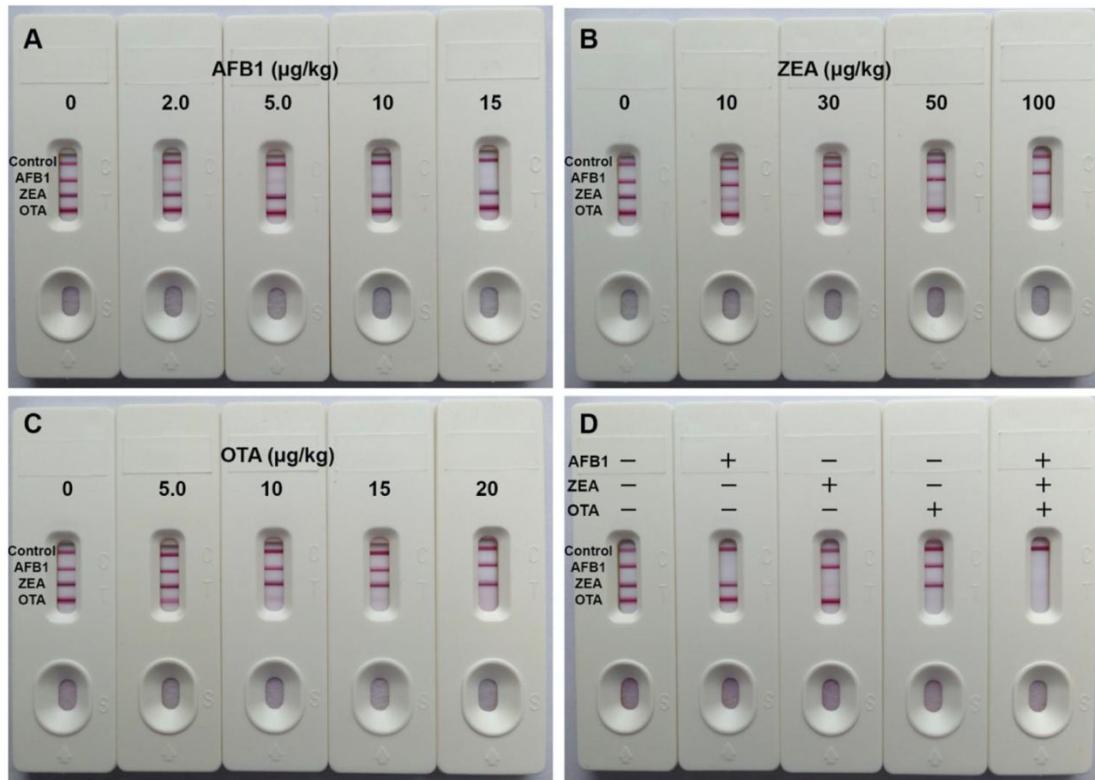
1
2
3 particulates before controlling the release of the sample to the conjugate pad. In the conjugate
4 pad, the sample interacts with antibodies that are specific for the target analyte and conjugated
5 to scattering or fluorescent particles (most often colloidal gold or fluorescent latex
6 microspheres).¹¹² The nitrocellulose membrane then contains a line of immobilized capture
7 antibodies that bind the target analyte at the test line. A control line is also present after the
8 test line to ensure proper liquid flow through the device. Lastly, the absorbent pad wicks up any
9 solution that passes all the way through the device. LFIAs can either be of the sandwich or
10 competitive format. The sandwich format involves “sandwiching” the target analyte between
11 two antibodies, and a positive result produces a colored line. On the other hand, in the
12 competitive format, the analyte blocks the binding site on the antibodies, preventing
13 interactions with the colored conjugated antibody, resulting in no color observed for the
14 sample line in the detection zone. While one of the most common uses of LFIAs is the at-home
15 pregnancy test, they are also utilized for screening harmful contaminants in food production¹¹²
16 as well as agriculturally relevant proteins and small molecules that may be harmful to
17 humans.¹¹⁴

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

LFIA Food Contaminant Sensing. LFIAs were derived from the latex agglutination assay, a
method used to identify certain antibodies or antigens in bodily fluids through the use of latex
beads that aggregate in the presence of the target analyte, allowing for visual detection of the
grouped latex beads.¹⁰⁸ The latex agglutination assay was developed in 1956, but it was not
until 1970 when the LFIA was first described and patented. In the 1970s, LFIAs were developed
and mainly used for detection of the human hormone gonadotropin in urine in at-home

1
2
3 pregnancy tests.¹¹¹ Some of the first work performed for the detection of food with LFAs was in
4
5 2004 when Goodwin et al. detected the food allergen, gluten, using a sandwich LFA.¹¹⁵ Once
6
7 the sample migrated from the sample pad to the conjugate pad, gluten within the sample
8
9 bound to gluten antibodies conjugated to bright blue polystyrene latex particles. If gluten was
10
11 present, a capture antibody bound the sample on the test line producing a visible blue line. In
12
13 addition to latex particles, gold nanoparticles (AuNPs) have increasingly been incorporated into
14
15 LFAs as reporting labels for the colorimetric detection of mycotoxins and other food
16
17 contaminants.^{108,114,116}

18
19 While LFAs often incorporate AuNPs as reporting labels, a number of methods have
20
21 been used to enhance sensitivity and amplify the signal produced. One way this has been done
22
23 is using silver enhancement achieved through autocatalytic growth of metallic silver on gold
24
25 nanoparticles. Yang et al. first performed this method in 2011 using a sandwich LFA for the
26
27 detection of the protein abrin-a, a natural poison produced in rosary peas and used as a
28
29 bioterrorism agent.¹¹⁷ Water and soybean milk samples that contained abrin-a were placed
30
31 onto the LFD sample pad, flowed to the conjugate pad where abrin-a in solution bound to the
32
33 detection antibody labeled with AuNPs. The conjugated complex was then captured by the
34
35 antibodies at the test line. When color appeared on the control line, indicating proper flow
36
37 through the device, a pad that contained AgNO_3 was placed on top of the test line and control
38
39 line regions. A reducing pad was then placed on top of the AgNO_3 pad and wetting of the pads
40
41 re-solubilized reagents. Metallic silver coated the AuNPs present on the test and control lines,
42
43 changing the color of the lines from red to black and enhancing the signal. This enhancement
44
45 has been attributed to the enlargement of NPs, making them more visible, and to the increased
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 contrast of black-appearing silver-coated AuNPs compared to the blue absorption and
4
5 scattering (red-appearing) AuNPs on the white background of the LFD. Similarly, silver
6
7 enhancement has also been carried out for the detection of the mycotoxin ochratoxin A (OTA)
8
9 in grapes and wine.¹¹⁶

10
11
12 Another method for increasing sensitivity and detection within LFAs is the use of up-
13
14 converting phosphor (UCP) NPs; these luminescent NPs emit in the visible or ultraviolet regimes
15
16 when exposed to low energy radiation.¹¹³ Zhao et al. developed a competitive LFA using up-
17
18 converting phosphor technology for the detection of a common crop contaminant aflatoxin B₁
19
20 (AFB1) that is produced by fungi.¹¹⁸ The AFB1 target analyte interacted with UCP NPs
21
22 conjugated to antibodies on the conjugate pad and then competed against the analyte for the
23
24 capture antibodies immobilized at the test line. The UCP NP antibody conjugates were washed
25
26 away; thus, they did not produce a colored test line. A 980 nm laser was then utilized to excite
27
28 the UCP NPs on the surface of the device to collect the luminescence emitted by the UCPs on
29
30 the test and control lines. Since it was a competitive LFA, a positive result was indicated by no
31
32 signal observed on the test line with signal observed for the control line. The LOD for standard
33
34 AFB1 solutions was 0.03 ng/mL (0.00003 ppm), showing improved sensitivity over traditional
35
36 gold NP LFAs with LODs around 0.25 ng/mL (0.00025 ppm).¹¹⁹ Additionally, spiked crop
37
38 samples that included corn, peanuts, rice, soybeans, and others showed LODs ranging from 0.1
39
40 to 5 ng/g (0.0001 – 0.005 ppm), making this technology a promising approach for on-site and
41
42 in-field detection of AFB1.

43
44
45 Compared to other immunoassay techniques, LFAs are well-suited for multiplex analysis
46
47 as the nitrocellulose membrane can be equipped with more than one detection site or test line

1
2
3 on a single device. In 2016, Chen et al. developed a competitive LFD for the on-site multiplex
4
5 detection of three mycotoxins, AFB1, zearalenone (ZEA), and OTA.¹²⁰ On the conjugate pad,
6
7 free mycotoxins interact with antibody AuNP conjugates to form complexes. These complexes
8
9 then compete with the mycotoxin analytes for the capture antibodies that are specific for each
10
11 mycotoxin at three different test lines. The visual LOD was 10 $\mu\text{g}/\text{kg}$ for AFB1 (0.01 ppm), 50 μ
12
13 g/kg for ZEA (0.05 ppm), and 15 $\mu\text{g}/\text{kg}$ for OTA (0.015 ppm). The LODs for quantitative analysis
14
15 were 0.10 – 0.13 $\mu\text{g}/\text{kg}$ for AFB1 (0.0001 – 0.00013 ppm), 0.42 – 0.46 for ZEA (0.00042 –
16
17 0.00046 ppm), and 0.19 – 0.24 $\mu\text{g}/\text{kg}$ for OTA (0.00019 – 0.00024 ppm), all of which were far
18
19 below regulatory limits set by the European Commission. Furthermore, this multiplex device
20
21 was tested with spiked corn, rice, and peanut samples that contained varying concentrations of
22
23 AFB1, ZEA, and OTA. The results for the spiked corn samples are shown in Figure 4. Due to the
24
25 competitive format of the LFD, the red lines indicate a negative result while no line indicates a
26
27 positive result. These results show the success of the device in detecting single mycotoxins in
28
29 addition to the simultaneous detection of the three mycotoxins, making it a useful method for
30
31 multiplex detection in the field.

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Image of an LFIA for multiplex detection of mycotoxins in corn samples. A. 0 to 15 μ g/kg of AFB1 spiked in corn. B. 0 to 100 μ g/kg of ZEA spiked in corn. C. 0 to 20 μ g/kg of OTA in corn. D. Positive results for LFIA both in single and multiple mycotoxins. Reproduced from Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. *Food Chemistry*. 2016, 213, 478–484. (ref 120) Copyright 2016 Elsevier.

Additionally, multiplexing in LFIA has been carried out for the detection of bacterial food contaminants. Zhao, et al. developed a 10-channel UCP LFIA in the sandwich format for the rapid and simultaneous detection of 10 epidemic foodborne pathogens.¹²¹ This study established 10 single target UPC technology strips that were integrated into a disc that contained 10 channels for the strips. The specificity of each detection channel was assessed individually with the use of the other nine species of foodborne bacteria. For all 10 channels tested, only the target bacterium displayed a strong detection signal with no cross-reactivity present from the other bacteria, confirming the high specificity of this assay. Additionally, 100 food samples were spiked with a single pathogenic bacterium, and the disc correctly identified

1
2
3 88% of the pathogens within the samples with a detection sensitivity around 10 CFU/0.6 mg.
4
5

6 Then, 10 food samples were contaminated with all 10 pathogens simultaneously; in this case, at
7 least seven different target pathogens were detected in all samples, but all 10 pathogens were
8 identified in only four samples. It was hypothesized that the interactions between the 10
9 pathogens in liquid media were complex and the growth of particular bacteria was inhibited.¹²¹
10
11 Nevertheless, this device had good sensitivity and specificity for the simultaneous detection of
12 several bacterial pathogens, although more improvements need to be made for successful
13 multiplexing and detection of all 10 contaminants.
14
15
16
17
18
19
20
21
22
23
24

25 **LFIA Conclusions.** While great strides have been made in multiplexing for the detection of food
26 contaminants in the last decade, no other major advancements have been made for LFAs in
27 the past two years. These devices have several advantages over other methods for food
28 contamination detection including their ease of use, rapid detection at low concentrations,
29 portability for field testing, and ability for multiplexing. However, LFAs require proper storage,
30 and improper storage conditions can lead to the degradation of these devices. Furthermore,
31 due to the antibody and antigen components used in LFAs, they can still lose activity over time.
32 The degradation of the various components can result in false positives, false negatives, or
33 invalid results. This may lead to the need for additional devices for further testing, which can be
34 expensive. Additionally, when used in the field, these devices are only qualitative and cannot
35 provide quantitative data. Finally, there is no opportunity to enhance readouts using enzymes,
36 which is a method that can be exploited when using enzyme-linked immunosorbent assays.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Enzyme-linked Immunosorbent Assays (ELISA)

Introduction to ELISA. Enzyme-linked immunosorbent assays (ELISA) can detect a variety of biological molecules by linking the specific analyte target to antibodies conjugated to enzymes that allow for improved detection. ELISA tests are most commonly performed in a well-plate format that varies depending on the type of ELISA – either direct, indirect, sandwich, or competitive (Figure 5B). Direct ELISA detects antigens, immobilized on the surface of a well-plate, with an antibody that is specific for that antigen and directly conjugated to a tag for detection. Indirect ELISA is similar to direct ELISA; however, it uses a two-step process. Again, the antigen is immobilized on the surface of a well-plate, and a primary antibody specific for that antigen binds. Next, a labeled secondary antibody binds to the primary antibody to facilitate detection. Sandwich ELISA detects an antigen by “sandwiching” it between two antibodies. This type of ELISA requires two antibodies specific for different epitopes (Figure 5A), or recognition/binding sites, of the antigen. A capture antibody is immobilized on the surface and binds the antigen, which is then followed by the conjugation of a second antibody that facilitates detection of the antigen. Lastly, in competitive ELISA, a sample antigen competes with a reference antigen for binding to a specific amount of labeled antibody. The reference antigen is coated on the well plate. The sample antigen is pre-incubated with the labeled antibody before being added to the wells. If the proper antigens are present, the antibodies will bind to the antigens, creating an antigen-antibody complex. These complexes are added to the well plate, interact, and then the well is washed so that any unbound antibodies or complexes are removed. HIV testing in a clinical setting is one of the most common uses of ELISA, although it has proved useful in the detection of food contaminants as well.

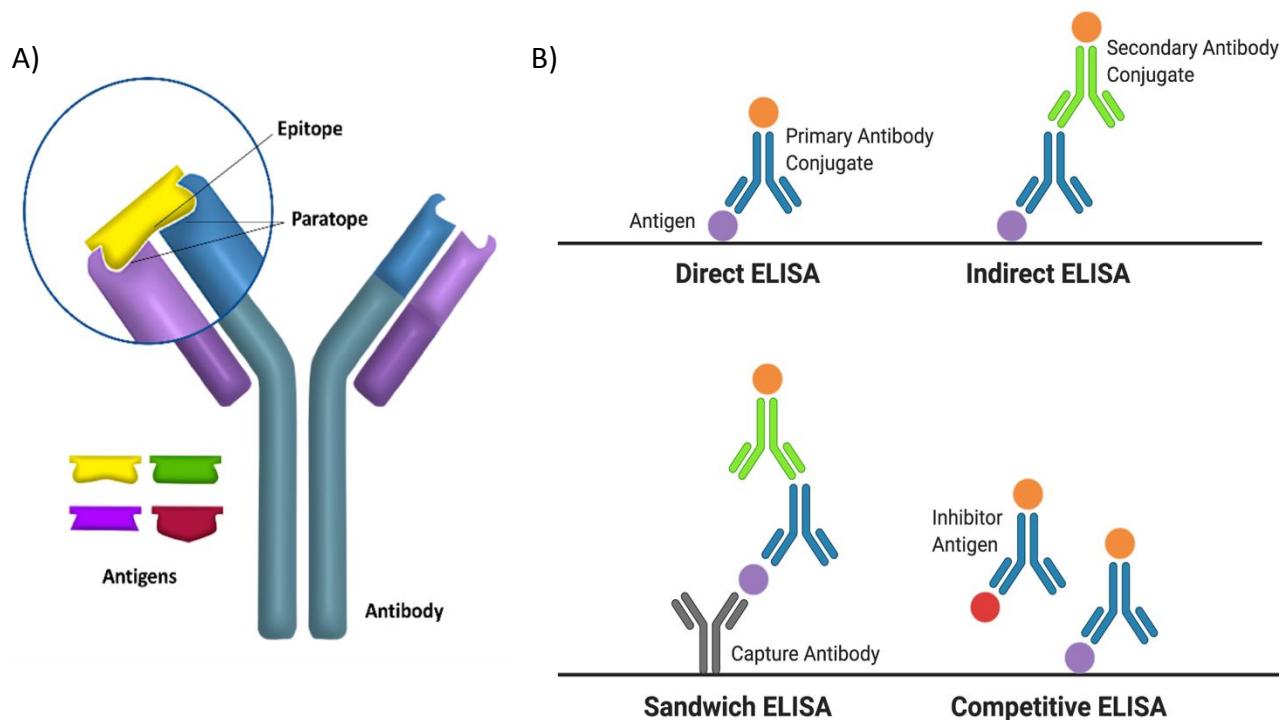


Figure 5. A) Figure of an antibody binding an antigen. Both binding regions are shown. Reproduced from Szlag, V. M.; Rodriguez, R. S.; He, J.; Hudson-Smith, N.; Kang, H.; Le, N.; Reineke, T. M.; Haynes, C. L. *ACS Appl. Mater. Interfaces* **2018**, *10* (38), 31825–31844 (ref 141) Copyright 2018 American Chemical Society. B) The four types of ELISA – direct, indirect, sandwich, and competitive. Figure created with Biorender.com.

ELISA for Food Contamination Sensing. ELISA was first used in 1971 by two different groups, Engvall and Perlman¹²² and Van Weemen and Schuurs,¹²³ as a modification and safer alternative to the radioimmunoassay which used radioactive labels for detection.¹⁰⁵ Engvall and Perlman used the method with enzymes in place of the radioactive labels to determine the levels of immunoglobulin G (IgG) in rabbit serum.¹²² Around the same time, Van Weemen and Schuurs performed ELISA to quantify human chorionic gonadotropin, the chemical measured in a pregnancy test, in urine using the enzyme horseradish peroxidase (HRP).¹²³ ELISA adapted over the years and became a popular technique for detecting food contaminants in the late 1970s

1
2
3 and early 1980s with much of this early work focusing on the detection of mycotoxins. Lawellin
4
5 et al. performed tube ELISA and detected the mycotoxin AFB1 in serum at concentrations less
6
7 than 10 pg/mL (0.00001 ppm).¹²⁴ Although the detection limit was low, the tube ELISA was
8
9 cross-reactive, meaning that the antibody had low specificity and could bind antigens of other
10
11 aflatoxins that have similar recognition sites, potentially resulting in false readouts. Pestka et al.
12
13 improved upon this method using competitive microplate ELISA by altering the conjugation of
14
15 the antibody to reduce the amount of non-specific binding.¹²⁵ This method resulted in low
16
17 cross-reactivity with other aflatoxins and could detect 0.5 - 50 ng/mL (0.0005 - 0.05 ppm) of
18
19 AFB1 per assay. Additionally, Pestka et al. developed an ELISA test to detect the mycotoxins T-2
20
21 and OTA with detection levels of 2.5 pg/assay and 25 pg/assay, respectively.^{126,127} While
22
23 successful for detection of food contaminants early on, ELISA has been continually adapted
24
25 over the years to improve detection limits and the selectivity for specific food contaminants.
26
27
28
29
30
31
32
33

34 **Plasmonic ELISA.** In 2011, plasmonic ELISA (pELISA) combined LSPR refractive index sensing
35 with ELISA.¹²⁸ This technique used AuNPs to bind the enzyme HRP which can then catalyze a
36 precipitation reaction at the surface of the NPs. This enzyme reaction causes a dramatic shift in
37 the LSPR extinction wavelength, making it possible to detect the presence of one or more HRP
38 molecules per NP with the use of a spectrometer. This methodology was initially used for the
39 detection of disease biomarkers¹²⁹ and has since been expanded to encompass detection of
40 food contaminants.
41
42
43
44
45
46
47
48
49
50

51 Pei et al. reported use of pELISA for the detection of the mycotoxin OTA based on the
52 urease-induced silver metallization on the surface of gold nanoflowers.¹³⁰ OTA labeled with
53 urease, an enzyme that catalyzes the hydrolysis of urea, was used as the competing antigen to
54
55
56
57
58
59

1
2
3 hydrolyze urea into ammonia. In the presence of the produced ammonia molecules, silver ions
4 in solution were reduced to generate a silver shell on the surface of the gold nanoflowers. Upon
5 generation of the silver shell, the color of the solution changed from blue to a brownish-red
6 hue. The visual LOD observed with the naked eye was 40 pg/mL (0.00004 ppm), while the
7 calculated LOD was 8.205 pg/mL (0.000008 ppm). This calculated LOD was based on the lowest
8 concentration of ammonia that generated a higher signal than the blank, plus three standard
9 deviations, and it was found to be approximately 14-fold lower than LODs obtained using HRP-
10 based ELISA. This method proved to be specific for OTA as it was tested against four other
11 mycotoxins, deoxynivalenol (DON), ZEA, fumonisin B1, and AFB1. pELISA has been successful in
12 detecting mycotoxins and has potential applications for the detection of bacteria that cause
13 foodborne illnesses.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 Gao et al. applied pELISA for the detection of *Salmonella enterica Choleraesuis*, a
31 common bacterium found in food and water that is responsible for the bacterial disease
32 salmonellosis that affects the human intestinal tract.¹³¹ While conventional ELISA relies on HRP
33 to catalyze organic dyes, such as 3,3',5,5'-tetramethyl-benzidine, to produce colored products,
34 it produces a relatively low colorimetric signal intensity. The weak signal makes it challenging to
35 detect low concentrations of bacterial contaminants. Therefore, this study, similar to the study
36 performed by Pei et al., used urease-induced silver metallization on the surface of gold
37 nanorods to detect *S. enterica Choleraesuis* in spiked whole milk samples. LOD values were as
38 low as 1.21×10^2 CFU/mL for qualitative detection with the naked eye and 12.1 CFU/mL with
39 quantitative detection. These LOD values are 2-3 orders of magnitude lower than those
40 obtained with conventional HRP-based ELISA.

Over the years, the field of food contaminant detection with ELISA has also moved towards using monoclonal antibodies (mAbs) over polyclonal antibodies. Typically, ELISA has used polyclonal antibodies, a heterogenous mixture of antibodies that can recognize and bind to many different epitopes, sometimes creating poor readouts in addition to specificity issues. One way to overcome these limitations is through the use of mAbs that only recognize a single epitope of an antigen. Brandon et al. employed the use of mAb in sandwich ELISA to detect both ricin and Shiga toxin proteins in milk and ground beef.¹³² Ricin is a poisonous toxin that is naturally produced in the seeds of castor oil plants and has previously been used as a bioterrorism agent. Shiga toxins, produced by *Shigella* and *E. coli* bacteria, are also toxins that can cause foodborne illnesses from the consumption of contaminated milk, ground meat, or vegetables. In this study, microwell plates were coated with two different mAbs: one specific for ricin and the other specific for Shiga toxins. Next, the sample antigen was added and bound to the mAbs. A secondary HRP-conjugated antibody was then added and used for detection. The LODs for the ricin and Shiga toxin systems were 0.13 ng/mL in milk (0.00013 ppm), which is 1×10^{-4} lower than the estimated lethal dose of either toxin. In ground beef, the LODs were 0.8 ng/g and 0.7 ng/g (0.0008 and 0.0007 ppm) for the ricin and Shiga toxin systems, respectively. Specificity was tested by cross-reactivity using toxin analogs and heat-denatured toxins. For ricin, the cross-reactivity for the toxin analog *Ricinus communis* agglutinin and the heat-denatured toxin was around 6% and 1%, respectively. For Shiga toxin, there was less than 1% cross-reactivity for both the toxin analog and the heat denatured toxin. The low cross-reactivities indicate good selectivity for the mAB ELISA tests targeting ricin and Shiga toxins.

1
2
3 This suggests that this platform would be useful for any other food contaminants where mAbs
4
5 are readily available.
6
7
8
9

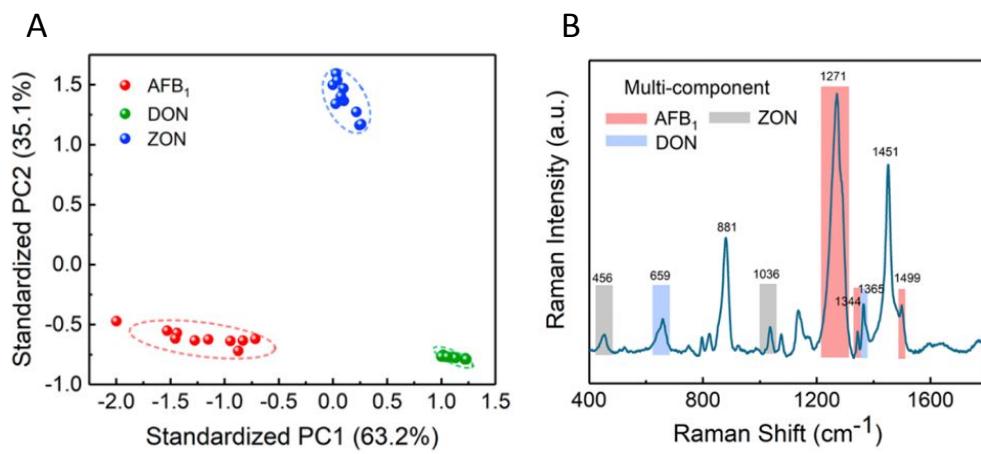
10
11 **ELISA Conclusions.** Overall, ELISA has developed over the years to make use of nanotechnology
12 and highly specific and selective mAbs. Today, it is considered the gold standard for the
13 detection of small molecule, protein, and bacterial food contaminants as it allows for low
14 detection limits, relatively fast readout times, and the enzymes used are reasonably shelf-
15 stable. However, there are still some drawbacks for the use of ELISA. Specifically, ELISA cannot
16 multiplex, or detect multiple contaminants at the same time without running separate ELISAs or
17 having more than one antibody for binding. Additionally, ELISA requires technical expertise and
18 expensive equipment, making it challenging to perform these tests outside of a laboratory
19 setting. Furthermore, the development of a new ELISA can be expensive and take months due
20 to the time needed for generating, synthesizing, and purifying the desired antigens and
21 antibodies for specific sensing.
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40 **Surface-enhanced Raman Spectroscopy (SERS)** 41

42 **SERS Sensing Introduction.** Raman spectroscopy is a technique that provides a molecular
43 fingerprint for a specific molecule based on its vibrational frequencies. This technique relies on
44 inelastic light scattering, which is an incredibly rare occurrence (1 in 10^8 photons), thus
45 rendering normal Raman scattering a relatively weak phenomenon and a nonideal analytical
46 technique for trace contaminant sensing applications. In 1974, surface-enhanced Raman
47 scattering (SERS) was first measured for pyridine adsorbed onto an electrochemically
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 roughened silver substrate.¹³³ Later work done by Van Duyne et al.¹³⁴ discovered that excitation
4
5 of conduction band electrons within this nanostructured roughness (the LSPR) generates an
6
7 enhanced electromagnetic field, increasing the observed Raman scattering signal by factors up
8
9 to 10^{10} - 10^{11} . SERS is particularly of interest in target detection due to water being a poor Raman
10
11 scatterer, allowing for a wide variety of species to be detected within biological systems. Food
12
13 contaminants must often be sensed in the complex food matrix where they occur, and SERS has
14
15 the potential to distinguish the contaminant from the matrix based on the inherent vibrational
16
17 modes of the contaminant itself.
18
19
20

21
22 Some of the first work using SERS as an analytical technique for food contaminant
23
24 detection was done in 1987 by Carrabba and coworkers.¹³⁵ Their work aimed to detect organic
25
26 aromatic contaminants in water such as pyridine, quinoline, and benzothiophene. These small
27
28 molecule organic compounds are a direct result of industrial, energetic, and nuclear waste and
29
30 often contaminate food supply for decades after initial contamination. This work was a direct
31
32 result of a Department of Energy (DOE) study released in 1985¹³⁶ stating that a large amount of
33
34 solid, liquid, and atmospheric byproducts of nuclear and nonnuclear energy waste was being
35
36 excreted into water sources. This waste was leaching into plant and crop sources and could
37
38 biomagnify at each step of the food chain. For this reason, the authors aimed to understand the
39
40 toxicity of these compounds as they are transported within their environment at surface and
41
42 sub-surface levels of water monitoring. The SERS substrate, a roughened silver wire in an
43
44 electrochemical cell, allowed the authors to monitor potential transformations of these
45
46 naturally strong Raman scatterers. These changes may be due to natural transport,
47
48 immobilization, or redox when in their natural environment. By applying a set potential and
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 different excitation wavelengths during detection, they were able to monitor charge transfer
4 mechanisms occurring on the substrate surface, leveraging the SERS enhancement field. Their
5
6 LOD was calculated to be 5×10^{-5} M (4 ppm) for pyridine, an aromatic compound known to
7
8 have serious effects at 1 mg/kg (1 ppm) dosages.¹³⁷ Carrabba used this work as a basis to then
9
10 probe contaminated drinking water and water that leaches into crop sources in later
11
12 work.^{138,139,140} The authors also observed potential-dependent peaks and intensities that could
13
14 be used for direct identification of those compounds even when mixed with other
15
16 contaminants before and after potential transformation, although they did not specify if these
17
18 transformed compounds were also toxic. Since this early article was published, significant work
19
20 has been done using SERS as a dynamic technique due to its ability to give a “fingerprint”
21
22 spectrum of the target; in many cases, this target is detected by virtue of a substrate-bound
23
24 affinity agent that captures the target, holding it in close proximity to the enhancing substrate.
25
26 An affinity agent, such as an aptamer, antibody, small molecule, or polymer, facilitates
27
28 detection of targets such as food contaminants.¹⁴¹
29
30
31

32
33
34
35 **Biological SERS Sensing.** Due to SERS compatibility with water, it is suitable for sensing
36
37 biological samples such as bacteria; sensing bacteria is important as they are a major source of
38
39 food contamination.¹⁴² Wang and coworkers synthesized a SERS nanoprobe for bacteria
40
41 detection using a M13 microphage.¹⁴³ This specific microphage was a filamentous
42
43 bacteriophage composed of single-stranded DNA that works as a virus to infect and kill bacteria
44
45 as they are replicating.¹⁴⁴ Their work focused specifically on detecting and deactivating
46
47 *Staphylococcus aureus* (*S. aureus*), a Gram-positive bacterium that can cause food poisoning
48
49 due to contamination in milk and cheese products. *S. aureus* is a facultative bacterium, allowing
50
51
52
53
54
55
56
57
58
59
60

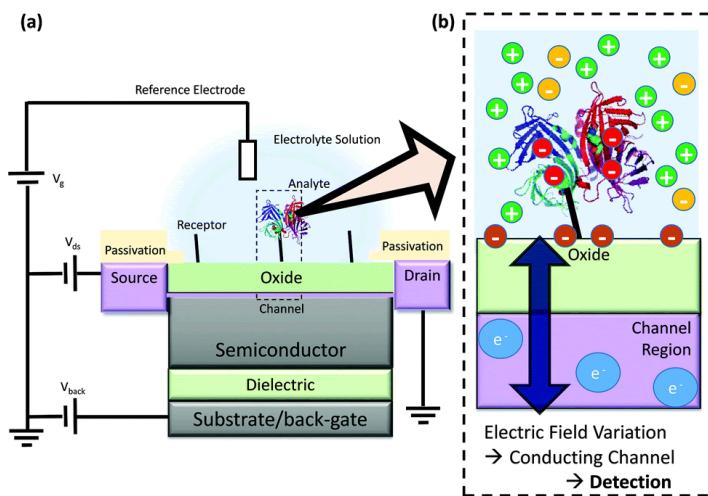
1
2
3 it to survive in a multitude of environments.¹⁴⁵ The authors synthesized a SERS probe that
4
5 attached to a single bacterium with multiple AuNPs on the surface of the M13. Briefly, multiple
6
7 M13 phages specifically adhered to the *S. aureus* surface and pVIII proteins were added to act
8
9 as conjugation ligands for *in situ* growth of multiple AuNPs on the surface of each M13 phage.
10
11 This was done to ensure an orderly and aligned chain of particles surrounding the bacteria so
12
13 that the LSPR was optimal for SERS detection. These AuNPs were treated with Ellman's reagent
14
15 (5,5'-dithiobis(2-nitrobenzoic acid), an efficient Raman scatterer) at the exterior of the
16
17 nanospheres to generate a large SERS signal. To ensure specificity, this probe was screened in
18
19 the presence of *Bacillus subtilis*, *Escherichia coli*, and *Pseudomonas aeruginosa* and produced
20
21 no signal for these bacteria. In an effort to detect this bacterium in a relevant food matrix,
22
23 capture and detection were done in orange juice, pure milk, and milk beverage. These
24
25 beverages were spiked with approximately 1000 CFU/mL of bacteria along with the probe for
26
27 binding. The excess probes were centrifuged out, and the solution was dropped onto filter
28
29 paper ahead of SERS measurements. The sensors had a spiking recovery of 103.3-110.0%, which
30
31 insinuates bacterial growth during the sensing process, but the high recovery makes it a viable
32
33 sensor in complicated food matrices with some additional purification due to a complicated
34
35 background signal.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SERS and Chemometrics. One of the shortcomings of SERS detection in food, as highlighted by the approach used in the previous paper, is the need for a SERS tag (a naturally strong Raman scatterer bound to the plasmonic NPs). Additionally, further chemometric analysis or other data processing is often needed to distinguish between multiple SERS tags on targets or differentiate

the target from the matrix. Intrinsic SERS, however, allows for the direct detection of the target of interest. Instead of monitoring shifts or vibrational peaks in the spectra relating to the tag, one is monitoring vibrational changes inherent to the specific target.¹⁴⁶ An example of this use of chemometrics and intrinsic SERS can be seen with research done by Li et al. which focused on the synthesis of 3-D cauliflower-inspired SERS substrates for rapid multiplex detection of three mycotoxins: AFB₁, DON, and zearalenone (ZON).¹⁴⁷ Multiplex detection of these toxins is of particular interest because multiple food contaminants are often found on a single food source. In this paper, the authors give linear ranges for individual detection of each mycotoxin, 0.005 – 1 µg/mL (0.005 – 1 ppm), 0.1 – 50 µg/mL (0.1 – 50 ppm), and 0.05 – 10 µg/mL (0.05 – 10 ppm), respectively, all of which are below the FDA, China, and EU regulatory limits without the need for a SERS tag. They then mixed the mycotoxins together at different concentrations to simultaneously monitor vibrational modes inherent to each toxin (Figure 6).

Figure 6. A. Principal component analysis of PC1 and PC2 displaying good separation of SERS data for each mycotoxin. B. SERS spectra of spiked maize solution with AFB₁, DON, and ZON character. Reproduced from Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. *Anal. Chem.* **2019**, 91 (6), 3885–3892 (ref 147) Copyright 2019 American Chemical Society.

1
2
3 Although there are distinguishing peaks and features relating to each toxin, there is still
4 significant overlap in their band assignments. For this reason, the authors use principal
5 component analysis (PCA), a common chemometric analysis technique used when analyzing
6 SERS spectra. PCA is a mathematical way to reduce large data sets by displaying the largest
7 changes in variance observed that is inherent to the data.¹⁴⁸ Herein, the largest variance in the
8 data set can be seen through the first principal components where the data can have good or
9 poor separation based on this blind variance (i.e. large or small differences in the data set that
10 are not necessarily known when the analysis is applied). Thus, Li and coworkers successfully
11 distinguished each mycotoxin from the others at low concentrations based on the good
12 separation observed in PCA (Figure 6A). This indicated that combined spectra have distinct
13 enough features to differentiate between the various toxins. They were also able to detect the
14 mycotoxins in maize, a common matrix contaminated by these mycotoxins, with additional
15 maize purification. As expected, the solutions had higher LODs than previously observed when
16 detected alone: 0.01 µg/mL (0.01 ppm), 0.1 µg/mL (0.1 ppm), 0.5 µg/mL (0.5 ppm) for AFB1,
17 DON, and ZON, respectively. This work by Li et al. displayed how a unique SERS substrate, with
18 an enhancement factor of 2.2×10^6 and computer simulations showing a high electric field
19 distribution around the “cauliflower heads,” can lead to lower limits of detection than the
20 regulated concentration for food contaminants without the need for a SERS tag, thus, allowing
21 one to directly sense each target when multiplexed together. However, additional need for
22 chemometric analysis adds complication in SERS food detection.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 **Conclusions to SERS Sensing.** As previously stated, multiple food contaminants are oftentimes
4 found on a single food source, meaning simple multiplex detection of these contaminants is
5 vital for practical monitoring of food safety. SERS can serve to detect small molecules, proteins,
6 bacteria, and although not yet done with food contaminants, it can detect viruses as
7 well.^{149,150,151,152} Though a powerful and sensitive technique, SERS often requires additional
8 analysis, especially in food matrices where the spectra may be very complicated, making it less
9 desirable for real-world application. Other SERS detection methods combine the use of SERS
10 with other analytical techniques or methodology such as ELISA, electrochemistry, or
11 microfluidic devices.^{153,154,155,156} However, this added need for analysis, purification, or
12 instrumentation continues to hold back the ability for SERS to be a stand-alone technique.
13
14 Therefore, continued work on simplifying SERS spectra for multiplex detection in real-world
15 samples, such as creating a library of spectra or barcoding samples would be a beneficial
16 direction for SERS food safety detection to move towards.
17
18

36 **Field-effect Transistors (FETs)**

37
38
39

40 **Introduction to FETs.** Detection techniques using electrochemical sensors are becoming much
41 more common in the food safety industry as alternatives to more conventional techniques like
42 chromatography and mass spectrometry. Electrochemical sensors provide advantages over
43 these techniques because they require lower sample volumes, yield faster detection times, and
44 entail simple sample preparation.¹⁵⁷ In addition, the many straightforward ways to measure
45 moving electrons and the inherently quantitative nature of electrochemical measurements
46 support the great potential for electrochemical sensors. A wide range of electrochemical
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 sensors have been developed specifically for the detection of food contaminants, including
4
5 impedimetric aptasensors,^{158,159,160} square-wave voltammetric electrodes,^{161,162} and
6
7 amperometric electrodes.^{163,164} In this review, we will focus on field-effect transistor (FET)
8
9 sensors based on their ability to reach very low limits of detection and their high potential for
10
11 on-site use as compared to other electrochemical sensors.¹⁶⁵ This technology has been
12
13 employed to detect five of the six classifications of food contaminants, missing only parasites,
14
15 which tend to be too large compared to the surface of the FET for the method to be
16
17 effective.^{166–169} FET sensors detect changes in potential or current across a conductive channel
18
19 between an oxide insulator and a semiconductor. These changes are caused by the binding of
20
21 analytes in solution to receptors on the oxide layer, which alters the number of charge carriers
22
23 in the conductive channel. The first sensors using FET technology were ion-sensitive FETs
24
25 (ISFETs) developed by Bergveld in 1972¹⁷⁰ for taking electrophysiological measurements of ion
26
27 activities to investigate neural activity. These sensors were modeled after metal-oxide-
28
29 semiconductor field-effect transistors, with an electrolyte solution replacing the gate metal
30
31 above the oxide layer (Figure 7).¹⁷¹
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 7. Schematic of ISFET sensor with streptavidin as example analyte. Changes in ion adsorption to the oxide layer due to analyte binding at receptor cause measurable shifts in current and potential in the channel region between the source and drain electrodes. Reproduced from Lowe, B. M.; Sun, K.; Zeimpekis, I.; Skalaris, C. K.; Green, N. G. *Analyst*. 2017, pp 4173–4200. (ref 171) Copyright 2017 Royal Society of Chemistry under a Creative Commons Attribution 3.0 Unported License (<https://creativecommons.org/licenses/by/3.0/>). .

One of the earliest works using these sensors for detection of food contaminants was the 1980 application of enzyme-coupled FETs (ENFETs) to detect penicillin by Caras and Janata.¹⁷² Penicillin detection is necessary for the dairy industry where milk is checked for antibiotic contamination.¹⁷³ The device takes advantage of the fact that the enzyme penicillinase causes the hydrolysis of penicillin into penicilloic acid, lowering the pH at the electrode surface. The ENFETs were constructed with a membrane of albumin and penicillinase enzyme between the oxide layer and the solution of a pH-sensitive ISFET. Thus, the presence of penicillin leads to a measurable shift in potential that corresponds to the concentration of penicillin. They were able to achieve a LOD of 0.1 mM (33 ppm). These ENFETs also provided an advantage over many other enzyme-based detection techniques in that relatively little enzyme is needed due to the small sensing area of 0.5 mm² that is functionalized with enzyme.

Biological Sensing with FETs. FETs have increasingly been used in the detection of bacteria such as *Pseudomonas aeruginosa*¹⁷⁴ and *Salmonella infantis*¹⁷⁵ which are known to cause foodborne illnesses. So et al. developed a single-walled carbon-nanotube field-effect transistor (SWCNT-FET) functionalized with RNA aptamers to detect *Escherichia coli*.¹⁷⁶ Binding of *E. coli* to the aptamers, which are specific to *E. coli*, on the FET surface decreased the measured conductance of the channel. In this study, however, detection was not quantitative as it was only used to determine whether samples contained or did not contain the bacteria, not to determine the bacterial concentration. The FETs were also found to be highly selective for *E. coli* and did not respond with a decrease in conductance in the presence of *Salmonella typhimurium*. While FET sensors are highly selective, a major shortcoming of FET sensors in detection of food-contaminating microorganisms is that it can be difficult for them to quantitatively detect bacteria due to uneven distribution of bacterial cells within a sample, especially when only a few microliters of a sample solution is used.¹⁷⁷ In the case of So et al. this problem was overcome by using the most probable number¹⁷⁸ (MPN) method wherein the bacterial concentration is estimated by making three or more dilutions of a sample and taking measurements from at least three aliquots of each dilution. The number of aliquots positive and negative for the bacteria as well as their corresponding dilutions are compared to a standardized MPN table to give an estimate of bacterial concentration. Despite such difficulties, these sensors do allow for much faster detection than traditional bacteria culture-based techniques since they do not require a long incubation time. Though stability is a challenge in some FET work, there are examples of FET sensor designs have also shown high stability over

time, such as an FET functionalized with DNA and highly conductive indium tin oxide nanowires, which retains 96% of original signal response after 5 weeks.¹⁷⁹

More recently, FETs with an oxide layer of titanium dioxide on molybdenum disulfide have been used for the detection of Gram-positive bacteria, specifically *Staphylococcus aureus*, a common cause of food poisoning.¹⁸⁰ This hybrid oxide layer structure provides greater sensitivity due to weak interlayer bonding in MoS₂ as well as desirable adsorption properties and high stability from TiO₂. Moudgil et al. developed this hybrid FET, which used immobilized vancomycin, an antibiotic, to bind to peptidoglycans on the cell wall of the bacteria.¹⁸¹ When the *S. aureus* bacteria, which are negatively charged due to anionic lipoteichoic acids and lipopolysaccharides in the cell wall,¹⁸² are captured by vancomycin, the current in the channel decreases due to a reduction in charge carriers. The sensor was highly sensitive, with a LOD of 50 CFU/mL, and was reported to distinguish between samples of live and dead bacteria. This is due to the fact that the peptidoglycan layer of the cell wall in the dead cells is disrupted and vancomycin cannot effectively bind to the bacteria, so minimal change in current is detected in the presence of dead bacteria. Bacterial detection was also successfully performed in fetal bovine serum, which showed that the electrical response is similar in a complex matrix to when performed in buffer.

FET sensors are highly sensitive to analytes that are highly charged, like bacteria, since large changes in charge density near the surface of the FET result in greater changes in conductance and potential in the FET channel. However, when the target of detection is a molecule with little to no charge, many more molecules are needed at the surface of the FET to induce the same amount of change in channel current observed with highly charged molecules

1
2
3 or organisms. FETs suffer from low sensitivity for these low-charge molecules due to the Nernst
4
5 sensitivity limit of 59 mV/pH as the maximum change in sensor voltage per change in pH.¹⁸³ To
6
7 combat this problem, signal amplification techniques have been developed such as the use of
8
9 ionic surfactants. Hidemitsu et al. detected BWp16, a buckwheat allergenic protein, by coupling
10
11 it to sodium dodecyl sulfate.¹⁸⁴ This increased the protein's charge from -3.6 to -50.6, causing a
12
13 greater change in potential in the FET to be observed. This method allowed for a LOD of 10
14
15 ng/mL (0.01 ppm) of BWp16. Furthermore, signal amplification of 100 times while detecting
16
17 mycotoxins has been achieved by Ah et al.¹⁸⁵ using AuNPs for signal amplification. They
18
19 immobilized bovine serum albumin and keyhole limpet hemocyanin as mycotoxin receptors on
20
21 the surface of the FET oxide layer which bind to mAbs conjugated to the negatively charged
22
23 AuNPs. Mycotoxins competitively bind to the receptors and cause some of the AuNPs to
24
25 detach. A gold deposition reaction is then used to grow and increase the negative charge of the
26
27 remaining AuNPs which causes charge carriers (holes) to accumulate in the FET channel,
28
29 increasing the measured conductance. When a sample contains a greater concentration of
30
31 mycotoxins, more AuNPs are detached, leading to a smaller increase in conductance.
32
33 Concentrations were detected as low as 0.5 ng/mL (0.0005 ppm) for AFB1, ZEA, and OTA. As
34
35 another example, graphene field-effect transistors (GFETs) are able to enhance signal strength
36
37 greatly because the channel is a single layer of graphene. This single layer's conductance is
38
39 much more affected by changes in charge near the surface than for the traditionally-used
40
41 thicker layers of silicon.¹⁸⁶ Aptamer-functionalized GFETs have been used to reach a LOD of 4
42
43 pg/mL (0.000004 ppm) for OTA with a linear response range of 10 pg/mL – 4 ng/mL (0.00001 –
44
45 0.004 ppm).¹⁸⁷
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 An advantage of field-effect transistor sensors is that they can be used for on-site
4
5 detection due to their small size, fast response time, and simple operation not requiring
6
7 advanced technicians. This makes them preferable to other more traditional techniques like
8
9 HPLC and GC-MS for detecting food contaminants at any point in the food production chain. A
10
11 GFET was developed by Islam et al. for detecting the pesticide chlorpyrifos, which can cause
12
13 severe neurological disorders, as a potential method for on-field testing of fruits and
14
15 vegetables.¹⁸⁸ Antibodies immobilized on the graphene channel were used to bind the
16
17 chlorpyrifos from the sample solution, causing a decrease in the resistance of the channel. The
18
19 sensor reached a LOD of 1.8 fM (6.3×10^{-10} ppm), far below the regulatory limit set by the WHO
20
21 and an order of magnitude lower than earlier FET chlorpyrifos sensors.¹⁸⁹ Other FETs have also
22
23 been developed for on-site pesticide detection, such as an enzyme-functionalized GFET for
24
25 detection of the pesticide carbaryl.¹⁹⁰ In this sensor, the hydrolysis of urea by urease releases
26
27 ions that adsorb onto the graphene surface, which reduces the current. To detect carbaryl, the
28
29 FET is first exposed to the unknown solution for 30 minutes to allow for any carbaryl present to
30
31 complex with the active sites of urease, which inhibits the enzyme. The FET is then exposed to a
32
33 solution of urea while measurements are taken. Carbaryl inhibition of urease leads to fewer
34
35 ions adsorbing to graphene; therefore, there is a smaller decline in current than with non-
36
37 inhibited urease. This method attained a LOD of 10^{-8} $\mu\text{g/mL}$ (10^{-8} ppm), and since the inhibition
38
39 of urease is reversible, the sensors can be regenerated and reused.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

FET Sensor Conclusions. While FET sensor technology has made progress in detection accuracy for non-homogeneous samples such as bacterial cultures and in sensitivity for low-charge

1
2
3 molecules, there is still much room for improvement in areas including sensitivity, detection in
4 complex matrices, specificity, and shelf-life. Despite some of their shortcomings, FETs provide
5 numerous advantages over other sensing techniques. They tend to be low-cost with little
6 required sample preparation, allow short detection time, and have no need for highly skilled
7 technicians or expensive and large equipment. These factors and their very small size give FET
8 sensors the potential to be used as highly effective on-site detection units at any point in the
9 food production chain.
10
11
12
13
14
15
16
17
18
19
20
21
22

Conclusions

23
24
25 The field of food safety and food contamination is constantly evolving. For this reason,
26 this review has aimed to evaluate common analytical techniques along with recent
27 advancements for food contamination sensing. It is important to note that the future of food
28 contamination detection relies heavily on advances in two abilities: multiplex detection and
29 detection in a complex matrix. These capabilities, along with evaluation of ease, cost, and
30 robustness of the overall sensing capacity will dictate how promising any given technology is in
31 helping to achieve food safety and security. Upon comparing these analytical techniques, it is
32 clear that it is possible to increase sensitivity and range of relevant analytes when combining
33 complementary analytical techniques. Of course, using combined or hyphenated techniques
34 expands the technique's utility but adds complexity to resulting analysis. Additionally, food
35 contaminant classes such as parasites, viruses, and fungi are not well represented in this article
36 due to lack of research done to detect these targets with the most common methodology and
37 instrumentation. These are important contaminant classes, and the food sensor world should
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

expand research to take on these challenges. To help identify complementary methods described in this review, Figure 8 shows a comparison of the techniques considered: UV-visible spectroscopy, chromatography, lateral flow and immunoassays, surface-enhanced Raman spectroscopy, and field-effect transistors.

ANALYTICAL TECHNIQUES FOR FOOD SENSING

Technique	Multiplexing	Sensing in Complex Matrix	Ease of Use and Cost	Analytes	Biggest Advantages and Disadvantages	Notable Advancements
UV-visible Spectroscopy	Yes, only if spectral peaks are distinct	Yes, only if matrix peaks do not overlap with analyte	Easy and relatively inexpensive, robust enough for in-field measurements	Limited to UV-visible absorbing organic molecules or NP binding to bacteria or organic molecules	Adv: fast and robust Disadv: very small shifts in spectra for detection	Plasmonic NPs with affinity agents to capture various analytes
Chromatography	Yes, but chromatographs can be very complicated	Yes, only with various sample preparation techniques like SPME and QuEChERS	Expensive, special personnel needed for analysis and maintenance	Only small molecules	Adv: low LODs Disadv: specialized, expensive, does not encompass many analytes	Multi-dimensional analysis for multiplex detection
Lateral Flow and Immunoassays	Yes with multiple affinity agents	Yes, but with sample purification	Relatively inexpensive, robust enough for in-field measurements	Small molecules, bacteria, proteins	Adv: fast, gold standard Disadv: false +/-, requires proper storage, long fabrication for specificity	Plasmonic ELISA and LFAs
SERS	Yes, with multiple affinity agents or added chemometrics	Yes, some chemometric analysis may be needed	Somewhat inexpensive, robust enough for in-field measurements	Small molecules, bacteria, proteins, viruses	Adv: can distinguish multiple targets from one another Disadv: chemometric analysis is complicated	SERS affinity agents for multiplexing, large range of contaminants can be detected
FETs	Yes, with multiple affinity agents, though little work has been attempted to date	No, but there is potential in the future	Synthesis of sensor is complicated, but visual changes in data are relatively straightforward	Small molecules, bacteria, proteins, viruses, fungi, any charged species	Adv: small, fast, low LODs Disadv: short shelf-life, complicated synthesis	Amplification of uncharged species, targeting of 5 different classes of food contaminants

Figure 8. Comprehensive chart evaluating important characteristics of food sensor technology and techniques. “Adv” are advantages and “disadv” are disadvantages to the techniques. Refer back to individual sections for references related to notable advancements. Figure created with BioRender.com

As previously noted, UV-visible spectroscopy will continue to serve as a supplementary technique for food safety detection. UV-visible spectroscopy is a robust technique that can even use a cell phone camera as a detector,¹⁹¹ but if the sample’s matrix masks the absorption peak, detection is not possible. While plasmonic NPs have played a large role in expanding the analytes that can be detected with UV-vis extinction spectroscopy, plasmonic extinction shifts

1
2
3 observed upon target association are often very small, making it difficult to obtain reliable data
4
5 with inexpensive equipment.
6
7

8 Chromatography techniques have long served as the gold standard for food detection
9 due to their low LODs, but the range of analytes are largely restricted to organic compounds,
10
11 eliminating its potential as a universal sensing technology. The need for multiple types of
12
13 sample preparation make chromatography less attractive than other techniques considered
14
15 here; however, its ability to perform multiplex detection in complex media (after sample
16
17 preparation) make it a viable technique for pesticides and mycotoxins. Multi-dimensional
18
19 chromatography, able to separate upwards of 16 compounds quantitatively in complex
20
21 mixtures, helps achieve this best, thus serving as the most promising avenue for continued
22
23 development.
24
25

26 ELISA and LFAs currently serve as the gold standard for food contamination detection.
27
28 The use of plasmonic particles to help amplify signal has attributed to increased success in
29
30 detecting small molecules, bacteria, and various types of proteins. Once an affinity agent is
31
32 synthesized, its specificity for its target allows the entire analysis to require less than 30
33
34 minutes,¹⁹² some of the fastest food sensing technology that exists. Though they are fast and
35
36 relatively inexpensive, their false positive or negative test results often result in the need for
37
38 more than one test, adding to overall cost. Multiplexing in complex media is possible with some
39
40 sample preparation, but synthesis of the affinity agent for each target have long time scales,
41
42 making the development in this field much slower. These tests will long serve as ways to quickly
43
44 screen for food contaminants that have affinity agents well established in literature.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 SERS is a unique technique because of all the different targets it can detect. SERS tags
4
5 amplify a target's signal, but intrinsic SERS best serves food sensing when doing multiplex
6
7 detection and detection in complex media. Though a lot of multiplexing with SERS requires
8
9 extra chemometric analyses to distinguish each target within the food matrix, exploration of
10
11 different types of SERS affinity agents can result in a single affinity agent that can bind to an
12
13 entire class of targets.¹⁹³ By doing so, there is no longer a need for multiple affinity agents
14
15 which results in a less complicated spectra. This, in turn, yields potential to create simplified
16
17 spectral libraries of food, perhaps eliminating the need for chemometric analysis of captured
18
19 data.

20
21
22 A lot of research still needs to be done on the use of FET sensors for food contamination
23
24 detection. They are the most promising when targeting all classes of food contaminants,
25
26 observing extremely low LODs, and their small size make them perfect for relatively fast use
27
28 with very little sample volume needed. However, their complicated fabrication when optimizing
29
30 the sensors and their very short shelf-life (subject to oxidation) make them unstable for
31
32 commercial use or in-field measurements. Addressing these needs would make FETs one of the
33
34 most powerful food safety sensors. Current work is being done to target these needs, moving
35
36 the field in the right direction.^{194,195,196}

37
38 Food safety will only increase in importance as the world population increases,
39
40 globalization continues, and climate change impacts food production. To address safety
41
42 concerns and continue to advance this field, more work needs to be done in multiplex
43
44 detection in complex food samples while minimizing time spent on sample preparation. This,
45
46 alongside relatively fast sensing times and simplified read-out technology, will enhance this
47
48
49
50
51
52
53
54
55
56
57
58
59

1
2
3 field to create sensing technologies that are robust for in-field measurements to support a safe
4
5 global food supply.
6
7

8 BIOGRAPHIES 9

10 *Rebeca S. Rodriguez* is a 5th year Ph.D. candidate in Chemistry at the University of Minnesota working
11 under Dr. Christy L. Haynes. Her research is focused on detecting various food contaminants with linear
12 polymer affinity agents and surface-enhanced Raman spectroscopy. She received her B.S. in Chemistry
13 at American University in 2016 and her M.S. in Chemistry at the University of Minnesota in 2018.
14

15 *Tana L. O'Keefe* is a 3rd year Ph.D. candidate in Chemistry at the University of Minnesota in Dr. Christy L.
16 Haynes research group. As part of the NSF Center for Sustainable Nanotechnology, her research is
17 focused on developing novel nanomaterials for use in agricultural applications. She received her B.S. in
18 Chemistry from the University of Minnesota-Duluth in 2018 and her M.S. in Chemistry at the University
19 of Minnesota in 2020.
20
21

22 *Clarice E. Froehlich* is a 3rd year undergraduate student in the Honors Program at the University of
23 Minnesota studying Chemistry and Chemical Engineering. She is currently working in the lab of Dr.
24 Christy L. Haynes, and her research focuses on the detection of food contaminants using surface-
25 enhanced Raman spectroscopy as well as the optimization of carbon dot synthesis.
26
27

28 *Riley E. Lewis* is a 2nd year graduate student in Chemistry at the University of Minnesota with Dr. Christy
29 L. Haynes. He received his B.A. in Chemistry from the New College of Florida in 2019. His current
30 research focuses on understanding interactions between nanomaterials and persistent organic
31 pollutants as part of the NSF Center for Sustainable Nanotechnology.
32
33

34 *Trever R. Sheldon* is a 4th year undergraduate student in Chemistry at the University of Minnesota
35 working under Dr. Christy L. Haynes. His current research focuses on assisting Rebeca Rodriguez in
36 detecting various food contaminants with linear polymer affinity agents and surface-enhanced Raman
37 spectroscopy.
38
39

40 *Christy L. Haynes* is currently a Distinguished McKnight University Professor in the Department of
41 Chemistry at the University of Minnesota. Haynes completed her undergraduate work at Macalester
42 College in St. Paul, MN (1998), and her doctoral work was done at Northwestern University in Evanston,
43 IL (2003) under the direction of Richard P. Van Duyne. Her doctoral thesis title is "Fundamentals and
44 Applications of Nanoparticle Optics and Surface-Enhanced Raman Scattering." Before arriving at the
45 University of Minnesota to start her independent career, Professor Haynes performed postdoctoral
46 research in the laboratory of R. Mark Wightman at the University of North Carolina, Chapel Hill as an
47 NIH NRSA Postdoctoral Fellow. Her efforts in the Wightman lab focused on applying microelectrode
48 amperometry to probe single cell exocytosis. At the University of Minnesota since 2005, the Haynes
49 research group develops new analytical methods and nanomaterials to approach chemistry problems at
50 the interface of analytical, biological, and environmental, and materials chemistry. Haynes is currently
51 Associate Department Head at the University of Minnesota, Associate Director of the NSF Center for
52 Sustainable Nanotechnology, and an Associate Editor for *Analytical Chemistry*.
53
54
55
56
57
58
59
60

Acknowledgements

This work was supported by National Science Foundation Center for Sustainable Nanotechnology, CHE-2001611; the NSF CSN is part of the Centers for Chemical Innovation Program. This work was also supported by fellowship funds from the American Chemical Society Division of Analytical Chemistry and SACP to R.S.R., the Mistletoe Foundation to R.S.R, and the National Institutes of Health Biotechnology Training Grant to T.L.O. (T32-GM008347).

References

- (1) Food safety <https://www.who.int/news-room/fact-sheets/detail/food-safety> (accessed Sep 15, 2020).
- (2) Tirado, M. C.; Clarke, R.; Jaykus, L. A.; McQuatters-Gollop, A.; Frank, J. M. Climate Change and Food Safety: A Review. *Food Research International* **2010**, *43* (7), 1745–1765.
- (3) Luber, G.; Lemery, J. *Global Climate Change and Human Health: From Science to Practice*; John Wiley & Sons, 2015.
- (4) Low, S. A.; Adalja, A.; Beaulieu, E.; Key, N.; Martinez, S.; Melton, A.; Perez, A.; Ralston, K.; Stewart, H.; Suttles, S.; Vogel, S.; Jablonski, B. B. R. Trends in U.S. Local and Regional Food Systems: A Report to Congress <http://www.ers.usda.gov/publications/public-details/?pubid=42807> (accessed Sep 16, 2020).
- (5) CDC. How Food Gets Contaminated <https://www.cdc.gov/foodsafety/production-chain.html> (accessed Sep 15, 2020).
- (6) McLinden, T.; Sargeant, J. M.; Thomas, M. K.; Papadopoulos, A.; Fazil, A. Component Costs of Foodborne Illness: A Scoping Review. *BMC Public Health* **2014**, *14* (1), 509.
- (7) Grace, D. Food Safety in Low and Middle Income Countries. *Int J Environ Res Public Health* **2015**, *12* (9), 10490–10507.
- (8) Käferstein, F. Foodborne Diseases in Developing Countries: Aetiology, Epidemiology and Strategies for Prevention. *International Journal of Environmental Health Research* **2003**, *13* (sup1), S161–S168.
- (9) Fletcher, S. M.; McLaws, M.-L.; Ellis, J. T. Prevalence of Gastrointestinal Pathogens In Developed and Developing Countries: Systematic Review and Meta-Analysis. *J Public Health Res* **2013**, *2* (1), 42–53.
- (10) Yeleliere, E.; Cobbina, S. J.; Abubakari, Z. I. Review of Microbial Food Contamination and Food Hygiene in Selected Capital Cities of Ghana. *Cogent Food & Agriculture* **2017**, *3* (1), 1395102.
- (11) World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100 <https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html> (accessed Sep 16, 2020).

(12) Zanin, L. M.; da Cunha, D. T.; de Rosso, V. V.; Capriles, V. D.; Stedefeldt, E. Knowledge, Attitudes and Practices of Food Handlers in Food Safety: An Integrative Review. *Food Research International* **2017**, *100*, 53–62.

(13) Mustafa, F.; Andreescu, S. Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging. *Foods* **2018**, *7* (10).

(14) Kaushik, G.; Satya, S.; Naik, S. N. Food Processing a Tool to Pesticide Residue Dissipation – A Review. *Food Research International* **2009**, *42* (1), 26–40.

(15) Stacey, S. P.; McLaughlin, M. J.; Hettiarachchi, G. M. Fertilizer-Borne Trace Element Contaminants in Soils. In *Trace Elements in Soils*; John Wiley & Sons, Ltd, 2010; pp 135–154.

(16) Escrivá, L.; Font, G.; Manyes, L.; Berrada, H. Studies on the Presence of Mycotoxins in Biological Samples: An Overview. *Toxins (Basel)* **2017**, *9* (8).

(17) Rather, I. A.; Koh, W. Y.; Paek, W. K.; Lim, J. The Sources of Chemical Contaminants in Food and Their Health Implications. *Front Pharmacol* **2017**, *8*.

(18) Jajere, S. M. A Review of *Salmonella Enterica* with Particular Focus on the Pathogenicity and Virulence Factors, Host Specificity and Antimicrobial Resistance Including Multidrug Resistance. *Vet World* **2019**, *12* (4), 504–521.

(19) Buchanan, R. L.; Gorris, L. G. M.; Hayman, M. M.; Jackson, T. C.; Whiting, R. C. A Review of *Listeria Monocytogenes*: An Update on Outbreaks, Virulence, Dose-Response, Ecology, and Risk Assessments. *Food Control* **2017**, *75*, 1–13.

(20) Luna-Guevara, J. J.; Arenas-Hernandez, M. M. P.; Martínez de la Peña, C.; Silva, J. L.; Luna-Guevara, M. L. The Role of Pathogenic *E. Coli* in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. *Int J Microbiol* **2019**, *2019*.

(21) Hardstaff, J. L.; Clough, H. E.; Lutje, V.; McIntyre, K. M.; Harris, J. P.; Garner, P.; O'Brien, S. J. Foodborne and Food-Handler Norovirus Outbreaks: A Systematic Review. *Foodborne Pathog Dis* **2018**, *15* (10), 589–597.

(22) Sattar, S. A.; Jason, T.; Bidawid, S.; Farber, J. Foodborne Spread of Hepatitis A: Recent Studies on Virus Survival, Transfer and Inactivation. *Can J Infect Dis* **2000**, *11* (3), 159–163.

(23) Singh, A. K.; Garber, E. A. E.; Principato, M. C.; Hall, S.; Sharma, S. K. Biotoxins and Food Safety. In *Biological Toxins and Bioterrorism*; Gopalakrishnakone, P., Balali-Mood, M., Llewellyn, L., Singh, B. R., Eds.; Toxinology; Springer Netherlands: Dordrecht, 2015; pp 185–210.

(24) Brett, M. M. Food Poisoning Associated with Biotoxins in Fish and Shellfish. *Curr. Opin. Infect. Dis.* **2003**, *16* (5), 461–465.

(25) Seth, D.; Poowutikul, P.; Pansare, M.; Kamat, D. Food Allergy: A Review. *Pediatr Ann* **2020**, *49* (1), e50–e58.

(26) Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; Cesare, A. D.; Herman, L.; Hilbert, F.; Lindqvist, R.; Nauta, M.; Peixe, L.; Ru, G.; Simmons, M.; Skandamis, P.; Suffredini, E.; Cacciò, S.; Chalmers, R.; Deplazes, P.; Devleesschauwer, B.; Innes, E.; Romig, T.; Giessen, J. van der; Hempen, M.; Stede, Y. V. der; Robertson, L. Public Health Risks Associated with Food-Borne Parasites. *EFSA Journal* **2018**, *16* (12), e05495.

(27) Zolfaghari Emameh, R.; Purmonen, S.; Sukura, A.; Parkkila, S. Surveillance and Diagnosis of Zoonotic Foodborne Parasites. *Food Sci Nutr* **2017**, *6* (1), 3–17.

1
2
3 (28) Aliberti, J. Host Persistence: Exploitation of Anti-Inflammatory Pathways by Toxoplasma
4 Gondii. *Nature Reviews Immunology* **2005**, *5* (2), 162–170.
5 (29) Adeyeye, S. A. O. Fungal Mycotoxins in Foods: A Review. *Cogent Food & Agriculture* **2016**,
6 *2* (1), 1213127.
7 (30) Benedict, K.; Chiller, T. M.; Mody, R. K. Invasive Fungal Infections Acquired from
8 Contaminated Food or Nutritional Supplements: A Review of the Literature. *Foodborne
9 Pathogens and Disease* **2016**, *13* (7), 343–349.
10 (31) Bertero, A.; Moretti, A.; Spicer, L. J.; Caloni, F. Fusarium Molds and Mycotoxins: Potential
11 Species-Specific Effects. *Toxins (Basel)* **2018**, *10* (6).
12 (32) Hernández, A.; Pérez-Nevado, F.; Ruiz-Moyano, S.; Serradilla, M. J.; Villalobos, M. C.;
13 Martín, A.; Córdoba, M. G. Spoilage Yeasts: What Are the Sources of Contamination of
14 Foods and Beverages? *International Journal of Food Microbiology* **2018**, *286*, 98–110.
15 (33) Grimsley, G. R.; Pace, C. N. Spectrophotometric Determination of Protein Concentration.
16 *Curr Protoc Protein Sci* **2004**, Chapter 3, Unit 3.1.
17 (34) Dost, K.; İdili, C. Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils and
18 Barbecued Food by HPLC/UV–Vis Detection. *Food Chemistry* **2012**, *133* (1), 193–199.
19 (35) Li, L.; Li, B.; Cheng, D.; Mao, L. Visual Detection of Melamine in Raw Milk Using Gold
20 Nanoparticles as Colorimetric Probe. *Food Chemistry* **2010**, *122* (3), 895–900.
21 (36) Sapsford, K. E.; Ngundi, M. M.; Moore, M. H.; Lassman, M. E.; Shriver-Lake, L. C.; Taitt, C.
22 R.; Ligler, F. S. Rapid Detection of Foodborne Contaminants Using an Array Biosensor.
23 *Sensors and Actuators B: Chemical* **2006**, *113* (2), 599–607.
24 (37) Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A Review of Vibrational Spectroscopic Techniques for
25 the Detection of Food Authenticity and Adulteration. *Trends in Food Science & Technology*
26 **2015**, *46* (1), 85–98.
27 (38) Amendola, V.; Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV–vis
28 Spectroscopy. *J. Phys. Chem. C* **2009**, *113* (11), 4277–4285.
29 (39) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and Characterization of
30 Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies. *Annual Review of
31 Materials Science* **2000**, *30* (1), 545–610.
32 (40) Nile, S. H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food
33 Science: Applications, Recent Trends, and Future Perspectives. *Nano-Micro Lett.* **2020**, *12*
34 (1), 45.
35 (41) Chen, H.; Zhou, K.; Zhao, G. Gold Nanoparticles: From Synthesis, Properties to Their
36 Potential Application as Colorimetric Sensors in Food Safety Screening. *Trends in Food
37 Science & Technology* **2018**, *78*, 83–94.
38 (42) King, W.; Raposa, S.; Warshaw, J.; Johnson, A.; Halbert, D.; Klinger, J. D. A New
39 Colorimetric Nucleic Acid Hybridization Assay for Listeria in Foods. *International Journal of
40 Food Microbiology* **1989**, *8* (3), 225–232.
41 (43) Fu, Z.; Zhou, X.; Xing, D. Rapid Colorimetric Gene-Sensing of Food Pathogenic Bacteria
42 Using Biomodification-Free Gold Nanoparticle. *Sensors and Actuators B: Chemical* **2013**,
43 *182*, 633–641.
44 (44) Nogva, H. K.; Rudi, K.; Naterstad, K.; Holck, A.; Lillehaug, D. Application of 5'-Nuclease PCR
45 for Quantitative Detection of Listeria Monocytogenes in Pure Cultures, Water, Skim Milk,
46 and Unpasteurized Whole Milk. *Appl. Environ. Microbiol.* **2000**, *66* (10), 4266–4271.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(45) Sousa, A. I.; Ferreira, I. M. P. L. V. O.; Faria, M. A. Sensitive Detection of *Piper Nigrum* L. Adulterants by a Novel Screening Approach Based on QPCR. *Food Chemistry* **2019**, *283*, 596–603.

(46) Zhou, P.; Xie, G.; Liang, T.; Yu, B.; Aguilar, Z.; Xu, H. Rapid and Quantitative Detection of Viable Emetic *Bacillus Cereus* by PMA-QPCR Assay in Milk. *Molecular and Cellular Probes* **2019**, *47*, 101437.

(47) Martínez, N.; Martín, M. C.; Herrero, A.; Fernández, M.; Alvarez, M. A.; Ladero, V. QPCR as a Powerful Tool for Microbial Food Spoilage Quantification: Significance for Food Quality. *Trends in Food Science & Technology* **2011**, *22* (7), 367–376.

(48) Kang, T. S. Basic Principles for Developing Real-Time PCR Methods Used in Food Analysis: A Review. *Trends in Food Science & Technology* **2019**, *91*, 574–585.

(49) Wang, Y.; Jin, M.; Chen, G.; Cui, X.; Zhang, Y.; Li, M.; Liao, Y.; Zhang, X.; Qin, G.; Yan, F.; Abd El-Aty, A. M.; Wang, J. Bio-Barcode Detection Technology and Its Research Applications: A Review. *Journal of Advanced Research* **2019**, *20*, 23–32.

(50) Agrimonti, C.; Bottari, B.; Sardaro, M. L. S.; Marmiroli, N. Application of Real-Time PCR (QPCR) for Characterization of Microbial Populations and Type of Milk in Dairy Food Products. *Critical Reviews in Food Science and Nutrition* **2019**, *59* (3), 423–442.

(51) CDC | Facts About Cyanide <https://emergency.cdc.gov/agent/cyanide/basics/facts.asp> (accessed Sep 23, 2020).

(52) Niu, Q.; Lan, L.; Li, T.; Guo, Z.; Jiang, T.; Zhao, Z.; Feng, Z.; Xi, J. A Highly Selective Turn-on Fluorescent and Naked-Eye Colorimetric Sensor for Cyanide Detection in Food Samples and Its Application in Imaging of Living Cells. *Sensors and Actuators B: Chemical* **2018**, *276*, 13–22.

(53) Siegień, I.; Bogatek, R. Cyanide Action in Plants — from Toxic to Regulatory. *Acta Physiol Plant* **2006**, *28* (5), 483–497.

(54) Zhu, T.; Li, Z.; Fu, C.; Chen, L.; Chen, X.; Gao, C.; Zhang, S.; Liu, C. Development of an Anthraquinone-Based Cyanide Colorimetric Sensor with Activated C–H Group: Large Absorption Red Shift and Application in Food and Water Samples. *Tetrahedron* **2020**, *76* (38), 131479.

(55) Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. *Annual Review of Physical Chemistry* **2007**, *58* (1), 267–297.

(56) Haes, A. J.; Stuart, D. A.; Nie, S.; Van Duyne, R. P. Using Solution-Phase Nanoparticles, Surface-Confined Nanoparticle Arrays and Single Nanoparticles as Biological Sensing Platforms. *Journal of Fluorescence* **2004**, *14* (4), 355–367.

(57) McFarland, A. D.; Van Duyne, R. P. Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity. *Nano Lett.* **2003**, *3* (8), 1057–1062.

(58) Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. *J. Phys. Chem. B* **2001**, *105* (24), 5599–5611.

(59) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. *J. Phys. Chem. B* **2003**, *107* (3), 668–677.

1
2
3 (60) Loiseau, A.; Zhang, L.; Hu, D.; Salmain, M.; Mazouzi, Y.; Flack, R.; Liedberg, B.; Boujday, S.
4 Core–Shell Gold/Silver Nanoparticles for Localized Surface Plasmon Resonance-Based
5 Naked-Eye Toxin Biosensing. *ACS Appl. Mater. Interfaces* **2019**, *11* (50), 46462–46471.
6
7 (61) Balaban, N.; Rasooly, A. Staphylococcal Enterotoxins. *International Journal of Food
Microbiology* **2000**, *61* (1), 1–10.
8
9 (62) Evenson, M. L.; Ward Hinds, M.; Bernstein, R. S.; Bergdoll, M. S. Estimation of Human Dose
10 of Staphylococcal Enterotoxin A from a Large Outbreak of Staphylococcal Food Poisoning
11 Involving Chocolate Milk. *International Journal of Food Microbiology* **1988**, *7* (4), 311–316.
12
13 (63) Lorenzo, M.; Pico, Y. Gas Chromatography and Mass Spectroscopy Techniques for the
14 Detection of Chemical Contaminants and Residues in Foods. In *Chemical Contaminants
15 and Residues in Food*; 2017; pp 15–50.
16
17 (64) Cramer, B.; Hübner, F.; Humpf, H.-U. Applications of High-Performance Liquid
18 Chromatography–Mass Spectrometry Techniques for the Analysis of Chemical
19 Contaminants and Residues in Food. In *Chemical Contaminants and Residues in Food*;
20 2017; pp 51–66.
21
22 (65) Ettre, L. S. Chromatography: The Separation Technique of the 20th Century.
23 *Chromatographia* **2000**, *51* (1), 7.
24
25 (66) Campone, L.; Piccinelli, A. L.; Rastrelli, L. Dispersive Liquid-Liquid Microextraction
26 Combined with High-Performance Liquid Chromatography-Tandem Mass Spectrometry for
27 the Identification and the Accurate Quantification by Isotope Dilution Assay of Ochratoxin
28 A in Wine Samples. *Anal Bioanal Chem* **2011**, *399* (3), 1279–1286.
29
30 (67) Coulson, D. M.; Cavanagh, L. A.; Stuart, J. Pesticide Analysis, Gas Chromatography of
31 Pesticides. *Journal of Agricultural and Food Chemistry* **1959**, *7* (4), 250–251.
32
33 (68) Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent
34 Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods.
Int J Environ Res Public Health **2019**, *16* (22).
35
36 (69) Eisenbeiss, F.; Sieper, H. The Potential Use of High-Performance Liquid Chromatography in
37 Residue Analysis. *Journal of Chromatography A* **1973**, *83*, 439–446.
38
39 (70) Dolphin, R. J.; Willmott, F. W.; Mills, A. D.; Hoogeveen, L. P. J. Column Switching
40 Techniques in the Liquid Chromatographic Analysis of Organochlorine Pesticides in Milk.
Journal of Chromatography A **1976**, *122*, 259–268.
41
42 (71) Lawrence, J. F. Direct Analysis of Some Carbamate Pesticides in Foods by High-Pressure
43 Liquid Chromatography. *J Agric Food Chem* **1976**, *25* (1), 211–212.
44
45 (72) Rao, G. H. R.; Anders, M. W. Aflatoxin Detection by High-Speed Liquid Chromatography
46 and Mass Spectrometry. *Journal of Chromatography A* **1973**, *84* (2), 402–406.
47
48 (73) Haghghi, B.; Thorpe, C.; Pohland, A. E.; Barnett, R. Development of a Sensitive High-
49 Performance Liquid Chromatographic Method for Detection of Aflatoxins in Pistachio
50 Nuts. *Journal of Chromatography A* **1981**, *206* (1), 101–108.
51
52 (74) Takahashi, D. M. Reversed-Phase High-Performance Liquid Chromatographic Analytical
53 System for Aflatoxins in Wines with Fluorescence Detection. *Journal of Chromatography A*
54 **1977**, *131*, 147–156.
55
56 (75) Tuinstra, L. G. M. T.; Haasnoot, W. Rapid Determination of Aflatoxin B1 in Dutch Feeding
57 Stuffs by High-Performance Liquid Chromatography and Post-Column Derivatization.
58 *Journal of Chromatography A* **1983**, *282*, 457–462.
59
60

(76) Franz, A. O.; Pons, W. A. High Performance Liquid Chromatography of Aflatoxins in Cottonseed Products. *Journal of AOAC International* **1977**, *60* (1), 89–95.

(77) González-Curbelo, M. Á.; Socas-Rodríguez, B.; Herrera-Herrera, A. V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M. Á. Evolution and Applications of the QuEChERS Method. *TrAC Trends in Analytical Chemistry* **2015**, *71*, 169–185.

(78) Saha, A.; Gajbhiye, N. A.; Basak, B. B.; Manivel, P. High-Performance Liquid Chromatography Tandem Mass Spectrometry for Simultaneous Detection of Aflatoxins B1, B2, G1 and G2 in Indian Medicinal Herbs Using QuEChERS-Based Extraction Procedure. *International Journal of Environmental Analytical Chemistry* **2018**, *98* (7), 622–643.

(79) Petrarca, M. H.; Godoy, H. T. Gas Chromatography-Mass Spectrometry Determination of Polycyclic Aromatic Hydrocarbons in Baby Food Using QuEChERS Combined with Low-Density Solvent Dispersive Liquid-Liquid Microextraction. *Food Chem* **2018**, *257*, 44–52.

(80) Song, S.; Zhu, K.; Han, L.; Sapozhnikova, Y.; Zhang, Z.; Yao, W. Residue Analysis of Pesticides in Red Swamp Crayfish Using QuEChERS with High-Performance Liquid Chromatography-Tandem Mass Spectrometry. *J Agric Food Chem* **2018**, *66* (20), 5031–5038.

(81) Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. *Journal of AOAC International* **2003**, *86* (2), 412–431.

(82) Schenck, F. J.; Hobbs, J. E. Evaluation of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Approach to Pesticide Residue Analysis. *Bull Environ Contam Toxicol* **2004**, *73* (1), 24–30.

(83) Gonzalez-Jartin, J. M.; Alfonso, A.; Rodriguez, I.; Sainz, M. J.; Vieytes, M. R.; Botana, L. M. A QuEChERS Based Extraction Procedure Coupled to UPLC-MS/MS Detection for Mycotoxins Analysis in Beer. *Food Chem* **2019**, *275*, 703–710.

(84) Wilkowska, A.; Biziuk, M. Determination of Pesticide Residues in Food Matrices Using the QuEChERS Methodology. *Food Chemistry* **2011**, *125* (3), 803–812.

(85) Arthur, C. L.; Pawliszyn, Janusz. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. *Anal. Chem.* **1990**, *62* (19), 2145–2148.

(86) Pawliszyn, J. 3 - Development of SPME Devices and Coatings. In *Handbook of Solid Phase Microextraction*; Pawliszyn, J., Ed.; Elsevier: Oxford, 2012; pp 61–97.

(87) Jalili, V.; Barkhordari, A.; Ghiasvand, A. A Comprehensive Look at Solid-Phase Microextraction Technique: A Review of Reviews. *Microchemical Journal* **2020**, *152*, 104319.

(88) Reyes-Garcés, N.; Gionfriddo, E.; Gómez-Ríos, G. A.; Alam, Md. N.; Boyaci, E.; Bojko, B.; Singh, V.; Grandy, J.; Pawliszyn, J. Advances in Solid Phase Microextraction and Perspective on Future Directions. *Anal. Chem.* **2018**, *90* (1), 302–360.

(89) Shirey, R. E. 4 - SPME Commercial Devices and Fibre Coatings. In *Handbook of Solid Phase Microextraction*; Pawliszyn, J., Ed.; Elsevier: Oxford, 2012; pp 99–133.

(90) Kataoka, H.; Lord, H. L.; Pawliszyn, J. Applications of Solid-Phase Microextraction in Food Analysis. *Journal of Chromatography A* **2000**, *880* (1–2), 35–62.

(91) Swartz, M. E. UPLC™: An Introduction and Review. *Journal of Liquid Chromatography & Related Technologies* **2005**, *28* (7–8), 1253–1263.

1
2
3 (92) Advancing LC Performance with Smaller Particles and Higher Pressure. *Anal. Chem.* **2005**,
4 77 (23), 460 A-467 A.
5 (93) Fekete, S.; Schappler, J.; Veuthey, J.-L.; Guillarme, D. Current and Future Trends in UHPLC.
6 *TrAC Trends in Analytical Chemistry* **2014**, 63, 2–13.
7 (94) Zhang, X.; Song, Y.; Jia, Q.; Zhang, L.; Zhang, W.; Mu, P.; Jia, Y.; Qian, Y.; Qiu, J.
8 Simultaneous Determination of 58 Pesticides and Relevant Metabolites in Eggs with a
9 Multi-Functional Filter by Ultra-High Performance Liquid Chromatography-Tandem Mass
10 Spectrometry. *Journal of Chromatography A* **2019**, 1593, 81–90.
11 (95) Hildmann, F.; Gottert, C.; Frenzel, T.; Kempe, G.; Speer, K. Pesticide Residues in Chicken
12 Eggs - A Sample Preparation Methodology for Analysis by Gas and Liquid
13 Chromatography/Tandem Mass Spectrometry. *J Chromatogr A* **2015**, 1403, 1–20.
14 (96) Payá, P.; Anastassiades, M.; Mack, D.; Sigalova, I.; Tasdelen, B.; Oliva, J.; Barba, A. Analysis
15 of Pesticide Residues Using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS)
16 Pesticide Multiresidue Method in Combination with Gas and Liquid Chromatography and
17 Tandem Mass Spectrometric Detection. *Analytical and Bioanalytical Chemistry* **2007**, 389
18 (6), 1697–1714.
19 (97) Castro, G.; Pérez-Mayán, L.; Rodríguez-Cabo, T.; Rodríguez, I.; Ramil, M.; Cela, R.
20 Multianalyte, High-Throughput Liquid Chromatography Tandem Mass Spectrometry
21 Method for the Sensitive Determination of Fungicides and Insecticides in Wine. *Analytical*
22 and *Bioanalytical Chemistry* **2018**, 410 (3), 1139–1150.
23 (98) Pérez-Ortega, P.; Gilbert-López, B.; García-Reyes, J. F.; Ramos-Martos, N.; Molina-Díaz, A.
24 Generic Sample Treatment Method for Simultaneous Determination of Multiclass
25 Pesticides and Mycotoxins in Wines by Liquid Chromatography–Mass Spectrometry. **2012**,
26 1249, 32–40.
27 (99) Economou, A.; Botitsi, H.; Antoniou, S.; Tsipi, D. Determination of Multi-Class Pesticides in
28 Wines by Solid-Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry.
29 *J Chromatogr A* **2009**, 1216 (31), 5856–5867.
30 (100) Seeley, J. V.; Seeley, S. K. Multidimensional Gas Chromatography: Fundamental
31 Advances and New Applications. *Anal. Chem.* **2013**, 85 (2), 557–578.
32 (101) Dugo, P.; Cacciola, F.; Kumm, T.; Dugo, G.; Mondello, L. Comprehensive
33 Multidimensional Liquid Chromatography: Theory and Applications. *Journal of*
34 *Chromatography A* **2008**, 1184 (1), 353–368.
35 (102) Ruiz del Castillo, M. L.; Rodríguez-Valenciano, M.; Flores, G.; Blanch, G. P. New Method
36 Based on Solid Phase Microextraction and Multidimensional Gas Chromatography-Mass
37 Spectrometry to Determine Pesticides in Strawberry Jam. *LWT* **2019**, 99, 283–290.
38 (103) Chin, S.-T.; Marriott, P. J. Multidimensional Gas Chromatography beyond Simple
39 Volatiles Separation. *Chem. Commun.* **2014**, 50 (64), 8819.
40 (104) Ju, H.; Lai, G.; Yan, F. Introduction. In *Immunosensing for Detection of Protein*
41 *Biomarkers*; Elsevier, 2017; pp 1–30.
42 (105) Goldsmith, S. J. Radioimmunoassay: Review of Basic Principles. *Seminars in Nuclear*
43 *Medicine* **1975**, 5 (2), 125–152.
44 (106) Notermans, S.; Wernars, K. Immunological Methods for Detection of Foodborne
45 Pathogens and Their Toxins. In *Rapid Methods and Automation in Microbiology and*
46 *Immunology*; Springer Berlin Heidelberg, 1991; pp 481–489.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(107) Darwish, I. A. Immunoassay Methods and Their Applications in Pharmaceutical Analysis: Basic Methodology and Recent Advances. *International Journal of Biomedical Science* **2006**, 2 (3), 217–235.

(108) O'Farrell, B. Evolution in Lateral Flow-Based Immunoassay Systems. In *Lateral Flow Immunoassay*; Humana Press, 2009; pp 1–33.

(109) Ngom, B.; Guo, Y.; Wang, X.; Bi, D. Development and Application of Lateral Flow Test Strip Technology for Detection of Infectious Agents and Chemical Contaminants: A Review. *Analytical and Bioanalytical Chemistry* **2010**, 397 (3), 1113–1135.

(110) Nishi, K.; Isobe, S.; Zhu, Y.; Kiyama, R. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials. *Sensors (Basel)* **2015**, 15 (10), 25831–25867.

(111) Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Baggiani, C. Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-Throughput Point-of-Need Testing. *Biosensors* **2018**, 9 (1), 2.

(112) Koczula, K. M. ; G., A. Lateral Flow Assays. *Essays in Biochemistry* **2016**, 60 (1), 111–120.

(113) Tripathi, P.; Upadhyay, N.; Nara, S. Recent Advancements in Lateral Flow Immunoassays: A Journey for Toxin Detection in Food. *Critical Reviews in Food Science and Nutrition* **2018**, 58 (10), 1715–1734.

(114) Mei, Z.; Qu, W.; Deng, Y.; Chu, H.; Cao, J.; Xue, F.; Zheng, L.; El-Nezamic, H. S.; Wu, Y.; Chen, W. One-Step Signal Amplified Lateral Flow Strip Biosensor for Ultrasensitive and on-Site Detection of Bisphenol A (BPA) in Aqueous Samples. *Biosensors and Bioelectronics* **2013**, 49, 457–461.

(115) Goodwin, P. R. Food Allergen Detection Methods: A Coordinated Approach. *Journal of AOAC International* **2004**, 87 (6), 1383–1390.

(116) Anfossi, L.; Di Nardo, F.; Giovannoli, C.; Passini, C.; Baggiani, C. Increased Sensitivity of Lateral Flow Immunoassay for Ochratoxin A through Silver Enhancement. *Analytical and Bioanalytical Chemistry* **2013**, 405 (30), 9859–9867.

(117) Yang, W.; Li, X.-B.; Liu, G.-W.; Zhang, B.-B.; Zhang, Y.; Kong, T.; Tang, J.-J.; Li, D.-N.; Wang, Z. A Colloidal Gold Probe-Based Silver Enhancement Immunochromatographic Assay for the Rapid Detection of Abrin-a. *Biosensors and Bioelectronics* **2011**, 26 (8), 3710–3713.

(118) Zhao, Y.; Liu, X.; Wang, X.; Sun, C.; Wang, X.; Zhang, P.; Qiu, J.; Yang, R.; Zhou, L. Development and Evaluation of an Up-Converting Phosphor Technology-Based Lateral Flow Assay for Rapid and Quantitative Detection of Aflatoxin B1 in Crops. *Talanta* **2016**, 161, 297–303.

(119) Li, X.; Li, P.; Zhang, Q.; Li, R.; Zhang, W.; Zhang, Z.; Ding, X.; Tang, X. Multi-Component Immunochromatographic Assay for Simultaneous Detection of Aflatoxin B1, Ochratoxin A and Zearalenone in Agro-Food. *Biosensors and Bioelectronics* **2013**, 49, 426–432.

(120) Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and Optimization of a Multiplex Lateral Flow Immunoassay for the Simultaneous Determination of Three Mycotoxins in Corn, Rice and Peanut. *Food Chem* **2016**, 213, 478–484.

(121) Zhao, Y.; Wang, H.; Zhang, P.; Sun, C.; Wang, X.; Wang, X.; Yang, R.; Wang, C.; Zhou, L. Rapid Multiplex Detection of 10 Foodborne Pathogens with an Up-Converting Phosphor Technology-Based 10-Channel Lateral Flow Assay. *Sci Rep* **2016**, 6, 21342.

1
2
3 (122) Engvall, E.; Perlmann, P. Enzyme-Linked Immunosorbent Assay (ELISA) Quantitative
4 Assay of Immunoglobulin G. *Immunochemistry* **1971**, *8* (9), 871–874.
5 (123) Van Weemen, B. K. ; S., A. H. W. M. Immunoassay Using Antigen-Enzyme Cojugates.
6 **1971**.
7 (124) Lawellin, D. W. ; Grant, D. W. ; Joyce, B. K. Enzyme-Linked Immunosorbent Analysis for
8 Aflatoxin B1. *Applied and Environmental Microbiology* **1977**, *34* (1), 94–96.
9 (125) Pestka, J. J.; Gaur, P. K.; Chu, F. S. Quantitation of Aflatoxin B1 and Aflatoxin B1 Antibody
10 by an Enzyme-Linked Immunosorbent Microassay. *Applied and Environmental*
11 *Microbiology* **1980**, *40* (6), 1027–1031.
12 (126) Pestka, J. J. ; Steinert, B. W. ; Chu, F. S. Enzyme-Linked Immunosorbent Assay for
13 Detection of Ochratoxin A. *Applied and Environmental Microbiology* **1981**, *41*, 1472–1474.
14 (127) Pestka, J. J. ; Lau, S. C. ; Lau, H. P. ; Chu, F. S. Enzyme-Linked Immunosorbent Assay for
15 T-2 Toxin. *JAOCs* **1981**.
16 (128) Chen, S.; Svedendahl, M.; Van Duyne, R. P.; Käll, M. Plasmon-Enhanced Colorimetric
17 ELISA with Single Molecule Sensitivity. *Nano Letters* **2011**, *11* (4), 1826–1830.
18 (129) De La Rica, R.; Stevens, M. M. Plasmonic ELISA for the Ultrasensitive Detection of
19 Disease Biomarkers with the Naked Eye. *Nature Nanotechnology* **2012**, *7* (12), 821–824.
20 (130) Pei, K.; Xiong, Y.; Xu, B.; Wu, K.; Li, X.; Jiang, H.; Xiong, Y. Colorimetric ELISA for
21 Ochratoxin A Detection Based on the Urease-Induced Metallization of Gold Nanoflowers.
22 *Sensors and Actuators B: Chemical* **2018**, *262*, 102–109.
23 (131) Gao, B.; Chen, X.; Huang, X.; Pei, K.; Xiong, Y.; Wu, Y.; Duan, H.; Lai, W.; Xiong, Y. Urease-
24 Induced Metallization of Gold Nanorods for the Sensitive Detection of *Salmonella Enterica*
25 *Choleraesuis* through Colorimetric ELISA. *Journal of Dairy Science* **2019**, *102* (3), 1997–
26 2007.
27 (132) Brandon, D. L.; Korn, A. M. Immunosorbent Analysis of Toxin Contamination in Milk and
28 Ground Beef Using IgY-Based ELISA. **2016**, 1–13.
29 (133) Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a
30 Silver Electrode. *Chemical Physics Letters* **1974**, *26* (2), 163–166.
31 (134) Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry: Part I.
32 Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode.
33 *Journal of Electroanalytical Chemistry and Interfacial Electrochemistry* **1977**, *84* (1), 1–20.
34 (135) Carrabba, M. M.; Edmonds, R. B.; Rauh, R. David. Feasibility Studies for the Detection of
35 Organic Surface and Subsurface Water Contaminants by Surface-Enhanced Raman
36 Spectroscopy on Silver Electrodes. *Anal. Chem.* **1987**, *59* (21), 2559–2563.
37 (136) Research Summary - Subsurface Transport Program
38 [https://edx.netl.doe.gov/dataset/research-summary-subsurface-transport-](https://edx.netl.doe.gov/dataset/research-summary-subsurface-transport-program/resource/83fc685c-7565-42fe-9031-3c573fe4a0f6)
39 [program/resource/83fc685c-7565-42fe-9031-3c573fe4a0f6](https://edx.netl.doe.gov/dataset/research-summary-subsurface-transport-program/resource/83fc685c-7565-42fe-9031-3c573fe4a0f6) (accessed Sep 30, 2020).
40 (137) Ronen, Z.; Bollag, J.-M. Biodegradation of Pyridine and Pyridine Derivatives by Soil and
41 Subsurface Microorganisms. *International Journal of Environmental Analytical Chemistry*
42 **1995**, *59* (2–4), 133–143.
43 (138) Chudyk, W. A.; Carrabba, M. M.; Kenney, J. E. Remote Detection of Groundwater
44 Contaminants Using Far-Ultraviolet Laser-Induced Fluorescence. *Anal. Chem.* **1985**, *57* (7),
45 1237–1242.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

(139) Carrabba, M. M. *Fiber Optic Raman Spectrograph for in Situ Environmental Monitoring. Final Report*; DOE/CH-9205; Argonne National Lab., IL (United States); EIC Labs., Inc., Norwood, MA (United States); USDOE Chicago Operations Office, Argonne, IL (United States), 1992.

(140) Christesen, S.; Aciver, B. M.; Procell, L.; Sorrick, D.; Carrabba, M.; Bello, J. Nonintrusive Analysis of Chemical Agent Identification Sets Using a Portable Fiber-Optic Raman Spectrometer: *Applied Spectroscopy* **2016**.

(141) Szlag, V. M.; Rodriguez, R. S.; He, J.; Hudson-Smith, N.; Kang, H.; Le, N.; Reineke, T. M.; Haynes, C. L. Molecular Affinity Agents for Intrinsic Surface-Enhanced Raman Scattering (SERS) Sensors. *ACS Appl. Mater. Interfaces* **2018**, *10* (38), 31825–31844.

(142) Bintsis, T. Foodborne Pathogens. *AIMS Microbiol* **2017**, *3* (3), 529–563.

(143) Wang, X.-Y.; Yang, J.-Y.; Wang, Y.-T.; Zhang, H.-C.; Chen, M.-L.; Yang, T.; Wang, J.-H. M13 Phage-Based Nanoprobe for SERS Detection and Inactivation of *Staphylococcus Aureus*. *Talanta* **2020**, 121668.

(144) Specthrie, L.; Bullitt, E.; Horiuchi, K.; Model, P.; Russel, M.; Makowski, L. Construction of a Microphage Variant of Filamentous Bacteriophage. *Journal of Molecular Biology* **1992**, *228* (3), 720–724.

(145) Liu, C.; Shi, C.; Li, M.; Wang, M.; Ma, C.; Wang, Z. Rapid and Simple Detection of Viable Foodborne Pathogen *Staphylococcus Aureus*. *Front. Chem.* **2019**, *7*.

(146) Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtuluş, Ö.; Lee, S. H.; Lindquist, N. C.; Oh, S.-H.; Haynes, C. L. Recent Progress in SERS Biosensing. *Phys. Chem. Chem. Phys.* **2011**, *13* (24), 11551–11567.

(147) Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. *Anal. Chem.* **2019**, *91* (6), 3885–3892.

(148) Jolliffe, I. T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* **2016**, *374* (2065), 20150202.

(149) Antep, H. M.; Merdivan, M. Development of New Dispersive Liquid–Liquid Microextraction Technique for the Identification of Zearalenone in Beer. *Analytical Methods* **2012**, *4* (12).

(150) Luo, S.-C.; Sivashanmugan, K.; Liao, J.-D.; Yao, C.-K.; Peng, H.-C. Nanofabricated SERS-Active Substrates for Single-Molecule to Virus Detection in Vitro: A Review. *Biosensors and Bioelectronics* **2014**, *61*, 232–240.

(151) Chen, H.; Park, S.-G.; Choi, N.; Moon, J.-I.; Dang, H.; Das, A.; Lee, S.; Kim, D.-G.; Chen, L.; Choo, J. SERS Imaging-Based Aptasensor for Ultrasensitive and Reproducible Detection of Influenza Virus A. *Biosensors and Bioelectronics* **2020**, *167*, 112496.

(152) Sun, Y.; Xu, L.; Zhang, F.; Song, Z.; Hu, Y.; Ji, Y.; Shen, J.; Li, B.; Lu, H.; Yang, H. A Promising Magnetic SERS Immunosensor for Sensitive Detection of Avian Influenza Virus. *Biosensors and Bioelectronics* **2017**, *89*, 906–912.

(153) Galarreta, B. C.; Tabatabaei, M.; Guieu, V.; Peyrin, E.; Lagugné-Labarthet, F. Microfluidic Channel with Embedded SERS 2D Platform for the Aptamer Detection of Ochratoxin A. *Anal Bioanal Chem* **2013**, *405* (5), 1613–1621.

(154) Zhao, X.; Li, M.; Xu, Z. Detection of Foodborne Pathogens by Surface Enhanced Raman Spectroscopy. *Front Microbiol* **2018**, *9*.

(155) Wang, W.; Huang, Y.-F.; Liu, D.-Y.; Wang, F.-F.; Tian, Z.-Q.; Zhan, D. Electrochemically Roughened Gold Microelectrode for Surface-Enhanced Raman Spectroscopy. *Journal of Electroanalytical Chemistry* **2016**, *779*, 126–130.

(156) Ko, J.; Lee, C.; Choo, J. Highly Sensitive SERS-Based Immunoassay of Aflatoxin B1 Using Silica-Encapsulated Hollow Gold Nanoparticles. *Journal of Hazardous Materials* **2015**, *285*, 11–17.

(157) Mishra, G. K.; Barfidokht, A.; Tehrani, F.; Mishra, R. K. Food Safety Analysis Using Electrochemical Biosensors. *Foods* **2018**, *7* (9).

(158) Sheikhzadeh, E.; Chamsaz, M.; Turner, A. P. F.; Jager, E. W. H.; Beni, V. Label-Free Impedimetric Biosensor for *Salmonella Typhimurium* Detection Based on Poly [Pyrrole-Co-3-Carboxyl-Pyrrole] Copolymer Supported Aptamer. *Biosensors and Bioelectronics* **2016**, *80*, 194–200.

(159) Istamboulié, G.; Paniel, N.; Zara, L.; Granados, L. R.; Barthelmebs, L.; Noguer, T. Development of an Impedimetric Aptasensor for the Determination of Aflatoxin M1 in Milk. *Talanta* **2016**, *146*, 464–469.

(160) Gökçe, G.; Ben Aissa, S.; Nemčeková, K.; Catanante, G.; Raouafi, N.; Marty, J. L. Aptamer-Modified Pencil Graphite Electrodes for the Impedimetric Determination of Ochratoxin A. *Food Control* **2020**, *115*, 4–10.

(161) Berisha, L.; Maloku, A.; Haliti, M.; Jashari, G.; Ukmata, A.; Sýs, M. Voltammetric Determination of Nitrites in Meat Products after Reaction with Ranitidine Producing 2-Methylfuran Cation. *Microchemical Journal* **2020**, *159*, 105403.

(162) Brycht, M.; Łukawska, A.; Frühbauerová, M.; Pravcová, K.; Metelka, R.; Skrzypek, S.; Sýs, M. Rapid Monitoring of Fungicide Fenhexamid Residues in Selected Berries and Wine Grapes by Square-Wave Voltammetry at Carbon-Based Electrodes. *Food Chemistry* **2021**, *338*, 127975.

(163) Zhang, H.; Sun, D.; Cao, T. Electrochemical Sensor Based on Silver Nanoparticles/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode to Detect Cyanide in Food Products. *International Journal of Electrochemical Science* **2020**, *15*, 3434–3444.

(164) Panini, N. V.; Salinas, E.; Messina, G. A.; Raba, J. Modified Paramagnetic Beads in a Microfluidic System for the Determination of Zearalenone in Feedstuffs Samples. *Food Chemistry* **2011**, *125* (2), 791–796.

(165) Wadhera, T.; Kakkar, D.; Wadhwa, G.; Raj, B. Recent Advances and Progress in Development of the Field Effect Transistor Biosensor: A Review. *Journal of Electronic Materials* **2019**, *48* (12), 7635–7646.

(166) Villamizar, R. A.; Maroto, A.; Rius, F. X. Rapid Detection of *Aspergillus Flavus* in Rice Using Biofunctionalized Carbon Nanotube Field Effect Transistors. **2011**, *119*–126.

(167) Liu, F.; Han, Y.; Sung, D.; Seok, T. Sensors and Actuators B: Chemical Micropatterned Reduced Graphene Oxide Based Field-Effect Transistor for Real-Time Virus Detection. *Sensors & Actuators: B. Chemical* **2013**, *186*, 252–257.

(168) Sui, X.; Pu, H.; Maity, A.; Chang, J.; Jin, B.; Lu, G.; Wang, Y.; Ren, R.; Mao, S.; Chen, J. Field-Effect Transistor Based on Percolation Network of Reduced Graphene Oxide for Real-Time Ppb-Level Detection of Lead Ions in Water Field-Effect Transistor Based on Percolation Network of Reduced Graphene Oxide for Real-Time Ppb-Level Detection of Lead Ions in Water. **2020**.

(169) Gong, H.; Chen, F.; Huang, Z.; Gu, Y.; Zhang, Q.; Chen, Y.; Zhang, Y.; Zhuang, J.; Cho, Y. K.; Fang, R. H.; Gao, W.; Xu, S.; Zhang, L. Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. *ACS Nano* **2019**, 13 (3), 3714–3722.

(170) Bergveld, P. Development, Operation, and Application of the Ion-Sensitive Field-Effect Transistor as a Tool for Electrophysiology. *IEEE Transactions on Biomedical Engineering* **1972**, *BME-19* (5), 342–351.

(171) Lowe, B. M.; Sun, K.; Zeimpekis, I.; Skylaris, C. K.; Green, N. G. Field-Effect Sensors—from PH Sensing to Biosensing: Sensitivity Enhancement Using Streptavidin-Biotin as a Model System. *Analyst*. Royal Society of Chemistry November 21, 2017, pp 4173–4200.

(172) Caras, S.; Janata, J. Field Effect Transistor Sensitive to Penicillin. *Analytical Chemistry* **1980**, 52 (12), 1935–1937.

(173) Schaertel, B. J.; Firstenberg-Eden, R. Biosensors in the Food Industry: Present and Future. *Journal of Food Protection* **1988**, 51 (10), 811–820.

(174) Dey, A.; Singh, A.; Dutta, D.; Ghosh, S. S.; Iyer, P. K. Rapid and Label-Free Bacteria Detection Using a Hybrid Tri-Layer Dielectric Integrated n-Type Organic Field Effect Transistor. *Journal of Materials Chemistry A* **2019**, 7 (31), 18330–18337.

(175) Villamizar, R. A.; Maroto, A.; Rius, F. X.; Inza, I.; Figueras, M. J. Fast Detection of *Salmonella* *Infantis* with Carbon Nanotube Field Effect Transistors. *Biosensors and Bioelectronics* **2008**, 24 (2), 279–283.

(176) So, H.; Park, D.; Jeon, E.; Kim, Y.; Kim, B. S.; Lee, C.; Choi, Y.; Kim, S. C.; Chang, H.; Lee, J. Detection and Titer Estimation of *Escherichia Coli* Using Aptamer-Functionalized Single-Walled Carbon-Nanotube Field-Effect Transistor. **2008**, 197–201.

(177) Salami, M.; Mhs, A.; Nsk, A. BioFET-Based Integrated Platform for Accurate and Rapid Detection of *E. Coli* Bacteria: A Review. *J Biosens Bioelectron* **2019**, 10 (1), 266.

(178) Sutton, S. The Most Probable Number Method and Its Uses in Enumeration, Qualification, and Validation. *Journal of Validation Technology* **2010**, 16 (3), 35–38.

(179) Shariati, M. The Field Effect Transistor DNA Biosensor Based on ITO Nanowires in Label-Free Hepatitis B Virus Detecting Compatible with CMOS Technology. *Biosensors and Bioelectronics* **2018**, 105, 58–64.

(180) Moudgil, A.; Singh, S.; Mishra, N.; Mishra, P.; Das, S. MoS₂/TiO₂ Hybrid Nanostructure-Based Field-Effect Transistor for Highly Sensitive, Selective, and Rapid Detection of Gram-Positive Bacteria. *Advanced Materials Technologies* **2020**, 5 (1), 1–11.

(181) Singh, S.; Moudgil, A.; Mishra, N.; Das, S.; Mishra, P. Vancomycin Functionalized WO₃ Thin Film-Based Impedance Sensor for Efficient Capture and Highly Selective Detection of Gram-Positive Bacteria. *Biosensors and Bioelectronics* **2019**, 136, 23–30.

(182) Malanovic, N.; Lohner, K. Gram-Positive Bacterial Cell Envelopes: The Impact on the Activity of Antimicrobial Peptides. *Biochimica et Biophysica Acta - Biomembranes* **2016**, 1858 (5), 936–946.

(183) Spijkman, M.; Smits, E. C. P.; Cillessen, J. F. M.; Biscarini, F.; Blom, P. W. M.; De Leeuw, D. M. Beyond the Nernst-Limit with Dual-Gate ZnO Ion-Sensitive Field-Effect Transistors. *Applied Physics Letters* **2011**, 98 (4), 043502.

(184) Hideshima, S.; Saito, M.; Fujita, K.; Harada, Y.; Tsuna, M.; Sekiguchi, S.; Kuroiwa, S.; Nakanishi, T.; Osaka, T. Label-Free Detection of Allergens in Food via Surfactant-Induced

1

2

3 Signal Amplification Using a Field Effect Transistor-Based Biosensor. *Sensors and*
4 *Actuators, B: Chemical* **2018**, *254*, 1011–1016.

5

6 (185) Ah, C. S.; Park, C. W.; Yang, J. H.; Lee, J. S.; Kim, W. J.; Chung, K. H.; Choi, Y. H.; Baek, I. B.;
7 Kim, J.; Sung, G. Y. Detection of Uncharged or Feebly Charged Small Molecules by Field-
8 Effect Transistor Biosensors. *Biosensors and Bioelectronics* **2012**, *33* (1), 233–240.

9

10 (186) Forsyth, R.; Devadoss, A.; Guy, O. J. Graphene Field Effect Transistors for Biomedical
11 Applications: Current Status and Future Prospects. *Diagnostics* **2017**, *7* (3), 45.

12

13 (187) Nekrasov; Kireev; Emelianov; Bobrinetskiy. Graphene-Based Sensing Platform for On-
14 Chip Ochratoxin A Detection. *Toxins* **2019**, *11* (10), 550.

15

16 (188) Islam, S.; Shukla, S.; Bajpai, V. K.; Han, Y. K.; Huh, Y. S.; Ghosh, A.; Gandhi, S.
17 Microfluidic-Based Graphene Field Effect Transistor for Femtomolar Detection of
18 Chlorpyrifos. *Scientific Reports* **2019**, *9* (1), 1–7.

19

20 (189) Talan, A.; Mishra, A.; Eremin, S. A.; Narang, J.; Kumar, A.; Gandhi, S. Ultrasensitive
21 Electrochemical Immuno-Sensing Platform Based on Gold Nanoparticles Triggering
22 Chlorpyrifos Detection in Fruits and Vegetables. *Biosensors and Bioelectronics* **2018**, *105*,
14–21.

23

24 (190) Thanh, C. T.; Binh, N. H.; Van Tu, N.; Thu, V. T.; Bayle, M.; Paillet, M.; Sauvajol, J. L.;
25 Thang, P. B.; Lam, T. D.; Minh, P. N.; Van Chuc, N. An Interdigitated ISFET-Type Sensor
26 Based on LPCVD Grown Graphene for Ultrasensitive Detection of Carbaryl. *Sensors and*
27 *Actuators B: Chemical* **2018**, *260*, 78–85.

28

29 (191) Edwards, P.; Zhang, C.; Zhang, B.; Hong, X.; Nagarajan, V. K.; Yu, B.; Liu, Z. Smartphone
30 Based Optical Spectrometer for Diffusive Reflectance Spectroscopic Measurement of
31 Hemoglobin. *Scientific Reports* **2017**, *7* (1), 12224.

32

33 (192) Tan, X.; Chen, Q.; Zhu, H.; Zhu, S.; Gong, Y.; Wu, X.; Chen, Y.-C.; Li, X.; Li, M. W.-H.; Liu,
34 W.; Fan, X. Fast and Reproducible ELISA Laser Platform for Ultrasensitive Protein
35 Quantification. *ACS Sens.* **2020**, *5* (1), 110–117.

36

37 (193) Szlag, V. M.; Rodriguez, R. S.; Jung, S.; Bourgeois, M. R.; Bryson, S.; Purchel, A.; Schatz, G.
38 C.; Haynes, C. L.; Reineke, T. M. Optimizing Linear Polymer Affinity Agent Properties for
39 Surface-Enhanced Raman Scattering Detection of Aflatoxin B1. *Mol. Syst. Des. Eng.* **2019**, *4*
(5), 1019–1031.

40

41 (194) Ren, X.; Wang, Y.; Xie, Z.; Xue, F.; Leighton, C.; Frisbie, C. D. Gate-Tuned Insulator–Metal
42 Transition in Electrolyte-Gated Transistors Based on Tellurene. *Nano Lett.* **2019**, *19* (7),
43 4738–4744.

44

45 (195) Kuo, W.-C.; Sarangadharan, I.; Pulikkathodi, A. K.; Chen, P.-H.; Wang, S.-L.; Wu, C.-R.;
46 Wang, Y.-L. Investigation of Electrical Stability and Sensitivity of Electric Double Layer
47 Gated Field-Effect Transistors (FETs) for MiRNA Detection. *Sensors (Basel)* **2019**, *19* (7).

48

49 (196) Raghuvanshi, V.; Bharti, D.; Mahato, A. K.; Varun, I.; Tiwari, S. P. Solution-Processed
50 Organic Field-Effect Transistors with High Performance and Stability on Paper Substrates.
51 *ACS Appl. Mater. Interfaces* **2019**, *11* (8), 8357–8364.

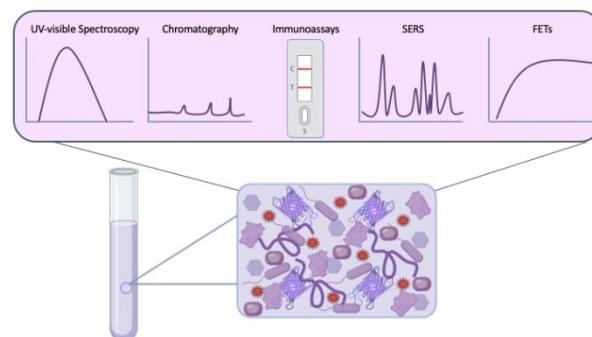
52

53

54

55

56


57

58

59

60

1
2
3 For Table of Contents Only
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

