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Abstract—A high penetration level of smart devices and 

communication networks increases the threat of cyber-attacks 

in the distribution system. In this paper, we model a hidden, 

coordinated, net load redistribution attack (NLRA) in an AC 

distribution system. Based on local information of an attack 

region, the attacker’s goal is to create violations in nodal 

voltage magnitude estimation. Acting as a system operator 

equipped with global AC state estimation and bad data 

detection, we validate the stealthiness of the hidden NLRA in 

multiple attack cases. Simulation results on a modified PG&E 

69-node distribution system show the validity of the proposed 

NLRA. The influence of NLRA on the distribution system is 

assessed and the impact of attack regions, attack timing, and 

system observability is also revealed.  

Index Terms—false data injection attacks, load redistribution 

attacks, voltage violation, bad data detection.  

I. INTRODUCTION 

Electric power systems are under rapid and revolutionary 

development towards smart, autonomous, and 

communicational technologies. A number of smart meters 

and phasor measurement units (PMUs) are increasingly 

utilized to monitor power system states. These sensors are 

susceptible to a growing risk of cyber-attacks due to the 

vulnerability of the communication networks [1]. For 

example, the 2015 Ukraine blackout is a consequence of an 

adversary, stealthily compromising measurements from 

electricity grid sensors in a coordinated fashion [2]. 

Cyber data attacks are viewed as “the worst interacting 

bad data injected by an adversary” [3]. In [4], Liu et al. 

analyzed several existing security accidents and introduced 

the taxonomy of the attacks according to their spatial-

temporal characteristics. An attacker with the capability of 

configuration information can manipulate the measurement 

data at the smart meters as they are usually physically 

exposed [5]. Such attacks are defined as false data injection 

(FDI) [3], [6], [7]. FDI attacks result in incorrect state 

estimation and further undermine the economic and secure 

operation of power systems. In previous research, it is 

assumed attackers have the entire power network 

information. In reality, this is an impractical assumption due 

to the security and complexity of today’s power grid. 

Therefore, FDI attacks with incomplete information [8]–[12] 

are drawing more research attention. In [9], Liu et al. 

demonstrate an attacker could construct an undetectable FDI 

attack in an AC transmission system with incomplete 

network information by maintaining the same phase angle 

increment at the boundary nodes of the attack region. 

According to the characteristics of transmission systems (i.e., 

high X/R ratio, meshed network), Liu et al. proposed a 

method to optimally estimate phase angle differences 

between boundary nodes [10]. Their results showed the 

construction of an FDI attack does not require knowledge of 

the entire power network. Yuan et al. developed a novel 

concept of load redistribution attacks (LRA) [13], which is a 

more realistic form of the FDI attack in the DC transmission 

system. To the best of our knowledge, the LRA has not been 

researched in AC distribution systems with distributed energy 

resources (DERs), wherein the malicious measurement may 

be disguised by the uncertain DERs’ power injection. 

Existing research on the effect of LRA mainly concerns with 

economic consequences. However, little research has been 

conducted when attackers aim at creating system state 

violations. 

Unlike a transmission system, the distribution system is 

characterized by a radial network typology and a low X/R 

ratio. Therefore, the method proposed in [10] does not apply 

to the distribution system as significant approximation errors 

occur in the estimation of voltage angle differences in the 

distribution system. Furthermore, there has been little effort 

to model a stealthy FDI attack with a tangible attack goal in 

the distribution system. Without such a goal, it is impossible 

for a defender to analyze the real consequence of an FDI 

attack.  

In this paper, we propose a novel net load redistribution 

attack (NLRA) aiming at falsifying nodal voltage magnitude 

estimation in the AC distribution system. Specifically, the 

attackers intend to create illusory voltage violations such as 

under-voltage violations to the system operator. Unlike 

previous research [13], [14] with a strong common 

assumption that the attacker must have complete knowledge 

about the entire power grid network, we model NLRA as an 

attacker’s AC optimal power flow (OPF) problem that only 

requires local distribution network information. The NLRA 

model is solved by using an interior-point algorithm and 

simulations are conducted on a modified PG&E 69-node 

distribution system. It is worth mentioning that the intention 

of this paper is not to educate the attackers on how to perform 

FDI attacks, but to provide power grid operators with a better 

understanding of attack consequences, which in turn can 

assist in devising effective defense approaches. 



The rest of this paper is organized as follows. The 

background on hidden FDI attacks against the AC state 

estimation is given in Section II. The construction of the 

NLRA attack using local measurements in the targeted region 

is presented in Section III. Case studies on the modified 69-

node distribution system are discussed in Section IV. This 

paper is concluded in Section V. 

II. HIDDEN FDI ATTACKS AGAINST AC STATE ESTIMATION 

Bad Data Detection (BDD) in AC state estimation is 

based on a residual analysis of ˆ( )= −r z h x , where r  is the 

residual, x̂ is the estimated system states, z is the 

measurements, and ( )h  is a nonlinear function between the 

system states and the measurements. The residual can be 

attributed to noise and inaccuracy of the measurements as 

well as injected false data. The defender, usually a 

distribution system operator (DSO), runs the BDD tests by 

comparing the residual with a pre-defined threshold   

calculated at a certain confidence interval.  

( )
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ˆ = − r z h x                           (1) 

When there is at least one faulty measurement, the l2-norm 

of residual exceeds the threshold. 

To launch a stealthy AC FDI attack with incomplete 

network information, two conditions need to be satisfied. 

First, the attack vector itself should bypass the BDD tests. 

Liu et al. [7] proved that if an attacker injects false data that 

are consistent with the physical characteristics of power 

systems into the measurements, the attack vector can bypass 

the BDD. Second, the injected attack vector should not cause 

any state or measurement changes outside of the attack 

region since the attacker does not have access to the non-

attack region. Liu et al. [9]  demonstrated that if an attack 

vector ensures that all boundary nodes between the attack 

and non-attack regions have the same incremental phase 

angle, the additional power flow due to the injected false 

power will not flow out of the attack region. Therefore, the 

power system states and measurements in the non-attack 

region would remain unchanged. 

III. PROPOSED ATTACK MODEL 

Cyber-attacks on a certain type of power system 

measurements can easily expose themselves. For example, a 

cyber-attack on the measurements of a utility-scale wind or 

solar farm can be straightforwardly detected through direct 

communication between the system control center and the 

generating resource control room [14]. A nodal net load, 

calculated as the total load minus the total local generation, 

is measured at a specific node in the power system. Nodal 

net load measurements would become highly uncertain with 

a greater amount of behind-the-meter DERs in the 

distribution system, giving rise to cyber-attacks as the 

attacker can disguise an attack vector as uncertainties.   

We investigate a stealthy FDI attack model, termed as 

NLRA, in which measurements on the net power injection at 

a load node and related line power flow measurements can 

be compromised. With some mild assumptions on the 

attackers’ capability, attackers can precisely control the 

errors injected into these measurements (attack vector) in a 

coordinated manner to mislead the estimation of nodal 

voltage magnitudes in the attack region. The attackers must 

also maintain the sum of all net power injection 

measurements in the attack region unchanged to make the 

attack stealthy.  

A. Attacker’s Capabilities 

To meet the two conditions discussed in Section II and 

launch a stealthy NLRA attack, an attacker must have the 

following capabilities:  

1) Knowledge of line impedance in the attack region. In 

reality, line impedance may not be directly accessible to the 

attackers. They need to launch data exfiltration attacks to 

obtain the line impedance. Several methodologies [15]–[18] 

have been proposed to estimate the line impedance; 

2) Read & write access to power injection and line flow 

measurements in the attack region. The attacker can 

eavesdrop on those measurements and perform man-in-the-

middle attacks; and  

3) Read access to the voltage magnitude and angles at 

boundary nodes as well as read access to the tie-line power 

flow between the attack and non-attack regions. 

Table I. Attacker’s capabilities for NLRA 

Measurements Capabilities 

Line impedance Attack region (Knowledge) 

Power injection Attack region (Read & Write) 

Line power flow Attack region (Read & Write) 

Tie lines (Read-only) 

Voltage magnitude Boundary nodes (Read-only) 

Voltage angle Boundary nodes (Read-only) 

The attacker’s capabilities required to launch a stealthy 

NLRA are summarized in Table I. Note that the attacker’s 

cost (e.g., resources invested) to launch a successful NLRA 

is highly related to the scale of an attack region. For an 

attacker, attacking a large region requires a higher cost than 

a small region, but may result in more severe consequences 

in the distribution system. 

B. Attack Objectives 

The attacker’s goal is to mislead the DSO to observe 

under-voltage issues in AC state estimation by injecting 

attack vector into the measurements. Let A, B, T represent 

the set of nodes in the attack region, boundary nodes, and tie 

lines, respectively. The objective of the NLRA attack is 

formulated below. 

min a a

a A

c V


                                   (2) 

Here, subscript a  denotes the targeted nodes in the attack 

region A; 
aV  represents the intended voltage magnitude 

measurements of node a; ac is a non-negative weight 

coefficient assigned to node a representing the attack 

emphasis, the summation of which equates to 1. To achieve 

the most desirable under-voltage violation, an attacker can 

assign a large weight to the most critical node, and a zero 

weight for nodes of no interest.   

C. Stealthy Conditions 

To make NLRA stealthy, an attacker needs to ensure 

measurements of the tie line’s power flow TS , the voltage 



magnitude on the boundary nodes 
BV , and the voltage phase 

difference between the boundary nodes 
B remain 

unchanged after the attack as defined in (3). 
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Here, superscript ( ) '  denotes the measurements before an 

attack. Constraints (4) and (5), showing the essence of an 

NLRA, indicate the sum of all net load changes should be 

equal to zero, and the net load’s change at each node is 

within a reasonable range, respectively. 

0a

a A

D


 =                                      (4) 
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a a aS D S  −                                   (5) 

In (4), 
aD  is the attack magnitude, i.e., net load change, at 

each node in the attack region. In (5),   is a percentage of 

allowable change on the original load (apparent power) 

measurement 
l

aS  . Constraint (5) is imposed because the 

DSO can check the sensor measurements when an under-

voltage condition occurs. In this case, unrealistic injected 

data can be easily exposed. 

With local information of the attack region and boundary 

information between the attack and non-attack regions, 

NLRA is modeled as a modified ACOPF problem, in which 

the prevailing ACOPF constraints (6) – (10) hold for the 

proposed NLRA.  
l l lS P iQ= +                                  (6) 

( , , ) 0l

Pg V P =                               (7) 

( , , ) 0l

Qg V Q =                               (8) 

( , ) 0fh V                                   (9) 

( , ) 0th V                                 (10) 

Here, voltage angle  , voltage magnitude V , real and 

reactive power load 
lP  and 

lQ  are decision variables. In 

(7), 
Pg  is the nonlinear equality constraints of nodal real 

power balance. In (8), Qg  represents the nonlinear equality 

constraints of nodal reactive power balance. fh  in (9) and 

th  in (10) are nonlinear inequality constraints of power flow 

limits at the “from node” and “to node”, respectively. Attack 

vectors generated by the proposed NLRA model obey 

Kirchhoff’s current & voltage laws, implying they follow the 

inherent characteristics of the distribution system.  

D. Attack Simulation  

The flow chart of an NLRA in the distribution system is 

shown in Fig. 1. The attacker has the capability of 

eavesdropping on compromised sensors in the attack region. 

The attacker can generate an attack vector by running the 

NLRA model formulated in (2)-(10) based on the 

eavesdropped measurements. Further, the attacker can inject 

the calculated attack vector back into the corresponding 

communication links through man-in-the-middle attacks.  

 

Fig. 1. The flowchart of NLRA  

In this study, we assume that DSO is equipped with an 

AC state estimator and BDD. The AC state estimator utilizes 

compromised measurements combined with the 

measurements in the non-attack region to check the 

existence of a cyber-attack. If the attack bypasses the BDD 

test, the system will respond to the estimated system states 

with corrective actions. In this paper, we focus on 

demonstrating the impact of the NLRA attacks in the 

distribution system. Corrective actions, and most 

importantly, defense approaches for the DSO in response to 

NLRA are out of the scope of this paper.  

IV. CASE STUDY 

In this section, the proposed NLRA model is simulated 

on a modified PG&E 69-node radial distribution system. The 

DSO, equipped with the AC state estimator and BDD, has 

full access to all sensor measurements and global 

information of the entire distribution system. We simulate 

NLRA on this system and assess its attack consequences 

while accounting for the impact of attack regions, attack 

timing, and system observability. The NLRA, AC state 

estimation, and BDD are all performed in MATPOWER 

[19]. 

A. Test Distribution System 

The one-line diagram of the modified 69-node system is 

shown in Fig. 2. We modify the original PG&E 69-node 

radial distribution system by adding aggregated behind-the-

meter DERs at certain nodes (in Fig. 2). We initially assume 

the system is fully observable and reduce its observability 

whereby the impact of the NLRA is studied. There are four 

PMUs installed at Nodes 13, 26, 53, and 63. In this case, 

there are 483 sensors in the system, including 211 nodal 

measurements (i.e., real and reactive power injections, 

voltage magnitude and phase angles at boundary nodes) and 

272 line measurement (i.e., real and reactive power flow on 

both the “from node” and the “to node”). We simulate NLRA 

in two regions (i.e., main feeder and lateral) and three time 

periods (i.e., valley, shoulder, and peak hours). The range of 

allowable voltage magnitudes is between 0.95 p.u. and 1.05 

p.u. in this system. 



Fig.2. The modified PG&E 69-node system 

B. Impact of Attack Regions 

In this subsection, we compare the system impact of the 

attack at two regions, i.e., one on the main feeder (Nodes 13 

to 26) and the other on the lateral (Nodes 53 to 63). To 

demonstrate the flexibility of attacking different numbers of 

nodes, we choose Nodes 22 to 25 on the main feeder and 

Node 59 on the lateral as targets, that is, the weight 

coefficients on these nodes are non-zero. While attackers may 

pick their target nodes of interest, here we randomly select 

the target nodes in the middle of the attack region. Such a 

selection allows the voltage magnitude profile to drop first 

and then rise to satisfy the boundary condition. This is a 

unique characteristic of the NLRA attacks in the radial 

distribution system. Fig. 3 shows nodal voltage magnitudes 

and angles at a peak hour before and after the attack. In order 

to make the NLRA stealthy in the attack region, the voltage 

magnitudes and the incremental phase angles on the 

boundary nodes remain the same after the attack. When the 

attack is on the main feeder, the largest voltage drop occurs 

at Node 21, which is 0.017 p.u. No voltage magnitude of any 

node drops below the secure range and the DSO observes no 

under-voltage issue. When the attack is on the lateral, the 

DSO perceives six voltage violations below the lower limit 

of 0.95 p.u. at Nodes 57 to 62. The largest voltage drop of 

0.057 p.u. occurs at Node 58. The difference in attack 

consequences between the two attack regions is largely 

attributed to the difference in line impedance. Specifically, an 

attack region with higher line impedance would more likely 

experience larger voltage drops under an NLRA. Therefore, 

the optimal strategy for an attacker is to launch an NLRA on 

laterals, where the line impedance is higher than that of the 

main feeder. 

C. Impact of Attack Timing  

In this subsection, we investigate the impact of attack 

timing on the distribution system by implementing NLRA in 

different time periods. Figure 4 compares the profiles of 

voltage magnitudes after NLRA on the main feeder and the 

lateral at peak, shoulder, and valley hours. It is seen larger 

voltage drops occur during the peak hour in both attack 

regions. As shown in Fig. 4(b), on the lateral occur five and 

one nodal voltage violations at the shoulder and the valley 

hours, respectively. The most severe attack consequences 

occur on the lateral during the peak hour when the under-

voltage condition occurs on six nodes, i.e., Nodes 57-62. This 

result can be explained by comparing the net load differences 

at those time periods. A higher load condition provides 

NLRA with more freedom to manipulate and redistribute the 

nodal net loads in the attack region. 

 
 (a) Voltage magnitude on main feeder    (b) Voltage angle on main feeder 

 
     (c) Voltage magnitude on lateral             (d) Voltage angle on lateral 

Fig. 3. Attack consequences on a peak hour 

 
              (a) Attack on main feeder                     (b) Attack on lateral 

Fig. 4. Attack consequences in different time periods 

D. Impact of System Observability    

We analyze attack consequences with different levels of 

observability in the distribution system. Although the 

deployment of various recent technologies, such as advanced 

metering infrastructure, PMUs, intelligent electronic devices, 

and smart inverters of DERs, have improved the network 

observability, the distribution system is generally 

underdetermined with poor observability and easily becomes 

unobservable due to the communication failure and delay 

[20].  

Here, we adopt a metric developed in our previous work 

[21], namely fraction of the available data (FAD), to reflect 

the distribution system observability. FAD is defined as the 

ratio of the number of measurements deployed over the total 

number of possible measurements in a region. Figure 5 

compares the voltage magnitudes and angles at three different 

FADs in the lateral attack region. When FAD is set to 0.64 

and 0.55, we randomly select four and five unmeasured nodes 

in the attack region, respectively. An unmeasured node 

indicates that no measurements, including its nodal power 

injection and associated branch flows, are available to the 

operator.  Compared with the base case where the system is 

fully observable (FAD=1), the NLRA with a lower FAD can 

result in large attack impact and more voltage violations, 

translating to a more severe under-voltage issue. This is 

because fewer sensors deployed in the system leads to a more 

unobservable system, where the attacker would have more 

flexibility to launch a more coordinated NLRA. 



 
      (a) Voltage magnitude on lateral             (b) Voltage angle on lateral 

Fig. 5. Attack consequence with different FADs 

E. Impact of the Size of an Attack Region 

In this subsection, we study the impact of the size of an 

attack region on the stealthiness of the NLRA. We reduce the 

size of the attack region by randomly selecting 4 to 7 nodes 

out of the total 11 nodes (Nodes 53-63) on the lateral as the 

attack region. For each attack region, we simulate NLRA, the 

AC state estimation, and the BDD tests 1000 times. In order 

to show the stealthiness of the NLRA, we use an attack 

stealthiness probability (ASP) metric, which is defined as the 

probability of the attack vector bypassing the BDD test. Due 

to the meter measurement noise, the residual check for a 

normal system fails with a probability of 0.02 to 0.05, which 

gives the non-attack case an ASP between 0.95 to 0.98. Fig. 

6 shows the ASP of the four attack sizes. It is seen ASP 

increases as the size of the attack region increases. This is 

because the larger the attack region is, the more noise-free 

measurements there will be. The noise-free measurements are 

the injected false data, which strictly obey Kirchhoff’s 

current and voltage laws and thus reduce the residual in the 

AC state estimation. 

 
Fig. 6. ASP versus the number of nodes in the attack region  

V. CONCLUSION AND FUTURE WORK 

Based on the concept of the LRA, this paper proposes a 

stealthy NLRA against the AC distribution system with 

behind-the-meter DERs using local network information. 

The proposed method is stealthy to BDD in the state 

estimator and can mislead DSO with illusory under-voltage 

issues. The numerical results show that the estimation 

residual after the NLRA is smaller than that before the 

attack, which can ensure the stealthiness of NLRA. The 

simulation results demonstrate that a larger attack area in 

NLRA further reduces the residual in BDD. The NLRA 

attacks aiming at the region with higher line impedance (e.g., 

laterals) and larger total net load (e.g., the peak load) lead to 

larger voltage drops in the attack region. Furthermore, lower 

system observability increases the adverse impact of NLRA 

on the distribution system. Our future work will focus on the 

development of a defense framework in which the proposed 

NLRA will be simulated. Attack sequences with a high level 

of DERs as well as other attack goals in the distribution 

system will be also be researched.  
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