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Abstract—A high penetration level of smart devices and
communication networks increases the threat of cyber-attacks
in the distribution system. In this paper, we model a hidden,
coordinated, net load redistribution attack (NLRA) in an AC
distribution system. Based on local information of an attack
region, the attacker’s goal is to create violations in nodal
voltage magnitude estimation. Acting as a system operator
equipped with global AC state estimation and bad data
detection, we validate the stealthiness of the hidden NLRA in
multiple attack cases. Simulation results on a modified PG&E
69-node distribution system show the validity of the proposed
NLRA. The influence of NLRA on the distribution system is
assessed and the impact of attack regions, attack timing, and
system observability is also revealed.

Index Terms—false data injection attacks, load redistribution
attacks, voltage violation, bad data detection.

1. INTRODUCTION

Electric power systems are under rapid and revolutionary
development towards smart, autonomous, and
communicational technologies. A number of smart meters
and phasor measurement units (PMUs) are increasingly
utilized to monitor power system states. These sensors are
susceptible to a growing risk of cyber-attacks due to the
vulnerability of the communication networks [1]. For
example, the 2015 Ukraine blackout is a consequence of an
adversary, stealthily compromising measurements from
electricity grid sensors in a coordinated fashion [2].

Cyber data attacks are viewed as “the worst interacting
bad data injected by an adversary” [3]. In [4], Liu ef al.
analyzed several existing security accidents and introduced
the taxonomy of the attacks according to their spatial-
temporal characteristics. An attacker with the capability of
configuration information can manipulate the measurement
data at the smart meters as they are usually physically
exposed [5]. Such attacks are defined as false data injection
(FDI) [3], [6], [7]. FDI attacks result in incorrect state
estimation and further undermine the economic and secure
operation of power systems. In previous research, it is
assumed attackers have the entire power network
information. In reality, this is an impractical assumption due
to the security and complexity of today’s power grid.
Therefore, FDI attacks with incomplete information [8]-[12]
are drawing more research attention. In [9], Liu et al.
demonstrate an attacker could construct an undetectable FDI

attack in an AC transmission system with incomplete
network information by maintaining the same phase angle
increment at the boundary nodes of the attack region.
According to the characteristics of transmission systems (i.e.,
high X/R ratio, meshed network), Liu et al. proposed a
method to optimally estimate phase angle differences
between boundary nodes [10]. Their results showed the
construction of an FDI attack does not require knowledge of
the entire power network. Yuan et al. developed a novel
concept of load redistribution attacks (LRA) [13], which is a
more realistic form of the FDI attack in the DC transmission
system. To the best of our knowledge, the LRA has not been
researched in AC distribution systems with distributed energy
resources (DERs), wherein the malicious measurement may
be disguised by the uncertain DERs’ power injection.
Existing research on the effect of LRA mainly concerns with
economic consequences. However, little research has been
conducted when attackers aim at creating system state
violations.

Unlike a transmission system, the distribution system is
characterized by a radial network typology and a low X/R
ratio. Therefore, the method proposed in [10] does not apply
to the distribution system as significant approximation errors
occur in the estimation of voltage angle differences in the
distribution system. Furthermore, there has been little effort
to model a stealthy FDI attack with a tangible attack goal in
the distribution system. Without such a goal, it is impossible
for a defender to analyze the real consequence of an FDI
attack.

In this paper, we propose a novel net load redistribution
attack (NLRA) aiming at falsifying nodal voltage magnitude
estimation in the AC distribution system. Specifically, the
attackers intend to create illusory voltage violations such as
under-voltage violations to the system operator. Unlike
previous research [13], [14] with a strong common
assumption that the attacker must have complete knowledge
about the entire power grid network, we model NLRA as an
attacker’s AC optimal power flow (OPF) problem that only
requires local distribution network information. The NLRA
model is solved by using an interior-point algorithm and
simulations are conducted on a modified PG&E 69-node
distribution system. It is worth mentioning that the intention
of this paper is not to educate the attackers on how to perform
FDI attacks, but to provide power grid operators with a better
understanding of attack consequences, which in turn can
assist in devising effective defense approaches.



The rest of this paper is organized as follows. The
background on hidden FDI attacks against the AC state
estimation is given in Section II. The construction of the
NLRA attack using local measurements in the targeted region
is presented in Section III. Case studies on the modified 69-
node distribution system are discussed in Section IV. This
paper is concluded in Section V.

II. HIDDEN FDI ATTACKS AGAINST AC STATE ESTIMATION

Bad Data Detection (BDD) in AC state estimation is
based on a residual analysis of r =z —h(X), where r is the

residual, X is the estimated system states, z is the
measurements, and h(-) is a nonlinear function between the

system states and the measurements. The residual can be
attributed to noise and inaccuracy of the measurements as
well as injected false data. The defender, usually a
distribution system operator (DSO), runs the BDD tests by
comparing the residual with a pre-defined threshold 7
calculated at a certain confidence interval.
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When there is at least one faulty measurement, the ,-norm
of residual exceeds the threshold.

To launch a stealthy AC FDI attack with incomplete
network information, two conditions need to be satisfied.
First, the attack vector itself should bypass the BDD tests.
Liu et al. [7] proved that if an attacker injects false data that
are consistent with the physical characteristics of power
systems into the measurements, the attack vector can bypass
the BDD. Second, the injected attack vector should not cause
any state or measurement changes outside of the attack
region since the attacker does not have access to the non-
attack region. Liu et al. [9] demonstrated that if an attack
vector ensures that all boundary nodes between the attack
and non-attack regions have the same incremental phase
angle, the additional power flow due to the injected false
power will not flow out of the attack region. Therefore, the
power system states and measurements in the non-attack
region would remain unchanged.

III. PROPOSED ATTACK MODEL

Cyber-attacks on a certain type of power system
measurements can easily expose themselves. For example, a
cyber-attack on the measurements of a utility-scale wind or
solar farm can be straightforwardly detected through direct
communication between the system control center and the
generating resource control room [14]. A nodal net load,
calculated as the total load minus the total local generation,
is measured at a specific node in the power system. Nodal
net load measurements would become highly uncertain with
a greater amount of behind-the-meter DERs in the
distribution system, giving rise to cyber-attacks as the
attacker can disguise an attack vector as uncertainties.

We investigate a stealthy FDI attack model, termed as
NLRA, in which measurements on the net power injection at
a load node and related line power flow measurements can
be compromised. With some mild assumptions on the
attackers’ capability, attackers can precisely control the
errors injected into these measurements (attack vector) in a
coordinated manner to mislead the estimation of nodal

voltage magnitudes in the attack region. The attackers must
also maintain the sum of all net power injection
measurements in the attack region unchanged to make the
attack stealthy.

A. Attacker’s Capabilities

To meet the two conditions discussed in Section II and
launch a stealthy NLRA attack, an attacker must have the
following capabilities:

1) Knowledge of line impedance in the attack region. In
reality, line impedance may not be directly accessible to the
attackers. They need to launch data exfiltration attacks to
obtain the line impedance. Several methodologies [15]-[18]
have been proposed to estimate the line impedance;

2) Read & write access to power injection and line flow
measurements in the attack region. The attacker can
eavesdrop on those measurements and perform man-in-the-
middle attacks; and

3) Read access to the voltage magnitude and angles at
boundary nodes as well as read access to the tie-line power
flow between the attack and non-attack regions.

Table I. Attacker’s capabilities for NLRA

Measurements
Line impedance
Power injection
Line power flow

Capabilities
Attack region (Knowledge)
Attack region (Read & Write)
Attack region (Read & Write)
Tie lines (Read-only)
Boundary nodes (Read-only)
Boundary nodes (Read-only)

Voltage magnitude
Voltage angle

The attacker’s capabilities required to launch a stealthy
NLRA are summarized in Table 1. Note that the attacker’s
cost (e.g., resources invested) to launch a successful NLRA
is highly related to the scale of an attack region. For an
attacker, attacking a large region requires a higher cost than
a small region, but may result in more severe consequences
in the distribution system.

B. Attack Objectives

The attacker’s goal is to mislead the DSO to observe
under-voltage issues in AC state estimation by injecting
attack vector into the measurements. Let 4, B, T represent
the set of nodes in the attack region, boundary nodes, and tie
lines, respectively. The objective of the NLRA attack is
formulated below.

min ZCaVa 2)
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Here, subscript a denotes the targeted nodes in the attack
region A4; V, represents the intended voltage magnitude

measurements of node a; c, is a non-negative weight

coefficient assigned to node a representing the attack
emphasis, the summation of which equates to 1. To achieve
the most desirable under-voltage violation, an attacker can
assign a large weight to the most critical node, and a zero
weight for nodes of no interest.

C. Stealthy Conditions

To make NLRA stealthy, an attacker needs to ensure
measurements of the tie line’s power flow S, the voltage



magnitude on the boundary nodes V, , and the voltage phase
difference between the boundary nodes A#, remain

unchanged after the attack as defined in (3).
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Here, superscript (« denotes the measurements before an

attack. Constraints (4) and (5), showing the essence of an
NLRA, indicate the sum of all net load changes should be
equal to zero, and the net load’s change at each node is
within a reasonable range, respectively.

D> AD, =0 (4)
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In (4), AD, is the attack magnitude, i.e., net load change, at

each node in the attack region. In (5), § is a percentage of
allowable change on the original load (apparent power)

measurement Sé' . Constraint (5) is imposed because the

DSO can check the sensor measurements when an under-
voltage condition occurs. In this case, unrealistic injected
data can be easily exposed.

With local information of the attack region and boundary
information between the attack and non-attack regions,
NLRA is modeled as a modified ACOPF problem, in which
the prevailing ACOPF constraints (6) — (10) hold for the
proposed NLRA.
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Here, voltage angle 6, voltage magnitude V , real and
reactive power load P' and Q' are decision variables. In
(7), g, is the nonlinear equality constraints of nodal real
power balance. In (8), g, represents the nonlinear equality
constraints of nodal reactive power balance. 4, in (9) and
h, in (10) are nonlinear inequality constraints of power flow

limits at the “from node” and “to node”, respectively. Attack
vectors generated by the proposed NLRA model obey
Kirchhoff’s current & voltage laws, implying they follow the
inherent characteristics of the distribution system.

D. Attack Simulation

The flow chart of an NLRA in the distribution system is
shown in Fig. 1. The attacker has the capability of
eavesdropping on compromised sensors in the attack region.
The attacker can generate an attack vector by running the
NLRA model formulated in (2)-(10) based on the
eavesdropped measurements. Further, the attacker can inject

the calculated attack vector back into the corresponding
communication links through man-in-the-middle attacks.

: DSO P Attacker :
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Fig. 1. The flowchart of NLRA

In this study, we assume that DSO is equipped with an
AC state estimator and BDD. The AC state estimator utilizes
compromised  measurements combined  with  the
measurements in the non-attack region to check the
existence of a cyber-attack. If the attack bypasses the BDD
test, the system will respond to the estimated system states
with corrective actions. In this paper, we focus on
demonstrating the impact of the NLRA attacks in the
distribution system. Corrective actions, and most
importantly, defense approaches for the DSO in response to
NLRA are out of the scope of this paper.

IV. CASE STUDY

In this section, the proposed NLRA model is simulated
on a modified PG&E 69-node radial distribution system. The
DSO, equipped with the AC state estimator and BDD, has
full access to all sensor measurements and global
information of the entire distribution system. We simulate
NLRA on this system and assess its attack consequences
while accounting for the impact of attack regions, attack
timing, and system observability. The NLRA, AC state
estimation, and BDD are all performed in MATPOWER
[19].

A. Test Distribution System

The one-line diagram of the modified 69-node system is
shown in Fig. 2. We modify the original PG&E 69-node
radial distribution system by adding aggregated behind-the-
meter DERSs at certain nodes (in Fig. 2). We initially assume
the system is fully observable and reduce its observability
whereby the impact of the NLRA is studied. There are four
PMUs installed at Nodes 13, 26, 53, and 63. In this case,
there are 483 sensors in the system, including 211 nodal
measurements (i.e., real and reactive power injections,
voltage magnitude and phase angles at boundary nodes) and
272 line measurement (i.e., real and reactive power flow on
both the “from node” and the “to node”). We simulate NLRA
in two regions (i.e., main feeder and lateral) and three time
periods (i.e., valley, shoulder, and peak hours). The range of
allowable voltage magnitudes is between 0.95 p.u. and 1.05
p-u. in this system.
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Fig.2. The modified PG&E 69-node system

B. Impact of Attack Regions

In this subsection, we compare the system impact of the
attack at two regions, i.e., one on the main feeder (Nodes 13
to 26) and the other on the lateral (Nodes 53 to 63). To
demonstrate the flexibility of attacking different numbers of
nodes, we choose Nodes 22 to 25 on the main feeder and
Node 59 on the lateral as targets, that is, the weight
coefficients on these nodes are non-zero. While attackers may
pick their target nodes of interest, here we randomly select
the target nodes in the middle of the attack region. Such a
selection allows the voltage magnitude profile to drop first
and then rise to satisfy the boundary condition. This is a
unique characteristic of the NLRA attacks in the radial
distribution system. Fig. 3 shows nodal voltage magnitudes
and angles at a peak hour before and after the attack. In order
to make the NLRA stealthy in the attack region, the voltage
magnitudes and the incremental phase angles on the
boundary nodes remain the same after the attack. When the
attack is on the main feeder, the largest voltage drop occurs
at Node 21, which is 0.017 p.u. No voltage magnitude of any
node drops below the secure range and the DSO observes no
under-voltage issue. When the attack is on the lateral, the
DSO perceives six voltage violations below the lower limit
of 0.95 p.u. at Nodes 57 to 62. The largest voltage drop of
0.057 p.u. occurs at Node 58. The difference in attack
consequences between the two attack regions is largely
attributed to the difference in line impedance. Specifically, an
attack region with higher line impedance would more likely
experience larger voltage drops under an NLRA. Therefore,
the optimal strategy for an attacker is to launch an NLRA on
laterals, where the line impedance is higher than that of the
main feeder.

C. Impact of Attack Timing

In this subsection, we investigate the impact of attack
timing on the distribution system by implementing NLRA in
different time periods. Figure 4 compares the profiles of
voltage magnitudes after NLRA on the main feeder and the
lateral at peak, shoulder, and valley hours. It is seen larger
voltage drops occur during the peak hour in both attack
regions. As shown in Fig. 4(b), on the lateral occur five and
one nodal voltage violations at the shoulder and the valley
hours, respectively. The most severe attack consequences
occur on the lateral during the peak hour when the under-
voltage condition occurs on six nodes, i.e., Nodes 57-62. This
result can be explained by comparing the net load differences
at those time periods. A higher load condition provides
NLRA with more freedom to manipulate and redistribute the
nodal net loads in the attack region.
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Fig. 4. Attack consequences in different time periods

D. Impact of System Observability

We analyze attack consequences with different levels of
observability in the distribution system. Although the
deployment of various recent technologies, such as advanced
metering infrastructure, PMUSs, intelligent electronic devices,
and smart inverters of DERs, have improved the network
observability, the distribution system is generally
underdetermined with poor observability and easily becomes
unobservable due to the communication failure and delay
[20].

Here, we adopt a metric developed in our previous work
[21], namely fraction of the available data (FAD), to reflect
the distribution system observability. FAD is defined as the
ratio of the number of measurements deployed over the total
number of possible measurements in a region. Figure 5
compares the voltage magnitudes and angles at three different
FADs in the lateral attack region. When FAD is set to 0.64
and 0.55, we randomly select four and five unmeasured nodes
in the attack region, respectively. An unmeasured node
indicates that no measurements, including its nodal power
injection and associated branch flows, are available to the
operator. Compared with the base case where the system is
fully observable (FAD=1), the NLRA with a lower FAD can
result in large attack impact and more voltage violations,
translating to a more severe under-voltage issue. This is
because fewer sensors deployed in the system leads to a more
unobservable system, where the attacker would have more
flexibility to launch a more coordinated NLRA.
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E. Impact of the Size of an Attack Region

In this subsection, we study the impact of the size of an
attack region on the stealthiness of the NLRA. We reduce the
size of the attack region by randomly selecting 4 to 7 nodes
out of the total 11 nodes (Nodes 53-63) on the lateral as the
attack region. For each attack region, we simulate NLRA, the
AC state estimation, and the BDD tests 1000 times. In order
to show the stealthiness of the NLRA, we use an attack
stealthiness probability (ASP) metric, which is defined as the
probability of the attack vector bypassing the BDD test. Due
to the meter measurement noise, the residual check for a
normal system fails with a probability of 0.02 to 0.05, which
gives the non-attack case an ASP between 0.95 to 0.98. Fig.
6 shows the ASP of the four attack sizes. It is seen ASP
increases as the size of the attack region increases. This is
because the larger the attack region is, the more noise-free
measurements there will be. The noise-free measurements are
the injected false data, which strictly obey Kirchhoff’s
current and voltage laws and thus reduce the residual in the
AC state estimation.
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V. CONCLUSION AND FUTURE WORK

Based on the concept of the LRA, this paper proposes a
stealthy NLRA against the AC distribution system with
behind-the-meter DERs using local network information.
The proposed method is stealthy to BDD in the state
estimator and can mislead DSO with illusory under-voltage
issues. The numerical results show that the estimation
residual after the NLRA is smaller than that before the
attack, which can ensure the stealthiness of NLRA. The
simulation results demonstrate that a larger attack area in
NLRA further reduces the residual in BDD. The NLRA
attacks aiming at the region with higher line impedance (e.g.,
laterals) and larger total net load (e.g., the peak load) lead to
larger voltage drops in the attack region. Furthermore, lower
system observability increases the adverse impact of NLRA
on the distribution system. Our future work will focus on the
development of a defense framework in which the proposed
NLRA will be simulated. Attack sequences with a high level
of DERs as well as other attack goals in the distribution
system will be also be researched.
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