2001.00888v4 [cs.DB] 2 Jun 2020

arxiv

Towards Scalable Dataframe Systems

Devin Petersohn, Stephen Macke, Doris Xin, William Ma, Doris Lee, Xiangxi Mo
Joseph E. Gonzalez, Joseph M. Hellerstein, Anthony D. Joseph, Aditya Parameswaran
UC Berkeley

{devin.petersohn, smacke, dorx, williamma, dorislee, xmo, jegonzal, hellerstein, adj, adityagp} @berkeley.edu

ABSTRACT

Dataframes are a popular abstraction to represent, prepare, and ana-
lyze data. Despite the remarkable success of dataframe libraries in R
and Python, dataframes face performance issues even on moderately
large datasets. Moreover, there is significant ambiguity regarding
dataframe semantics. In this paper we lay out a vision and roadmap
for scalable dataframe systems. To demonstrate the potential in this
area, we report on our experience building MODIN, a scaled-up im-
plementation of the most widely-used and complex dataframe API
today, Python’s pandas. With pandas as a reference, we propose a
simple data model and algebra for dataframes to ground discussion
in the field. Given this foundation, we lay out an agenda of open
research opportunities where the distinct features of dataframes
will require extending the state of the art in many dimensions of
data management. We discuss the implications of signature data-
frame features including flexible schemas, ordering, row/column
equivalence, and data/metadata fluidity, as well as the piecemeal,
trial-and-error-based approach to interacting with dataframes.

1. INTRODUCTION

For all of their commercial successes, relational databases have
notable limitations when it comes to “quick-and-dirty” exploratory
data analysis (EDA) [74]. Data needs to be defined schema-first
before it can be examined, data that is not well-structured is difficult
to query, and any query beyond SELECT * requires an intimate
familiarity with the schema, which is particularly problematic for
wide tables. For more complex analyses, the declarative nature of
SQL makes it awkward to develop and debug queries in a piecewise,
modular fashion, conflicting with best practices for software devel-
opment. In part thanks to these limitations, SQL is often not the
tool of choice for data exploration. As an alternative, programming
languages such as Python and R support the so-called dataframe
abstraction. Dataframes provide a functional interface that is more
tolerant of unknown data structure and well-suited to developer and
data scientist workflows, including REPL-style imperative interfaces
and data science notebooks [60].

Dataframes have several characteristics that make them an appeal-
ing choice for data exploration:

e an intuitive data model that embraces an implicit ordering on
both rows and columns and treats them symmetrically;

e a query language that bridges a variety of data analysis modal-
ities including relational (e.g., filter, join), linear algebra (e.g.,
transpose), and spreadsheet-like (e.g., pivot) operators;

e an incrementally composable query syntax that encourages easy
and rapid validation of simple expressions, and their iterative
refinement and composition into complex queries; and

e native embedding in a host language such as Python with familiar
imperative semantics.

Characteristics such as these have helped dataframes become in-
credibly popular for EDA; for instance, the dataframe abstraction
provided by pandas within Python (pandas.pydata.org), has, as
of 2020, been downloaded over 300 million times, served as a
dependency for over 222,000 repositories in GitHub, and starred
on GitHub more 25,000 times. Python’s own popularity has been
attributed to the success of pandas for data exploration and data sci-
ence [7,9]. Due to its ubiquity, we focus on pandas for concreteness.

Pandas has been developed from the ground up via open-source
contributions from dozens of contributors, each providing operators
and their implementations to the DataFrame API to satisfy imme-
diate or ad-hoc needs, spanning capabilities that mimic relational
algebra, linear algebra, and spreadsheet computation. To date, the
pandas DataFrame API has ballooned to over 200 operators [13].
R, which is both more mature and more carefully curated, has only
70 operators—but this still far more than, say, relational and linear
algebra combined [14].

While this rich API is sometimes cited as a reason for pandas’
attractiveness, the set of operators has significant redundancies, of-
ten with different performance implications. These redundancies
place a considerable burden on users to select the optimal way of
expressing their goal. For example, one blog post cites five differ-
ent ways to express the same goal, with performance varying from
0.3ms to 600ms (a 1700 increase) [6]; meanwhile, the pandas
documentation itself offers multiple recommendations for how to
enhance performance [10]. As a result, many users eschew the
bulk of the API, relying only on a small subset of operators [12].
The complexity of the API and evaluation semantics also make it
difficult to apply traditional query optimization techniques. Indeed,
each operator within a pandas “query plan” is executed completely
before subsequent operators are executed, with limited optimiza-
tion, and no reordering of operators or pipelining (unless explicitly
done so by the user using .pipe). Moreover, the performance of
the pandas.DataFrame API breaks down when processing even
moderate volumes of data that do not fit in memory, as we will see
subsequently—this is especially problematic due to pandas’ eager
evaluation semantics, wherein intermediate data items often surpass
main memory limits and must be paged to disk.

To address pandas’ scalability challenges, we developed MO-
DIN (github.com/modin-project/modin), our first attempt at a
scalable dataframe system, which employs parallel query execution
to enable unmodified pandas code to run more efficiently on large
dataframes. MODIN is used by over 60 downstream projects, and
has over 250 forks and 4,800 stars on GitHub in its first 20 months,
indicating the impact and need for such systems. MODIN rewrites
pandas API calls into a sequence of operators in a new, compact

pandas.pydata.org
github.com/modin-project/modin

dataframe algebra. MODIN then leverages simple parallelization
and a new physical representation to speed up the execution of
these operators, by up to 30 in certain cases, and is able to run to
completion on datasets 25X larger than pandas in others.

Our initial optimizations in MODIN are promising, but only
scratch the surface of what’s possible. Given that first experience
and the popularity of the results, we believe there is room for a broad,
community research agenda on making dataframe systems scal-
able and efficient, with many novel research challenges. Our origi-
nal intent when developing MODIN was to adapt standard relational
database techniques to help make dataframes scalable. However,
while the principles (such as parallelism) do apply, their instanti-
ation in the form of specific techniques often differ, thanks to the
differences between the data models and algebra of dataframes and
relations. Therefore, a more principled foundation for dataframes is
needed, comprising a formal data model and an expressive and com-
pact algebra. We describe our first attempt at such a formalization in
Section 4. Then, armed with our data model and algebra, we outline
a number of research challenges organized around unique dataframe
characteristics and the unique ways in which they are processed.

In Section 5, we describe how the dataframe data model and alge-
bra result in new scalability challenges. Unlike relations, dataframes
have a flexible schema and are lazily typed, requiring careful mainte-
nance of metadata, and avoidance of the overhead of type inference
as far as possible. Dataframes treat rows and columns as equivalent,
and metadata (column/row labels) and data as equivalent, requiring
flexible ways to keep track of metadata and orientation, placing new
metadata awareness requirements on dataframe query planners to
avoid physically transposing data where possible. In addition, data-
frames are ordered—and dataframe systems often enforce a strict
coupling between logical and physical layout; we identify several op-
portunities to deal with order in a more light-weight, decoupled, and
lazy fashion. Finally, the new space of operators—encompassing
relational, linear algebra, and spreadsheet operators—introduce new
challenges in query processing and optimization.

In Section 6, we describe new challenges and opportunities that
emerge from how dataframes are used for data exploration. Un-
like SQL which offers an all-or-nothing query modality, dataframe
queries are constructed one operator at a time, with ample think-
time between query fragments. This makes it more challenging to
perform query optimization wherein operators can be reordered for
higher overall efficiency. At the same time, the additional thinking
time between steps can be exploited to do background process-
ing. Users often inspect intermediate dataframe results of query
fragments, usually for debugging, which requires a costly material-
ization after each step of query processing. However, users are only
shown an ordered prefix or suffix of this intermediate dataframe as
output, allowing us to prioritize the execution to return this portion
quickly and defer the execution of the rest. Finally, users often re-
visit old processing steps in an ad-hoc process of trial-and-error data
exploration. We can consider opportunities to minimize redundant
computation for operations completed previously.

QOutline and Contributions. In this paper, we begin with an ex-
ample dataframe workflow capturing typical dataframe capabilities
and user behaviors. We then describe our experiences with Mo-
DIN (Section 3). We use MODIN to ground our discussion of the
research challenges. We (i) provide a candidate formalism for
dataframes and enumerate their capabilities with a new algebra
(Section 4). We then outline research challenges and opportuni-
ties to build on our formalism and make dataframe systems more
scalable, by optimizing and accounting for (ii) the unique charac-
teristics of the new data model and algebra (Section 5), as well
as (iii) the unique ways in which dataframes are used in practice

Jor data exploration (Section 6). We draw on tools and techniques
from the database research literature throughout and discuss how
they might be adapted to meet novel dataframe needs.

In describing the aforementioned challenges, we focus on the
pandas dataframe system [13] for concreteness. Pandas is much
more popular than other dataframe implementations, and is therefore
well worth our effort to study and optimize. We discuss other
dataframe implementations and related work in Section 7.

2. DATAFRAME EXAMPLE

In Figure 1, we show the steps taken in a typical workflow of
an analyst exploring the relationship between various features of
different iPhone models in a Jupyter notebook [60].

Data ingest and cleaning. Initially, the analyst reads in the iPhone
comparison chart using read__html from an e-commerce webpage,
as shown in R1 in Figure 1. The data is verified by printing out
the first few lines of the dataframe products. (products.head() is
also often used.) Based on this preview of the dataframe, the analyst
identifies a sequence of actions for cleaning their dataset:

e C1 [Ordered point updates]: The analyst fixes the anomalous
value of 120MP for Front Camera for the iPhone 11 Pro to 12MP,
by performing a point update via iloc, and views the result.

e (C2 [Matrix-like transpose]: To convert the data to a relational
format, rather than one meant for human consumption, the an-
alyst transposes the dataframe (via T) so that the rows are now
products and columns features, and then inspects the output.

e C3 [Column transformation]: The analyst further modifies the
dataframe to better accommodate downstream data processing
by changing the column “Wireless Charging” from “Yes/No” to
binary. This is done by updating the column using a user-defined
map function, followed by displaying the output.

o C4 [Read Excel]: The analyst loads price/rating information by
reading it from a spreadsheet into prices and then examines it.

Analysis. Then, the analyst performs the following operations to
analyze the data:

e Al [One-to-many column mapping]: The analyst encodes
non-numeric features in a one-hot encoding scheme via the
get_dummies function.

e A2 [Joins]: The iPhone features are joined with their corre-
sponding price and rating using the merge function. The analyst
then verifies the output.

e A3 [Matrix Covariance]: With all the relevant numerical data in
the same dataframe, the analyst computes the covariance between
the features via the cov function, and examines the output.

This example demonstrated only a sample of the capabilities of data-
frames. Nevertheless, it serves to illustrate the common use cases
for dataframes: immediate visual inspection after most operations,
each incrementally building on the results of previous ones, point
and batch updates via user-defined functions, and a diverse set of
operators for wrangling, preparing, and analyzing data.

3. THE MODIN DATAFRAME SYSTEM

While the pandas API is convenient and powerful, the underlying
implementation has many scalability and performance problems.
We therefore started an effort to develop a “drop-in” replacement
for the pandas API, MODIN', to address these issues. In the style
of embedded database systems [41,62], Modin is a library that runs
in the same process as the application that imports it. We briefly

lMODIN’s name is derived from the Korean word for “every”, as it targets every data-
frame operator.

R1. Read HTML C1. Ordered point updates

pandas pd
products = pd.read_html(...) ‘

products.iloc[2, 0] = "12MP" ‘
products

products

iPhone 11 Pro iPhone Pro Max iPhone 11
5.8-inch 6.5-inch 6.1-inch -
Triple 12MP Triple 12MP Dual 12MP ...
12mp 12MP ™P

iPhone 11 Pro iPhone Pro Max iPhone 11
5.8-inch 6.5-inch 6.1-inch ...
Triple 12MP Triple 12MP Dual 12MP ...
120MP 12MP ™P ..

Display
Camera
Front Camera

Display
Camera
Front Camera

C3. Column transformation
products = products\
["Wireless Charging"].map(

C2. Matrix-like transpose
products = products.T

products lambda x: 1 if x is "Yes" else 0)
products
Display ~ Camera ... g,':r::; Display Camera ... :’r"’:;s;
iPhone 11 Pro 5.8-inch Triple 12MP ... Yes iPhone 11 Pro 5.8-inch Triple 12MP ... 1
iPhone Pro Max 6.5-inch Triple 12MP ... Yes iPhone Pro Max 6.5-inch Triple 12MP ... 1
iPhone 11 6.1-inch Dual 12MP ... Yes iPhone 11 6.1-inch Dual 12MP .. 1
iPhone XS 5.8-inch Dual 12MP ... No iPhone XS 5.8-inch Dual 12MP ... 0

C4. Read Excel A1. One-to-many column mapping

prices = pd.read_excel(...)

[PEEEES one_hot_df = pd.get_dummies(products)
iphone_df = prices.merge(
one_hot_df,

Price Rating

A2. Joins A3. Matrix Covariance

iphone_df.cov()
Wireless Display_\ iphone_df

Price Rating ¢, o oing 5.8-inch ™

iPhone 11 Pro 999.00 45 left_index=True, right_index=True
iPhone Pro Max 1099.00 5.0 !
iphone_df
iPhone 11 699.99 4.6
iPhone XS 999.99 4.7

iPhone 11 Pro 999.00 45 1 i oo Price Rating ...
iPhone Pro Max 1099.00 5.0 1 Price 29868.3 19.967 ...

iPhone 11 699.99 4.6 1 0 .) Rating 19.967 0.0466667
Wireless Charging -16.8317 -7.40149e-17 ...
iPhone XS 999.99 a7 0 1 ..

Display_5.8-inch 33.3333 -0.0666667 ...

Figure 1: Example of an end-to-end data science workflow, from data ingestion, preparation, wrangling, to analysis.

describe the challenges we encountered and the lessons we learned
during our implementation in Section 3.1, followed by a preliminary
case of MODIN’s performance in Section 3.2. Finally, we describe
MODIN’s architecture and implementation.

3.1 Modin Engineering Challenges

When we started our effort to make pandas more scalable, we
identified that while many operations in pandas are fast, they are lim-
ited by their single-threaded implementation. Therefore, our starting
point for MODIN was to add multi-core capabilities and other simple
performance improvements to enable pandas users to run their same
unmodified workflows both faster and on larger datasets. However,
we encountered a number of engineering challenges.

Massive API. The pandas API has over 240 distinct operators, mak-
ing it challenging to individually optimize each one. After manu-
ally trying to parallelize each operator within MODIN, we tried a
different approach. We realized that there is a lot of redundancy
across these 240 operators. Most of these operators can be rewritten
into an expression composed using a much smaller set of opera-
tors. We describe our compact set of dataframe operators—our
working dataframe algebra—in Section 4.3. Currently, MODIN
supports over 85% of the pandas.DataFrame API, by rewriting
API calls into our working algebra, allowing us to avoid dupli-
cating optimization logic as much as possible. The operators we
prioritized were based on an analysis of over 1M Jupyter note-
books discussed in Section4.6. Specifically, we targeted all the
functionality in pandas.DataFrame, pandas.Series, and pandas
utilities (e.g., pd.concat). To use MODIN instead of pandas, users
can simply invoke “import modin.pandas”, instead of “import
pandas”, and proceed as they would previously. MODIN is im-
plemented in Python using over 30,000 lines of code. MODIN is
completely open source and can be found at https://github.com/
modin-project/modin.

Parallel execution. Since most pandas operators are single-threaded,
we looked towards parallelism as a means to speed up execution.
Parallelization is commonly used to improve performance in a rela-
tional context due to the embarrassingly parallel nature of relational
operators. Dataframes have a different set of operators than re-
lational tables, supporting relational algebra, linear algebra, and
spreadsheet operators, as we saw in Section 2, and we will dis-
cuss in Section 4. We implemented different internal mechanisms
for exploiting parallelism depending on the data dimensions and
operations being performed. Some operations are embarrassingly
parallel and can be performed on each row independently (e.g., C3
in Figure 1), while others (e.g., C2, Al, A3) cannot. To address
the challenge of differing levels of parallelism across operations,
we designed MODIN to be able to flexibly move between common
partitioning schemes: row-based (i.e., each partition has a collec-
tion of rows), column-based (i.e., each partition has a collection

of columns), or block-based partitioning (i.e., each partition has a
subset of rows and columns), depending on the operation. Each
partition is then processed independently by the execution engine,
with the results communicated across partitions as needed.

Supporting billions of columns. While parallelism does address
some of the scalability challenges, it fails to address a major one: the
ability to support tables with billions of columns—something even
traditional database systems do not support. Using the pandas API,
however, it is possible to transpose a dataframe (as in Step C2) with
billions of rows into one with billions of columns. In many settings,
e.g., when dealing with graph adjacency matrices in neuroscience
or genomics, the number of rows and number of columns can both
be very large. For these reasons, MODIN treats rows and columns
essentially equivalently, a property of dataframes will discuss in
detail in Section 4. In particular, to transpose a large datatrame, MO-
DIN employs block-based partitioning, where each block consists of
a subset of rows and columns. Each of the blocks are individually
transposed, followed by a simple change of the overall metadata
tracking the new locations of each of the blocks. The result is a
transposed dataframe that does not require any communication.

3.2 Preliminary Case Study

To understand how the simple optimizations discussed above
impact the scalability of dataframe operators, we perform a small
case study evaluating MODIN’s performance against that of pandas
using microbenchmarks on an EC2 x1.32xlarge (128 cores and
1,952 GB RAM) node using a New York City taxicab dataset [56]
that was replicated 1 to 11 times to yield a dataset size between 20 to
250 GB, with up to 1.6 billion rows. We consider four queries:

e map: check if each value in the dataframe is null, and replace it
with a TRUE if so, and FALSE if not.

e groupby (n): group by the non-null “passenger_count” column
and count the number of rows in each group.

e groupby (1): count the number of non-null rows in the dataframe.

e transpose: swap the columns and rows of the dataframe and
apply a simple (map) function across the new rows.

We highlight the difference between group by with one group and n
groups, because with n groups data shuffling and communication
are a factor in performance. With groupby(1), the communication
overheads across groups are non-existent. We include transpose to
demonstrate that MODIN can handle data with billions of columns.
This query also shows where pandas crashed or did not complete in
more than 2 hours.

Figure 2 shows that for the group by (n) and group by (1) op-
erations, MODIN yields a speedup of up to 19x and 30x relative
to pandas, respectively. For example, a group by (n) on a 250GB
dataframe, pandas takes about 359 seconds and MODIN takes 18.5
seconds, a speedup of more than 19 <. For map operations, MODIN

https://github.com/modin-project/modin
https://github.com/modin-project/modin

Run Times for Modin and Pandas

Map Groupby (n)

£
£
100 //

50 100 150 200 250 50 100 150 200 250
Size (GB) Size (GB)

Groupby (1) Transpose

System

/ Pandas
Modin

50 100 150 200 250 50 100 150 200 250
Size (GB) Size (GB)

Figure 2: For each function, we show the runtime for both MODIN and pandas and the 95% confidence interval. There are no times for transpose with pandas as

pandas is unable to run transpose beyond 6 GB.

wis+ | |4l pandas

=22 MODIN API

Metadata
Dataframe QuerviBarsey Manager
Query
Processor &
Optimizer Query Query
Optimizer Scheduler
Execution oSp RAY Jf/ DASK
Storage In-memory or persistent

Figure 3: MODIN architecture.

is about 12x faster than pandas. These performance gains come
from simple parallelization of operations within MODIN, while pan-
das only uses a single core. During the evaluation of transpose,
pandas was unable to transpose even the smallest dataframe of 20
GB (~150 million rows) after 2 hours. Through separate testing,
we observed that pandas can only transpose dataframes of up to 6
GB (~6 million rows) on the hardware we used for testing.

Takeaways. Our preliminary case study and our experience with
MODIN demonstrates the promise of integrating simple optimiza-
tions to make dataframe systems scalable. Next, we define a data-
frame data model and algebra to allow us to ground our subsequent
discussion of our research agenda, targeting the unique characteris-
tics of dataframes and the unique ways in which they are used. We
defer further performance analyses of MODIN to future work.

3.3 The MODIN Architecture

MODIN’s architecture is modular for easy integration of new
storage and execution engines, APIs, and optimizations. It consists
of four layers: the API layer, the query processing and optimization
layer, the execution layer, and the storage layer, shown in Figure 3.

API layer. Users can leverage MODIN via a pandas-based API, or
directly via a leaner and simpler MODIN API based on the algebra
in Section 4.3. In either case, the API layer translates each call into
a dataframe algebraic expression, and passes that to the next layer
for execution. The layer isolates users from changes to the layers
below, while allowing users to leverage the API modality they are
most comfortable with. Future implementations may support other
user APIs for working with dataframes, such as SQL or relational
algebra. Our pandas-based API currently supports about 150 of
over 200 pandas dataframe APIs, and rewrites each of them into
dataframe algebraic expressions.

Query processing and optimization layer. As shown in Figure 3,
the query processing layer follows a “narrow waist” design, exposing
a small API based on the dataframe algebra, and implements the
data model from Section 4.2. This layer parses, optimizes, and
executes dataframe queries with the help of layers below. As we
will describe in Section 3.1, MODIN leverages parallel execution
of dataframe queries on multiple dataframe partitions, scheduled

on execution engines in the next layer. This layer also keeps track
of dataframe metadata including row labels, column labels, and
column data types. Recall that data types may not be specified on
dataframe creation, so MODIN induces types on-the-fly (using the
S function) when needed for a specific operation.

Execution layer. MODIN supports distributed processing of data-
frame partitions using two execution frameworks: Ray [53] and
Dask [31]. Both Ray and Dask are task-parallel asynchronous ex-
ecution engines exposing an API that requires defining a task or
function and providing data for the task to run on. Integration of a
new execution framework is simple, often requiring fewer than 400
lines of code.

Storage layer. MODIN’s modular storage layer supports both main
memory and persistent storage out-of-core (also called memory
spillover), allowing intermediate dataframes to exceed main-memory
limitations while not throwing memory errors, unlike pandas. To
maintain pandas semantics, the dataframe partitions are freed from
persistent storage once a session ends.

4. DATAFRAME FUNDAMENTALS

There are many competing open-source and commercial imple-
mentations of dataframes, but there is no formal definition or enumer-
ation of dataframe properties in the literature to date. We therefore
propose a formal definition of dataframes to allow us to describe
our subsequent research challenges on a firm footing, and also to
provide background to readers who are unfamiliar with dataframes.
In this section, we start with a brief history (Section 4.1), and pro-
vide a reference data model (Section 4.2) and algebra (Section 4.3)
to ground discussion. We then demonstrate the expressiveness of
the algebra via a case study (Section 4.4) and discuss extensions
(Section 4.5). We finally provide some quantitative statistics into
dataframe usage in Section 4.6.

4.1 A Brief History of Dataframes

The S programming language was developed at Bell Laborato-
ries in 1976 to support statistical computation. Dataframes were
first introduced to S in 1990, and presented by Chambers, Hastie,
and Pregibon at the Computational Statistics conference [27]. The
authors state: “We have introduced into S a class of objects called
data.frames, which can be used if convenient to organize all of the
variables relevant to a particular analysis ...” Chambers and Hastie
then extended this paper into a 1992 book [28], which states “Data
frames are more general than matrices in the sense that matrices in S
assume all elements to be of the same mode—all numeric, all logical,
all character string, etc.” and “... data frames support matrix-like
computation, with variables as columns and observations as rows,
and, in addition, they allow computations in which the variables act
as separate objects, referred to by name.”

The R programming language, an open-source implementation
of S with some additional innovations, was first released in 1995,
with a stable version released in 2000, and gained instant adoption

among the statistics community. Finally, in 2008, Wes McKinney
developed pandas in an effort to bring dataframe capabilities with R-
like semantics to Python, which as we described in the introduction,
is now incredibly popular. In fact, pandas is often cited as the reason
for Python’s popularity [7,9], now surpassing Java and C++ [8]. We
discuss other dataframe implementations in Section 7.

4.2 Dataframe Data Model

As Chambers and Hastie themselves state, dataframes are not fa-
miliar mathematical objects. Dataframes are not quite relations, nor
are they matrices or tensors. In our definitions we borrow textbook
relational terminology from Abiteboul, et al. [17, Chapter 3] and
adapt it to our use.

The elements in the dataframe come from a known set of domains
Dom = {dom;, doms, ...}. For simplicity, we assume in our dis-
cussion that domains are taken from the set Dom = {¥*, int, float,
bool, category}, though a few other useful domains like datetimes
are common in practice. The domain X" is the set of finite strings
over an alphabet X, and serves as a default, uninterpreted domain; in
some dataframe libraries it is called Object. Each domain contains
a distinguished null value, sometimes written as NA. Each domain
dom,; also includes a parsing function p; : ¥* — dom;, allow-
ing us to interpret the values in dataframe cells as domain values
(including possibly null).

A key aspect of a dataframe is that the domains of its columns
may be induced from data post hoc, rather than being declared a
priori as in the relational model. We define a schema induction
function S : ¥* — Dom that assigns an array of m strings to
a domain in Dom. This schema induction function is applied to
a given column and returns a domain that describes this array of
strings; we will return to this function later.

Armed with these definitions, we can now define a dataframe:

Definition 4.1. A dataframe is a tuple (Amn, Rm, Crn, D), where
Aupn is an array of entries from the domain ¥, R,, is a vector of
row labels from X%, C,, is a vector of column labels from ¥, and
D,, is a vector of n domains from Dom, one per column, each of
which can also be left unspecified. We call D,, the schema of the
dataframe. If any of the n entries within D, is left unspecified, then
that domain can be induced by applying S(-) to the corresponding
column of A,,, to get its domain ¢ and then p(-) to get its values.

We depict our conceptualization of dataframes in Figure 4. In our
example of Figure 1, dataframe products after step R1 has R,
corresponding to an array of labels [Display, Camera, ...]; Cy
corresponding to an array of labels [iPhone 11 Pro, iPhone Pro
Maz, ...]; Amn corresponding to the matrix of values beginning
with 5.8-inch, with m = 6,n = 4. Here, D,, is left unspecified,
and may be inferred using S(-) per column to possibly correspond
to [X*, 3%, X", ¥*], since each of the columns contains strings.

Rows and columns are symmetric in many ways in dataframes.
Both can be referenced explicitly, using either numeric indexing
(positional notation) or label-based indexing (named notation). In
our example in Figure 1, the products dataframe is referenced
using positional notation in step C1 with products.iloc[2, 0] to
modify the value in the third row and first column, and by named
notation in step C3 using products ["Wireless Charging"] to
modify the column corresponding to "Wireless Charging". The
relational model traditionally provides this kind of referencing only
for columns. Note that row position is exogenous to the data—it
need not be correlated in any way to the data values, unlike sort
orderings found in relational extensions like SQL’s ORDER BY
clause. The positional notation allows for (row, col) references to
index individual values, as is familiar from matrices.

Rm D,, Column Domains
Row Labels| C,, Column Labels

Amn

Array of Data

Figure 4: The Dataframe Data Model

A subtler distinction is that row and column labels are from the
same set of domains as the underlying data (Dom), whereas in
the traditional relational model, column names are from a separate
domain (called att [17]). This is important to point out because
there are dataframe operators that copy data values into labels, or
copy labels into data values, discussed further in Section 4.3.

One distinction between rows and columns in our model is that
columns have a schema, but rows do not. Said differently, we parse
the value of any cell based on the domain of its column. We can also
imagine an orthogonal view, in which we define explicit schemas
(or use a schema induction function) on rows, and a corresponding
row-wise parsing function for the cells. In our formalism, this is
achieved by an algebraic operator to transpose the table and treat
the result column-wise (Section 4.3). By restricting the data model
to a single axis of schematization, we provide a simple unique in-
terpretation of each cell, yet preserve a flexibility of interpretation
in the algebra. In Sections 5.1.2 and 5.2.2 we return to the perfor-
mance and programming implications of programs that make use of
schemas on a dataframe and its transpose (i.e. “both axes”).

When the schema D,, has the same domain dom for all n columns,
we call this a homogeneous dataframe, and its rows and columns
can be considered symmetrically to have the domain dom differing
only in dimension. As a special case, consider a homogeneous data-
frame with a domain like float or int and operators +, X that satisfy
the algebraic definition of a field. We call this a matrix dataframe,
since it has the algebraic properties required of a matrix, and can
participate in linear algebra operations simply by parsing its values
and ignoring its labels. The dataframe iphone_ df after step A2 in
Figure 1 is one such example; thus it was possible to perform the
covariance operation in step C3. Matrix dataframes are commonly
used in machine learning pipelines.

Overall, while dataframes have roots in both relational and linear
algebra, they are neither tables nor matrices. Specifically, when
viewed from a relational viewpoint, the dataframe data model differs
in the following ways:

Relational Characteristic
Unordered table

No naming of rows

Rigid schema

Column names from att [17]
Columns and rows are distinct
No native support

Dataframe Characteristic
Ordered table

Named rows labels

A lazily-induced schema
Column names from d € Dom
Column/row symmetry

Support for linear alg. operators

And when viewed from a matrix viewpoint, the dataframe data
model differs in the following ways:

Matrix Characteristic
Homogeneously typed
Only numeric types

No row or column labels
No native support

Dataframe Characteristic
Heterogeneously typed

Both numeric and non-numeric types
Explicit row and column labels
Support for rel. algebra operators

We will exploit these two viewpoints in our dataframe algebra to
allow us to define both relational and linear algebra operations. Due
to these differences, a new body of work will be needed to support
the scale required for modern data science workflows.

Data model Comparisons

Before we go on, we address some key distinctions between data-
frames and other familiar data models.

Comparison with matrices. All matrices can be represented as
dataframes (with null labels). Not all dataframes can be matrices,
however, even if we strip off their labels! Matrices are homogeneous
in schema, but dataframes allow for schemas with multiple domains.
Even if we ignore the schema, a dataframe is still not a matrix—
opaque strings from X" do not satisfy the properties of a field as
required by a matrix.

Comparison with relational tables. A relation is defined by a de-
clared schema, and there are many possible instances of a relation—
sets of tuples that satisfy the schema. An instance can be thought
of as a fixed relational table. Dataframes are something like rela-
tion instances: they represent a fixed set of data. However their
schema can be unspecified and hence induced based on their content
by a schema induction function S. This flexibility is critical to
dataframes.

Moreover, dataframes impose an ordering and naming on their
rows. Object-oriented relational extensions such as the Postgres data
model also introduced implicit row identifiers [66], but typically
relational models do not impose a row ordering. Of course, we can
capture this semantics in a relational model via design discipline:
we can ensure that all our relations have a unique key (for naming),
and an ordering key (for ordering), which are exogenous to the
actual data columns in the table. In this sense, all dataframes can be
represented as relation instances conforming to some (potentially
induced) schema with appropriate keys.

Even so, a key difference between dataframes and relations is
the symmetry between rows and columns. This aspect, along with
the freedom to induce a schema on a per-instance basis, make it
possible to define a transpose operator on dataframes. Since the
underlying representation is uninterpreted, we are free to induce a
different relational schema after transposition of a dataframe.

Comparison with spreadsheets. At a high level, a spreadsheet is
an array of heterogeneously-typed cells that may contain strings
or formulae. A spreadsheet thus stores code as well as data. The
strings are dynamically interpreted into a variety of domains. It is
tempting to think of formula-free spreadsheets as being similar to
dataframes, given the common row/column indexing scheme and the
dynamic typing. But in general they are quite different. The data rep-
resentations possible in spreadsheets are quite free, and in practice
often quite irregular. Dense regions of data are often interspersed
with empty regions, or with cells containing comments and other
forms of human-centric annotation or metadata. Spreadsheets have
anotion of a “range”—a subarray or even a set of subarrays—which
may be sparsely located in the data grid and represent diverse or
unrelated data sets stored in the same spreadsheet. As a result of this
freedom of structure, bulk algebraic operations are difficult to define
generally within spreadsheets. Some modern spreadsheets allow a
range to be labeled as a “table” that is interpreted with a schema and
maintains an ordering; further extensions to “pivot tables” allow for
row and column labels. Using these constructs it is possible for a
spreadsheet to represent one or more dataframes. But the relative
simplicity of dataframes enables a much simpler algebra and easier
implementation and optimization of the algebra’s operators.

4.3 Dataframe Algebra

While developing MODIN, we discovered that there exists a “ker-
nel” of operators that encompasses the massive APIs of pandas and
R. We developed this “kernel” into a new dataframe algebra, which
we describe here, while explicitly contrasting it with relational alge-

bra. We do not argue that this set of operators is minimal, but we
do feel it is both expressive and elegant; we demonstrate via a case
study in Section 4.4 can be used to express pivot; other examples of
rewriting for operators within pandas can be found in our technical
report [61]. Based on the contrast with relational algebra, we are in
a position to articulate research challenges in optimizing dataframe
algebra expressions in subsequent sections.

To the best of our knowledge, an algebra for dataframes has never
been defined previously. Recent work by Hutchinson et al. [42,43]
proposes an algebra called Lara that combines linear and relational
algebra, exposing only three operators: JOIN, UNION, and Ext
(also known as “flatmap”); however, the operators below that ma-
nipulate metadata would not be possible in Lara without placing
the metadata as part of the data. Other differences stem from the
flexible data model and lazily induced schema. That said, as we
continue to refine our algebra, we will draw on Lara as a reference.

We list the algebra operators we have defined in Table 1: the rows
correspond to the operators, and the columns correspond to their
properties. The operators encompass ordered analogs of extended
relational algebra operators (from SELECTION to RENAME), one
operator that is not part of extended relational algebra but is found
in many database systems (WINDOW), one operator with that ad-
mits independent use unlike in database systems (GROUPBY), as
well as four new operators (TRANSPOSE, MAP, TOLABELS, and
FROMLABELS). The ordered analogs of relational algebra oper-
ators preserve the ordering of the input dataframe(s). If there are
multiple arguments, the result is ordered by the first argument first,
followed by the second. For example, UNION simply concatenates
the two input dataframes in order, while CROSS-PRODUCT pre-
serves a nested order, where each tuple on the left is associated, in
order, with each tuple on the right, with the order preserved.

Note that languages choose different approaches to inferring the
schema after a TRANSPOSE with important implications for usabil-
ity. For example, in R, a TRANSPOSE with heterogeneous D,, ends
up coercing everything to string, which may make it impossible to
apply another TRANSPOSE and yield a dataframe equivalent to the
original D,,. In Python, everything is coerced to Object, which has
typing information embedded at runtime, so the schema induction
function can always recover the original D,, after two transposes.

Transpose. TRANSPOSE interchanges rows and columns, so that
the columns of the dataframe become the rows, and vice-versa.
Formally, given a dataframe DF = (Apmn, Rm, Cn, D»), we de-
fine TRANSPOSE(DF) to be a dataframe (AZ,,,, Cr, R, null),
where AL is the array transpose of A,,. Note that the schema of
the result may be induced by S, and may not be similar to the schema
of the input. TRANSPOSE is useful both for matrix operations on
homogenous dataframes, and for data cleaning or for presentation
of “crosstabs” data. In step C2 in our example in Figure 1, the table
was not oriented properly from ingest, and a transpose was required
to give us the desired table orientation.

In pandas and other dataframe implementations, it is possible
to perform many operations along either the rows or columns via
the axis argument. Instead, to minimize redundancy, we define
operators on collections of rows, as in relational algebra, and en-
able operations across columns by first performing a TRANSPOSE,
applying the operation, and then a TRANSPOSE again to return to
the original orientation. That said, performing TRANSPOSE can be
expensive (as we will see in Section 3), so one of our goals will be
to postpone performing it or avoid it entirely. Moreover, given the
presence of TRANSPOSE in the algebra, we need to be prepared to
handle dataframes that are not only extremely high in cardinality
(“tall”) but also extremely high in arity (“wide”).

Operator (Meta)data | Schema | Origin | Order | Description

SELECTION X static REL Parent | Eliminate rows

PROJECTION X static REL Parent | Eliminate columns

UNION X static REL Parent’ | Set union of two dataframes

DIFFERENCE X static REL | Parent’ | Set difference of two dataframes

CROSS PRODUCT / JOIN X static REL | Parent’ | Combine two dataframes by element

DROP DUPLICATES X static REL Parent | Remove duplicate rows

GROUPBY X static REL New Group identical attribute values for a given (set of) attribute(s)
SORT X static REL New Lexicographically order rows

RENAME (x) static REL Parent | Change the name of a column

WINDOW X static SQL Parent | Apply a function via a sliding-window (either direction)
TRANSPOSE (x) X dynamic DF Parent” | Swap data and metadata between rows and columns
MAP (x) X dynamic DF Parent | Apply a function uniformly to every row

TOLABELS (%) X dynamic DF Parent | Set a data column as the row labels column
FROMLABELS (x) X dynamic DF Parent | Convert the row labels column into a data column

Table 1: Dataframe Algebra. {: Ordered by left argument first, then right to break ties. ¢: Order of columns is inherited from order of rows and vice-versa.

In the algebra defined above, we define operators only on col-
lections of rows, as in relational algebra, allowing TRANSPOSE to
toggle the axis of application of the operators. Operations along the
columns require a TRANSPOSE, application of the desired operator,
and a TRANSPOSE again to return to the original orientation. With
this flexibility, operators on the dataframe can be performed along
either the columns or the rows.

The asymmetry of row and column types in the relational model
makes TRANSPOSE impossible to define for relations with non-
homogeneous column domains (for which the sets in D,, differ):
there is no data-independent way to derive a relational output schema
for TRANSPOSE from the input schema. In the dataframe data
model, the data-dependent schema induction function provides an
output schema.

TRANSPOSE can also be extremely computationally expensive
depending on the system architecture and partitioning. In its im-
plementation, it will often be important to postpone the calcula-
tion of TRANSPOSE until the last possible moment because of
the associated computation costs. Moreover, given the presence
of TRANSPOSE in the algebra, we need to be prepared to handle
dataframes that are not only extremely high in cardinality (“tall”)
but also extremely high in arity (“wide”).

Map. The map operator takes some function f and applies it to each
row individually, returning a single output row of fixed arity. The
purpose of the map operator is to alter each dataframe row uniformly.
MAP is useful for data cleaning and feature engineering (e.g., step
C3 in Figure 1). Given a dataframe DF = (Amn, Rm, Cn, D),
the result of MAP(DF, f) is a dataframe (A.,,,/, Rm, Ch/, D5/)
with f : D,, — D)/, where A, is the result of the function f as
applied to each row, C,, is the resulting column labels, and D), is
the resulting vector of domains. Notice that in this definition, the
number of columns (n) and the column labels (C!,,) can change
based on this definition, but they must be changed uniformly for
every row. The vector of domains D/, may, in many cases, be
inferred from the type of the function f.

Extended relational algebra supports map via the use of functions
in the subscript of projection operators (i.e., in the SELECT clause
of SQL). However, this projection syntax is linear in the arity of the
relation, which is cumbersome for very wide schemas (e.g., after a
TRANSPOSE). In this definition, MAP is passed an entire row as
an argument so it can reason across columns in a generic fashion
without enumerating them, whereas SQL expressions (including
UDFs) typically require specific fields from the row as scalar argu-
ments. For example, consider a transformation that needs to ensure
the values in all float-domain columns in a given row sum to 1.0;

a generic, reusable MAP function can normalize the value in each
float field by the sum of the float fields in that row; instead, a SQL
expression would have to be crafted specially for each schema.

ToLabels. The TOLABELS operator projects one column out of the
matrix of data, A, to be set as new row labels for the resulting
dataframe, replacing the old labels. Given DF' = (Amn, Rim, Cn, Dy)
and some column label L, TOLABELS(D F', L) returns a dataframe
(Alu(n—1)» L, Cp, D7), where Cy, (respectively Dy,) is the result
of removing the label L from C', (respectively D). With this ca-
pability, data from A, can be promoted into the metadata of the
dataframe and referenced by name during future interactions.

From a relational perspective, this operator is rather unusual in
that it converts data into metadata. Dataframe users are interested
in wrangling and cleaning data, so operations that let them move
entries between metadata and data are popular and convenient to
use. In fact, TOLABELS followed by TRANSPOSE is, in effect,
promoting data values into column labels, which is impossible using
relational operators.

FromLabels. FROMLABELS creates a new dataframe with the
row labels inserted into the array A,,, as a new column of data
at position 0 with a provided column label. The data type of the
new column starts as null until it can be induced by the schema
induction function S. The row labels of the resulting dataframe
are set to the default label: the order rank of each row (positional
notation). Formally, given a dataframe DF = (Amn, Rm, Cn, Dr)
and a new column label L we define FROMLABELS(D F', L) to
be a dataframe (R, + Amn, Pm, [L] + Cn, [null] + D,,), where
Ry, + A is the concatenation of the row labels R,,, with the array
of data A,,,,, Py, is the positional notation values for all of the rows:
P, = (0,...,m — 1), and [L] 4+ C, is the result of prepending the
new column label L to the column labels C',.

GroupBy. As in relational algebra, our GROUPBY operator groups
by one or more columns, and aggregates one or more columns to-
gether or separately. Unlike relational algebra, where aggregation
must result in atomic values, dataframes can support composite val-
ues within a cell, allowing a broader class of aggregation functions
to be applied. One special function, collect, groups rows with the
same grouping attribute values into separate dataframes and returns
these as the (composite) aggregate values. Pandas’s groupby func-
tion has similar behavior and applies collect to the non-grouped
attributes, coupled with an implicit TOLABELS call that elevates
the grouping attribute values to the row labels. We will use collect
in our examples subsequently.

Window. WINDOW-type operations are largely analogous to those
used in recent SQL extensions to RDBMSs like PostgreSQL and
SQL Server. The key difference is that, in SQL, many windowing
functions such as LAG and LEAD require an additional ORDER BY
to be well-defined; in dataframe algebra, the inherent ordering al-
ready present in dataframes makes such a clause purely optional.

FROMLABELS is the opposite of the TOLABELS operator, and
the two of these give the user complete control over moving data
to and from the dataframe’s labels. This allows users to apply
operators on the dataframe’s metadata (specifically the row labels),
which is particularly useful for operators like JOIN and GROUPBY.
Conceptually, this operator also allows the positional notation of
the dataframe to be treated as data if multiple FROMLABELS are
chained together. However, because the order is immutable, it is
impossible to update the order of the dataframe directly in this
way. Despite providing the ability to promote data to row labels
(named notation), it is impossible in this algebra to promote data to
positional notation. If the users wished to reorder the data, they may
JOIN with another dataset with a specific order or SORT based on
some column(s).

From a relational point of view, FROMLABELS enables the ca-
pability to push metadata into the data to be queried and operated
on. Thanks to this operator and TOLABELS specifically, column
and row labels must be of type ¥ so that these operators make
sense. FROMLABELS also has some interesting interaction with the
schema induction function S, where labels can be interpreted as any
type in Dom when they are added to the data via FROMLABELS
and then operated on. It is important to point that out here in the
definition, but we leave the enumeration of the nuances of this
interaction to future work.

4.4 Algebra Examples

To demonstrate the expressiveness of the algebra above, we show
how it can be used to elegantly and succinctly express pivot, which
is particularly challenging in relational databases due to the need for
relations to be declared schema-first [30,79]. The flexible schemata
inherent in the dataframe data model enables a succinct description
of pivot.

To start off, many pandas functions provide essentially identical
functionality to dataframe operators, e.g., sort__values for SORT,
merge for JOIN, groupby for GROUPBY, append for UNION,
reset_index for FROMLABELS, and set __index for TOLABELS.
The function transform is a special case of MAP that applies a fixed
function to each value within a row, thereby preserving the input
arity, while apply is another special case where a fixed function
is applied on a per-row-basis to combine values across multiple
columns to generate a new column.

A number of pandas functions correspond to dataframe operators,
with specific UDFs. As examples for WINDOW, cummax com-
putes the cumulative max of values for one or more columns, diff
takes the difference between elements in a column and preceding
values, and shift shifts rows down to align with a new row label,
maintaining the order of the data. Likewise, for MAP, fill_ na con-
verts all null values to another value, isna replaces each value with
a boolean based on whether or not they are null, and str.upper
converts all the string values to upper case. In fact, pandas has many
functions that implement string and date-time transformations.

Finally, there are several pandas functions that are compositions
of dataframe operators. We list a few examples below, with informal
descriptions on how they may be rewritten using the algebra.

The agg[‘f1’,f2’, ...] function in pandas computes aggregate
functions f1, £2, ..., for each of the columns individually, with the re-
sulting dataframe containing one row per aggregate, i.e., the first row

Wide Table of MONTHs

Month | 2001 | 2002 | 2003

Narrow Table (SALES) TJan 100 150 300
Year | Month | Sales Feb 110 300 310
2001 | Jan 100 Mar | 120 | 250 | NULL
2001 Feb 110
2001 Mar 120 Pivot —>
2002 | Jan 150 —— Unpivot
2002 Feb 200
2002 Mar 750 Year | Jan | Feb | Mar
5005 T Jan 1300 2001 | 100 | 110 | 120
5003 T Feb 1370 3002 | 150 | 200 | 250

2003 300 310 | NULL

Wide Table of YEARs

Figure 5: Pivot table example, reproduced from [30], demonstrating pivoting
over two separate columns, “Month” and “Year”.

["Year"] [collect] [ﬁatten] ["Year"
¥ ¥

(GROUPBY) (MAP) (TOLABELS) (TRANSPOSE }—
A ! ! A

Figure 6: Logical plan for pivoting a dataframe around the “Year” column
using the dataframe algebra from this section.

corresponds to the f1 aggregates, the second to the f2 aggregates,
and so on. This function can be rewritten using one GROUPBY op-
erator per aggregate function to produce a single row corresponding
to the aggregates, followed by a UNION to append these rows to
each other in the order the aggregates are listed. Another approach
is to perform a TRANSPOSE, then a MAP to compute all the neces-
sary aggregates, one per column, followed by another TRANSPOSE
to bring the result to the right orientation.

The pandas function target.reindex _ like(reference) supports
changing a given dataframe (the target) by reordering its rows and
columns to match those of another dataframe (the reference). This
operator is useful for aligning two dataframes for comparison pur-
poses. One way to express this function using dataframe operators
would be to first FROMLABELS on both dataframes to allow the
row labels to become part of the data, followed by a INNER JOIN
between the two dataframes on the row labels, with the reference
as the left operand; followed by a MAP to project out the reference
dataframe attributes (leaving behind reference’s ordering). Finally,
TOLABELS can be used to move the row labels back from the data.

The pivot operator elevates a column of data into the column
labels and creates a new dataframe reshaped around these new
labels (see Figure 5). The pivot operator has been described and
implemented in relational systems [30,79] but it is simpler to express
in the algebra from Section 4.3.

Since there is no need to know the names of the new columns or
the resulting schema a priori, a pivot can be expressed concisely
in dataframe algebra as a combination of four operators in the plan
shown in Figure 6. Recall that it is possible to elevate data to the
column labels by using TOLABELS followed by TRANSPOSE. In
this case, the TOLABELS operator would be applied on the label
of the column being pivoted over, "Year" in this example. After
this step, we perform a GROUPBY on the pivoted attribute, " Year"
with a collect aggregation applied to the remaining attributes to
produce a per-Year dataframe as a composite aggregated value.
This aggregated value is manipulated by a MAP operator with a
function that flattens the grouped data into the correct orientation.
This results in a table pivoted around the attribute selected for the
TOLABELS operator. Notice in Figure 5 that transposing the
dataframe labeled “Wide Table in Months” results in the correct
data layout for the “Wide Table in Years”. This is one example
of how TRANSPOSE can be exploited: cost models in dataframe

Algebra Op Pandas Op | Pandas Op Description
fillna Convert null values to an-

other value

MAP isnull Determine if elements are
null

TRANSPOSE transpose Exchange the columns and
row

AS_LABELS set_index Set the dataframe row labels
using existing column(s)

RESET_LABELS | reset_index Insert the row labels into the
dataframe and set row labels
to the default

Table 2: pandas operators that directly map to algebra operators.

query optimizers can choose the more efficient pivot column and
TRANSPOSE at the end.

To demonstrate the expressivity and power of of this algebra, we
demonstrate the real-world application of applying it to pandas. In
this section, we demonstrate how a few of the more exotic pandas
operators can be written with the algebra presented in Section 4.3.
We will illustrate that there are operators which have a one-to-one
mapping with the algebra we described in the algebra, and that there
are compositions of the algebra operators.

One-to-one mappings are shown in Table 2. pandas has an opera-
tor for each of the

Not all of the more than 200 pandas.DataFrame methods map
one-to-one to the algebra operators we have described. We now
describe some of the more interesting and complicated pandas oper-
ations and how they can be written in the algebra we have defined.

4.5 Extensions to the Formalism

Our data model so far is quite simple. We now describe a few
additional extensions for our data model that do not provide any
additional expressive power, but make certain operations more con-
venient.

Multiple label columns. The data model can, optionally, have
multiple row label columns or multiple column label rows. Often,
these are presented in a hierarchical or nested manner in pandas. As
an example, in a dataframe tabulating sales, we could have two row
label rows that are nested, with the first (external) row label row
corresponding to the years, and the second (internal) row label row
corresponding to the quarters within each year. In our representation,
we can simply capture this by repeating the external row label values,
and combining the row label columns to give a single composite
value, as shown below:

2017 Q1 (2017,@1)
Q2 (2017, QZ)
2018 Q1 (2018,Q1)

Label flexibility and types. Row labels can have a predefined type
or domain from Dom—this type can be recorded separately and
used to augment the schema D,, when performing an AS LABELS
operation, thereby avoiding having to induce it using S. Due to the
symmetry between columns and rows, column labels also have this
constraint. Additionally, labels can have duplicate values or be null;
so labels are not like primary keys.

We finally define another notion that will come in handy in fu-
ture sections: a dataframe-like system is one that supports some,
but not all dataframe properties as defined in the data model and
algebra above. For example, a dataframe-like system might support

unordered weakly-typed relations, with queries being composed
incrementally over the course of many statements. We return to this
notion and provide some example systems in Section 7.

Workflow Definitions.

We now briefly introduce some terms that will allow us to describe
how dataframes are manipulated during a data analysis workflow.

Operator. A dataframe operator, or simply an operator, is an
atomic dataframe processing step that takes multiple dataframe
arguments and returns a dataframe as a result. We will describe the
operators in the context of the dataframe algebra in Section 4.3.

Statement. A dataframe statement is an expression composed
entirely of dataframe operators and is the unit of interaction between
the user and the system. In a notebook environment, a statement
corresponds to a single cell; each of which is executed one at a time,
as we saw in Figure 1. In an interpreted environment (e.g., iPython),
a statement is a single block of code.

Query. A sequence of statements chained together form a dataframe
query. Following variable references, a query can be represented
as a DAG of operators and dataframes, with the input dataframes
at the leaves, and the queries as the root(s). A dataframe query is
analogous to a SQL query, but it is composed incrementally across
many statements.

Session. A session is a complete, end-to-end analysis workflow,
comprising one or more queries issued across many statements.
A session begins when the user starts a notebook or interpreter
environment and ends when the user shuts down that environment.

4.6 Dataframe Usage Statistics

To study how dataframe users interact with the pandas API, we
analyzed a comprehensive dataset of 1 million Jupyter notebooks
hosted on github.com from Rule et al. [68]. Out of the 1 million
Jupyter notebooks, about 40% used pandas. We used the jupyter
nbconvert module to convert each notebook into to a python script,
the 2to3 module to transform python 2 to python 3, and the python
ast module to parse and extract method invocation calls. We note
that there may be some issues in our extraction; for example, .ap-
pend is both a python built in list method as well as a pandas
method. However, we expect our trends to largely hold.

We will focus on three questions to investigate how people work
with pandas.

What are some high-density functions used in interactive anal-
ysis? We studied the toral occurrence of each pandas dataframe
function in our data. The most notable ones are those used to in-
spect the data (plot, shape, head), perform numeric aggregation
(mean, sum), and perform relational operations (groupby, join).
It is worth noting that the notebooks contained a lot of data modi-
fication operations (both point queries as well as column and row
queries) using loc, iloc, drop, append. Columns and index meta-
data inspection and manipulation are common as well with index,
columns.

What kinds of functions are common in day-to-day usage? We
counted the number of files that each pandas function has occurred
in. The occurrence measures the frequency of usage per analytic job.
The most commonly used functions are those that create dataframes
(read_csv, DataFrame), inspect partial results (head, shape),
visualizing result (plot), perform aggregation (mean, sum, max),
perform point queries (loc, ilo, ix), add or remove data (append,
drop), apply arbitrary user defined transformations (apply), and
perform relational operations (groupby, join). It is worth noting
that type-casting (astype) and direct access or manipulation of

Pandas Operation Occurrence

750000 read_csv head loc

500000

250000

Occurrence

groupby

0 “““‘||"l|IIII"||||||IIIIIIIIIIIII||||||||mm...............

kurtosis

Figure 7: Pandas user statistics from GitHub dataset.

columns and index metadata, and underlying data storage (columns,
index, values) are also high in the list.

Which functions are common used together? We also investi-
gated the number of co-occurrence of functions in the same line
of code. This typically involves the user chaining pandas func-
tions together or calling them inside a single statement. For ex-
ample, df.dropna().describe() is fairly common across our sam-
ple. It is also common for pandas users to perform multiple op-
erations in single execution cell. For example, print(result
df["coll"].mean(), df["coll"].max()) prints a tuple of summary
statistics. The popularity of chained or parallel invocation suggests
opportunities for acceleration, going beyond one operation at a time
to more complex queries.

S. DATA MODEL CHALLENGES

Supporting the dataframe data model and algebra from Section 4
efficiently motivates a new set of research challenges. We organize
these challenges based on unique properties of dataframes, and dis-
cuss their impact on query optimization, data layout, and metadata
management. We first discuss the impact of flexible schemas.

5.1 Flexible Schemas, Dynamic Typing

Major challenges arise from the flexible nature of dataframe
schemas. Dataframes require more than data; as noted in Section 4.2
they also require a schema to interpret the data. In the absence of
explicit types for certain columns, we must run the type induction
function S, and the resulting parsing functions—both of which can
be expensive. Note that the type of a full column is required before
we can parse the value of any cell in that column. Hence a major
challenge for dataframes is to mitigate the costs inherent in flexible
schemas and dynamic types.

In database terms, dataframes are more like views than tables.
Programming languages like Python and R do not store data; they
access data from external storage like files or databases. Hence every
time a program is executed, it constructs dataframe objects anew.
Unfortunately, external storage in data science is often untyped.
Dataframe-friendly file formats like Apache Feather include explicit
schemas and pre-parsed data, but most data files used in data science
today (notably those in the ever-popular csv format) do not.

Another source of dynamism arises from schema mutations, e.g.,
adding or removing columns. These are first-class citizens of the
dataframe algebra, unlike in relational databases, which relegate
such operations to a separate DDL. As such, they are not only
allowed, but are, in fact, frequent during data exploration with data-
frames, especially during data preparation and feature engineering.
We consider the challenge of efficient schema induction from three
angles: rewriting, materialization, and query processing.

5.1.1 Rewrite Rules for Schema Induction

Due to their flexible schemas, dataframes support addition and
removal of columns as first-class operations, and at any point in time
could have several columns with unknown type. Certain dataframe

operators need type information, however—e.g. avoid attempting to
JOIN two dataframes on columns with mismatched types or using
a numeric predicate on a column with some strings. The schema
induction function, S, could be used to induce the requisite typing
information, but it is expensive, and must be explicitly considered
when modeling cost for query plans. Specifically, if certain columns
are not operated on, inferring their type via S can be deferred to
when they are first manipulated, and omitted entirely, if, for example,
they are dropped before ever being accessed.

At least in some cases, schema inference rules might be able to
avoid the application of S altogether. As one example, if ordered
relational operations are chained together, schema induction can be
omitted between operations, suggesting the possibility of employing
rewrite rules to skip applying S. Another example involves UDFs
with known output types (e.g., a MAP with a UDF that always
returns an integer).

In the case of operations which merely shuffle rows around (e.g.
moving even-indexed rows to the beginning of a dataframe, reorder-
ing), schema induction can be omitted entirely. When filtering or
taking a sample of a dataframe, schema induction can be omitted
if the type is already fairly constrained and will not be additionally
constrained based on the sample. For example, if we drop all rows
with strings in a specific column, we may end up with that column
having a restricted type such as float or int, requiring special care.

While omitting or deferring schema inference is promising, addi-
tional complications arise from the fact that, in a dataframe system,
metadata is data (see also Section 5.2) that may itself be queried
by a user. In particular, it is common for users to perform runtime
type inspections as a sanity check. As a result, the extra effort for
eschewing or deferring schema induction may prove futile if the
user chooses to inspect types anyway.

5.1.2 Reusing Type Information

It is common to reuse a dataframe across multiple statements in a
program. In cases where the dataframe lacks explicit types, it can be
very helpful to materialize the results of both schema induction and
parsing—both within the invocation of a program (internal state),
and across invocations in storage.

Materialization of flexibly-typed schemas introduces a new set of
challenges. Both schema induction and parsing can be a significant
fraction of the cost of processing. This raises optimization choices
for materialization: we can cache the results of .S (for one or more
columns), and additionally we can cache the results of parsing
functions (in principle, at a granularity down to the cell level). For
complex multistep dataframe expressions, we can choose to make
these decisions at each operator in the pipeline that introduces a
dynamically-typed column. Hence the optimization search space
is large. Moreover, the workload of “queries” is different from
traditional materialized view settings—languages like Python are
more difficult to analyze statically than SQL, and we can expect
usage patterns to differ from databases as well (Section 6).

In some cases, it is reasonable to expect that a programmer
will want to declare the types of the dataframe explicitly—e.g.,
an expression like df__t = TRANSPOSE(df, [myschema]) where
myschema is an array of type names for the columns. In this
case, there is no need to run schema induction. In a loosely-typed
language like Python, myschema can be an arbitrary expression
returning an array of strings. For example, it might read a list of
type names from a very large file with the same number of rows
as TRANSPOSE(Af). Alternatively, the dataframe df itself might
have “row types” stored as strings in the ¢’th column of the data,
leading to an expression like df_t = TRANSPOSE(df, df[i]).

View maintenance has a role in the dataframe context, with new
challenges for type induction. The most direct use is in delta-
computation of expressions that have the effect of “adding” rows
to their inputs. For example, consider a MAP operator with a data
validation function: for each column it returns the input if it passes
a validation test, else it returns an error message in that column. The
new rows may all respect the constraints of the types of the input
dataframe, or some new rows could break those constraints—e.g. a
string-typed error message appearing in a column of numbers. In
both cases, we’d like the type induction to take advantage of the
work done to induce a schema for the input, and differentially decide
on a schema for the output. Note that these issues get more subtle as
the type system gets richer—e.g., consider an input with a column
of type percent that is passed into an arithmetic MAP function—the
output may be statically guaranteed to be numeric, and for a given
dataframe may or may not still be of type percent.

Regardless of the source of the schema—whether it be induced,
stored externally, or stored within the data itself—any implemen-
tation should assume that the metadata for a dataframe could be
expensive to compute, and potentially very large. Storage and
computation of this metadata can have significant overheads, and
methods for ameliorating those costs will be central to scalable
dataframe research.

5.1.3 Pipelining Schema Induction in Query Plans

When applying S and the parsing function to columns is unavoid-
able, we may be able to reduce its cost by trying to fuse it with
other operations that are type-agnostic and lightweight (e.g., data
movement or serialization/deserialization) while adding minimal
overhead, the development of which we foresee to be a fruitful
research direction.

For other operations, the position of S within the query plan can
have major performance implications. Consider a MAP operation
that is being applied to a column of strings. If the MAP operation
is relatively inexpensive (e.g., if it is measuring the string length),
it may make sense to to skip type checking via schema induction
before the MAP operation. Although a type error (due to, e.g., the
presence of an unexpected integer value) leads to wasted effort, it
may be acceptable, as the overhead paid by actual application of the
MAP is not too high. On the other hand, a MAP which performs
heavy-duty regular expression parsing over long strings may delay
error detection unacceptably if schema induction is fused with the
MAP application.

Overall, the positioning of the schema induction operator within
the query plan, by possibly fusing it with existing operators, com-
bined with schema induction avoidance and reuse as previously
discussed, is crucial for the development of a full-fledged dataframe
query optimizer.

5.2 Order and Equivalence

Unlike relations, dataframes are ordered along both rows and
columns—and users rely on this ordering for debugging and valida-

tion as they compose dataframe queries incrementally. This order
is maintained as rows are transformed into columns and columns
into rows via TRANSPOSE, ensuring near-equivalence of rows and
columns. Additionally, as we saw in Section 4.4, row and column
label metadata is tightly coupled with the dataframe content, and in-
herits the order and typing properties. In this section, we discuss the
challenges imposed by enforcing order and the frequently changing
schema across row and column labels and row/column orientation.

5.2.1 Order is Central

The order of a dataframe is determined by the order of ingested
data. For example, a CSV file ingested as a dataframe would have the
same row and column order as the file. This ordering is crucial for
the trial-and-error-based interaction between a user and a dataframe
system. Users expect to see the rows in their dataframe stay in the
same order as they process it—allowing them to validate and debug
each step by comparing its result to the previous step. For example,
to ensure that a CSV file is ingested and parsed correctly, users
will expect the first few rows of the dataframe to be the same as
those they would see when examining the CSV file. To examine a
dataframe, users will either use the operator head/tail to see the
prefix/suffix or simply type the name of the dataframe for both the
prefix and suffix in the expected order. Additionally, operators such
as WINDOW and MAP from Section 4.3 expect a specific order for
the rows (WINDOW) and columns (MAP). since the UDF argument
to these operators may rely on that order. Dataframes also support
SELECTION and PROJECTION based on the position of the rows
and columns respectively.

To support order, current dataframe systems such as pandas phys-
ically store the dataframe in the same conceptual order as defined
by the user. Said differently, they do not embrace physical data
independence. Physical independence may open up new optimiza-
tion opportunities, recognizing that as long as the displayed results
preserve the desired order semantics to the users, it is not neces-
sary that all intermediate products or artifacts (unobserved by user)
adhere to the order constraint. For example, a sort operation can
be “conceptual” in that a new order can be defined without actually
performing the expensive sorting operation. Likewise, a transpose
doesn’t require the data to be reoriented in physical storage unless
beneficial for subsequent operations; the transpose can be captured
logically to reflect the new orientation of the dataframe.

To ensure correct semantics while respecting physical data inde-
pendence, we must devise means to capture ordering information,
either tracked as a separate “order column”, if it is not implied
via existing columns, or recording as metadata that the dataframe
must be ordered based on one or more of the preexisting columns.
Then, the ORDER BY on this “order column” or one of the existing
columns will be treated as an operator in the query plan, and will
only need to be done “on-demand” when the user requests to view
aresult. Additionally, since users are only ever looking at the first
and/or last few lines of the dataframe, those are the only lines that
are required to be ordered; we discuss this further in Section 6.1.

Extending physical data independence even further, we can adapt
other data representation techniques from the database community,
optimized for dataframes. This includes columnar or row-column
hybrid storage [16], as well as those from scientific computing [29],
array databases [69] or spreadsheets [24]. Since dataframes are
neither relations, matrices, arrays, or spreadsheets, none of these
representations are a perfect fit. Given that rows and columns are
equivalent, one candidate for dataframe representation is as a col-
lection of key-value pairs, where the key corresponds to the (row
number, column number) pair. This representation is especially
effective when the dataframe is “sparse”, allowing us to omit pairs

where the value is null. Then, TRANSPOSE conceptually swaps
the row and column for each value: (column,row,value), and
can be recorded in metadata. However, some operations become
more expensive, e.g. reconstructing a row for a MAP operation
requires a join. Automatically detecting and updating to the right
representation over the course of dataframe query execution will be
a substantial challenge.

Given a certain physical representation, operations on dataframes,
from a relational perspective, often make use of ordered access,
e.g., editing the i row, as well as access based on the row labels,
e.g., filtering based on row labels (named notation) or row position
(positional notation). Because selecting the i™ physical row or
projecting the 5™ physical column will not necessarily correspond
to selecting (resp. projecting) the desired logical row (resp. column),
additional metadata that serves as the "order column" or "order row"
must be maintained to facilitate order-independence of the physical
data. Automatically maintaining indexes for this purpose can be
beneficial. Recent work has developed positional indexing [25],
allowing ordered access to be supported in O(log n), in the presence
of edits (e.g., adding or removing rows). Column stores take a
different approach to avoid expensive edits across columns, instead
recording edits separately as deltas, and periodically merging them
back in [16]; it would be interesting to investigate which approach
is more effective for a given set of dataframe operations. Similarly,
for matrices, accesses often happen in a row-major or column-major
order, and identifying the right indexes to efficiently support them in
conjunction with relational-style accesses, is an important challenge.
In particular, when a dataframe has many rows and many columns,
we may need both row- and column-oriented indexing.

5.2.2 Row/Column Equivalence

The presence of a TRANSPOSE operator in the dataframe algebra
presents novel challenges in data layout and query optimization.
TRANSPOSE allows users to flexibly alter their data into a desired
shape or schema that can be parsed according to an appropriate
schema, and queried using ordered relational operators.

To keep our data model and algebra compact, we have schemas
only for columns, and our operators are defined on ordered sets of
rows. By contrast, in pandas and other dataframe implementations,
it is possible to perform many operations along either the rows or
columns via the axis argument. Hence programs written in (or trans-
lated to) our algebra are likely to have more uses of TRANSPOSE
than dataframe programs in the wild, to represent columnwise op-
erations and/or to reason about per-row schemas. These operations
are expressible logically in our simpler algebra by first performing
a TRANSPOSE, applying the operation, and then a TRANSPOSE
again to return to the original orientation. Doing frequent physical
reorganizations for these operations would be a mistake, however.

The prevalence of TRANSPOSE in dataframe programs overturns
many axis-specific assumptions made in traditional database storage.
Axis-specific data layouts like columnar compression are problem-
atic in this context. Metadata management also requires rethinking,
since dataframes are as likely to be extremely “wide” (column-
wise) as they are “tall” (rowwise). Both traditional and embedded
RDBMSs typically limit the number of columns in a relation (e.g.,
SQL Server has an upper limit of 1024 columns, or 30k columns
using the wide-table feature) [41,62]. By applying TRANSPOSE
on a tall and narrow dataframe, the number of columns can easily
exceed the millions in the resulting short and wide dataframe.

Dataframe systems will need careful consideration to ensure that
a TRANSPOSE call does not break assumptions made by the data
layout layer. Given that the cost of performing a physical transpose
will often be high, one potential way to handle the data layout layer

optimization problem is to do a logical TRANSPOSE “pull-up”.
This would delay or eliminate transpose in the physical plan as
much as possible since it will often destroy or render moot many
existing data layout optimizations.

In certain cases, we may indeed want to consider optimizing
the physical layout of the data given a TRANSPOSE operator as a
part of a query plan. This is in contrast with existing data systems
that create and optimize for a static data layout. A physical trans-
pose may help the optimizer match the layout to the access pattern
(e.g., matrix multiplication). A fixed data layout is likely to have a
significant performance penalty when the access pattern changes.
Additionally, consider a case where TRANSPOSE allows us more
flexibility in query planning. In the pivot case in Section 4.4, we
observed that transposing the result of a pivot is effectively a pivot
across the other column. Specifically, if we must pivot into the wide
table with Months as columns, we can either use the original plan
(Figure 8a) or one where we proceed as if the pivot is over Year, but
then transpose the final result so that the Month attribute values are
used as column headers (Figure 8b). The latter plan will be faster
if the optimizer leverages knowledge about the sorted order of the
Year column to avoid hashing the groups. This is an interesting
example of a new class of potential optimizations within dataframe
query plans that exploit an efficient TRANSPOSE. Because the axis
transpositions are happening in query expressions, the data layout
becomes a physical plan property akin to “interesting orders” [70]
or “hash teams” [37], expanding the rules for query optimization.

5.2.3 Metadata is Data (and Data is Metadata)

A standard feature of dataframes is the ability to fluidly move
values from data to metadata and back. This is made explicit in
the TOLABELS and FROMLABELS operators of our algebra, espe-
cially in combination with TRANSPOSE. These semantics cannot
be represented in languages like SQL or relational algebra that
are grounded in first-order logic; this is a signature of second-order
logic, as explored in languages like OQL [20], SchemaSQL [49] and
XQuery [26]. There is significant prior work on optimizing second-
order operations like the unnesting of nested data (e.g. [33,72,77]).
A distinguishing aspect of our setting is that a dataframe operation
like TOLABELS commonly generates a volume of metadata that is
dependent on the size of the data; this raises new challenges. The
closest prior work to our needs is on implementing spreadsheet-style
pivot/unpivot in databases (e.g., [30,79]); this work needs to be
generalized to the richer semantics of a dataframe algebra.

To address representational aspects, we could treat row labels
the way we treat primary keys in a relational database—by noting
the sequence of label columns in a metadata catalog. Some addi-
tional details arise in the support of positional notation: invoking
TOLABELS(cy, ..., ¢n) removes the relevant columns from their
positions, requiring a recalculation of the positions of all labels to
the right of ¢;. This can be handled by representing column order
in dynamic ranked data structures like ranked B-trees [48] or range
min-max trees [55]. In terms of data access, we may want to effi-
ciently process data columns without paying to access (dynamically
reassigned) metadata columns, and vice versa. In this case, colum-
nar layouts become attractive for projection. Alternatively, labels
can be moved into separate property tables [30], a form of “vertical
partitioning” that does not rely on columnar storage layouts.

Challenges arise in more complex expressions that include both
TOLABELS and other operators—notably MAP and TRANSPOSE.
In these cases, the number and types of columns in the dataframe is
data-dependent. This exacerbates the metadata storage issues dis-
cussed in the previous section, and brings up additional challenges.

[" Month "] [collect] [ﬂatten] [" Month"
v ¥

UPBY)—»[MAP]—» (TOLABELS }—(T }—

(a) Original plan

[" Year "] [collect] [ﬂatten]
Y ¥

\
(OF) - @EROEED -~ (AP - @ (TOLABELS - (T

(b) Optimized rewrite that leverages sorted Year column

Figure 8: Alternative query plans for pivoting a dataframe around the “Month” column using the algebra from Section 4.3. TRANSPOSE is abbreviated as T.

In terms of query optimization, we now have a two-dimensional
estimation problem: both cardinality estimation (#rows) and arity
estimation (#columns). For most operations in our algebra this
would appear straightforward: even for TRANSPOSE, we know the
cardinality and arity of output based on input. The challenge that
arises is easy to see in a standard data science “macro”, namely
1-hot encoding (get_dummies in pandas). This operation takes a
single column as input, and produces a result table whose schema
concatenates the input schema with an (typically large) array of
boolean-typed columns, one column per distinct data value of the
input. Pivot presents a similar challenge: the width of the output
schema is based on the number of distinct data values in the input
columns. In our algebra, these macros can be implemented using
GROUPBY followed by MAP and TRANSPOSE. The resulting
arity estimation problem reduces to distinct value estimation for
the input to GROUPBY. Techniques like hyperloglog sketches [34]
come to mind to assist here. But note that we need to compute
these estimates not only on base tables that may be pre-sketched,
but on intermediate results of expressions! In short, we need to
do distinct value estimation for the outputs of query operators—
including arithmetic calculations (e.g. sums, products) and string
manipulations (e.g. expanding a document into constituent words).

In some scenarios, arity estimation is insufficient—we need exact
numbers and labels of columns. Consider the example of perform-
ing a UNION of feature vectors generated from two different text
corpora, say wikipedia articles unioned with DBLP articles. Each
text corpus begins as a dataframe with schema (documentID, con-
tent). After a standard series of text featurization steps (word
extraction with stemming and stop-word filtering followed by 1-hot
encoding), each corpus becomes a dataframe with a documentID
column, and one boolean column for each word in the corpus. The
problem is that the UNION needs to dynamically check for com-
patibility of the input schemas—it needs to first generate the full
(large!) schema for each input, and compare the two. Even if we
relax our semantics to an “outer’” union, we want to identify and
align the common words across the corpora. These metadata re-
quirements seem to require two passes of the inner expression’s data:
one to compute and align metadata, and another to produce a result.
There are opportunities for optimization here to return to single-pass
pipelining techniques, but they merit thoughtful investigation. This
pipeline-breaking problem generalizes to any operator that reasons
about its input schemags), so it needs to be handled comprehensively.
In short, we expect that the fluid movement of large volumes of data
into metadata and vice versa introduces new challenges for query
processing and optimization in dataframes.

6. USER MODEL CHALLENGES

Unlike in SQL where queries are submitted all-or-nothing, data-
frame users construct queries in an incremental, iterative, and inter-
active fashion. Queries are submitted as a series of statements (as
we saw in Figure 1), a few operators at a time, in trial-and-error-
based sessions. Users rely on immediate feedback to debug and
rapidly iterate on these statements and frequently revisit results of
intermediate statements for experimentation and composition dur-
ing exploration. This interactive session-based programming model
for dataframes creates novel challenges for overall system perfor-
mance and imposes additional constraints on query optimization.

For example, operator reordering is often not beneficial when the
results are materialized for viewing after every statement. At the
same time, dataframe query development sessions are bursty, with
ample think time between issuance of statements, and tolerant of
incomplete results as feedback—as long as the original goals of
experimentation and debugging are met, offering new opportunities
for query optimization. In this section, we discuss new challenges
and opportunities in query optimization arising from the interactive
and incremental trial-and-error query construction of a typical user.

6.1 Interactive Feedback and Control

Dataframes are typically used in exploratory workloads, where
interactive response times are crucial to providing a fluid user ex-
perience. Past studies have shown that latency in response times
of greater than 500ms can lead to fewer hypotheses explored and
insights generated during data exploration [51]. As another example,
for data preparation—often performed on dataframes—users often
rely on system feedback to guide and decide what operations to
determine their next steps [39]. This feedback usually comes in
the form of a display output by the dataframe system that contains
a prefix or suffix of rows and columns, as in Figure 1. The need
for frequent materialization of intermediate results of statements to
provide feedback to the user makes it particularly difficult to satisfy
the 500ms query latency requirement for interactivity. Fortunately,
we can leverage two user behavior characteristics to improve inter-
activity: that users spend time thinking between steps, and that the
inspected intermediate results are typically restricted to a prefix/suf-
fix of rows/columns is sufficient for debugging and validation.

6.1.1 Intermediate Result Inspection & Think Time

Present-day dataframe systems such as pandas are targeted toward
ensuring users can inspect intermediate results for debugging and
validation, so they operate in an eager mode where every statement
is evaluated as soon as it is issued. Program control is not returned to
the user until the statement has been completely evaluated, forcing
the user to be idle during that time. However, there are many cases
where users do not inspect the intermediate results, or where results
are discarded; in such cases, the user is still forced to wait for each
statement to be evaluated. Moreover, users are either rewarded or
punished based on the efficiency of a query as it is written.

On the other hand, with the lazy mode of evaluation, which is
adopted by some dataframe-like systems [21,31] (See Section 7),
control is returned to the user immediately, and the system defers the
computation until the user requests the result. By scheduling compu-
tation later, the system can wait for larger query sub-expressions to
be assembled, leading to greater opportunities for optimization. The
downside of lazy evaluation is that computation only begins when
the user requests the result of a query. This introduces new burdens
for users, particularly for debugging, since bugs are not revealed
until computation is triggered.

For example, consider two commutative operations op1l, and op2.
Say the user submits the statement x = df.op1() followed by y =
x.0p2Q). In eager evaluation, x will be fully materialized before
execution begins on y, even if x is never used again. Computing y
could be done using df.op2().op1(Q), but it is often more beneficial
to use the materialized version of x instead. In lazy evaluation, exe-
cution will be deferred until explicitly requested, so the expression
that creates y could be optimized to run df.op2().op1(). The down-

side of this approach is that the user has to wait until they explicitly
request y before they realize that there is a potential bug in x.

Furthermore, neither the lazy nor the eager mode take advantage
of the fact that the users spend time thinking between steps: the
system is idle during think-time. We can can leverage this time
for computation, allowing us to effectively achieve the benefits of
both paradigms. While interactive latency is important to support
immediate feedback, recent empirical studies have also shown that
optimizations can be relaxed to account for user’s long think time
between operations in exploratory analysis [22]. We describe a novel
opportunistic query evaluation paradigm suitable for optimizing
dataframes in an interactive setting.

Like lazy evaluation, opportunistic evaluation does not require
the user to wait after each statement. Instead, the system oppor-
tunistically starts execution, while passing control back to users
with a pointer to the eventually computed dataframe (a “future”),
which is asynchronously computed in the background. We can then
use system resources to compute results in the background as users
are composing the next step. Like eager evaluation, opportunistic
evaluation does not wait for users to complete the entire query to
begin evaluation. However, when a user requests to view a certain
output, opportunistic evaluation can prioritize producing that output
over all else. Opportunistic evaluation allows queries to be rewritten
as new statements are submitted (e.g., df.op2().op1()) to get to
the requested answer as fast as possible, taking into account what
is partially computed. There are also new opportunities within op-
portunistic evaluation to do speculation, where during idle time the
system can start executing statements that commonly follow previ-
ous ones. Opportunistic evaluation also leads to new challenges in
sharing and reuse across many query fragments whose computation
has been scheduled in the background (see also Section 6.2).

6.1.2 Prefix and Suffix Inspection

The most common form of feedback provided by dataframe sys-
tems is the tabular view of the dataframe, as shown in Figure 1. The
tabular view serves as a form of visualization that not only allows
users to inspect individual data values, but also convey the structural
information associated with the dataframe. Structural information,
especially as it relates to order, is important for validating the results
of queries that manipulate and reshapes the dataframe. This tabular
visualization typically contains a partial view of the dataframe, dis-
playing the first and last few rows of the dataframe, accessed using
head, tail, or other print commands.

One way to give the users immediate feedback is to return the
output to the user as soon as these k rows are assembled, computing
the rest of the output in the background using opportunistic eval-
vation. This is reminiscent of techniques that optimize for early
results [75,76] for LIMIT queries [47], or for representative tuple
identification [73], but a key difference in dataframes is that order
must be preserved (so "any-k" result tuples will not suffice [47]), and
there are many more blocking operators. One starting point would
be to design or select physical operator implementations that not
just prioritize high output rate [75], but also preserve order, thereby
ensuring that the first k rows will be produced as quickly as possible.
As an example, if only the first k rows of an ordered join were to be
computed, a nested loop join, with the result displayed after k rows
are computed, might work well. We can progressively process more
portions of the input dataframes until k& output rows are produced
in order: this may mean processing more than k rows of the inputs
if there are very selective predicates. Figuring out the right way
to exploit parallelism to prioritize processing the prefixes of the
ordered input dataframes to produce the ordered prefix of the output
is likely to be a substantial challenge.

Additionally, certain blocking operators will cause problems.
While returning the first £ rows following a TRANSPOSE, espe-
cially when using columnar storage, can be fairly efficient, it may be
hard to produce the first k tuples of a GROUP BY or SORT without
examining the entire data first. (Indeed, for small enough k, sorting
may be faster than O(n log n), but still requires an O(n) sequential
scan.) SORT is an obvious example where the top k rows cannot be
narrowed down a priori; a full scan is inevitable also for GROUPBY
on non-clustered columns. That said, since the top and bottom &
rows are often the only results inspected for dataframe queries, we
may benefit from materializing additional intermediate results or
supporting indexes to retrieve them efficiently, without exorbitant
storage overhead. We could, for example, materialize the prefix and
suffix of a dataframe in original and transposed orientations, or the
prefix or suffix of the dataframe sorted by various columns to allow
for efficient processing subsequently. These materializations could
happen during think-time as discussed in Section 6.1.1. We may
also be able to exploit approximate query processing to produce the
prefix/suffix early for blocking operators [18,32,40,59,81]. Since
the tabular view is only a special form of visualization, a rich body
of related work from visualization on how to allow users to quickly
but approximately make decisions or perform debugging or valida-
tion, may be applicable [19,46,52,58]; however, the rich space of
operators that goes beyond simple GROUPBY aggregation will lead
to new challenges. Another interesting usability-oriented challenge
is whether this tabular view of prefixes or suffixes is indeed best
for debugging—perhaps highlighting possible erroneous values or
outliers in dataframe rows or columns that are not in the prefix or
suffix may also be valuable [63].

While it is well known that some aggregates like MAX cannot
be approximated [54], even blocking operators such as SORT can
return early approximate results, using results from the 1990s [65].
There may be additional opportunities for approximation if the user
simply wants to inspect the approximate structure of the result for
debugging purposes, especially in conjunction with prefix/suffix
computation. For example, we can provide the overall structure of
the output of a pivot table computation (displaying the row-wise
groups and column headers), without actually filling in any of the ag-
gregate values, and doing so progressively. Similar ideas of adding
“placeholder” values for in-progress tuples have been proposed in
streaming [64], web-database hybrid [36], and crowdsourcing [57]
contexts, but not, as far as we can tell, for a group-by aggregation set-
ting. This idea could also be applied, for example, to TRANSPOSE,
where the structure of the output dataframe is prepared first, with the
values filled in progressively. Other notions of approximation may
also be valuable, e.g., the incomplete/phantom notions in Lang et
al. [50], wherein the result may contain additional rows not present
in the dataframe query result, or rows that should be present, but are
absent. This could be valuable, for example, for expensive filters.

In fact, we could also exploit correlations [45] between the filter-
ing attribute and the other attributes in order to quickly approximate
the rows that might pass the filter and quickly display them to the
user, refining as additional filter evaluations are performed.

6.2 Incremental Query Construction

In addition to the challenges around satistying the stringent la-
tency requirement for immediate feedback discussed above, the
need to frequently evaluate and display results for intermediate
sub-expressions (i.e., the results of statements) over the course of a
session complicates query optimization, as we saw in Section 6.1.1.
While incrementally constructing dataframe queries over the course
of an interactive session, users iterate on query sub-expressions
through trial-and-error, frequently inspecting and revisiting inter-

mediate results to try alternate exploration paths. Such fragmented
workloads limit the optimizations that can be applied to each sub-
expression. However, since user statements often build on others,
we can jointly optimize across these statements and resulting sub-
expressions, sharing work as much as is feasible. Further, since users
commonly return to old statements to try out new exploration paths,
we can leverage materialization to avoid redundant reexecution. We
discuss these two ideas next.

6.2.1 Composable Subexpression Support

As a result of opportunistic evaluation, there are often many state-
ments that are not completely executed when issued by the user, and
are instead executed in the background asynchronously during user
think time. Moreover, by prioritizing the return of a prefix or suffix
of the results (Section 6.1.2), often, many statements are not com-
puted entirely, with the computation either deferred (in lazy or eager
evaluation), or being scheduled in the background (in opportunistic
evaluation). Thus, there are many statements that may be scheduled
for execution at the same time. These statements may operate over
similar or identical subsets of data. These overlapping queries that
can be batch processed make dataframes particularly amenable to
multi-query optimization (MQO), e.g., [35,38,67,71]. In fact, some
have argued that MQO has limited applicability in a general rela-
tional context: “One problem of MQO is its limited applicability (...).
In many workloads (...) there aren’t many opportunities to factor
out common subexpressions” [35], and “the synchronization of the
execution of queries with common subexpressions when queries are
submitted at different moments in time” [35]. In the dataframe set-
ting, both these reasons for limited applicability do not hold: there
are often many statements executed essentially in sync, and there
are lots of opportunities to factor out common subexpressions since
these statements essentially build on top of each other. However,
new challenges emerge because of the new space of operators, as
well as the prioritization of the return of prefixes/suffixes over the
entire result when requested by the user.

One simple approach is to allow operations that share inputs
to share scans, thereby reducing the overhead required to access
data. We can go even further if we recognize that many statements
are essentially portions of a query composed incrementally (e.g.,
a TRANSPOSE followed by a PROJECT to simulate SELECT).
Therefore, we simply need to construct a query plan wherein sub-
plans that correspond to intermediate dataframe results are mate-
rialized as a by-product. These intermediates are also likely to be
reused by the user in the future. This poses an interesting conun-
drum, because ensuring that the sub-plan results are materialized
“along the way” may result in suboptimal overall plan selection,
which is problematic when the user cares more about the final data-
frame than intermediates. For example, the optimal way to compute
a SELECT may not be to first compute a TRANSPOSE and then
do a PROJECT, even though this may have the benefit of produc-
ing the appropriate intermediate results. Unlike MQO in relational
databases, wherein it is important to share join subexpressions, here,
an even more expensive operation is TRANSPOSE—necessitating
sharing if at all possible. By using partial results to help users
avoid debugging mistakes, we may be able to reduce the impor-
tance of constructing many of the intermediate results in entirety,
unless requested by the user explicitly. Moreover, by observing the
user’s likelihood of inspecting the intermediates over the course of
many sessions, we can do a weighted joint optimization of all query
subexpressions, where the weights for each intermediate dataframe
corresponds to its importance. Going one step further, we can
try to jointly optimize not just the evaluation of intermediate and
final result dataframes, but also the partial or approximate results—a

challenging endeavor. We can estimate probabilities for what the
user might do next, e.g., inspect an intermediate, or compose the
next statement, and the time they may take to do so. We can couple
that with quantifying the benefit of the user seeing a certain portion
of an intermediate result at a certain time, to construct a globally
optimal query plan.

6.2.2 Debugging & Building Queries Incrementally

The incremental and exploratory nature of dataframe query con-
struction over the course of a session leads to nonlinear code paths
wherein the users revisit the same intermediate results repeatedly as
a step towards constructing just the right queries they want. In such
cases, intelligently materializing key intermediate results can save
significant redundant computation and speed up query processing.
The optimizer needs to handle the trade off between materialization
overhead and the reduced execution time facilitated by availability of
such intermediates to utilize storage in a way that maximizes saved
compute—small intermediate dataframes that are time-consuming
to compute and reused frequently should be prioritized over large
intermediate dataframes that are fast to compute. Note however that
materialization doesn’t necessarily need to happen on-the-fly, and
can be also performed in the background asynchronously during
during user think-time. Determining what to materialize requires us
to predict which intermediates are likely to be used frequently. The
prediction algorithm should take into consideration several factors,
including user intent, past workflows, and operator lineage.

Depending on the underlying intent, users can interact with data-
frames in very different ways. A user who is performing data clean-
ing is likely to issue point queries and focus on regions with missing
or anomalous values; users exploring the data for building machine
learning models tend to focus on manipulating columns with high
mutual information with the target column, or more broadly on
feature engineering. Taking advantage of user intent can lead to
highly effective materialization and reuse strategies befitting specific
access patterns, such as in machine learning workflows [80]. The
interactive sessions in dataframe development make it possible for
the system to infer and adapt to user intent.

User intent inference involves extensive offline analysis of work-
loads with known intents as well as online processing of relevant
telemetry: recent Jupyter notebook corpora can provide a promising
starting point [68]. One challenge is that unlike SQL workloads,
dataframe queries tend to be interleaved with non-dataframe oper-
ators in the same session, which requires special considerations to
identify the dataframe portion of the workload and to handle the
interaction between the dataframe system and other frameworks.

Finally, dataframe queries in a session often build upon one an-
other. In the dataflow graph of dataframe queries, we are likely
to see intermediate results that lie on the path to many leaf nodes.
A simple heuristic is to persist intermediate results with high fan-
outs; more advanced graph analysis techniques can be applied to
determine prominent intermediate results. Opportunistic evaluation
can significantly complicate the analysis as the execution order can
differ drastically from the query order.

In terms of costing operators for materialization and reuse, the
dataframe setting introduces two novel challenges. Partial views to
support fast inspection in conjunction with opportunistic evaluation
can break up operators into multiple partial operators evaluated at
different times, motivating the need for short and long term costs
on partial views for each operator. The materialization and reuse
decisions derived from these costs can feed back into the decisions
on filtering for partial views or delaying evaluation. For example,
if several queries based on a new sort order require immediate
feedback in the near future, it might be prudent to incur a delay

=
=3
2
=
5

Feature Pandas Dask
Ordered model

Eager execution
Row/Col Equivalency
Lazy Schema
Relational Operators
MAP

WINDOW
TRANSPOSE
TOLABELS

FROMLABELS v

Spark

-+

NENEN
ANENENEN

ENENENENENENENENEN
ENENENENENENENENENIZ

Ve

SNENENENENENENENENEN

v

Table 3: Table of comparison between dataframe and dataframe-like imple-
mentations. Blue indicates dataframe systems, red indicates dataframe-like
implementations. }: Spark can be treated as ordered for some operations. +:
R dataframe operators can be invoked lazily or eagerly. *: Dask sorts the
dataframe by the row labels after TOLABELS.
on the first query to materialize the new sort order in its entirety,
in order to significantly speed up subsequent queries on the new
order through reuse. Of course, being able to make such decisions
hinges on the ability to predict future reuse as discussed above.
Secondly, the constantly growing dataflow graph requires eviction of
old materialized results from memory. The interesting challenge in
the dataframe context is that future reuse is determined by both what
the user will do in the future and what the opportunistic evaluator
will choose to compute, with the former being purely speculative and
the latter being known within the system. We can reconcile the “two
futures” by passing the model we build of the future workflow to the
opportunistic scheduler for unified materialization/reuse planning.
Another approach to speed up dataframe queries would be to
defer the creation of new dataframes as a result of queries and in-
stead allow for the results of dataframe queries to be essentially
non-materialized “views”. This could be useful, for example, when
a dataframe query essentially adds a new derived column for feature
engineering. In this case, we don’t actually add the derived column
and create a new dataframe, simply recording the operations instead,
and materializing the result on-demand. Deferring the operations
also opens up opportunities for pipelining through subsequent opera-
tions, saving overall computation costs. In fact, the Vaex project [15],
which is a dataframe-like system (as we described in Section 4.2)
that supports querying on HDFS5 files, implements virtual columns.
With virtual columns, the column is not actually materialized until
required for output, printing, or for a query. In cases where the
computation that creates a column is expensive, virtual columns will
need to be paired with intelligent caching mechanisms that prioritize
caching columns that were expensive to generate.

7. RELATED WORK

While our focus on pandas is driven by its popularity, in this
section, we discuss other existing dataframe and dataframe-like
implementations. Table 3 outlines the features of these dataframe
and dataframe-like implementations. We will discuss how existing
dataframe implementations fit into our framework, thus showing
how our proposed research is applicable to these systems.

Data model and algebra. To the best of our knowledge, an algebra
for dataframes has never been defined previously. Recent work by
Hutchinson et al. [42,43] proposes an algebra called Lara that com-
bines linear and relational algebra, exposing only three operators:
JOIN, UNION, and Ext (also known as “flatmap”); however, data-
frame metadata manipulation operators are not supported. Other
differences stem from the flexible data model and lazily induced
schema. We will draw on Lara as we continue to refine our algebra.
Dataframe Implementations: R. As we discussed in Section 4.1,

the R language (and the S language before it), both support data-
frames in a manner similar to pandas and can be credited for initially

popularizing the use of dataframes for data analysis [44]. R is still
quite popular, especially among the statistics community. An R
dataframe is a list of variables, each represented as a column, with
the same number of rows. While both the rows and columns in an
R dataframe have names, row names have to be unique; thus the
pandas dataframe is more permissive than the R one. As shown
in Table 3, R supports all of the operations in our algebra. The R
dataframe fully captures our definition of a dataframe, and thus,
implementational support of R dataframes requires only conforming
the R API to our proposed algebra. External R packages such as
readr, dplyr, and ggplot2 operate on R dataframes and provide func-
tionalities such as data loading, transformation, and visualization,
similar to ones from the pandas API [5,78].

Dataframe-like Implementations. Some libraries provide a func-
tional or object-oriented programming layer on top of relational
algebra. These libraries include SparkSQL dataframes [2], SQL
generator libraries like QueryDSL [3] and JOOQ [1], and object
relational-mapping systems (ORMs) such as Ruby on Rails [4] and
SQLAIchemy [23]. All of these systems share some of the benefits
with respect to incremental query construction mentioned in Sec-
tion 6. However, they generally do not support the richness and
expressiveness of dataframes , including ordering of rows, symme-
try between rows and columns, and operations such as transpose.

SparkSQL and Dask are scalable dataframe-like systems that
take advantage of distributed computing to handle large datasets.
However, as shown in Table 3, Spark and Dask do so at the cost
of limiting the supported dataframe functionalities. For example,
a dataframe in SparkSQL does not treat columns and rows equiva-
lently and requires a predefined schema. As a consequence, Spark-
SQL does not support TRANSPOSE and is not well optimized for
dataframes where columns substantially outnumber rows. Thus,
SparkSQL is closer to a relation than a dataframe. Koalas [11], a
wrapper on top of the SparkSQL API, attempts to be more dataframe-
like in the API but suffers from the same limitations.

Dask enables distributed processing by partitioning along the rows
and treating each partition as a separate “dataframe”, thus acting as a
“meta-dataframe”. Since ordering and transpose are ill-defined for a
group of dataframes, Dask fundamentally cannot support operations
that rely on row-ordering. The set of operations supported are
restricted to those that can be combined into a single output based on
the resulting, constituent dataframes. These include embarassingly
parallel operations, such as filter, aggregation, groupby, and join.

Unlike these systems, MODIN treats the dataframe data model
and algebra as first-class citizens, as opposed to a means to enable
distributed processing, addressing challenges in dataframe process-
ing in systems like pandas and R at scale, while not sacrificing the
convenient functionalities that have made dataframes so popular. We
advocate that our research vision around the data model proposed in
this paper is a key component towards this more holistic approach
for optimizing dataframe systems.

8. CONCLUSION

In recent years, the convenience of dataframes have made them
the tool of choice for data scientists to perform a variety of tasks,
from data loading, cleaning, and wrangling to statistical modeling
and visualization. Yet existing dataframe systems like pandas have
considerable difficulty in providing interactive responses on even
moderately-large datasets of less than a gigabyte. This paper out-
lines our research agenda for making dataframes scalable, without
changing the functionality or usability that has made them so popu-
lar. Many fundamental assumptions made by relational algebra are
entirely discarded in favor of new ones for dataframes, including

rigid schemas, an unordered data model, rows and columns being
distinct, and a compact set of operators. Informed by our experi-
ence in developing MODIN, a drop-in replacement for pandas, we
described a number of research challenges that stem from revisiting
familiar data management problems, such as metadata management,
layout and indexing, and query planning and optimization, under
these new assumptions. As part of this work, we also proposed a
candidate formalism for dataframes, including a data model as well
as a compact set of operators, that allowed us to ground our research
directions on a firm foundation. We hope our work serves as a
roadmap and a call-to-action for others in the database community
to contribute to this emergent, exciting, and challenging research
area of scalable dataframe systems development.

Acknowledgments

We would like to acknowledge those who have made significant
contributions to the MODIN codebase: we thank Omkar Salpekar,
Eran Avidan, Kunal Gosar, GitHub user ipacheco-uy, Alex Wu,
and Rehan Sohail Durrani. We also thank Ion Stoica for initial
discussions and encouragement.

9. REFERENCES

[1] Manual: JOOQ v3.12.
https://www.jooq.org/doc/3.12/manual-single-page/.
Date accessed: 2019-12-27.

[2] PySpark 2.4.4 Documentation: pyspark.sql module.
http://spark.apache.org/docs/latest/api/python/
pyspark.sql.html#module-pyspark.sql.functions. Date
accessed: 2019-12-27.

[3] Reference Guide: QueryDSL v4.1.3. http://www.querydsl.
com/static/querydsl/4.1.3/reference/html_single/.
Date accessed: 2019-12-27.

[4] Ruby on Rails. https://rubyonrails.org/. Date accessed:
2019-12-27.

[5] Tidyverse: R packages for data science.
https://www.tidyverse.org/. Date accessed: 2019-12-27.

[6] A Beginner’s Guide to Optimizing Pandas Code for Speed,
Medium Blog. https://bit.ly/2v4ZvLQ, 2017. Date
accessed: 2019-12-27.

[7] Python’s Explosion Blamed on Pandas, The Register UK.
https://www.theregister.co.uk/2017/09/14/python_
explosion_blamed_on_ pandas/, 2017. Date accessed:
2019-12-27.

[8] The Incredible Growth of Python, Stack Overflow Blog.
https://stackoverflow.blog/2017/09/06/
incredible-growth-python/, 2017.

[9] Why is Python Growing So Quickly? Stack Overflow Blog.
https://stackoverflow.blog/2017/09/14/
python-growing-quickly/, 2017. Date accessed:
2019-12-27.

[10] Enhancing performance, Pandas Documentation.
https://pandas.pydata.org/pandas-docs/stable/
user_guide/enhancingperf.html, 2019. Date accessed:
2019-12-27.

[11] Koalas: pandas api on apache spark.
https://koalas.readthedocs.io/en/latest/, 2019. Date
accessed: 2019-12-27.

[12] Minimally Sufficient Pandas.
https://medium.com/dunder-data/
minimally-sufficient- pandas-a8e67f2a2428, 2019. Date
accessed: 2019-12-27.

[13] Pandas API reference. https://pandas.pydata.org/
pandas-docs/stable/reference/index.html, 2019. Date
accessed: 2019-12-27.

[14] R: Data Frames. https://stat.ethz.ch/R-manual/
R-devel/library/base/html/data.frame.html, 2019.
Date accessed: 2019-12-27.

[15] Vaex: Out-of-core dataframes for python.
https://github.com/vaexio/vaex, 2019. Date accessed:
2019-12-27.

[16] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden,
et al. The design and implementation of modern
column-oriented database systems. Foundations and Trends®
in Databases, 5(3):197-280, 2013.

[17] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases,
volume 8. Addison-Wesley Reading, 1995.

[18] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and L. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Proceedings of
the 8th ACM European Conference on Computer Systems,
pages 29-42. ACM, 2013.

[19] D. Alabi and E. Wu. Pfunk-h: Approximate query processing
using perceptual models. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics, page 10. ACM, 2016.

[20] A. M. Alashqur, S. Y. Su, and H. Lam. Oql: a query language
for manipulating object-oriented databases. In Proceedings of
the 15th international conference on Very large data bases,
pages 433-442. Morgan Kaufmann Publishers Inc., 1989.

[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, pages
1383-1394, New York, NY, USA, 2015. ACM.

[22] L. Battle and J. Heer. Characterizing Exploratory Visual
Analysis: A Literature Review and Evaluation of Analytic
Provenance in Tableau. Eurographics Conference on
Visualization (EuroVis) 2019, 38(3), 2019.

[23] M. Bayer. Sqlalchemy. In A. Brown and G. Wilson, editors,
The Architecture of Open Source Applications Volume I1:
Structure, Scale, and a Few More Fearless Hacks.
aosabook.org, 2012.

[24] M. Bendre, B. Sun, D. Zhang, X. Zhou, K. C.-C. Chang, and
A. Parameswaran. Dataspread: Unifying databases and
spreadsheets. Proceedings of the VLDB Endowment,
8(12):2000-2003, 2015.

[25] M. Bendre, V. Venkataraman, X. Zhou, K. Chang, and
A. Parameswaran. Towards a holistic integration of
spreadsheets with databases: A scalable storage engine for
presentational data management. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE), pages
113-124. IEEE, 2018.

[26] D. Chamberlin, J. Clark, D. Florescu, J. Robie, J. Siméon, and
M. Stefanescu. Xquery 1.0: An xml query language. W3C
working draft, 7, 2001.

[27] J. Chambers, T. Hastie, and D. Pregibon. Statistical models in
s. In K. Momirovi¢ and V. Mildner, editors, Compstat, pages
317-321, Heidelberg, 1990. Physica-Verlag HD.

[28] J. M. Chambers, T. J. Hastie, et al. Statistical models in S,
volume 251. Wadsworth & Brooks/Cole Advanced Books &
Software Pacific Grove, CA, 1992.

[29] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack:
A scalable linear algebra library for distributed memory
concurrent computers. In [Proceedings 1992] The Fourth

https://www.jooq.org/doc/3.12/manual-single-page/
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions
http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#module-pyspark.sql.functions
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
http://www.querydsl.com/static/querydsl/4.1.3/reference/html_single/
https://rubyonrails.org/
https://www.tidyverse.org/
https://bit.ly/2v4ZvLQ
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://stackoverflow.blog/2017/09/14/python-growing-quickly/
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/enhancingperf.html
https://koalas.readthedocs.io/en/latest/
https://medium.com/dunder-data/minimally-sufficient-pandas-a8e67f2a2428
https://medium.com/dunder-data/minimally-sufficient-pandas-a8e67f2a2428
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
https://pandas.pydata.org/pandas-docs/stable/reference/index.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/data.frame.html
https://github.com/vaexio/vaex

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

Symposium on the Frontiers of Massively Parallel
Computation, pages 120-127. IEEE, 1992.

C. Cunningham, C. A. Galindo-Legaria, and G. Graefe. Pivot
and unpivot: Optimization and execution strategies in an
rdbms. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages
998-1009. VLDB Endowment, 2004.

Dask Development Team. Dask: Library for dynamic task
scheduling, 2016.

B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and

C. Wang. Sample+ seek: Approximating aggregates with
distribution precision guarantee. In Proceedings of the 2016
International Conference on Management of Data, pages
679-694. ACM, 2016.

L. Fegaras. Query unnesting in object-oriented databases. In
Proceedings of the 1998 ACM SIGMOD international
conference on Management of data, pages 49-60, 1998.

P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: the analysis of a near-optimal cardinality
estimation algorithm. 2007.

G. Giannikis, G. Alonso, and D. Kossmann. Shareddb: killing
one thousand queries with one stone. Proceedings of the
VLDB Endowment, 5(6):526-537, 2012.

R. Goldman and J. Widom. Wsq/dsq: A practical approach for
combined querying of databases and the web. In ACM
SIGMOD Record, volume 29, pages 285-296. ACM, 2000.
G. Graefe, R. Bunker, and S. Cooper. Hash joins and hash
teams in microsoft sql server. In VLDB, volume 98, pages
86-97. Citeseer, 1998.

S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe: a
simultaneously pipelined relational query engine. In
Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 383-394. ACM,
2005.

J. Heer, J. M. Hellerstein, and S. Kandel. Predictive
interaction for data transformation. CIDR 2015 - 7th Biennial
Conference on Innovative Data Systems Research, 2015.

J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In Acm Sigmod Record, volume 26, pages
171-182. ACM, 1997.

R. D. Hipp. Sqlite, 2020.

D. Hutchison, B. Howe, and D. Suciu. Lara: A key-value
algebra underlying arrays and relations. arXiv preprint
arXiv:1604.03607, 2016.

D. Hutchison, B. Howe, and D. Suciu. Laradb: A minimalist
kernel for linear and relational algebra computation. In
Proceedings of the 4th ACM SIGMOD Workshop on
Algorithms and Systems for MapReduce and Beyond, page 2.
ACM, 2017.

R. Ihaka and R. Gentleman. R: a language for data analysis
and graphics. Journal of computational and graphical
statistics, 5(3):299-314, 1996.

M. Joglekar, H. Garcia-Molina, A. Parameswaran, and C. Re.
Exploiting correlations for expensive predicate evaluation. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1183-1198. ACM,
2015.

A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and
R. Rubinfeld. Rapid sampling for visualizations with ordering
guarantees. Proceedings of the VLDB Endowment,
8(5):521-532, 2015.

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

(561

[57]

(58]

(591

[60]

[61]

[62]

[63]

A. Kim, L. Xu, T. Siddiqui, S. Huang, S. Madden, and

A. Parameswaran. Optimally leveraging density and locality
for exploratory browsing and sampling. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics, page 7.
ACM, 2018.

D. E. Knuth. The art of computer programming, volume 3.
Pearson Education, 1997.

L. V. Lakshmanan, F. Sadri, and I. N. Subramanian.
Schemasql-a language for interoperability in relational
multi-database systems. In VLDB, volume 96, pages 239-250.
Citeseer, 1996.

W. Lang, R. V. Nehme, E. Robinson, and J. F. Naughton.
Partial results in database systems. In Proceedings of the 2014
ACM SIGMOD international conference on Management of
data, pages 1275-1286. ACM, 2014.

Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. IEEE transactions on
visualization and computer graphics, 20(12):2122-2131,
2014.

S. Macke, Y. Zhang, S. Huang, and A. Parameswaran.
Adaptive sampling for rapidly matching histograms.
Proceedings of the VLDB Endowment, 11(10):1262—-1275,
2018.

P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw,

E. Liang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A
distributed framework for emerging Al applications. CoRR,
abs/1712.05889, 2017.

B. Mozafari and N. Niu. A handbook for building an
approximate query engine. /[EEE Data Eng. Bull., 38(3):3-29,
2015.

G. Navarro and K. Sadakane. Fully functional static and
dynamic succinct trees. ACM Transactions on Algorithms
(TALG), 10(3):1-39, 2014.

New York (N.Y.). Taxi And Limousine Commission. New
york city taxi trip data, 2009-2018, 2019.

A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis,
and J. Widom. Deco: declarative crowdsourcing. In
Proceedings of the 21st ACM international conference on
Information and knowledge management, pages 1203—-1212.
ACM, 2012.

Y. Park, M. Cafarella, and B. Mozafari. Visualization-aware
sampling for very large databases. In 2016 IEEE 32nd
International Conference on Data Engineering (ICDE), pages
755-766. IEEE, 2016.

Y. Park, B. Mozafari, J. Sorenson, and J. Wang. Verdictdb:
universalizing approximate query processing. In Proceedings
of the 2018 International Conference on Management of Data,
pages 1461-1476. ACM, 2018.

F. Perez and B. E. Granger. Project jupyter: Computational
narratives as the engine of collaborative data science.
Retrieved September, 11(207):108, 2015.

D. Petersohn, W. Ma, D. Lee, S. Macke, D. Xin, X. Mo, J. E.
Gonzalez, J. M. Hellerstein, A. D. Joseph, and

A. Parameswaran. Towards scalable dataframe systems. arXiv
preprint arXiv:2001.00888, 2020.

M. Raasveldt and H. Miihleisen. Duckdb: an embeddable
analytical database. In Proceedings of the 2019 International
Conference on Management of Data, pages 1981-1984, 2019.
V. Raman and J. M. Hellerstein. Potter * s Wheel : An
Interactive Data Cleaning System. Proceedings of the 27th
VLDB Conference, 2001.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

V. Raman and J. M. Hellerstein. Partial results for online
query processing. In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pages
275-286. ACM, 2002.

V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic
reordering for interactive data processing. In VLDB,

volume 99, pages 709-720, 1999.

L. A. Rowe and M. R. Stonebraker. The postgres data model.
Readings in object-oriented database systems, pages 461-473,
1990.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In ACM
SIGMOD Record, volume 29, pages 249-260. ACM, 2000.
A. Rule, A. Tabard, and J. D. Hollan. Exploration and
explanation in computational notebooks. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing
Systems, CHI 18, pages 32:1-32:12, New York, NY, USA,
2018. ACM.

F. Rusu and Y. Cheng. A survey on array storage, query
languages, and systems. arXiv preprint arXiv:1302.0103,
2013.

P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. In Proceedings of the 1979 ACM
SIGMOD international conference on Management of data,
pages 23-34. ACM, 1979.

T. K. Sellis. Multiple-query optimization. ACM Transactions
on Database Systems (TODS), 13(1):23-52, 1988.

J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and
J. Funderburk. Querying xml views of relational data. In
VLDB, volume 1, pages 261-270, 2001.

M. Singh, A. Nandi, and H. Jagadish. Skimmer: rapid
scrolling of relational query results. In Proceedings of the

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

2012 ACM SIGMOD International Conference on
Management of Data, pages 181-192. ACM, 2012.

J. W. Tukey. Exploratory data analysis, volume 2. Reading,
Mass., 1977.

S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 37-48. ACM, 2002.
S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the
output rate of multi-way join queries over streaming
information sources. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages
285-296. VLDB Endowment, 2003.

S. Wang, E. A. Rundensteiner, and M. Mani. Optimization of
nested xquery expressions with orderby clauses. Data &
Knowledge Engineering, 60(2):303-325, 2007.

H. Wickham. Tidy data. The Journal of Statistical Software,
59,2014.

C. M. Wyss and E. L. Robertson. A formal characterization of
pivot/unpivot. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages
602-608, 2005.

D. Xin, S. Macke, L. Ma, J. Liu, S. Song, and

A. Parameswaran. Helix: Holistic optimization for
accelerating iterative machine learning. Proceedings of the
VLDB Endowment, 12(4):446-460, 2018.

K. Zeng, S. Gao, B. Mozafari, and C. Zaniolo. The analytical
bootstrap: a new method for fast error estimation in

approximate query processing. In Proceedings of the 2014
ACM SIGMOD international conference on Management of

data, pages 277-288. ACM, 2014.

	1 Introduction
	2 Dataframe Example
	3 The Modin Dataframe System
	3.1 Modin Engineering Challenges
	3.2 Preliminary Case Study
	3.3 The MODIN Architecture

	4 Dataframe Fundamentals
	4.1 A Brief History of Dataframes
	4.2 Dataframe Data Model
	4.3 Dataframe Algebra
	4.4 Algebra Examples
	4.5 Extensions to the Formalism
	4.6 Dataframe Usage Statistics

	5 data model challenges
	5.1 Flexible Schemas, Dynamic Typing
	5.1.1 Rewrite Rules for Schema Induction
	5.1.2 Reusing Type Information
	5.1.3 Pipelining Schema Induction in Query Plans

	5.2 Order and Equivalence
	5.2.1 Order is Central
	5.2.2 Row/Column Equivalence
	5.2.3 Metadata is Data (and Data is Metadata)

	6 User Model Challenges
	6.1 Interactive Feedback and Control
	6.1.1 Intermediate Result Inspection & Think Time
	6.1.2 Prefix and Suffix Inspection

	6.2 Incremental Query Construction
	6.2.1 Composable Subexpression Support
	6.2.2 Debugging & Building Queries Incrementally

	7 Related work
	8 Conclusion
	9 References

