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ABSTRACT

Identifying trendline visualizations with desired patterns
is a common task during data exploration. Existing visual
analytics tools offer limited flexibility, expressiveness, and
scalability for such tasks, especially when the pattern of
interest is under-specified and approximate. We propose
ShapeSearch, an efficient and flexible pattern-searching tool,
that enables the search for desired patterns via multiple
mechanisms: sketch, natural-language, and visual regular
expressions. We develop a novel shape querying algebra, with
a minimal set of primitives and operators that can express a
wide variety of ShapeSearch queries, and design a natural-
language and regex-based parser to translate user queries to
the algebraic representation. To execute these queries within
interactive response times, ShapeSearch uses a fast shape
algebra execution engine with query-aware optimizations,
and perceptually-aware scoring methodologies. We present
a thorough evaluation of the system, including a user study,
a case study involving genomics data analysis, as well as per-
formance experiments, comparing against state-of-the-art
trendline shape matching approaches—that together demon-
strate the usability and scalability of ShapeSearch.

1 INTRODUCTION

Identifying patterns in trendlines or line charts is an inte-
gral part of data exploration—routinely performed by do-
main experts to make sense of their datasets, gain new in-
sights, and validate their hypotheses. For example, clinical
data analysts examine trends of health indicators such as
temperature and heart-rate for diagnosis of medical condi-
tions [18]; astronomers study the variation in properties of
galaxies over time to understand the history and makeup
of the Universe [28]; biologists analyze gene expression pat-
terns over time to study biological processes [23, 41]; and
financial analysts study trends in stock prices to predict fu-
ture behavior [17]. Due to the lack of extensive programming
experience, these domain experts typically perform manual
exploration, tediously examining trendlines one at a time
until they find ones that match their desired shape or pattern,
e.g., gene expressions that rise and then become stable.
Recent work has proposed tools that let users interactively
search for desired patterns [9, 26, 27, 38]. However, as we will
discuss below, these tools expect users to search in highly
constrained ways, and, in addition, are overly rigid in how
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Figure 1: Shapes characterizing real world phenomena

they assess a match. Most tools expect users to specify a
complete and exact trendline as input usually by sketching it
on a canvas, followed by computing distances between this
exact trendline and several candidate trendlines to identify
matches. As a result, these tools are unable to support search
when the desired shape is under-specified or approximate, e.g.,
finding stocks whose prices are decreasing for some time,
followed by a sharp rise, with the position and intensity of
movements being left unspecified, or when the desired shape
is complex, e.g., finding gene expression profiles where there
is an unspecified number of peaks and valleys followed by
a flattening out. Some data mining tools provide the abil-
ity to search for patterns in time series, e.g., [7, 16], but
require heavy precomputation, limiting ad-hoc exploration,
in addition to suffering from the same limitations in flexi-
bility as the visualization tools. Yet another alternative for
domain experts with programming expertise is to write code
to perform this flexible match, but writing code for each new
use-case, followed by manual optimization is often as tedious
as manual searching of visualizations to find patterns.

We present ShapeSearch, a visual data exploration sys-
tem that supports multiple novel mechanisms to express
and effortlessly search for desired patterns in trendlines. Be-
fore describing ShapeSearch, we first characterize typical
trendline pattern-based queries.

1.1 Characterizing Shape Queries

The design of ShapeSearch has been motivated by case stud-
ies and use-cases from domains such as genomics, astronomy,
battery science, and finance, using a process similar to our
earlier work [23]. We also collected a corpus of about 250 nat-
ural language queries via Mechanical Turk (mturk), where
we asked crowd workers to describe patterns in trendline vi-
sualizations collected from real world datasets'. We highlight
the key characteristics of pattern matching tasks, based on

IDescribed in more detail in Appendix A.1.



our discussions with domain experts and analysis of mturk
queries below.

Fuzzy Matching. Domain experts typically search for pat-
terns (i) that are approximate, and are often not interested
in the specific details or local fluctuations as much as the
overall shape, and (ii) they often do not specify or even know
the exact location of the occurrence of patterns. For example,
biologists routinely look for structural changes in gene ex-
pression, e.g., rising and falling at different times (Figure 1a).
Structural changes characterize internal biological processes
such as the cell cycle or circadian rhythms, or external per-
turbation, such as the influence of a drug or presence of
a disease. Similarly, many crowd workers tend to describe
trendlines using high level patterns such as increasing and
then decreasing, without being precise about locations and/or
features of the changes.

Combination of Multiple Simple Patterns. We notice
that both domain experts as well as crowd workers often
describe complex patterns using a combination of multiple
simple ones. Each individual pattern is typically described
using words such as "increasing’", "stable", or "falling", which
are easy to state in natural language but hard to specify using
existing query languages. Moreover, pattern matching tasks
in many domains often go beyond finding a sequence of pat-
terns, requiring arbitrary combinations, e.g., disjunction, con-
junction, or quantification, with varying location or width
constraints. Examples include finding stocks with at least
2 peaks within a span of 6 months, e.g., the so-called "dou-
ble/triple top" patterns that indicate future downtrends [3],
or finding cities where the temperature rises from November
to January and falls during May to July, such as Sydney.

Ad hoc and Interactive. Pattern-based queries are often
defined on-the-fly during analysis, based on other patterns
observed. For instance, biologists often search for a pattern
in a group of genes similar to a pattern recently discovered
in another group [23]. Similarly, astronomers monitor the
shape of the luminosity trends of stars over time to search
for and characterize new planetary objects (Figure 1c). For
example, a dip in brightness often indicates a planetary object
passing between the star and the telescope. In order to
limit comparison of patterns over similar duration (i.e., the
X axis) or over value ranges (i.e, the Y axis), it is common to
apply constraints while pattern matching. Examples include
searching for changes in buying and selling patterns of stock
or house prices in a specific range or duration. As such, some
tools, e.g., TimeSearcher [9], allow interactive specification
of constraints, however the pattern matching is still precise
or value-based.

1.2 Our Approach

To satisfy the aforementioned characteristics, ShapeSearch
makes three contributions.

Table 1: Comparison between specification mechanisms

Mechanism ‘ Intuitiveness Control Expressiveness
Natural language | high low high

Sketch high high low

Regex low high high

(a) ShapeSearch incorporates an expressive shape query al-
gebra that abstracts key shape-based primitives and opera-
tors for expressing a variety of desired trendline patterns.
The most powerful feature of this algebra is its capability
for “fuzzy” matching, allowing approximate and inexact pat-
tern specification, without compromising on the needs of
occasional precise queries. We developed this algebra after
discussions with domain experts, as well as studying mturk
pattern queries, as mentioned earlier.

(b) Unfortunately, naively executing these fuzzy queries is
extremely slow, requiring an expensive evaluation of all pos-
sible ways of matching each candidate trendline to the query
to select the best one. We propose a dynamic programming-
based optimal algorithm that reuses computation to provide
substantial speed-ups, and show that even this algorithm
can be prohibitively slow for interactive ad-hoc exploration.
We then develop a novel perceptually-aware bottom-up al-
gorithm that incrementally prunes the search space based
on patterns specified in the query, providing a 40X speedup
with over 85% accuracy, compared to the optimal approach.

(c) Finally, to accommodate a range of needs without sacrific-
ing the expressiveness of the algebra, ShapeSearch supports
three query specification mechanisms (Table 1): sketching on
a canvas, natural language, and regular expressions (regex
for short). All specification mechanisms are translated to the
same shape query algebra representation, and can be used
interchangeably, as user needs evolve.

Next, we explain how a user interacts with ShapeSearch.

1.3 ShapeSearch System Overview

Figure 2a depicts the ShapeSearch interface, with an example
query on genomics data. Here, a user wants to search for
genes that get suppressed due to the influence of a drug, with
a specific shape in their gene expression—first rising, then
going down, and finally rising again—with three patterns:
up, down, and up, in a sequence. To search for this shape,
the user first loads the dataset [8], via a form (Figure 2a
box 1), and then selects the space of trendline visualizations
to explore by setting parameters: x axis as time, y axis as
expression values, and category/z axis as gene. ShapeSearch
generates a trendline visualization for each unique value of
the z axis. Thus, the z axis defines the space of visualizations
over which we match the shape. Once the data is loaded,
the user can leverage three mechanisms for shape query
specification:

Sketching on Canvas. By drawing the desired shape as a
sketch on the canvas (Figure 2a box 2a), the user can search
for trendlines that precisely match this sketch, using a dis-
tance measure such as Euclidean distance or Dynamic Time
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Warping [32]. ShapeSearch outputs visualizations similar to
the drawn sketch in the results panel (Figure 2a box 4).

Natural Language (NL). For searching for approximate pat-
tern matches, users can use natural language. For instance,
in Figure 2a box 2b, the desired genomics shape can be ex-
pressed as “show me genes that are rising, then going down,
and then increasing”. Similarly, scientists analyzing cosmolog-
ical data can search for supernovae (bright stellar explosions)
using “find me objects with a sharp peak in luminosity”.

Regular Expression (regex). For queries that involve com-
plex combinations of patterns that are difficult to express
using natural language or sketch, the user can issue a regu-
lar expression-like query that directly maps to the internal
ShapeQuery algebraic representation, consisting of Shape-
Search primitives and operations. While sketch is typically
used for precise matching, ShapeSearch also allows approx-
imate matching via sketch by constructing a regex from a
sketch (see Appendix A.2).

The ShapeSearch back-end parses and translates all queries
into the ShapeQuery algebra before execution. For translat-
ing natural language queries, ShapeSearch supports a so-
phisticated parser that uses a mix of learning and rules for
resolving syntactic and semantic ambiguities. After transla-
tion, the backend forwards the regex representation of the
query to the user for validation or correction (Figure 2a Box
3). The validated query is finally optimized and executed,
and the top visualizations that best match the ShapeQuery
are presented in the results panel (Figure 2a Box 4).

Paper Outline. We explain the three key components of
ShapeSearch in the following sections. In Section 2, we give
an overview of the ShapeQuery algebra, along with its prim-
itives and operators. In Section 3, we discuss the challenges

in executing fuzzy shape queries and how we make Shape-
Search scale to large collections of trendlines. We briefly
explain the natural language translation in Section 4. We
describe our performance experiments evaluating the effi-
ciency and accuracy of the ShapeSearch pattern execution
engine in Section 5. We present a user study in Section 6
and a genomics case study in Section 7, evaluating the ex-
pressiveness, effectiveness, and usability of ShapeSearch.
We presented an early version of ShapeSearch in a demo

paper [2].

2 SHAPEQUERY ALGEBRA

We give an overview of ShapeQuery, a structured query
algebra, motivated from use-cases in real domains as well as
our analysis of the crowdsourced pattern queries.

Overview. The ShapeQuery algebra consists of a minimal
set of primitives and operators for declaratively express-
ing a rich variety of patterns, while supporting the three
characteristics of pattern-matching tasks described in the in-
troduction. At a high level, a ShapeQuery represents a shape
as a combination of multiple simple patterns. A simple pat-
tern can either be precise with specific location constraints,
e.g., matching y = x between x = 2 to x = 6, or fuzzy, e.g.,
roughly increasing, where the notion of the pattern is ap-
proximate and its location unspecified. Each simple pattern
along with its precise or imprecise constraints is called a
ShapeSegment. Complex shapes, e.g., rising and then falling,
are formed by combining multiple ShapeSegments using one
or more operators. One can search for multiple patterns in
a sequence (concat, ®) or matching the same sub-region of
the trendline (and, ©), or one of many patterns matching a
sub-region (or, @), described later.



As an example,rising from x=2 to x=5 and then falling”
can be translated into a ShapeQuery [x.s=2,x.e=5, p=up]
®[p=down] consisting of two ShapeSegments separated by a
® operator. The first ShapeSegment captures “rising from
x = 2to x = 57 the second expresses a “falling" pattern.
Since the second must “follow” the first, the two ShapeSeg-
ments are combined using the CONCAT operator, denoted
by ®. We now describe the shape primitives and operators
that constitute ShapeQuery algebra. Table 2b lists these prim-
itives and operators.

2.1 Shape Primitives and Operators

A ShapeSegment is described using two high level primi-
tives: LOCATION and PATTERN. ShapeSearch allows users
to skip one or more of these primitives in their query. The
LOCATION values can be skipped in order to match the
PATTERN anywhere in the trendline. Similarly, users can
input the exact trendline to match, or the endpoints of the
ShapeSegments to match without specifying the PATTERN.
We describe each of these supported primitives.

Specifying LOCATION. LOCATION defines the endpoints
of the sub-region of the trendline between which a pat-
tern is matched: starting X/Y coordinate (x.s/y.s), end-
ing X/Y coordinate (x.e/y.e). For example, [x.s=2,x.e=10,
y.s=10,y.e=100] is a simple ShapeQuery to find trend-
lines whose trend between x=2 to x=10 is similar to the
line segment from (2, 10) to (10, 100). Users can also draw
a sketch to find trendlines similar to the sketch, a function-
ality supported in other tools alluded to in the introduc-
tion [9, 27, 38]. ShapeSearch translates the pixel values of
the user-drawn sketch to the domain values of the X and Y
attributes, and adds the transformed vector of (x, y) values
as a vector v in the ShapeQuery. As an example, the Shape-
Query [v=(2:10,3:14,...,10:100)] finds trendlines that
have precisely similar values to v using a distance measure,
e.g., Euclidean distance, or dynamic time warping [32].

Specifying PATTERN. PATTERN defines a trend or a seman-
tic feature in a sub-region of the trendline. A number of
basic semantic patterns, commonly used for characterizing
trendlines, are supported, such as up, down, flat, or the slope
(0) in degrees. For example [p=up] finds trendlines that are
increasing, [p=45] finds trendlines that are increasing with
a slope of about 45°, and [x.s=2,x.e=10, p=up] finds trend-
lines that are increasing from x = 2 to 10. Finally, one can
use p=* to match any pattern and p=empty to ensure that
there are no points over the sub-region.

Combining PATTERNs. ShapeQuery supports three opera-

tors to combine ShapeSegments:

e CONCAT (®) specifies a sequence of two or more Shape-
Segments. For example, using [p=up]®[p=down] one can
search for genes that are first rising, and then falling.
Note that ® is one of the most frequently used operations,

and we sometimes omit ® between ShapeSegments, e.g,

[p=up][p=down], to make it succinct to describe.
¢ AND (©) simultaneously matches multiple patterns in the

same sub-region of the trendline. Unlike CONCAT, all of
the patterns must be present in the same sub-region. For
example, one can look for genes whose expression values
rise twice but do not fall more than once within the same
sub-region.

e OR (@) searches for one among many patterns in the same
sub-region of the trendline, picking the one that matches
the sub-region best. For example, one can search for genes
whose expressions are either up- or down-regulated.

Note that when the same operator is specified consecu-

tively, ShapeSearch fuses them into one, hence all opera-

tors can take two or more operands. For example, [p=up]
®[p=down] ®[p=down] is parsed as a single ® operation with
three operands [p=up], [p=down], and [p=down].

Multiple operations are often used in a given ShapeQuery.
ShapeSearch follows left to right precedence order for exe-
cution of the operations. However, sub-expressions can be
nested using parentheses () to specify precedence as in math-
ematical expressions. In Figure 2c, we depict how Shape-
Search parses a complex ShapeQuery [p=up]®[p=down]
Q(([p=up]®[p=down])®[p=flat]) into an Abstract Syntax
Tree (AST) representation.

Comparing Patterns. In some cases, one may want to com-
pare the pattern in a ShapeSegment with the preceding
or succeeding ShapeSegments. To support such use cases,
ShapeSearch (i) allows a ShapeSegment to refer to the previ-
ous or the next ShapeSegment using $+ or $— respectively,
and (ii) compare patterns between the current and referred
ShapeSegment using operations >, <, or =. For example, as-
tronomers can issue a ShapeQuery [p=up]®[p < $—.p] with
x=time and y=luminosity (brightness) to search for celes-
tial objects that were initially moving rapidly towards earth,
but after some point either slowed down or started moving
away. The second ShapeSegment [p < $—.p] ensures that the
slope of brightness over time is less than that in the previous
sub-region [p=up].

Similarly, one can set p <;$-.p to ensure the slope of
second sub-region is < % of the first. To avoid ambiguity in
position reference and for efficient execution, ShapeSearch
restricts $-based references to a simple CONCAT operation,
i.e., across a sequence of patterns at the same level of nesting.

Expressing complex patterns. The aforementioned basic
primitives and operators are powerful enough to express
more complex ShapeSearch use-cases. We discuss three such
complex patterns below, along with shortcuts for their easy
specification.

1. Searching shapes of specific width. In some cases, users
want to find specific shapes irrespective of their start loca-
tion. For example, one may want to search for cities with
maximum rise in temperature over a width of 3 months. To



Table 2: Examples of ShapeQueries

Table 3: Pattern Scores

Pattern ShapeQuery P Score

Increasing from 2 to 5 and then decreasing [p=up, x.5=2, x.e=10]®[p=down] up 2:tan” (slope) Table 4: Operator
Decreasing or increasing anywhere [p = *1®(p=upsp=down) ®[p = *] 2-tan” (slope) S

Increasing at 45, decreasing at 60 and then becomes flat | [p = 45]®[p = -60]®[p = flat] down 7ﬁ cores

Decreasing over a width of 3 points: [x.s=., x.e=.+3, p=down] flat (1.0- ||M||) o . Score
Increasing at least once and at most 5 [p=up, q=1 5] 0 =|(.0- ||%WH) ® |  Xiscorei/k

W shaped pattern [p=35180p - GOIRlp=2518[p 60l | | x o | o)
Specific sketch [v = (2:10,3:14,...,10:100)] ® 1

Shape whose trend is increasing relatives its own trend | [p= dm\ n]®[p > $—.p] empty -1

before some point in the past (e.g, inverted bell shaped) v L, norm (configurable)

express such queries, ShapeSearch supports the ITERATOR
(.), e.g., [x.s=.,x.e=x.s+3,p=up] that iterates over all points
in the trendline, setting each point as the start x position,
with the x end position set to 3 units ahead. Internally, for a
trendline of length n, this query can be rewritten as an OR
operation over (n — 3 + 1) ShapeSegments, where, for the
ith ShapeSegment, x.s=1 and x.e=i+3.

2. Quantifiers. One can search for trendlines where a pat-
tern occurs a specific number of times using quantifiers,
denoted by g. For example, [p=up,q={1, 2}] can be used to
search for trendlines where there is an increasing pattern
at least once and at most twice. Quantifiers can be inter-
nally rewritten using an OR of one or more CONCAT oper-
ations. For example, the above query is rewritten as ([p=+]
®[p=up]®[p=*])&([p=*]®[p=up]®[p=*] ®[p=up]®[p=*]).

3. Nesting A combination of patterns can be constrained to
be within a specific sub-region by specifying them as a value
of the PATTERN primitive. For example, to search for stocks
that increased anytime between February to October, we can
use nesting as follows: [x.s=2,x.e=10, p=([p=
This can be rewritten using CONCAT operations as follows:
[x.s=2,p=*]®[p=up]®[p=*]®[x. s=10,p=x*].

4. Scale invariant matching. One can automatically search
for shapes at varying granularity of x-scales and degree of
smoothing. For example, for [p=+]®[p=up] ®[p=down]®[p=+],
ShapeSearch searches for [p=up] and then [p=down] at all
possible scales and selects the one that leads to the best
match. To do so, ShapeSearch uses efficient algorithms that
we describe in the subsequent sections.

As ShapeSearch evolves, it may support additional short-
cuts to simplify the writing of frequently used complex pat-
terns.However, all of the complex patterns as well as the
shortcuts can be expressed using basic primitives and opera-
tions for their execution. Thus, we omit further discussion
of complex patterns and limit ourselves to the semantics and
efficient scoring of basic primitives and operators.

2.2 Formal semantics of ShapeQuery

We now formally define the semantics of ShapeQuery.
Given three dataset attributes x, y, and z, ShapeSearch
first generates a collection of trendlines V, one for each
unique value of the z attribute. Each trendline is a sequence
of (x, y) values ordered by x. A ShapeQuery Q operates on
one trendline, V;, at a time, and returns a real number, called
score, between —1 to +1, i.e., Q : V; — score; score € [—1,1].

*][p=up][p=+])].

The value of score describes how closely V; matches Q, with
+1 the best possible match, and —1 the worst.

The ShapeQuery Q operates on V; with the help of Shape-
Segments (S, Sz, . . ., Sp) and operators (Oy, Oy, . . ., Oy,). Each
ShapeSegment, S; operates on Vip’q, a sub-region of V; start-
ing at p = x.s and ending at ¢ = x.e and returns a score; €
[-1, 1] using scoring functions we describe subsequently. A
common subclass of ShapeQueries are fuzzy ShapeQueries.
A fuzzy ShapeQuery is a sequence of ShapeSegments where
there is at least one ShapeSegment with missing or multiple
possible values for x.s or x.e. Thus, for fuzzy ShapeQueries,
we try all possible values of p and g, selecting the sub-region
that leads to the best score. One or more ShapeSegments are
combined using operators such as ®, ©, ©. Formally, an op-
erator O; takes as input the scores scoreyq, scores, . . ., score,
from its n input ShapeSegments and outputs another score;
using scoring functions that capture the behavior of the oper-
ators. When combined via AND or OR operators, ShapeSeg-
ments may operate on overlapping sub-regions Vip "9, how-
ever, for CONCAT, the sub-regions must not overlap since
CONCAT specifies a sequence of patterns. Next, we describe
our scoring methodology.

2.3 Scoring Methodology

For supporting interactive response times, ShapeSearch needs
to efficiently and effectively compute the match between a
ShapeQuery Q and a trendline V;.

To satisfy both efficiency and effectiveness, ShapeSearch
approximates each sub-region with a line, using the slope to
quantify how closely it captures any given ShapeSegment.
The line-based quantification is robust to noise or minor
fluctuations, as is often intended in ShapeQueries. At the
same time, lines are extremely fast to compute, requiring
only a single pass on the data. As we explain shortly, lines
over larger sub-regions can be quickly inferred from lines
over over smaller ones, without additional passes. As the
complexity of a pattern increases, the number of lines re-
quired to approximate it also increases. However, even for
complex shapes, a small number of line segments is sufficient.
Our study of patterns (e.g., double-bottom, triple-top) in fi-
nance [17] as well as mturk queries reveal that the maximum
number of lines is usually small (typically less than 6).

As depicted in Table 3, ShapeSearch uses different scor-
ing functions for each pattern primitive that transforms the



slope to a value in [—1, 1] using a tan™! function. For exam-
ple, for an up pattern, the function returns a score between
[0, 1] for all trendlines with slope from 0° to 90°, a score of
[-1,0] for slopes < 0° (opposite of up). Moreover, a change
in trend from 10° to 30° is visually more noticeable than
from 60° to 80°, thus we capture this behavior using tan™!
where the rate of increase in output decreases as the value
of slope increases. Finally, we apply normalization, such as
multiplying by 2/, to re-scale the output of tan™! between
—1 and 1. Thus, depending on the specified pattern primi-
tive, ShapeSearch uses the corresponding scoring function
to compute the score for that ShapeSegment. For a given
ShapeSegment, if the location constraints are not met, we
assign a score of -1, and ignore the rest of the primitives.

We state the following observation regarding the scoring
of a single ShapeSegment.

Observation 2.1. The scoring of a ShapeSegment, as part
of a ShapeQuery Q without comparisons, on a sub-region L
can be done using the slope of the corresponding single line
segment and the x.s, x.e, y.s, and y.e values of the sub-region,
independent of other sub-regions.

For a shape input as a sketch, users sometimes intend to
perform precise matching. For such ShapeSegments we com-
pute the score using L2 norm (Euclidean distance) between
the drawn sketch and the trendline without fitting a line
segment. The L2 norm can vary from 0 to oco; therefore, we
normalize the distance within [1, -1] using using Max-Min
normalization [4]. In addition, ShapeSearch allows users to
use sketch for fuzzy matching where ShapeSearch fits a min-
imum number of lines to the sketch given an error threshold
(adjustable via a slider), and automatically constructs a CON-
CAT operation of ShapeSegments, with one ShapeSegment
for each line with the pattern corresponding the slope of
the line. We provide more details on fuzzy matching using
sketch in Appendix A.2.

For two contiguous ShapeSegments compared using $-
references, ShapeSearch returns a single score as if they were
one single ShapeSegment evaluated over their combined sub-
region. Internally, ShapeSearch evaluates each of ShapeSeg-
ments over their corresponding sub-region independently
and combines scores across the CONCAT appropriately. The
score of the ShapeSegment that uses that $ reference is set to
+1 if the constraint is satisfied, otherwise it is set to —1. For
ease of explanation, we refer them as a single ShapeSegment
for the rest of the paper.

The scores across ShapeSegments are combined using the
scoring functions for the operations. Note that, in general,
as depicted in Figure 2c, the operands of an operator can be
sub-expressions involving other operators. Nevertheless, as
depicted in Table 4, the scoring functions for operators are
more straightforward as they directly capture the semantic
behavior of the operators. For instance, CONCAT matches a
sequence of patterns, therefore, the scoring function takes

average of the scores of its operands to give equal weightage
to each operand. AND matches multiple patterns over the
same sub-region, so to avoid any ShapeSegment not having
a good match, we take the minimum of all scores across its
operands. On the other hand, OR picks the best among all
matches, so it takes the maximum across all scores. From
these definitions, we state the following observations:

Observation 2.2. The scoring of AND or OR operations with
k operands on a sub-region L can be done by scoring each of
the k operands independently on the sub-region L.

Observation 2.3. The scoring of CONCAT with k operands
on sub-region L can be done by dividing sub-region L into
all possible sequences of k sub-regions, followed by scoring
operand i on sub-region i.

Note that the scoring of an operand can be done indepen-
dent of others. We used the term segmentation to refer to a
division of a sub-region into L sub-regions.

Ensuring goodness of fit. It is possible that a line poorly
approximates a given segment of the trendline. Therefore,
we use a configurable (via a slider) threshold parameter to
suggest how much error can be tolerated. For measuring the
goodness of fit, we compute the standard R? error [1], also
called coefficient of determination, of the line, between 0 to
1, with higher values indicating lower errors and better fit.
ShapeSearch gives a score of —1 to a ShapeSegment for a
given sub-region if R? is less than the threshold.

Overall algorithm. Algorithm 1 outlines the steps for scor-
ing a ShapeQuery. At the start, the algorithm takes the entire
trendline V; as L, the Abstract Tree Representation (AST) of
ShapeQuery as Q, and the list of scoring functions ScrFunc
as in Tables 3 and 4 as inputs. If the root node of the Shape-
Query tree is a ShapeSegment, ShapeSearch directly com-
putes the score of the ShapeSegment on the sub-region using
scoring functions after checking the location and goodness
of fit constraints (lines 2-9). If the root node is © or &, Shape-
Search invokes each of the operands (i.e., child sub-trees) to
compute their scores on the sub-region independently, com-
bining the scores as per their scoring functions (lines 14-18).
However, if the root node is a CONCAT with k operands, i.e.,
child sub-trees, ShapeSearch segments L into all possible k
sub-regions: Ly, Ly, ..., Lk, and then for each segmentation,
invokes the ith operand on ith segment (lines 20-30). Finally,
the maximum score across all segmentations is output.

3 EXECUTING FUZZY SHAPEQUERIES

The most interesting and powerful feature of ShapeSearch is
its capability for “fuzzy” matching, allowing users to search
for patterns without specifying exact locations, e.g., increas-
ing followed by decreasing. Recall that a a fuzzy ShapeQuery
is one with atleast one ShapeSegment with multiple possible
values for x.s or x.e.



Algorithm 1 ShapeQuery Scoring

Input: L: a sub-region of trendline, Q: a ShapeQuery
sub-expression, ScrFunc: scoring functions from Tables 3 and 4
Output: score

1: procedure EXEcSHAPEQUERY(L, Q, ScrFunc)

2 if Q.root is a ShapeSegment then

3: hasValidLoc <- CheckLocationConstraints(L, Q)
4: hasValidLineFit <- CheckGoodnessofFit(L)
5: if (hasValidLoc && hasV alidLineFit) is False then
6: return -1;
7: end if
8: return ScrFunc(L, operator, Q.root)
9: end if
10: operator « Q.root.operator
11: operands «— operator.children
12: k = operands.size
13: operandscores « []
14: if operator € {©,®} then
15: for each child in operands do
16: operandscores.append(EXECSHAPEQUERY(L,child))
17: end for
18: return ScrFunc(operator, operandscores)
19: end if
20: if operator € {®} then
21: candscores = []
22: for each segmentation {Li, Ly, ...,Li} of L do
23: sgtscores « []
24: for each child in operands do
25: sgtscores.append(EXECSHAPEQUERY(L;,child))
26: end for
27: sgtscores«— ScoreComparators(sgtscores,Q.root)
28: candscores.append(ScrFunc(operator,sgtscores))
29: end for
30: return max(candscores)
31: end if

32: end procedure

In the absence of exact location values for a CONCAT,
ShapeSearch has to exhaustively score all possible segmen-
tations to find the one with the best score (line 22-29 in
Algorithm 1). This becomes prohibitively expensive as the
number of points in the trendline increases. For example,
a fuzzy ShapeQuery [p=up]®[p=down]®[p=up] on a trend-
line with 100 points can result in 10* possible segmentations
for finding three segments that lead to the best score. More
generally, for a CONCAT with k operands, the exhaustive ap-
proach creates n*~!) segmentations, where n is the number
of points in the trendline.

We state this problem formally:

Problem 1 (Fuzzy CONCAT Scoring). Given a CONCAT
operation with k operands and a sub-region L of the trendline
with n points, find the segmentation with k subregions where
the score of CONCAT is maximum.

3.1 The Dynamic Programming Algorithm

We first show that we can substantially reduce the number
of segmentations for a CONCAT operation on a sequence of
ShapeSegments by reusing the scores from CONCAT opera-
tions over sub-sequences of ShapeSegments. We, then, show
that this extends to the case when one or more operands
of CONCAT are AND or OR expressions, but none of the
operands internally involve nested CONCATs. Finally, we
show how we can reuse computations when an AND or
OR operand internally has a nested CONCAT or when an
operand is a nested CONCAT. We start with the simplest
case of a CONCAT on a sequence of ShapeSegments.

From Observation 2.3, it can be seen that for the CONCAT
operation itself, the scoring of the jth operand on jth sub-
region does not depend on the scoring of the first j — 1
operands on the first j — 1 sub-regions. Thus, we can find
the optimal segmentation of the first j — 1 operands over all
smaller sub-regions and combine them with the scores of jth
operand on the remaining part of the sub-region to find the
optimal segmentation.

Suppose the optimal segmentation of [p=up]®[p=down]
®[p=flat] over sub-region x=1to x.e=100 is when [p=up] is
scored over the sub-region x.s=1 to x.e=45, [p=down] over
x.s=46 to x.e=60, and [p=flat] over x.s=61 to x.e=100.
Then, for another CONCAT operation involving a sub-sequence
[p=up]®[p=down] over the sub-region x.s=1 to x.e=60, the
optimal segmentation should have the same sub-regions for
[p=up] and [p=down] as in the previous CONCAT. This is
because the scoring of [p=flat] from x.s=61 to x.e=100
does not affect the scoring of [p=up]®[p=down] over x.s=1
to x.e=60.

We use this idea to develop a faster dynamic program-
ming algorithm (DP) for scoring CONCAT operations over
ShapeSegments. Formally, let OPT(1,¢,(1 : j—1)) be the best
score corresponding to the optimal segmentation over the
sub-region between x = 1to x = ¢ for first j—1 operands, and
SC(t + 1,1, j) be the score of jth operand over the sub-region
between x = t+ 1 and x = i. Then, the optimal segmentation
OPT(1,i,(1 : j)) for first j operands over x = 1 and x = i can
be computed using the following recursion:

) N (=DXOPT(1,¢,(1:5j-1)+SC(¢+1,i,/))
OPT(1,i,(1,)) = MAX{ j )

As base cases, we set OPT(m,m + 1,(j : j)) = SC(m,m +
1, ).

Using the above recurrence, we develop a DP algorithm
that reuses intermediate results by memoizing OPT(1, i, (1, j))
ina 2D array of size nxk and SC(t + 1, i, j) in 3D array of size
nx n X k. The DP algorithm considers O(n’k) segmentations
to find the optimal score.

Theorem 3.1. Finding the best segmentation for a CONCAT
operation on ShapeSegments arguments can be done in O(n?k)
using Dynamic Programming.



AND/OR operands with no nested CONCAT. Let the
ith operand of the CONCAT at the root be an AND/OR
expression with no nested CONCAT. From Observation 3.2,
and lines 17-22 in Algorithm 1, we can score operand i on sub-
region i without any segmentation. Thus, the above theorem
is also valid when an operand in the CONCAT operation is an
AND/OR expression with no CONCAT operations internally.

AND/OR operand with a nested CONCAT or directly
nested CONCATSs. If the ith operand of the CONCAT at the
root consists of a nested CONCAT (either under an AND or
OR expression or directly), the ith sub-region needs to un-
dergo further segmentation to find the optimal score for the
nested CONCAT. For example, for scoring the ShapeQuery in
Figure 2c, the DP algorithm is first invoked for the CONCAT
at the root node. The third operand for the root CONCAT is
an OR which consists of another CONCAT and [p=f1at] as
its operands. Therefore, for every candidate sub-region for
the third operand, another DP algorithm is invoked for the
nested CONCAT. However, this is not a problem since we can
reuse the score of ShapeSegments across invocations. For ex-
ample, in Figure 2c, CONCAT operations essentially involve
scoring of ShapeSegments [p=down], [p=up] over all possible
sub-regions. We, thus, score each ShapeSegment only once
for a given sub-region, and reuse it across multiple invoca-
tions of the DP algorithm for each CONCAT. Moreover, the
DP recursion involves SC(t + 1, i, j) for computing the cost
of the operand (i.e., sub-expression) j from sub-region t + 1
to i, which again can be shared across repeated invocations
of the same t, 1, j.

Unfortunately, even though the DP algorithm is orders of
magnitude faster than the exhaustive approach, we note that
for trendlines with large number of points, even a Shape-
Query with a single CONCAT operation can be slow, because
of its quadratic runtime. As we will see in Section 5, the DP
algorithm takes 10s of seconds even for ShapeQueries with
3 or 4 ShapeSegments over trendlines with a few hundreds
of points. We, next, discuss optimizations to further decrease
the runtime of CONCAT operation on ShapeSegments.

3.2 A Pattern-Aware Bottom-up Approach

The DP-based optimal approach scores all possible sub-regions
for each operand in the CONCAT operation. For instance,
consider a fuzzy ShapeQuery [p=up]®[p=down]®[p=flat]
and a trendline L of 120 points. Here, for operand [p=up], the
DP approach scores sub-regions of all possible sizes, starting
from the smallest possible sub-region (x.s=1 to x.e=2) to
(x.s=1 to x.e=116). Note that a sub-region requires at least
2 points to fit a line.

Greedy approach. Two sub-regions that differ only in a few
points tend to have similar scores. For instance, the scores
of [p=up] over sub-regions (x.s=1 to x.e=15) and (x.s=1 to
x.e=16) are likely to be similar. Therefore, an optimization

A B

P

Option 1 [p=up] [p=down][p=flat]

Option 2 [p=up] [p=down][p=flat]

Option 3 [p=up] [p=down][p=flat]

Figure 3: Pattern-aware selection of LOPs

over DP is to consider only those sub-regions for each Shape-
Segment that differ substantially in their sizes. For example,
a greedy approach could be to start with sub-regions of equal
size for each of the three ShapeSegments (i.e., 40 points each),
and then greedily vary their sizes until we reach the maxi-
mum. One way of varying their sizes is to greedily extend
one sub-region at a time, and proportionally shrink the oth-
ers. For example, the next three configurations after starting
with equal sizes could be: (60,30,30), (30,60,30), (30,30,60). We
pick the best of these and then repeat the process. Clearly,
this approach scores much fewer segmentations (O(log(n¥))),
compared to O(n?) segmentations explored by the DP ap-
proach. However, as we show in our experiments (Section 5),
such an approach leads to extremely poor accuracy.

Pattern-aware segmentation. The problem with the greedy
approach is that it treats all points equally, and as possible

candidates for endpoints of ShapeSegments. A better ap-
proach could be to select end points to be those where the

slope (or pattern) changes drastically. We first illustrate our

intuition, and then describe an algorithm that performs seg-
mentation in a pattern-aware manner.

Intuition. As depicted in Figure 3, consider two sub-regions
A on the left and B on the right for the trendline L. Say the
trendline in sub-region A is inverted V-shaped, i.e., increasing
until a point P and then decreasing. Now, for all possible
segmentations where [p=up]’s sub-region lies completely
in A, there are following possibilities for x.e of [p=up]: 1)
[p=up]’s x. e point is before P. 2) [p=up]’s x . e point is after
P.3) [p=up]’s x.e point is at P.

Since [p=down] follows [p=up], we can see that option 1
that sets [p=up]’s x.e < P is less likely to be optimal as that
will lead to scoring of a part of [p=down] on an increasing
trend. Similarly, x.e > P is less optimal as that will lead to
scoring of a part of [p=up] on a decreasing trend. Thus, if
we have to (greedily) select one point in sub-region A for
[p=up]’s x.e, P is likely a better choice. We call such a point
as locally optimal point (LOP).

A Bottom-up algorithm. Based on the above intuition, we
develop a much faster algorithm that uses the following
assumption to reduce the number of segmentations.

Assumption 3.1 (Closure). If a point is not locally optimal
for any of the sub-expressions in the CONCAT operation (i.e.,



a CONCAT on a sub-sequence of the operands), it cannot be
x.s or x.e of a ShapeSegment in the optimal segmentation.

That is, local optimality leads to global optimality. Due
to this assumption, our proposed algorithm is approximate.
However, our empirical results (Section 5) show that despite
this assumption, the accuracy of the algorithm is very close
to that of DP, while taking orders of magnitude less time.

Algorithm 2 outlines the steps for scoring a fuzzy Shape-
Query. At a high level, the algorithm starts by dividing the
trendline into smaller contiguous sub-regions (line 2). Next,
it selects locally optimal points (LOPs), defined next, over
small sub-regions (line 12), followed by a bottom-up merging
step that uses LOPs over small sub-regions to find LOPs over
larger sub-regions.

Selection of LOPs. We define a point P to be a LOP in a
sub-region A for the sub-expression S; if it is either the x.e of
the first ShapeSegment or the x.s of the last ShapeSegment
of S;. For instance, in the above example, it is easy to see
that a LOP P in sub-region A is the x.e value of [p=up] in
the optimal segmentation of [p=up]®[p=down] in A. Since
a CONCAT operation with k operands can have (k?) sub-
sequences, there can be a maximum of 2.k? LOPs in A. The
SelectLOPs function (line 9) is used for selecting LOPs. It is a
variant of Algorithm 1 that returns both the final score as well
as the end points of lines that form the optimal segmentation.

Merging. Next, the algorithm incrementally merges nodes
in a bottom-up fashion to select LOPs over larger sub-regions
(lines 6 to 17). More specifically, the Merge function (line 23)
merges a sub-sequence t1 : 5;®s;11 ...QS;j+m—1 in the left child
with a sub-sequence ¢2 : s;®sj11 ...85j1p—1 in the right child
if (i) Sit1..-®Sitm-1®8;...®Sj4n—1 is a subsequence of query Q,
or (ii) $i+1...®8i+m-1®Sj41...8Sj4n—1 is a subsequence of query
Q when s; = s; (i.e., we consider the common boundary
ShapeSegment only once). While the score of the merged
subsequence for case (i) can be easily computed using the av-
erage of the scores of left and right subsequence weighted by

. : X t1)+nx t2
their number of ShapeSegments, i.e, ZXscorel ”:Jr" score(t2) |

for case (ii) we rescore the common ShapeSegmgnt by esti-
mating the slope of a line from the x.s of the last Shape-
Segment of f1 to x.e of the first ShapeSegment of 2. If
the s. is the score of common ShapeSegment, t1* and ¢2*
are the scores of left and right subsequence without the
common ShapeSegment, then the score of the merged sub-
sequence is: (mfl)xscore(tl*rzl:s;:rinfl)xscore(tz*)' When multi-
ple sub-sequences in the children nodes generate the same
sub-sequence in the parent node, we select the sub-sequences
that result in maximum score after merging, i.e., the one with
the best optimal segmentation (line 24-25), thereby prun-
ing out LOPs corresponding to non-selected sub-sequences.
This merging process is repeated at each intermediate node.
Finally, at the root node, we select the points that result in
the maximum score for the entire sequence of operands.

Figure 4 depicts the logical order for scoring ShapeQuery

a®(b®(c®d)) over the sub-sub-regions. Here, a, b, c, and
d represent a ShapeSegment. The SegmentTree algorithm
starts by scoring individual ShapeSegments (e.g., a,b,c and
d in a®(b®(c®d))) independently over each of leaf nodes as
depicted in Figure 4. Next, it computes the scores of sub-
sequences in the intermediate nodes using the merging pro-
cess described below. For example, in Figure 4, node 4 depicts
the sub-sequences formed by combining sub-sequences from
nodes 1 and 2, and node 5 depicts the sub-sequences formed
by combining sub-sequences from nodes 3 and 4. When mul-
tiple sub-sequences in the children nodes generate the same
sub-sequence in the parent node, we select the sub-sequences
that result in maximum score after concatenation (i.e., the
one with the best optimal segmentation), thereby pruning
out LOPs corresponding to non-selected sub-sequences. For
example, at node 5, a®b can be computed from 1) a from node
3 and b from node 4, 2) a®b from node 3 and b from node
4, and 3) a from node 3 and a®b from node 4. Among the
3 concatenations, we pick the one that gives the maximum
score.
Theorem 3.2. Given the closure assumption, the bottom-up
algorithm with k CONCAT operands is optimal with a time
complexity of O(nk*), i.e., linear in the number of points in the
trendlines.

Proor: We prove the above theorem via induction.

Base case. For a single node SegmentTree, there is no dif-
ference between the SegmentTree algorithm and DP, since
the SegmentTree algorithm uses DP to select the LOPs for a
single node.

Induction step. Let L and R be two sibling nodes in the
SegmentTree consisting of optimal scores for each possi-
ble subsequence of operands in the CONCAT operations,
and let P be their parent node. Let SiL(k—l) be the score of

sub-expression from operand i until k in L for the optimal
segmentation of (i — 1)th to kth operands in L and S(}§<+1)j be
the score of the sub-expression from operand k + 1 until j
for the optimal segmentation of kth to j + 1th operands in R.
Let 55. be the score of sub-expression of operand i until j in
P, formed by concatenation of operands i — 1 until k in L and
k until j+ 1 in R. As per the Closure assumption, the optimal
segmentation corresponding to 55 must include the optimal
segmentation i — 1 until k in L and k until j+ 1 in R. Since kth
operand is common between L and R, we need to re-compute
its score over the sub-region from x. e of (k — 1)th operand
in L and x. s of (k + 1)th operand in R during concatenation.
Let scf be the re-computed score of the kth ShapeSegment.
Then, S;; can thus be computed as:
(k=i)xSE, _ Y+scP+(—-k)xSE ., )

Sij = MII?X{ (k-1) (j—iI:-l) (erply

Since, for computing S;;, we consider all possible combi-
nations of optimal segmentations in L and R and pick the
one that gives the maximum score, it must be optimal.




Algorithm 2 Fuzzy Matching Algorithm

Input: L: a sub-region of trendline, Q: a CONCAT operation,
ScrFunc: scoring functions from Tables 3 and 4
Output: score

1: procedure ExeEcFuzzyQUERY(L, Q, ScrFunc)

2: subRegions < ComputeSubRegions(L) // leaf nodes

3: T « ComputeSubSequences(Q)
4: nodes «— Queue()
5: /1 scoring of leaf segments
6: for each s in subRegions do
7: lops < []
8: for eachtin T do
9: lops[t] « SelectLOPs(s,t)
10: end for
11: node « [s.start, s.end, lops[t]]
12: nodes.add(node)
13: end for
14: /] bottom-up processing
15: while nodes.size() > 1 do
16: s « nodes.Size()
17: // pairwise merging of nodes at the same level
18: while s > 0 do
19: s1 < nodes.deque(), s2 « nodes.deque()
20: mlops « []
21: for each t1,t2 in s1.lops.keys(),s2.lops.keys() do
22: score, lops < Merge(L, s1[t1],s2[t2])
23: if score > mlops[t1®t2].score then
24: mlops[t1®t2 ] = {lops, score}
25: end if
26: end for
27: node « [sl.start, s2.end, mlops]
28: nodes.add(node)
29: s=s—1;
30: end while
31: end whilenode « nodes.deque()
32: return node.lops[Q].score

33: end procedure

Conclusion. Thus, by the principle of induction, the Seg-
mentTree algorithm must also be optimal over the entire
SegmentTree.

Time Complexity. For a sub-region of n points, the max-
imum number of leaf nodes is n/2 (since we need at least
2 points per sub-region) and therefore the total number of
nodes in the tree is n. At each of the leaf node, we estimate the
scores of each ShapeSegment independently, taking O(nx k)
operations across all leaf nodes. Each intermediate node
involves a merge step, involving concatenation of subse-
quences from left node with the right node. For k operands
in CONCAT, there can be a maximum of k? subsequences
per node, requiring a total of k* concatenations. Moreover,
each concatenation involves the computation of score sc”
of the kth ShapeSegment that intersects left and right child.
The computation of scf involves the estimation of the slope
of line from x.e of (k — 1)th ShapeSegment in L to x.s of
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Figure 4: Bottom-up scoring of ShapeQuery

k + 1th ShapeSegment in R, which can be done in constant
time from the statistics of kth ShapeSegment’s sub-region in
L and R (see Theorem 3.3). Thus, each merging step involves
O(k*) operations. Overall, the SegmentTree algorithm takes
O(n/2 x k* + nk) ~ O(nk*) time, i.e., linear in the number
of points in the sub-region. In practice, k* is not a problem,
since not all combinations of sub-sequences lead to a valid
sub-sequence in the CONCAT operands, therefore the actual
number of merges are much fewer. Moreover, k is typically
small (< 5). .

3.3 Pruning Optimization

A large number of ShapeQueries are sequential pattern match-
ing queries, consisting of only a single CONCAT operation

on a sequence of simple patterns such as up, down, 0 = x.

For such CONCAT operations, we can bound the final scores

of trendlines and filter low-scoring trendlines without scor-
ing them until the root node of the SegmentTree. We first

describe our key observations.

Observation 3.1 Given a sub-region L comprising of sub-
sub-regions: Ly, Ly, ..., L,, the score of a ShapeSegment con-
sisting of patterns up or down over L, score,;/down, 1. is bounded
between the maximum and minimum scores over any of the
smaller sub-regions, i.e., M{N(scoreup/down,h) <

scoreup/down,L < Méx(scoreup/down,Li)

This observation holds because the scores of up or down
vary monotonically with the slope of the line, and the slope of
the line over the large sub-region is always bounded between
the maximum and minimum slopes of the lines over any
smaller regions, M{N(slopef_i) <

sloper, < MAX(sloper,)
1

However, when a slope (e.g., 0 = x) is specified as pat-

tern, the above observation does not hold for MIN(slopey,)
1
< x < MAX(sloper,), because the scorey 1 can be more than
L

MAX(scorey., 1,) when |x — sloper| < MIN(x — sloper,). For

L 1
such cases, we set the upper bound to 1, the maximum pos-
sible score.

Observation 3.2 The score of an operator is bounded be-
tween the minimum and maximum scores of input Shape-
Segments.



Table 5: Bounds on scores for different patterns based on
scores at a given level i in the SegmentTree

Pattern | Max possible Score Min possible Score

up max across all level i nodes | min across all level i nodes

down max across all level i nodes | min across all level i nodes
max across all level i

flat nodes ifall 6 > 0 or all min across all level i nodes
6 < 0; otherwise 1
max across all level

0=x nodes if all 6 > x or 6 min across all level i nodes
< x ; otherwise 1

This observation is clear from the scoring functions of
operators as defined in Table 4.

Based on the above observations, we can derive the bounds
on the final score of a ShapeSegment at the root node using
the maximum and minimum scores of the ShapeSegment
at a given level i in the SegmentTree. We summarize the
bounds for each of the patterns in Table 5.

Thus, instead of processing each trendline completely in
one go, we process trendlines in rounds. In each round, we
process one level of SegmentTree for all of the trendlines
simultaneously, and incrementally refine the upper and lower
bounds on their scores. Before moving on to the upper levels,
we prune the trendlines that have their upper bound score
lower than the current top-k lower bound scores. Overall, the
pruning optimization helps avoid processing to completion
for a large number of trendlines in the collection, and is
particularly effective when the user is looking for trendlines
with rare patterns.

3.4 Additional Optimizations

ShapeSearch supports a couple of additional optimizations
that result in faster scoring of trendlines.

Generating lines via Summary Statistics. For scoring a
sub-region, ShapeSearch fits a line to approximate it. This is
costly for fuzzy ShapeQueries where ShapeSearch needs to
score sub-regions of varying sizes, fitting one line for every
sub-region. We note that a summary of five statistics namely,
2 Xis Ui 2, Xi iy 2 xl.z, and n for a sub-region, is sufficient to
compute the slope of the line over the sub-region as follows:

Moreover itis easy to see that the individual summaries over
two sub-regions (A and B) are sufficient to compute the slope
of the line over the combined region AB, without making

additional passes over the data.
0 4p= PAtnB)E XA Yai+ Y xpi-ypi)—(X XAi+ X Xpi) (X yai+ X YBi)
AB (na+np)XL(Cean) ™+ (xp1)) - E(xar+x5:)?

Thus, the summary statistics help reduce data movement
as well as the amount of data processed during segmentation.
We summarize our finding using the following theorem.

Theorem 3.3 (Additivity). Given two adjacent segments A
and B, a line segment over the combined segment AB can be
estimated using linear regression on the summarized statistics
over the individual segments A and B.
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Push-Down Optimizations. ShapeSearch applies a num-
ber of push-down optimizations when a ShapeQuery in-
volves location constraints. Consider a ShapeQuery: [

][p=down][p=up] that searches for shapes
which are increasing from 50 to 100 followed by a decreasing,
and then an increasing pattern. ShapeSearch employs three
push-down optimizations for such queries: (1) LOCATION
primitives in ShapeQuery are pushed down to the trendline
generation component to prune trendlines that do not have
any value in the specified x ranges (e.g., 50 to 100 in the
above query), (2) When a ShapeQuery contains a Shape-
Segment with an p=up or p=down pattern along with both
start and end locations (e.g., [p=up, ] in the
above query), ShapeSearch prioritizes the segmentation of
ShapeSegments over such location primitives first, since the
trendlines with negative scores over such sub-regions tend
to have substantially lower scores. This helps the pruning
of low scoring trendlines much earlier in the SegmentTree,
and (3) Finally, ShapeSearch avoids computing summary
statistics over x ranges that are not used in the ShapeQuery
(e.g., 0 to 50 in the above query), since the values over such
ranges are ignored for segmentation and scoring. Overall,
as we will see in Section 5, these push-down optimizations
significantly help in improving the overall response time of
the ShapeSearch.

4 NATURAL LANGUAGE TRANSLATION

So far, we haven’t described how natural language queries
are parsed into ShapeQueries.

We now provide a brief overview of the key steps involved
in parsing. We use the following natural language query col-
lected from MTurk for illustration: “show me the trendlines
that are increasing from 2 to 5 and then decreasing”

Step 1. Primitives and Operators Recognition. Given a
natural language query, the first step is to map words to their
corresponding shape primitives and operators. We follow a
two-step process. First, using the Part-of-Speech (POS) tags
and word-level features, we classify each word in the query as
either noise or non-noise. For example, words € {determiner,
preposition stop-words} are more likely to be noise, while
words € {noun, adjective, adverb, number, transition words,
conjunction} may refer to a primitive or operators. Next,
given a sequence of non-noise words, we use a linear-chain
conditional-random field model (CRF) [22] (a probabilistic
graphical model used for modeling sequential data, e.g., POS
tagging) to predict their corresponding primitives and op-
erator. For example, the above query is tagged as “show
(noise) me (noise) the (noise) trendlines (noise) that (noise)
are (noise) increasing (p) from (noise) 2 (x.s) to (noise) 5 (x.¢)
and then (®) decreasing (p)”..

We train the CRF model [22] on the same 250 natural
language queries that we used for characterizing trendline



Table 6: NL Features. d(x) denotes the number
of words between current word and x, x+ and

x- denote next and previous x

Table 7: Common Ambiguities and their Resolution

Ambiguity (example queries with pre-
dicted entities)

Rules for Resolution

A1l: Conflicting LOCATION and PATTERN in

R1: Change the sub-primitive of LOCATION
from x to y or y to x. R2: Swap the start and

time preposi-
tions

preposition+, space-preposition-, d(time-
preposition+), d(time-preposition-), d(space-
preposition+), d(space-preposition-)

Punctuation

d(+), d(-) .dG+), dG-), d(+), d(-)

Type Features a ShapeSegment (e.g., [decreasing (p) from 4

POS Tags pos-tag, pos-tag-, pos-tag+ (x.s) to 8 (x.e)]) end positions of LOCATION.

Words word-, word+, word-, word++ A2: Multiple p in the same ShapeSegment | R1: Move one of the ps to the adjacent Shape-

synonym synonym, synonym-, synonym-, (e.g., [increasing (p) from 2 (x.s) to 5 (x.e) with | Segment with missing p. R2: split the Shape-
d(synonyms+), d(synonym-) decreasing (p)] next (®)) Segment into two new ShapeSegments with

Space and | time-preposition+, time-preposition-, space- —_— - an OR operator between them

A3: Overlapping ShapeSegments with ®(e.g.,
increasing (p) from 4 (x.s) to 8 (x.e) and then
(®) decreasing (p) from 8 (x.s) to 0 (x.e)

R1: Change x to y, if y values missing. If
y values already present, replace ® with ©
operator.

d(and+), d(or-), d(and then+)
d(x), d(y), d(next), ends(ing), ends(ly),
length(query)

Conjunctions
Miscellaneous

patterns (Section 1). We provide more details on how we
collected the queries in Appendix A.1. We extract a set of
features (listed in Table 6) for each non-noise word in the
sequence. In addition, ShapeSearch stores “synonyms” for
each primitve and operator (e.g., “increasing” for up, “next"
for CONCAT), and if a non-noise words closely matches
with them (e.g., with edit distance <= 2), we add the matched
primitive or operator as a feature called predicted-entity. This
idea is inspired from the concept of “boostrapping” in weakly-
supervised learning approaches [21, 39], and helps improve
the overall accuracy. We implemented the model using the
Python CRF-Suite library [5] with parameter settings: L1
penalty:1.0, L2 penalty:0.001, max iterations: 50, feature.possible-
transitions: True. On 5-fold cross-validation over the crowd-
sourced queries, the model had an F1 score of 81% (precison =
73%, recall = 90%).

Step 2. Identifying Pattern Value. For each of the words
predicted of type p, e.g., increasing and decreasing in the
above query, we additionally map them to the corresponding
semantic pattern supported in ShapeSearch, e.g., “increasing”
is mapped to p=up. For this mapping, ShapeSearch computes
the similarity between the specified word and synonyms of
the supported patterns, first using edit distance and then
using wordnet [34]. The semantic pattern with the highest
similarity between any of its synonyms and the specified
word is selected.

Step 3. ShapeQuery Generation and Ambiguity Res-
olution. Next, we group primitives and operators into a
ShapeQuery. ShapeSearch first groups all the primitives
between two operators into a single ShapeSegment. For in-
stance, for the above query, the primitives are grouped as
follows: [increasing (p=up), 2 (x.s), 5 (x.¢) ] and then (®) [
decreasing (p=down)]. In some cases, this may lead to incor-
rect grouping of primitives, e.g., two patterns in the same
ShapeSegment. Moreover, there could be semantic ambiguity
because of incorrect entity tagging, e.g., decreasing (p=up)
) to 10 (y.¢) where x.s and

from 5 ( values are wrongly
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tagged as y.s and v.e respectively. ShapeSearch uses rule-
based transformations that try to reorder and change the
types of entities to get a correct and meaningful ShapeQuery.
In Table 7, we list three common ambiguities (A1, A2, A3)
and a sequence of rules (e.g., R1, R2) that are applied in order
to resolve these.

The parsed ShapeQuery is sent to the front-end, and dis-
played as part of the correction panel (Box 4 in Figure 2a)
for users to edit or further refine the parsed representation
if needed. The validated query is then executed to generate
the matching trendlines.

5 PERFORMANCE EVALUATION

In this section, we evaluate the runtime and accuracy of
ShapeSearch pattern matching algorithms. We first compare
the runtime of the exhaustive pattern matching algorithm
(Section 2.3) with four algorithms proposed in Section 3:
(i) the dynamic programming-based (DP) algorithm, (ii) the
Greedy algorithm, (iii) the SegmentTree algorithm, and (iv)
the SegmentTree algorithm with pruning. We also compare
with Dynamic Time Warping (DTW) [32], another dynamic-
programming algorithm that is typically used for matching
shapes in trendlines in systems like Zenvisage [38], to show
the efficiency of ShapeSearch relative to existing systems.
Next, we compare the accuracy of SegmentTree and Greedy
with respect to the results of DP. Note that SegmentTree and
Greedy are approximate while DP is an optimal algorithm
and gives the same results as that of the exhaustive algorithm.
Finally, we vary the characteristics of ShapeQueries to assess
the impact of different factors on performance.

Datasets and Setup. Figure 5 depicts the five real-world
datasets drawn from the UCI repository [6], and the list of
queries we used for our experiments. Each dataset consists of
trendlines with a mix of shapes, and the datasets differ from
each other in terms of number of trendlines (|V]) as well
as their length (|V;|). The queries were selected to have at
least 20 trendlines with scores > 0 to ensure that the issued
ShapeQueries were relevant to the dataset. All experiments
were conducted on a 64-bit Linux server with 16 2.40GHz



-e- op

Runtime (sec) Accuracy (%) —A— Segment Tree
Dataset [V| |V;| Query Exhuastive DP DTW Segment Segment Greedy| Segment Greedy —k— Segment Tree with Pruning
Tree Tree+Prune Tree #9 i / ‘
1 Weather 144 366 (V=45 ®@d®u®d) | 290 52 11 5 2.8 0.9 85 25 o) -
2 Weather 144 366 ((uod)efeued) | 211 55 9 4 3.2 11 90 30 816
3 Weather 144 366 (f®u®d®f) 244 47 9 5 3.3 1.4 100 25 3 g
4 Worms 258 900 (d®(0=45° 4737 76 53 10 7 2.2 90 35 200 400 600 800
9=—20° )®l) 100 a) Number of Points
5 Worms 258 900 (d®0=45"®d) 4320 63 44 12 9 34 90 35 < 75
6 Worms 258 900 (u®d®u) 3953 68 42 9 6 2.5 90 20 gso
7 50Words 905 270 (d®(ua(fed)) | 1046 105 28 7 5 11 90 25 22
8 50Words 905 270 (d@0=15"®d) | 954 122 32 7 5 19 100 40 Tl ———
9 50Words 905 270 ((u@d)®(uad)®f)| 979 131 29 9 7 1.2 85 40 b) Number of ShapeSegments
10 Housing 1777138 (f®@d®u®f) 165 58 40 14 12 1.5 80 15 G2
11 Housing 1777138 (u®d®u®f) 152 63 41 17 13 1.9 85 20 5
12 Housing 1777138 (u@f@((0=45"® | 157 52 35 18 14 1.2 75 15 §12
0=60°)@(u®d))) 3 o
13 Haptics 463 1092(u@d@f®u) 6869 890 62 16 12 3.1 90 40 200 400 600 800 1000
14 Haptics 463 1092(d@u®d®f) 7189 924 58 20 15 26 |95 25 €) Number of Visualizations

Figure 5: Runtime and accuracy results
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Figure 7: Average running time before and after push-down
optimizations on non-fuzzy queries.

Intel Xeon E5-2630 v3 8-core processors and 128GB of 1600
MHz DDR3 main memory. Datasets were stored in memory,
and we ran six trials for each query on each dataset.

5.1 Overall Run-time and Accuracy

Runtime Comparison. Figure 5 (Runtime) depicts the
runtime for each of the queries across all datasets. We see
the time taken by the exhaustive algorithm is prohibitively
large, rendering it no longer interactive. DP provides an or-
der of magnitude speed-up over the exhaustive approach;
however even DP can take 100s of seconds over trendlines
with only a few hundred points. Both Greedy and Segment-
Tree provide a 2x to 40X improvement in runtime compared
to DP, taking only a few seconds in the worst case. These
algorithms explore a much fewer number of segmentations
compared to the DP approach. We also see that these algo-
rithms are about 10X faster than the DTW algorithm, whose
runtime, like DP, varies quadratically with the number of
points in the trendline. Finally, SegmentTree with Pruning
further provides a speed-up of 10-30% by pruning low utility
trendlines. Since the improvement in performance of Seg-
mentTree and Greedy comes at the cost of accuracy, we next
compare the accuracies.
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Figure 6: Impact on vary-
ing characteristics of Shape-
Queries

Acccuracy Comparison. Figure 5 (Accuracy) depicts the
accuracy of SegmentTree and Greedy relative to DP. We
do not compare the accuracy of DTW with ShapeSearch
algorithms since their scoring functions differ; instead we
perform an user study in the next section to compare the
effectiveness of ShapeSearch scoring functions with DTW
and other similar metrics. We define accuracy here to be the
number of trendlines picked by the algorithm that are also
present in the top 20 trendlines selected by DP. We see that
Greedy has alow accuracy (< 30%), since it gets stuck at local
optima. The accuracy of SegmentTree is closer to that of DP
and is never off by more than 2 trendlines when we look at
top 10 visualizations. Unlike Greedy, SegmentTree compares
the local patterns in the trendlines and those specified in the
ShapeQuery to select the segmentations that could result in
high score.

Figure 8 depicts the accuracy results over top-k visualiza-
tions (with k varying from 2 to 20) for 3 of the the datasets.
Annotations in each of the figures depict the average devia-
tion in % of the score of kth visualization that an algorithm
selects with respect to the score of the kth optimal visualiza-
tion, indicating how off the shapes of selected visualizations
are from optimal ones. We note that the accuracy of Seg-
mentTree improves as the number of output visualizations
increases, and is never off by more than 2 visualizations or
have more than > 12% deviation in scores when we look at
top 20 visualizations.

Overall, the runtime and accuracy results demonstrate
that the SegmentTree achieves comparable accuracy to
that of DP in much less time.

Next, we explore the impact of push-down optimizations,
discussed in Section 3.4, on the overall performance of queries.

Impact of Push-Down Optimizations. We issue non-fuzzy
queries, one query for each of the datasets, as depicted in
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Figure 8: Accuracy with respect to DP over 3 real datasets with varying number of output trendlines. Annotations denote the
average deviation (in %) of the score of kth trendline chosen by algorithms with respect to the kth optimal trendline.

Table 8: Non-Fuzzy Queries

Name Non-Fuzzy Queries

Weather [p=down,x.s=1,x.e=4]®[p=up,x.s=4,x.e=10]®[p=down,
x.5=10,x.e=12]

Worms [p=down,x.s=50,x.e=100]

50 Words [p=down,x.s=200,x.e=400]®[p=up,x.s=800,x.e=850]

Real Estate | [p=down,x.s=1,x.e=20]®[p=up,x.s=20,x.e=60]
®[p=down,x.s=60,x.e=138]

Haptics [p=up,x.s=60,x.e=80]

Table 8. Figure 7 depicts the runtimes for ShapeSearch (note
that all ShapeSearch algorithms behave similarly for non-
fuzzy queries) with and without push-down optimizations.
We observe that non-fuzzy queries execute very quickly
(< 4s for over 1000 trendlines with more than 1000 points
each), but pushdown optimizations help in further reduction
of runtime in proportion to the selectivity of the LOCATION
primitives in the query. For example, for ShapeQuery [p=up,

] on the Haptics dataset, pushdown optimiza-
tions help reduce the runtime from 3s to < 1.2s.

5.2 Varying ShapeQuery Characteristics

We evaluated the efficacy of our SegmentTree-based opti-
mizations with respect to three different characteristics of
ShapeQueries, as discussed below.

Impact of number of data points. Figure 6 shows the
performance of algorithms as we increase the number of
data points in trendlines for a fuzzy ShapeQuery (u®d®u
®d). With the increase in data points, the overall runtimes
increases for all algorithms because of the increase in the
number of segmentations. Nevertheless, SegmentTree shows
better performance than DP after 100 data points since the
SegmentTree approach is less sensitive (linear time) to the
number of data points than that of DP (quadratic).

Impact of number of patterns. Figure 6 depicts the per-
formance of fuzzy ShapeQueries with varying the number
of ShapeSegments (alternating up and down patterns) and
issued over the weather dataset. As the number of ShapeSeg-
ments in the ShapeQuery grows, the overall runtimes of the
algorithms also increases, with the runtimes for Segment-
Tree and SegmentTree with pruning growing much faster
(k*) than DP (k). However, the overall time for DP is still
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larger because the number of data points (366 in the weather
dataset) plays a more dominant (n?) role.

Impact of number of trendlines. We increased the num-
ber of trendlines from 100 to 1000 in the real-estate dataset
with a step size of 100 and issued a fuzzy ShapeQuery (u®d
®u®d); the results are depicted in Figure 6. While the overall
runtime for all approaches grows linearly with the number of
trendlines, the gap between SegmentTree and SegmentTree
with pruning grows wider. This is because more trendlines
get pruned as the size of the collection grows larger.

6 USER STUDY

We conducted a user study to perform a qualitative and quan-
titative comparison of ShapeSearch with two baseline tools:
our prior work Zenvisage [38] and Qetch [26], two recent
sketch-based systems for trendline pattern search (depicted
in Figure 9). These systems allow users to sketch a pattern
on a canvas, zoom in and out of the trendline to focus on
a specific sub-region, and apply filtering and smoothing to
match trendlines at varying granularities. While Qetch sup-
ports its own custom shape matching algorithm, Zenvisage
allows users to choose between the Euclidean or DTW dis-
tance measures depending on the task. Qetch additionally
supports a simple regex (via a repeat operator) to search for
repeated occurrences of a sketched pattern. We disabled the
sketching capability in ShapeSearch to isolate the benefits
of the novel NL and regex query mechanisms over sketch.
ShapeSearch™ denotes ShapeSearch with only NL- and regex-
based querying mechanisms. We recruited 24 (14M/10F) par-
ticipants with varying degrees of expertise in data analytics
via flyers and mass-emails. We employed within-subjects
study design between ShapeSearch* and each of the baseline
tools, using two groups of 12 participants each. Note that
by design, each participant encountered sketch capabilities
only once—either in Zenvisage or Qetch. Participants were
free to employ either NL or Regex for ShapeSearch™.

Dataset and Tasks. Based on the domain case studies from
Section 1, as well as prior work in time series data min-
ing [14, 19, 31, 33, 43] and visualization [9-11, 27, 38], we
identified seven categories of pattern matching tasks, as de-
picted in Table 9. We designed these tasks on two real-world
datasets: the Weather and the Dow Jones stock datasets from



(a) Zenvisage (b) Qetch

Figure 9: Baseline interfaces for user study

the UCI repository [6] that participants could easily under-
stand and relate with. Together, the seven tasks spanned
both exploratory search as well as targeted pattern-based
data exploration, which helped us test the effectiveness of
individual interfaces in various settings.

Ground Truth.

For selecting the ground truth, three of the authors in-
dependently assigned a score in a range of 5 (best match)
to 0 (worst match) for each of the trendlines, and filtered
out trendlines with average score < 3.0. Next, we leveraged
20 mturk workers per task to rate each selected trendline
in a range of 0-3 (later scaled to 3 — 5). Each mturk worker
was presented with the task description in Table 9, along
with a collection of trendlines, each of which they had to
rate based on how closely the trendline matched the task
description. Filtering out noisy trendlines in the first step
helped minimize the number of ratings per task, thereby
improving the effectiveness of workers. Finally, we take the
average of the scores given by three authors and workers
as the ground truth score for a trendline. For a given task,
we measure the task-accuracy as (sum of the ground truth
scores of the top-K trendlines selected by the participant) x
100 / (sum of the top-K ground-truth scores for the task). K
varied between 2 to 5 per task.

6.1 Key Findings
We describe our key findings below.

Overall Task Accuracy and Completion Times. As de-
picted in Figure 10a and Figure 10b, ShapeSearch® helped
participants achieve higher accuracy and less time overall
than Qetch and Zenvisage, and in particular for, 5 out of
7 tasks; however, for precise and complex shape matching
tasks, ShapeSearch® performed worse than baselines due to
the lack of sketch capabilities. On average across all tasks,
ShapeSearch™ helped participants achieve an accuracy of
87%—8% more than Qetch and 17% more than Zenvisage—in
about 30-40% less time, a significant improvement. While
Zenvisage and Qetch involve less reasoning during query
synthesis, they often lead to significantly more queries is-
sued and manual browsing of trendlines for identifying the
desired ones. ShapeSearch®, on the other hand, can accept

15

Table 9: Pattern Matching Tasks

Tasks Description

Exact  Trend | Find shapes similar to a specific shape, e.g., cities with weather

Match (ET) patterns similar to that of NY, stock trends similar to Google’s.

Sequence Match | Find shapes with similar trend changes over time, e.g., cities

(SQ) with the following temperature trends over time: rise, flat, and
fall, stocks with decreasing and then rising trends.

Common Summarizing common trends e.g., find cities with typical

Trends ( TC) weather patterns, stock with typical price patterns.

Sub-pattern Find frequently occurring sub-pattern, e.g., stocks that de-

Match (SP) picted a common sub-pattern found in stocks of Google and

Microsoft, cities with 2 peaks in temperature over the year.
Find shapes occurring over a specific window, e.g., cities with
steepest rise or fall in temperature over 3 months, peaks with
a width of 4 months.

Find shapes with patterns over multiple disjoint regions of the
trendline, e.g., stocks with prices rising in a range of 30 to 60

Width  specific
Match (WS)

Multiple X or
Y constraints

(MXY) in march, then falling in the same range over the next month.
Complex Shape | Find shapes involving trends along specific directions, and
Matching (CS) | occurring over varying duration, e.g., stocks with head and

shoulder pattern, cup-shaped patterns, W-shaped patterns.

more fine-grained user queries to rank relevant trendlines
effectively, enabling participants to retrieve more accurate
answers with less effort. In order to better understand the
differences between the tools, we separately analyze tasks
where ShapeSearch* did better and worse than the baselines.
Settings Where ShapeSearch® Wins. Since sketch systems
are based on precise matching, for sequence and sub-pattern
matching tasks (SQ and SP), users drew multiple sketches for
a given sequence or subsequence to find all possible instances.
ShapeSearch®, however, is effective at automatically consid-
ering a variety of shapes that satisfy the same sequence or
subsequence of patterns. Similarly, for tasks involving mul-
tiple constraints along the X and Y axes, or the width of
patterns (TC, WS, MXY), a large majority of the participants
gave more accurate results in less time with ShapeSearch®.
ShapeSearch™ supports a rich set of primitives for users to
add multiple constraints to the patterns, including search-
ing for patterns over multiple disjoint regions. While the
users could zoom into a specific region of the trendline and
sketch their desired patterns in the sketch systems, these
capabilities were not sufficient to precisely specify all of the
constraints at the same time. We believe that supporting
visual widgets in the baseline tools that internally leverages
the ShapeSearch primitives could remedy this issue.

Settings Where ShapeSearch® Loses. The opposite effect
was observed (more time, less accurate with ShapeSearch®)
when finding trendlines exactly similar to a given trendline
(ET). This is understandable given that ShapeSearch* does
not possess sketching capabilities, which is a perfect fit for
this task, and that ShapeSearch® regex scoring functions
are targeted more towards approximate and fuzzy pattern
matching. For complex shapes (CS), Qetch performed the
best, followed by ShapeSearch®, and then Zenvisage. Zenvis-
age performs the worst because the Euclidean and DTW mea-
sures used for matching shapes are sensitive to distortions in
the sketch drawn by users for such complex shapes. Qetch,
on the hand, applies corrections to distortions in shapes for
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Figure 10: User study results (} and * denote that ShapeSearch* had statistically significant improvements (« = 5%) relative to

Zenvisage and Qetch respectively

better matching. For ShapeSearch™ the results were mixed.
We noted that the few participants who over-simplified the
shape with fewer patterns (e.g., [p=down][p=up] for “cup-
shaped” instead of [p=up][p=flat][p=up]) had poorer accu-
racy compared to those who used regex appropriately with
correct sequence and width constraints. Overall, we find that
complex patterns that involve fuzzy patterns and location
constraints are easier to describe using NL and regex than to
sketch. In contrast, complex shapes (e.g., cup shaped) are eas-
ier to draw and harder to describe. We believe ShapeSearch
with its sketching interface can address the challenges with
the latter, and thus support both types of patterns.

User Preferences and Limitations. In the end, we asked
participants to complete a survey to gauge their preferences
for the three mechanisms, sketch, NL, and Regex for each
task. (Recall that each participant encounters a given specifi-
cation mechanism in only one tool.) We asked participants
to select one or more of the three mechanisms they thought
were most suited for each of the tasks they performed. They
were allowed to select more than one if they felt multiple
mechanisms were helpful. Figure 10c depicts the % of par-
ticipants who selected the mechanism for each of the tasks.
As depicted in the figure, user preferences are correlated
with their accuracy and completion times: most participants
preferred the sketch-based interface for precise and complex
shape-tasks, and natural language and regex for other tasks.
When asked about their preferences in general, about 62%
of the participants believed that the three interfaces inte-
grated together would be most effective, 29% felt NL and
regex together without sketch would be sufficient for all pat-
tern matching tasks, and only 8% considered a sketch-based
tool as sufficient, validating our design of a tool that goes
beyond sketch capabilities. Participant P2 said “Almost al-
ways, I will go with Tool B [ShapeSearch*]. I know exactly
what I am searching [for] and what the tool is going to do,
it is much more concise, I feel more confident in expressing
my query pattern". About 2/3rd of the participants said they
would opt for regex over natural language or sketch, if they
had to choose one. When asked how effective ShapeSearch
was in understanding and parsing their natural language
queries, the participants gave an average rating of 3.9 and
when asked how easy it was to learn and apply regular ex-
pressions, they gave a rating of 4.4. Participant P8 said “the
concept for visual regex by itself is very powerful and could be
helpful for most cases in general”.
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Other findings. When asked about the effectiveness of us-
ing lines for matching trendlines, the average response was
positive with a rating of 4.1 on a scale of 5. Participant P4
said “Green lines are good, they make me more confident, help
me understand trendlines especially [the] noisy ones without
me having to spend too much time parsing signals. I can also
see how my [query] pattern was fitted over the trendline ...”.

Finally, participants suggested several improvements to
make ShapeSearch” more useful, such as supporting more
mathematical patterns; automatic regex validation and auto-
correction; query and trendline recommendations, and using
different colors for lines that correspond to different patterns
(ShapeSegments) in the ShapeQuery.

7 CASE STUDY : GENOMICS

To understand the use of ShapeSearch in a real-world setting,
we conducted an open-ended evaluation of ShapeSearch via
a case study with two bioinformatics researchers (R1 and R2).
Both researchers are graduate students at a major university
and perform pattern analysis on genomic data on a daily basis
using a combination of spreadsheets and scripting languages
such as R. Each session lasted for about 75 minutes, where
the researchers explored a popular mouse gene dataset [8]
that they often analyze as part of their work.

7.1 Findings and Takeaways

I. Both participants were able to grasp the functionalities of
ShapeSearch after a 15 minute introduction and demo session
without much difficulty. During this session, the participants
appreciated the ease of pattern search, saying “(R1) oh, this
feature [searching using combinations of patterns such as up
and down] is cool, ... something that we frequently do”, “(R2)
I like that you can change your patterns [queries] that easily,
and see the results in no time...”. Both participants concurred
that ShapeSearch could be a valuable tool in a biologist’s
workflow, and can help perform faster pattern-based data
exploration, compared to current R language scripting or
spreadsheet approaches.

II. Using succinct queries, participants could interactively ex-
plore a large number of gene groups, depicting a variety of
gene expression patterns. Both R1 and R2 were able to query
for genes with differential expressions over time. R1 initially
issued natural language queries to search for genes that sud-
denly start expressing themselves at some point, and then
gradually stop expressing, i.e., flat, followed by increase, and



then gradual decrease, a pattern signifying an effect of ex-
ternal stimulus such as a drug or a treatment. Thereafter, R1
was interested in understanding the variations in expression
rates, e.g., identifying groups of genes that rise and fall much
faster, or where changes are gradual within the same range
of values. To search for these patterns, she interactively ad-
justed the width of patterns, as well as the Y range in her
queries via regex. Finally, R1 also searched for groups of
genes that show similar changes in expression over specific
time duration, for finding those that regulated similar cell
mechanisms.

III. ShapeSearch helped participants validate their hypotheses,
and make new discoveries. R2 used regex to explore a group of
genes that increase with a slope of 45° until a certain point,
and then remain high and stable (flat), as well as those with
the inverse behavior (ones that start high and then gradu-
ally reduce their expression and remain low and flat). Such
patterns are typically symbolic of permanent changes (e.g.,
due to aging) in cell mechanisms, often seen among genes
in stem cells. While exploring these patterns, R2 discovered
two genes, gbx2 and klf5, in the results panel, that had sim-
ilar expression patterns within the same range of values,
and mentioned that the two genes indeed have similar func-
tionality and are actively being investigated. Next to these
two genes, he saw another gene spry4 with almost similar
expression, and hypothesized that the similarity in shape
indicates that spry4 possibly had similar functionalities to
gbx2 and klf5, something that is not well-known, and could
lead to interesting discoveries if true. Overall, as can be seen
in queries issued by participants, most of the patterns can
be expressed using 4 or fewer number of lines, indicating
that it is rare to search for patterns with a large number of
ShapeSegments.

IV. ShapeSearch helped participants find genes with unex-
pected or outlier behaviors. During the end of her study, R1
mentioned that it is rare to see a gene with two peaks in their
expressions within a short window. However, on searching for
this pattern via natural language, she found a gene named
“pvt1” having two peaks within a short time duration of 10
time points. She found this surprising, and said there could
either be some preprocessing error, or some rare activity hap-
pening in the cell. She then searched for other unexpected
patterns (e.g., three peaks, always increasing).

V. Both NL and Regex were equally preferred. When asked
to compare between NL and regex, R1 said she could ex-
press most of her queries using natural language, and would
use regex only when the pattern is too long, and involves
multiple constraints. R2, on the other hand, said he would
use regex in all scenarios. He believed regex was not signifi-
cantly difficult to learn, and helped him feel more in control
and confident about what he was expressing, and whether
the system was correctly inferring and executing his issued
queries.
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VL. Participants faced a few challenges during exploration.
They wanted to switch back and forth between queries, so
that they do not have to remember and reissue their previous
queries. In addition to better presentation of the the fitted
lines (e.g., coloring), they wanted to understand in more
detail how the scores were computed, and if they could tweak
the scoring according to their needs using visual widgets.

8 RELATED WORK

Our work draws on prior work in visual querying, symbolic
pattern mining, as well as natural language interfaces for
data analytics. In Table 10, we compare ShapeSearch capabil-
ities and expressiveness with three representative systems
from these areas: (1)our prior work Zenvisage, a general
purpose visual querying tool [38], (2) Qetch [26], a recent
sketch-based system, and (3) Shape Definition Language
(SDL), a symbolic pattern searching language for trendlines.
At a high-level, ShapeSearch builds on the system capabil-
ities of visual querying systems as well as expressiveness
of symbolic pattern languages, while extending both to suit
the needs of real domain users. Our user study in Section 6
compared ShapeSearch with (1) and (2) in terms of usability
and effectiveness. We summarize key differences with these
systems and others below.

Visual querying tools [27, 29, 35, 38, 42] help search for
visualizations with a desired shape by taking as input a sketch
of that shape. Most of these tools perform precise point-
wise matching using measures such as Euclidean distance or
DTW. A few tools such as TimeSearcher [9] let users apply
soft or hard constraints on the x and y range values via
boxes or query envelopes, but do not support mechanisms
for specifying shape primitives beyond location constraints.
Qetch improves upon these systems by supporting a custom
similarity metric that is robust to distortions in the user
sketch, in addition to supporting a “repeat” operator for
finding recurring patterns. However, as depicted in Table 10,
and discussed in Section 6, Qetch and other visual querying
tools have limited expressiveness when it comes to fuzzy
pattern match needs. Furthermore, ShapeSearch introduces
a novel algebra that improves extensibility by acting as a
common “substrate” for various input mechanisms, along
with an optimization engine that efficiently matches patterns
against a large collection of trendlines.

Symbolic sequence matching papers approach the prob-
lem of pattern matching by employing offline computation
to chunk trendlines into fixed length blocks, encoding each
block with a symbol that describes the pattern in that block [7,
13, 16, 25, 37]. The most relevant one of these papers is on
the Shape Definition Language (SDL) [7], which encodes
each block using “up”, “down”, and “flat” patterns, much like
ShapeSearch, and supports a language for searching for pat-
terns based on their sequence or the number of occurrences.
Since SDL operates on pre-chunked-and-labeled trendlines,



Table 10: ShapeSearch vs. related systems capabilities

Aspect Zenvisage  Qetch SDL  ShapeSearch
System Capabilities

Precise Pattern 4 L4 X 4

Fuzzy Pattern X v v
Specification sketch sketch regex  sketch, NL, Regex
Auto Smoothing X 44 v v
Algorithm ED,DTW  Custom Custom Custom
Ad hoc Patterns v v X v
Normalization v v X v/ (z-score)
Indexing Needed v v X v
Scalability L4 v v L4
Extensibility X X X v
Query Expressivity

Range Constraints v v X L4
Sub-Pattern Matching v v v L4
Sequence Matching X X v v
Width Selection X X X L4

Multi- X or Y Constraints X X X v
Quantifiers X v (repeat) 4 vV
Iteration X X X v

Nesting X X X v
Back/Forward Reference X X X v

the problem is one of matching regular expressions against
string sequences (one per pre-labeled trendline). Therefore,
SDL cannot rank these trendlines, instead only returning a
boolean score for whether the pattern matches the string
sequence. This limits the expressiveness of SDL (Table 10),
especially when the patterns are more complex, as well as
when they don’t align perfectly well with the boundaries of
the blocks used for chunking. Moreover, since the trendlines
are pre-labeled and indexed, SDL does not support on-the-
fly pattern matching where the same trendline can change
shapes based on filters or aggregation constraints. Shape-
Search, on the other hand, adopts a more online query-aware
ranking of trendlines without requiring precomputation, and
is thus more suited for ad-hoc data exploration scenarios.

There are a few visual time series exploration tools such as
Metro-Viz [12] and ONEX [30] that support other analytics
tasks such as anomaly detection and clustering. There is also
a large body of work on keyword- and natural language-
based interfaces for querying databases [24] and generating
visualizations [15, 36]. However, since the underlying shape
query algebra in ShapeSearch is different from SQL, parsing
and translation strategies from existing work cannot be easily
adapted.

9 CONCLUSION

We presented ShapeSearch, an end-to-end pattern search
system, providing flexible mechanisms for domain experts to
effortlessly and efficiently search for trendlines with desired
shapes. We introduced ShapeQuery, which forms the core of
ShapeSearch, and helps express a large variety of patterns
with a minimal set of primitives and operators, as well as an
execution engine that enables interactive pattern matching
on a large collection of visualizations. Our user study, case
study with genomics researchers, along with performance
experiments demonstrate the efficiency, effectiveness, and
usability of ShapeSearch. ShapeSearch is a promising step
towards accelerating the search for insights in data, while
catering to the needs of expert and novice programmers
alike.
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A APPENDIX

Here, we explain our methodology for crowdsourcing natural
language-based pattern queries in trendlines. We use crowd-
sourced queries for two purposes. First, we analyze them for
characterizing trendline patterns, that we explain in Section 1.
Second, we use it for training a parser for automatically
translating natural language queries to ShapeQueries. We
explain the features and translation steps in Section 4.

A.1 Crowd Study Methodology

We conducted the crowd study using Amazon Mechanical
Turk, where we asked workers to describe patterns in trend-
lines using English language sentences. We describe the steps
below.

We first manually collected a total of 50 trendlines (called
anchor trendlines) with varying patterns from 4 datasets:
Worms, 50 words, Haptics, Weather from the UCI Machine
repository [6]. We mixed each of the anchor trendlines with
19 other trendlines from the same dataset, to create 50 col-
lections of 20 trendlines each.

Using these collections, we conducted a Mechanical Turk
study with a total of about 265 workers. In order to en-
sure good quality, each worker was selected through a pre-
screening HIT that tested their basic English language flu-
ency and the ability to write reasonably meaningful English
sentences.

Each worker was presented with an interface depicting
20 trendlines corresponding to one of the 50 collections. We
highlighted the anchor trendline by bordering it with a green-
colored box. Moreover, all trendlines had X and Y axis values
labeled. We asked workers to describe the pattern in the
anchor trendline using an English sentence. In addition, we
suggested that their description should be helpful in locating
the anchor trendline if it was not highlighted. Workers had
to write the English description in a textbox at the top of the
interface.



After filtering out responses that did not address the task,
there were a total of 250 English sentences, with about 5 Eng-
lish sentences on average for each of the anchor trendlines.

Analysis. In addition to manual inspection, we performed
text-analysis on collected sentences to understand some of
the frequent words as well as sentence structure used by
workers for describing patterns. We noticed that a large ma-
jority (> 80%) of the sentences included either “increasing”,’
decreasing”, “flat" or their synonyms. Moreover, whenever
there were multiple occurrences of these words in the same
sentence, they were frequently separated by “and”, “and
then”, “next”, “. Many of the sentences also included or-
dering words such as first, second, or third. While a large
majority of the workers did not provide details on the X
and Y range values of individual patterns in the query, those
who did mostly mentioned the start and end locations of the
individual patterns. Overall, more than 98% of the sentences
included less than 20 words, and < 5 patterns per sentence.
We summarize the key characteristics of collected queries in
Section 1.

Labeling for NL to ShapeQuery translation . We also used
the collected sentences for training a conditional random
field (CRF) model for translating natural language queries to
ShapeQueries. In order to do so, we manually annotated the
words in the collected queries with primitives and operators
supported in the ShapeQuery algebra. We used the annotated
queries for training a conditional random field (CRF) model
for translating natural language queries to ShapeQueries.
We explained the features and translation steps in Section 4.
On 5-fold cross-validation over these queries, the model had
an F1 score of 81% (precison = 73%, recall = 90%), showing
that the structure and key constructs (e.g., primitives and op-
erators in ShapeQuery algeabra) in natural language-based
pattern queries have high degree of predictability.

A.2 Approximate Matching using Sketch

In this section, we provide more details on how a sketch is
translated to regex for approximate matching. This process
consists of two steps: 1) converting a sketch to a sequence
of minimal number of line segments, and 2) constructing
a regex query using the slopes of the line segments. We
describe each of these steps below.

1. Converting sketch to a sequence of lines. Given an
user-drawn sketch, ShapeSearch approximates it using as
fewer number of lines as possible. However, too few lines
can often lead to a poor approximation of the sketch, e.g.,
approximating a bell-shaped sketch with a single line seg-
ment. In order to avoid this, we minimize the number of lines
with a constraint that the approximation error is within a
specific threshold e. For doing so, we take as input a smooth-
ing granularity, s, between 0 and 1, that users can vary via
a slider (Figure 2a-2a). Higher the smoothing granularity,
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the fewer the number of lines needed to approximate the
sketch, and vice-versa. Internally, smoothing is translated
to a R? error [1] threshold, e, as e = 1 — s. We note that the
problem of finding the minimum number of lines within an
error threshold e is a well-studied problem in time series.
Problem 2. Given a time series T, find the minimal line ap-
proximation of T such that the combined R? error for all lines
does not exceed e.

If we knew the minimal number of lines in advance, the

problem can be optimally solved using a dynamic program-
ming algorithm [40]. However, it is difficult to know the
minimum number of lines in advance, and thus we use an-
other top-down segmentation algorithm [20] that has been
well-studied in time series. The algorithm starts with a single
line approximation, and recursively segments lines into more
lines until the R? error is below e. For choosing the point
for segmentation, e.g., from a single line to two lines, the
top-down algorithm considers every point for segmentation
and chooses the one that leads to the maximum reduction
in R? error after segmentation. The time complexity of the
algorithm for a trendline with n points and K number of
lines is O(n? x K).
2. Constructing a regex query. After approximating the
sketch with lines, ShapeSearch constructs a regex query us-
ing the slopes of the lines. Formally, given K lines with slopes
01,05, 05, ..., Ok, ShapeSearch constructs the following regex:
[p= 01]®[p= 0:] ... ®[p= 0k ]. After translation, the regex rep-
resentation of the sketch is shown to the user for validation
in the correction panel (Figure 2a Box 3) The validated query
is finally optimized and executed, and the top visualizations
that best match the ShapeQuery are presented in the results
panel (Figure 2a Box 4).
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