
ShapeSearch: A Flexible and Efficient System for
Shape-based Exploration of Trendlines

Tarique Siddiqui
1
, Zesheng Wang

1
, Paul Luh

1
, Karrie Karahalios

1
, Aditya G. Parameswaran

2

1
University of Illinois (UIUC),

2
UC Berkeley

{tsiddiq2, zwang180, luh2, kkarahal}@illinois.edu, adityagp@berkeley.edu

ABSTRACT
Identifying trendline visualizations with desired patterns

is a common task during data exploration. Existing visual

analytics tools offer limited flexibility, expressiveness, and
scalability for such tasks, especially when the pattern of

interest is under-specified and approximate. We propose

ShapeSearch, an efficient and flexible pattern-searching tool,

that enables the search for desired patterns via multiple

mechanisms: sketch, natural-language, and visual regular

expressions. We develop a novel shape querying algebra, with
a minimal set of primitives and operators that can express a

wide variety of ShapeSearch queries, and design a natural-

language and regex-based parser to translate user queries to

the algebraic representation. To execute these queries within

interactive response times, ShapeSearch uses a fast shape

algebra execution engine with query-aware optimizations,

and perceptually-aware scoring methodologies. We present

a thorough evaluation of the system, including a user study,

a case study involving genomics data analysis, as well as per-

formance experiments, comparing against state-of-the-art

trendline shape matching approaches—that together demon-

strate the usability and scalability of ShapeSearch.

1 INTRODUCTION
Identifying patterns in trendlines or line charts is an inte-

gral part of data exploration—routinely performed by do-

main experts to make sense of their datasets, gain new in-

sights, and validate their hypotheses. For example, clinical

data analysts examine trends of health indicators such as

temperature and heart-rate for diagnosis of medical condi-

tions [18]; astronomers study the variation in properties of

galaxies over time to understand the history and makeup

of the Universe [28]; biologists analyze gene expression pat-

terns over time to study biological processes [23, 41]; and

financial analysts study trends in stock prices to predict fu-

ture behavior [17]. Due to the lack of extensive programming

experience, these domain experts typically perform manual

exploration, tediously examining trendlines one at a time

until they find ones that match their desired shape or pattern,

e.g., gene expressions that rise and then become stable.

Recent work has proposed tools that let users interactively

search for desired patterns [9, 26, 27, 38]. However, as we will

discuss below, these tools expect users to search in highly

constrained ways, and, in addition, are overly rigid in how

planetary object

early
regulation

late
regulation

short-term regulation

c) Luminosity trends of stars
varying with filter constraints

a) Gene expressions depicting
different biological processes

lu
m

in
os

ity

ge
ne

 e
xp

re
ss

io
ns

hours days
 b) Multiple stocks with

same pattern: two peaks

pr
ic

es

weeks

Ls= *

Ls<90 && Ls>10 stock a

stock c

stock b

Ls<100

Figure 1: Shapes characterizing real world phenomena

they assess a match. Most tools expect users to specify a

complete and exact trendline as input usually by sketching it

on a canvas, followed by computing distances between this

exact trendline and several candidate trendlines to identify

matches. As a result, these tools are unable to support search

when the desired shape is under-specified or approximate, e.g.,
finding stocks whose prices are decreasing for some time,

followed by a sharp rise, with the position and intensity of

movements being left unspecified, or when the desired shape

is complex, e.g., finding gene expression profiles where there

is an unspecified number of peaks and valleys followed by

a flattening out. Some data mining tools provide the abil-

ity to search for patterns in time series, e.g., [7, 16], but

require heavy precomputation, limiting ad-hoc exploration,

in addition to suffering from the same limitations in flexi-

bility as the visualization tools. Yet another alternative for

domain experts with programming expertise is to write code

to perform this flexible match, but writing code for each new

use-case, followed by manual optimization is often as tedious

as manual searching of visualizations to find patterns.

We present ShapeSearch, a visual data exploration sys-

tem that supports multiple novel mechanisms to express

and effortlessly search for desired patterns in trendlines. Be-

fore describing ShapeSearch, we first characterize typical
trendline pattern-based queries.

1.1 Characterizing Shape Queries
The design of ShapeSearch has been motivated by case stud-

ies and use-cases from domains such as genomics, astronomy,

battery science, and finance, using a process similar to our

earlier work [23]. We also collected a corpus of about 250 nat-

ural language queries via Mechanical Turk (mturk), where

we asked crowd workers to describe patterns in trendline vi-

sualizations collected from real world datasets
1
. We highlight

the key characteristics of pattern matching tasks, based on

1
Described in more detail in Appendix A.1.

1

ar
X

iv
:1

81
1.

07
97

7v
3

 [c
s.D

B
]

29
 Ja

n
20

20

our discussions with domain experts and analysis of mturk

queries below.

Fuzzy Matching. Domain experts typically search for pat-

terns (i) that are approximate, and are often not interested

in the specific details or local fluctuations as much as the

overall shape, and (ii) they often do not specify or even know

the exact location of the occurrence of patterns. For example,

biologists routinely look for structural changes in gene ex-

pression, e.g., rising and falling at different times (Figure 1a).

Structural changes characterize internal biological processes

such as the cell cycle or circadian rhythms, or external per-

turbation, such as the influence of a drug or presence of

a disease. Similarly, many crowd workers tend to describe

trendlines using high level patterns such as increasing and
then decreasing, without being precise about locations and/or
features of the changes.

Combination of Multiple Simple Patterns. We notice

that both domain experts as well as crowd workers often

describe complex patterns using a combination of multiple
simple ones. Each individual pattern is typically described

using words such as "increasing", "stable", or "falling", which

are easy to state in natural language but hard to specify using

existing query languages. Moreover, pattern matching tasks

in many domains often go beyond finding a sequence of pat-

terns, requiring arbitrary combinations, e.g., disjunction, con-

junction, or quantification, with varying location or width

constraints. Examples include finding stocks with at least

2 peaks within a span of 6 months, e.g., the so-called "dou-

ble/triple top" patterns that indicate future downtrends [3],

or finding cities where the temperature rises from November

to January and falls during May to July, such as Sydney.

Ad hoc and Interactive. Pattern-based queries are often

defined on-the-fly during analysis, based on other patterns

observed. For instance, biologists often search for a pattern

in a group of genes similar to a pattern recently discovered

in another group [23]. Similarly, astronomers monitor the

shape of the luminosity trends of stars over time to search

for and characterize new planetary objects (Figure 1c). For

example, a dip in brightness often indicates a planetary object

passing between the star and the telescope. In order to

limit comparison of patterns over similar duration (i.e., the

X axis) or over value ranges (i.e, the Y axis), it is common to

apply constraints while pattern matching. Examples include

searching for changes in buying and selling patterns of stock

or house prices in a specific range or duration. As such, some

tools, e.g., TimeSearcher [9], allow interactive specification

of constraints, however the pattern matching is still precise

or value-based.

1.2 Our Approach
To satisfy the aforementioned characteristics, ShapeSearch
makes three contributions.

Table 1: Comparison between specification mechanisms
Mechanism Intuitiveness Control Expressiveness

Natural language high low high

Sketch high high low

Regex low high high

(a) ShapeSearch incorporates an expressive shape query al-
gebra that abstracts key shape-based primitives and opera-

tors for expressing a variety of desired trendline patterns.

The most powerful feature of this algebra is its capability

for “fuzzy” matching, allowing approximate and inexact pat-

tern specification, without compromising on the needs of

occasional precise queries. We developed this algebra after

discussions with domain experts, as well as studying mturk

pattern queries, as mentioned earlier.

(b) Unfortunately, naïvely executing these fuzzy queries is

extremely slow, requiring an expensive evaluation of all pos-

sible ways of matching each candidate trendline to the query

to select the best one. We propose a dynamic programming-

based optimal algorithm that reuses computation to provide

substantial speed-ups, and show that even this algorithm

can be prohibitively slow for interactive ad-hoc exploration.

We then develop a novel perceptually-aware bottom-up al-

gorithm that incrementally prunes the search space based

on patterns specified in the query, providing a 40× speedup

with over 85% accuracy, compared to the optimal approach.

(c) Finally, to accommodate a range of needs without sacrific-

ing the expressiveness of the algebra, ShapeSearch supports

three query specification mechanisms (Table 1): sketching on

a canvas, natural language, and regular expressions (regex

for short). All specification mechanisms are translated to the

same shape query algebra representation, and can be used

interchangeably, as user needs evolve.

Next, we explain how a user interacts with ShapeSearch.

1.3 ShapeSearch System Overview
Figure 2a depicts the ShapeSearch interface, with an example

query on genomics data. Here, a user wants to search for

genes that get suppressed due to the influence of a drug, with

a specific shape in their gene expression—first rising, then

going down, and finally rising again—with three patterns:

up, down, and up, in a sequence. To search for this shape,

the user first loads the dataset [8], via a form (Figure 2a

box 1), and then selects the space of trendline visualizations

to explore by setting parameters: x axis as time, y axis as

expression values, and category/z axis as gene. ShapeSearch
generates a trendline visualization for each unique value of

the z axis. Thus, the z axis defines the space of visualizations
over which we match the shape. Once the data is loaded,

the user can leverage three mechanisms for shape query

specification:

Sketching on Canvas. By drawing the desired shape as a

sketch on the canvas (Figure 2a box 2a), the user can search

for trendlines that precisely match this sketch, using a dis-

tance measure such as Euclidean distance or Dynamic Time

2

2a

3
1

2b

2c

4

Attribute Selection

Sketch-based Querying

Natural language-based Querying

Regular expression-based Querying

Search Results

Correction Panel

ShapeSeek Components Overview

(a) ShapeSearch Interface

Symbol Name Type

x.s START X VALUE Location Sub-Primitive

y.s START Y VALUE Location Sub-Primitive

x.e END X VALUE Location Sub-Primitive

y.e END Y VALUE Location Sub-Primitive

v SKETCH Location Sub-Primitive

p PATTERN Primitive

⊗ CONCAT Operator

⊙ AND Operator

⊕ OR Operator

(b) Algebra Primitives and Operations
⊗

[p=up][p=down] ⊕

⊗ [p=up]

[p=up] [p=down]

(c) ShapeQuery AST

Figure 2: a) ShapeSearch Interface, consisting of six components. Box 1: Data upload, attributes selection, and applying filter
constraints; Box 2: Query specification—Box 2a: Sketching canvas, Box 2b: Natural language query interface, and Box 2c: Reg-
ular expression interface; Box 3: Correction panel; and Box 4) Results panel. b) Primitives and Operators in ShapeQuery. c)
Abstract tree representation of ShapeQuery [p=up]⊗[p=down]⊗(([p=up]⊗[p=down])⊕[p=flat])

Warping [32]. ShapeSearch outputs visualizations similar to

the drawn sketch in the results panel (Figure 2a box 4).

Natural Language (NL). For searching for approximate pat-

tern matches, users can use natural language. For instance,

in Figure 2a box 2b, the desired genomics shape can be ex-

pressed as “show me genes that are rising, then going down,
and then increasing”. Similarly, scientists analyzing cosmolog-

ical data can search for supernovae (bright stellar explosions)

using “find me objects with a sharp peak in luminosity”.
Regular Expression (regex). For queries that involve com-

plex combinations of patterns that are difficult to express

using natural language or sketch, the user can issue a regu-

lar expression-like query that directly maps to the internal

ShapeQuery algebraic representation, consisting of Shape-
Search primitives and operations. While sketch is typically

used for precise matching, ShapeSearch also allows approx-

imate matching via sketch by constructing a regex from a

sketch (see Appendix A.2).

The ShapeSearch back-end parses and translates all queries
into the ShapeQuery algebra before execution. For translat-

ing natural language queries, ShapeSearch supports a so-

phisticated parser that uses a mix of learning and rules for

resolving syntactic and semantic ambiguities. After transla-

tion, the backend forwards the regex representation of the

query to the user for validation or correction (Figure 2a Box

3). The validated query is finally optimized and executed,

and the top visualizations that best match the ShapeQuery
are presented in the results panel (Figure 2a Box 4).

Paper Outline. We explain the three key components of

ShapeSearch in the following sections. In Section 2, we give

an overview of the ShapeQuery algebra, along with its prim-

itives and operators. In Section 3, we discuss the challenges

in executing fuzzy shape queries and how we make Shape-
Search scale to large collections of trendlines. We briefly

explain the natural language translation in Section 4. We

describe our performance experiments evaluating the effi-

ciency and accuracy of the ShapeSearch pattern execution

engine in Section 5. We present a user study in Section 6

and a genomics case study in Section 7, evaluating the ex-

pressiveness, effectiveness, and usability of ShapeSearch.
We presented an early version of ShapeSearch in a demo

paper [2].

2 SHAPEQUERY ALGEBRA
We give an overview of ShapeQuery, a structured query

algebra, motivated from use-cases in real domains as well as

our analysis of the crowdsourced pattern queries.

Overview. The ShapeQuery algebra consists of a minimal

set of primitives and operators for declaratively express-

ing a rich variety of patterns, while supporting the three

characteristics of pattern-matching tasks described in the in-

troduction. At a high level, a ShapeQuery represents a shape
as a combination of multiple simple patterns. A simple pat-

tern can either be precise with specific location constraints,

e.g., matching y = x between x = 2 to x = 6, or fuzzy, e.g.,

roughly increasing, where the notion of the pattern is ap-

proximate and its location unspecified. Each simple pattern

along with its precise or imprecise constraints is called a

ShapeSegment. Complex shapes, e.g., rising and then falling,

are formed by combining multiple ShapeSegments using one
or more operators. One can search for multiple patterns in

a sequence (concat, ⊗) or matching the same sub-region of

the trendline (and, ⊙), or one of many patterns matching a

sub-region (or, ⊕), described later.

3

As an example,“rising from x=2 to x=5 and then falling”

can be translated into a ShapeQuery [x.s=2,x.e=5, p=up]
⊗[p=down] consisting of two ShapeSegments separated by a

⊗ operator. The first ShapeSegment captures “rising from

x = 2 to x = 5”; the second expresses a “falling" pattern.

Since the second must “follow” the first, the two ShapeSeg-
ments are combined using the CONCAT operator, denoted

by ⊗. We now describe the shape primitives and operators

that constitute ShapeQuery algebra. Table 2b lists these prim-

itives and operators.

2.1 Shape Primitives and Operators
A ShapeSegment is described using two high level primi-

tives: LOCATION and PATTERN. ShapeSearch allows users

to skip one or more of these primitives in their query. The

LOCATION values can be skipped in order to match the

PATTERN anywhere in the trendline. Similarly, users can

input the exact trendline to match, or the endpoints of the

ShapeSegments to match without specifying the PATTERN.
We describe each of these supported primitives.

Specifying LOCATION. LOCATION defines the endpoints

of the sub-region of the trendline between which a pat-

tern is matched: starting X/Y coordinate (x.s/y.s), end-
ing X/Y coordinate (x.e/y.e). For example, [x.s=2,x.e=10,
y.s=10,y.e=100] is a simple ShapeQuery to find trend-

lines whose trend between x=2 to x=10 is similar to the

line segment from (2, 10) to (10, 100). Users can also draw

a sketch to find trendlines similar to the sketch, a function-

ality supported in other tools alluded to in the introduc-

tion [9, 27, 38]. ShapeSearch translates the pixel values of

the user-drawn sketch to the domain values of the X and Y

attributes, and adds the transformed vector of (x ,y) values
as a vector v in the ShapeQuery. As an example, the Shape-
Query [v=(2:10,3:14,...,10:100)] finds trendlines that
have precisely similar values to v using a distance measure,

e.g., Euclidean distance, or dynamic time warping [32].

Specifying PATTERN. PATTERN defines a trend or a seman-

tic feature in a sub-region of the trendline. A number of

basic semantic patterns, commonly used for characterizing

trendlines, are supported, such as up, down, flat, or the slope
(θ) in degrees. For example [p=up] finds trendlines that are
increasing, [p=45] finds trendlines that are increasing with
a slope of about 45

◦
, and [x.s=2,x.e=10, p=up] finds trend-

lines that are increasing from x = 2 to 10. Finally, one can

use p=* to match any pattern and p=empty to ensure that

there are no points over the sub-region.

Combining PATTERNs. ShapeQuery supports three opera-

tors to combine ShapeSegments:
• CONCAT (⊗) specifies a sequence of two or more Shape-
Segments. For example, using [p=up]⊗[p=down] one can

search for genes that are first rising, and then falling.

Note that ⊗ is one of the most frequently used operations,

and we sometimes omit ⊗ between ShapeSegments, e.g,
[p=up][p=down], to make it succinct to describe.

• AND (⊙) simultaneously matches multiple patterns in the

same sub-region of the trendline. Unlike CONCAT, all of
the patterns must be present in the same sub-region. For

example, one can look for genes whose expression values

rise twice but do not fall more than once within the same

sub-region.

• OR (⊕) searches for one among many patterns in the same

sub-region of the trendline, picking the one that matches

the sub-region best. For example, one can search for genes

whose expressions are either up- or down-regulated.
Note that when the same operator is specified consecu-

tively, ShapeSearch fuses them into one, hence all opera-

tors can take two or more operands. For example, [p=up]
⊗[p=down] ⊗[p=down] is parsed as a single ⊗ operation with

three operands [p=up], [p=down], and [p=down].
Multiple operations are often used in a given ShapeQuery.

ShapeSearch follows left to right precedence order for exe-

cution of the operations. However, sub-expressions can be

nested using parentheses () to specify precedence as in math-

ematical expressions. In Figure 2c, we depict how Shape-
Search parses a complex ShapeQuery [p=up]⊗[p=down]
⊗(([p=up]⊗[p=down])⊕[p=flat]) into an Abstract Syntax

Tree (AST) representation.

Comparing Patterns. In some cases, one may want to com-

pare the pattern in a ShapeSegment with the preceding

or succeeding ShapeSegments. To support such use cases,

ShapeSearch (i) allows a ShapeSegment to refer to the previ-
ous or the next ShapeSegment using $+ or $− respectively,

and (ii) compare patterns between the current and referred

ShapeSegment using operations >, <, or =. For example, as-

tronomers can issue a ShapeQuery [p=up]⊗[p < $−.p] with
x=time and y=luminosity (brightness) to search for celes-

tial objects that were initially moving rapidly towards earth,

but after some point either slowed down or started moving

away. The second ShapeSegment [p < $−.p] ensures that the
slope of brightness over time is less than that in the previous

sub-region [p=up].
Similarly, one can set p <

1

2
$−.p to ensure the slope of

second sub-region is ≤ 1

2
of the first. To avoid ambiguity in

position reference and for efficient execution, ShapeSearch
restricts $-based references to a simple CONCAT operation,

i.e., across a sequence of patterns at the same level of nesting.

Expressing complex patterns. The aforementioned basic

primitives and operators are powerful enough to express

more complex ShapeSearch use-cases. We discuss three such

complex patterns below, along with shortcuts for their easy

specification.

1. Searching shapes of specific width. In some cases, users

want to find specific shapes irrespective of their start loca-

tion. For example, one may want to search for cities with

maximum rise in temperature over a width of 3 months. To

4

Table 2: Examples of ShapeQueries
Pattern ShapeQuery
Increasing from 2 to 5 and then decreasing [p=up, x.s=2, x.e=10]⊗[p=down]
Decreasing or increasing anywhere [p = *]⊗(p=up⊕p=down) ⊗[p = *]

Increasing at 45, decreasing at 60 and then becomes flat [p = 45]⊗[p = -60]⊗[p = flat]

Decreasing over a width of 3 points: [x.s=., x.e=.+3, p=down]

Increasing at least once and at most 5 [p=up, q=1,5]

W shaped pattern [p=-45]⊗[p = 60]⊗[p=-45]⊗[p = 60]

Specific sketch [v = (2:10,3:14,...,10:100)]

Shape whose trend is increasing relatives its own trend

before some point in the past (e.g, inverted bell shaped)

[p=down]⊗[p > $−.p]

Table 3: Pattern Scores
P Score

up 2·tan−1(slope)
π

down − 2·tan−1(slope)
π

flat (1.0 − ∥ 4·tan
−1(slope)
π ∥)

θ =

x
(1.0 − ∥ 2·tan

−1(slope−x))
(π−∥tan−1(x ∥) ∥)

∗ 1

empty -1

v L2 norm (configurable)

Table 4: Operator
Scores
O Score

⊗ ∑k
i=1 scorei/k

⊙ min(score1, ..., scorek)
⊕ max(score1, ..., scorek)

express such queries, ShapeSearch supports the ITERATOR
(.), e.g., [x.s=.,x.e=x.s+3,p=up] that iterates over all points
in the trendline, setting each point as the start x position,

with the x end position set to 3 units ahead. Internally, for a

trendline of length n, this query can be rewritten as an OR
operation over (n − 3 + 1) ShapeSegments, where, for the
ith ShapeSegment, x.s=i and x.e=i+3.

2. Quantifiers. One can search for trendlines where a pat-

tern occurs a specific number of times using quantifiers,

denoted by q. For example, [p=up,q={1,2}] can be used to

search for trendlines where there is an increasing pattern

at least once and at most twice. Quantifiers can be inter-

nally rewritten using an OR of one or more CONCAT oper-

ations. For example, the above query is rewritten as ([p=*]
⊗[p=up]⊗[p=*])⊕([p=*]⊗[p=up]⊗[p=*] ⊗[p=up]⊗[p=*]).
3. Nesting A combination of patterns can be constrained to

be within a specific sub-region by specifying them as a value

of the PATTERN primitive. For example, to search for stocks

that increased anytime between February to October, we can

use nesting as follows: [x.s=2,x.e=10, p=([p=*][p=up][p=*])].
This can be rewritten using CONCAT operations as follows:

[x.s=2,p=*]⊗[p=up]⊗[p=*]⊗[x.s=10,p=*].
4. Scale invariant matching. One can automatically search

for shapes at varying granularity of x-scales and degree of

smoothing. For example, for [p=*]⊗[p=up] ⊗[p=down]⊗[p=*],
ShapeSearch searches for [p=up] and then [p=down] at all
possible scales and selects the one that leads to the best

match. To do so, ShapeSearch uses efficient algorithms that

we describe in the subsequent sections.

As ShapeSearch evolves, it may support additional short-

cuts to simplify the writing of frequently used complex pat-

terns.However, all of the complex patterns as well as the

shortcuts can be expressed using basic primitives and opera-

tions for their execution. Thus, we omit further discussion

of complex patterns and limit ourselves to the semantics and

efficient scoring of basic primitives and operators.

2.2 Formal semantics of ShapeQuery
We now formally define the semantics of ShapeQuery.

Given three dataset attributes x , y, and z, ShapeSearch
first generates a collection of trendlines V , one for each

unique value of the z attribute. Each trendline is a sequence

of (x , y) values ordered by x . A ShapeQuery Q operates on

one trendline,Vi , at a time, and returns a real number, called

score, between −1 to +1, i.e., Q : Vi → score; score ∈ [−1, 1].

The value of score describes how closely Vi matches Q , with

+1 the best possible match, and −1 the worst.
The ShapeQuery Q operates onVi with the help of Shape-

Segments (S1, S2, . . . , Sn) and operators (O1,O2, . . . ,Om). Each

ShapeSegment, Si operates on V
p,q
i , a sub-region of Vi start-

ing at p = x .s and ending at q = x .e and returns a scorei ∈
[−1, 1] using scoring functions we describe subsequently. A

common subclass of ShapeQueries are fuzzy ShapeQueries.
A fuzzy ShapeQuery is a sequence of ShapeSegments where
there is at least one ShapeSegment with missing or multiple

possible values for x .s or x .e . Thus, for fuzzy ShapeQueries,
we try all possible values of p and q, selecting the sub-region
that leads to the best score. One or more ShapeSegments are
combined using operators such as ⊗, ⊙, ⊕. Formally, an op-

erator Oi takes as input the scores score1, score2, . . . , scoren
from its n input ShapeSegments and outputs another scorei
using scoring functions that capture the behavior of the oper-

ators. When combined via AND or OR operators, ShapeSeg-
ments may operate on overlapping sub-regions V

p,q
i , how-

ever, for CONCAT, the sub-regions must not overlap since

CONCAT specifies a sequence of patterns. Next, we describe

our scoring methodology.

2.3 Scoring Methodology
For supporting interactive response times, ShapeSearch needs
to efficiently and effectively compute the match between a

ShapeQuery Q and a trendline Vi .
To satisfy both efficiency and effectiveness, ShapeSearch

approximates each sub-region with a line, using the slope to

quantify how closely it captures any given ShapeSegment.
The line-based quantification is robust to noise or minor

fluctuations, as is often intended in ShapeQueries. At the
same time, lines are extremely fast to compute, requiring

only a single pass on the data. As we explain shortly, lines

over larger sub-regions can be quickly inferred from lines

over over smaller ones, without additional passes. As the

complexity of a pattern increases, the number of lines re-

quired to approximate it also increases. However, even for

complex shapes, a small number of line segments is sufficient.

Our study of patterns (e.g., double-bottom, triple-top) in fi-

nance [17] as well as mturk queries reveal that the maximum

number of lines is usually small (typically less than 6).

As depicted in Table 3, ShapeSearch uses different scor-

ing functions for each pattern primitive that transforms the

5

slope to a value in [−1, 1] using a tan−1 function. For exam-

ple, for an up pattern, the function returns a score between

[0, 1] for all trendlines with slope from 0
◦
to 90

◦
, a score of

[−1, 0] for slopes < 0
◦
(opposite of up). Moreover, a change

in trend from 10
◦
to 30

◦
is visually more noticeable than

from 60
◦
to 80

◦
, thus we capture this behavior using tan−1

where the rate of increase in output decreases as the value

of slope increases. Finally, we apply normalization, such as

multiplying by 2/π , to re-scale the output of tan−1 between
−1 and 1. Thus, depending on the specified pattern primi-

tive, ShapeSearch uses the corresponding scoring function

to compute the score for that ShapeSegment. For a given

ShapeSegment, if the location constraints are not met, we

assign a score of -1, and ignore the rest of the primitives.

We state the following observation regarding the scoring

of a single ShapeSegment.
Observation 2.1. The scoring of a ShapeSegment, as part
of a ShapeQuery Q without comparisons, on a sub-region L
can be done using the slope of the corresponding single line
segment and the x .s , x .e , y.s , and y.e values of the sub-region,
independent of other sub-regions.
For a shape input as a sketch, users sometimes intend to

perform precise matching. For such ShapeSegments we com-

pute the score using L2 norm (Euclidean distance) between

the drawn sketch and the trendline without fitting a line

segment. The L2 norm can vary from 0 to∞; therefore, we
normalize the distance within [1, -1] using using Max-Min

normalization [4]. In addition, ShapeSearch allows users to

use sketch for fuzzy matching where ShapeSearch fits a min-

imum number of lines to the sketch given an error threshold

(adjustable via a slider), and automatically constructs a CON-

CAT operation of ShapeSegments, with one ShapeSegment
for each line with the pattern corresponding the slope of

the line. We provide more details on fuzzy matching using

sketch in Appendix A.2.

For two contiguous ShapeSegments compared using $-

references, ShapeSearch returns a single score as if they were
one single ShapeSegment evaluated over their combined sub-

region. Internally, ShapeSearch evaluates each of ShapeSeg-
ments over their corresponding sub-region independently

and combines scores across the CONCAT appropriately. The

score of the ShapeSegment that uses that $ reference is set to
+1 if the constraint is satisfied, otherwise it is set to −1. For
ease of explanation, we refer them as a single ShapeSegment
for the rest of the paper.

The scores across ShapeSegments are combined using the

scoring functions for the operations. Note that, in general,

as depicted in Figure 2c, the operands of an operator can be

sub-expressions involving other operators. Nevertheless, as

depicted in Table 4, the scoring functions for operators are

more straightforward as they directly capture the semantic

behavior of the operators. For instance, CONCAT matches a

sequence of patterns, therefore, the scoring function takes

average of the scores of its operands to give equal weightage

to each operand. AND matches multiple patterns over the

same sub-region, so to avoid any ShapeSegment not having
a good match, we take the minimum of all scores across its

operands. On the other hand, OR picks the best among all

matches, so it takes the maximum across all scores. From

these definitions, we state the following observations:

Observation 2.2. The scoring of AND or OR operations with
k operands on a sub-region L can be done by scoring each of
the k operands independently on the sub-region L.
Observation 2.3. The scoring of CONCAT with k operands
on sub-region L can be done by dividing sub-region L into
all possible sequences of k sub-regions, followed by scoring
operand i on sub-region i .

Note that the scoring of an operand can be done indepen-

dent of others. We used the term segmentation to refer to a

division of a sub-region into L sub-regions.

Ensuring goodness of fit. It is possible that a line poorly
approximates a given segment of the trendline. Therefore,

we use a configurable (via a slider) threshold parameter to

suggest how much error can be tolerated. For measuring the

goodness of fit, we compute the standard R2
error [1], also

called coefficient of determination, of the line, between 0 to

1, with higher values indicating lower errors and better fit.

ShapeSearch gives a score of −1 to a ShapeSegment for a
given sub-region if R2

is less than the threshold.

Overall algorithm. Algorithm 1 outlines the steps for scor-

ing a ShapeQuery. At the start, the algorithm takes the entire

trendline Vi as L, the Abstract Tree Representation (AST) of

ShapeQuery as Q , and the list of scoring functions ScrFunc
as in Tables 3 and 4 as inputs. If the root node of the Shape-
Query tree is a ShapeSegment, ShapeSearch directly com-

putes the score of the ShapeSegment on the sub-region using
scoring functions after checking the location and goodness

of fit constraints (lines 2-9). If the root node is ⊙ or ⊕, Shape-
Search invokes each of the operands (i.e., child sub-trees) to

compute their scores on the sub-region independently, com-

bining the scores as per their scoring functions (lines 14-18).

However, if the root node is a CONCAT with k operands, i.e.,

child sub-trees, ShapeSearch segments L into all possible k
sub-regions: L1,L2, ...,Lk , and then for each segmentation,

invokes the ith operand on ith segment (lines 20-30). Finally,

the maximum score across all segmentations is output.

3 EXECUTING FUZZY SHAPEQUERIES
The most interesting and powerful feature of ShapeSearch is

its capability for “fuzzy” matching, allowing users to search

for patterns without specifying exact locations, e.g., increas-

ing followed by decreasing. Recall that a a fuzzy ShapeQuery
is one with atleast one ShapeSegment with multiple possible
values for x .s or x .e .

6

Algorithm 1 ShapeQuery Scoring

Input: L: a sub-region of trendline, Q : a ShapeQuery
sub-expression, ScrFunc: scoring functions from Tables 3 and 4

Output: score
1: procedure ExecShapeQuery(L, Q , ScrFunc)
2: if Q .root is a ShapeSegment then
3: hasValidLoc <- CheckLocationConstraints(L, Q)
4: hasValidLineFit <- CheckGoodnessofFit(L)
5: if (hasValidLoc && hasValidLineFit) is False then
6: return -1;

7: end if
8: return ScrFunc(L,operator ,Q .root)
9: end if
10: operator ← Q .root .operator
11: operands ← operator .children
12: k = operands .size
13: operandscores ← []

14: if operator ∈ {⊙,⊕} then
15: for each child in operands do
16: operandscores .append(ExecShapeQuery(L,child))
17: end for
18: return ScrFunc(operator ,operandscores)
19: end if
20: if operator ∈ {⊗} then
21: candscores = []

22: for each segmentation {L1,L2, ...,Lk } of L do
23: sдtscores ← []

24: for each child in operands do
25: sдtscores .append(ExecShapeQuery(Li ,child))
26: end for
27: sдtscores← ScoreComparators(sдtscores ,Q .root)
28: candscores .append(ScrFunc(operator ,sдtscores))
29: end for
30: returnmax(candscores)
31: end if
32: end procedure

In the absence of exact location values for a CONCAT,
ShapeSearch has to exhaustively score all possible segmen-

tations to find the one with the best score (line 22-29 in

Algorithm 1). This becomes prohibitively expensive as the

number of points in the trendline increases. For example,

a fuzzy ShapeQuery [p=up]⊗[p=down]⊗[p=up] on a trend-

line with 100 points can result in 10
4
possible segmentations

for finding three segments that lead to the best score. More

generally, for a CONCATwith k operands, the exhaustive ap-

proach creates n(k−1) segmentations, where n is the number

of points in the trendline.

We state this problem formally:

Problem 1 (Fuzzy CONCAT Scoring). Given a CONCAT
operation with k operands and a sub-region L of the trendline
with n points, find the segmentation with k subregions where
the score of CONCAT is maximum.

3.1 The Dynamic Programming Algorithm
We first show that we can substantially reduce the number

of segmentations for a CONCAT operation on a sequence of

ShapeSegments by reusing the scores from CONCAT opera-

tions over sub-sequences of ShapeSegments. We, then, show

that this extends to the case when one or more operands

of CONCAT are AND or OR expressions, but none of the

operands internally involve nested CONCATs. Finally, we
show how we can reuse computations when an AND or

OR operand internally has a nested CONCAT or when an

operand is a nested CONCAT. We start with the simplest

case of a CONCAT on a sequence of ShapeSegments.
From Observation 2.3, it can be seen that for the CONCAT

operation itself, the scoring of the jth operand on jth sub-

region does not depend on the scoring of the first j − 1

operands on the first j − 1 sub-regions. Thus, we can find

the optimal segmentation of the first j − 1 operands over all
smaller sub-regions and combine them with the scores of jth
operand on the remaining part of the sub-region to find the

optimal segmentation.

Suppose the optimal segmentation of [p=up]⊗[p=down]
⊗[p=flat] over sub-region x=1 to x.e=100 is when [p=up] is
scored over the sub-region x.s=1 to x.e=45, [p=down] over
x.s=46 to x.e=60, and [p=flat] over x.s=61 to x.e=100.
Then, for another CONCAToperation involving a sub-sequence

[p=up]⊗[p=down] over the sub-region x.s=1 to x.e=60, the
optimal segmentation should have the same sub-regions for

[p=up] and [p=down] as in the previous CONCAT. This is

because the scoring of [p=flat] from x.s=61 to x.e=100
does not affect the scoring of [p=up]⊗[p=down] over x.s=1
to x.e=60.
We use this idea to develop a faster dynamic program-

ming algorithm (DP) for scoring CONCAT operations over

ShapeSegments. Formally, letOPT (1, t , (1 : j−1)) be the best
score corresponding to the optimal segmentation over the

sub-region between x = 1 to x = t for first j−1 operands, and
SC(t + 1, i, j) be the score of jth operand over the sub-region

between x = t +1 and x = i . Then, the optimal segmentation

OPT (1, i, (1 : j)) for first j operands over x = 1 and x = i can
be computed using the following recursion:

OPT (1, i, (1, j)) = MAX
t
{ (j−1)×OPT (1,t,(1:j−1))+SC(t+1,i, j))

j }
As base cases, we set OPT (m,m + 1, (j : j)) = SC(m,m +

1, j).
Using the above recurrence, we develop a DP algorithm

that reuses intermediate results bymemoizingOPT (1, i, (1, j))
in a 2D array of size n×k and SC(t +1, i, j) in 3D array of size

n ×n ×k . The DP algorithm considersO(n2k) segmentations

to find the optimal score.

Theorem 3.1. Finding the best segmentation for a CONCAT
operation on ShapeSegments arguments can be done inO(n2k)
using Dynamic Programming.

7

AND/OR operands with no nested CONCAT. Let the
ith operand of the CONCAT at the root be an AND/OR

expression with no nested CONCAT. From Observation 3.2,

and lines 17-22 in Algorithm 1, we can score operand i on sub-
region i without any segmentation. Thus, the above theorem

is also valid when an operand in theCONCAT operation is an
AND/OR expression with no CONCAT operations internally.

AND/OR operand with a nested CONCAT or directly
nested CONCATs. If the ith operand of the CONCAT at the

root consists of a nested CONCAT (either under an AND or

OR expression or directly), the ith sub-region needs to un-

dergo further segmentation to find the optimal score for the

nestedCONCAT. For example, for scoring the ShapeQuery in
Figure 2c, the DP algorithm is first invoked for the CONCAT
at the root node. The third operand for the root CONCAT is

an OR which consists of another CONCAT and [p=flat] as
its operands. Therefore, for every candidate sub-region for

the third operand, another DP algorithm is invoked for the

nestedCONCAT. However, this is not a problem since we can

reuse the score of ShapeSegments across invocations. For ex-
ample, in Figure 2c, CONCAT operations essentially involve

scoring of ShapeSegments [p=down], [p=up] over all possible
sub-regions. We, thus, score each ShapeSegment only once

for a given sub-region, and reuse it across multiple invoca-

tions of the DP algorithm for each CONCAT. Moreover, the

DP recursion involves SC(t + 1, i, j) for computing the cost

of the operand (i.e., sub-expression) j from sub-region t + 1
to i , which again can be shared across repeated invocations

of the same t , i, j.

Unfortunately, even though the DP algorithm is orders of

magnitude faster than the exhaustive approach, we note that

for trendlines with large number of points, even a Shape-
Querywith a singleCONCAT operation can be slow, because
of its quadratic runtime. As we will see in Section 5, the DP

algorithm takes 10s of seconds even for ShapeQueries with
3 or 4 ShapeSegments over trendlines with a few hundreds

of points. We, next, discuss optimizations to further decrease

the runtime of CONCAT operation on ShapeSegments.

3.2 A Pattern-Aware Bottom-up Approach
TheDP-based optimal approach scores all possible sub-regions

for each operand in the CONCAT operation. For instance,

consider a fuzzy ShapeQuery [p=up]⊗[p=down]⊗[p=flat]
and a trendline L of 120 points. Here, for operand [p=up], the
DP approach scores sub-regions of all possible sizes, starting

from the smallest possible sub-region (x.s=1 to x.e=2) to
(x.s=1 to x.e=116). Note that a sub-region requires at least

2 points to fit a line.

Greedy approach. Two sub-regions that differ only in a few
points tend to have similar scores. For instance, the scores

of [p=up] over sub-regions (x.s=1 to x.e=15) and (x.s=1 to

x.e=16) are likely to be similar. Therefore, an optimization

A B

P

Option 1
[p=up] [p=down][p=flat]

Option 2
[p=up] [p=down][p=flat]

Option 3
[p=up] [p=down][p=flat]

Figure 3: Pattern-aware selection of LOPs

over DP is to consider only those sub-regions for each Shape-
Segment that differ substantially in their sizes. For example,

a greedy approach could be to start with sub-regions of equal

size for each of the three ShapeSegments (i.e., 40 points each),
and then greedily vary their sizes until we reach the maxi-

mum. One way of varying their sizes is to greedily extend

one sub-region at a time, and proportionally shrink the oth-

ers. For example, the next three configurations after starting

with equal sizes could be: (60,30,30), (30,60,30), (30,30,60). We

pick the best of these and then repeat the process. Clearly,

this approach scores much fewer segmentations (O(loд(nk))),
compared to O(n2) segmentations explored by the DP ap-

proach. However, as we show in our experiments (Section 5),

such an approach leads to extremely poor accuracy.

Pattern-aware segmentation.The problemwith the greedy

approach is that it treats all points equally, and as possible

candidates for endpoints of ShapeSegments. A better ap-

proach could be to select end points to be those where the

slope (or pattern) changes drastically. We first illustrate our

intuition, and then describe an algorithm that performs seg-

mentation in a pattern-aware manner.

Intuition. As depicted in Figure 3, consider two sub-regions

A on the left and B on the right for the trendline L. Say the

trendline in sub-regionA is inverted V-shaped, i.e., increasing

until a point P and then decreasing. Now, for all possible

segmentations where [p=up]’s sub-region lies completely

in A, there are following possibilities for x.e of [p=up]: 1)
[p=up]’s x.e point is before P . 2) [p=up]’s x.e point is after

P . 3) [p=up]’s x.e point is at P .
Since [p=down] follows [p=up], we can see that option 1

that sets [p=up]’s x.e < P is less likely to be optimal as that

will lead to scoring of a part of [p=down] on an increasing

trend. Similarly, x.e > P is less optimal as that will lead to

scoring of a part of [p=up] on a decreasing trend. Thus, if

we have to (greedily) select one point in sub-region A for

[p=up]’s x.e, P is likely a better choice. We call such a point

as locally optimal point (LOP).
A Bottom-up algorithm. Based on the above intuition, we

develop a much faster algorithm that uses the following

assumption to reduce the number of segmentations.

Assumption 3.1 (Closure). If a point is not locally optimal
for any of the sub-expressions in the CONCAT operation (i.e.,

8

a CONCAT on a sub-sequence of the operands), it cannot be
x.s or x.e of a ShapeSegment in the optimal segmentation.

That is, local optimality leads to global optimality. Due

to this assumption, our proposed algorithm is approximate.

However, our empirical results (Section 5) show that despite

this assumption, the accuracy of the algorithm is very close

to that of DP, while taking orders of magnitude less time.

Algorithm 2 outlines the steps for scoring a fuzzy Shape-
Query. At a high level, the algorithm starts by dividing the

trendline into smaller contiguous sub-regions (line 2). Next,

it selects locally optimal points (LOPs), defined next, over

small sub-regions (line 12), followed by a bottom-up merging

step that uses LOPs over small sub-regions to find LOPs over

larger sub-regions.

Selection of LOPs. We define a point P to be a LOP in a

sub-regionA for the sub-expression Si if it is either the x.e of
the first ShapeSegment or the x.s of the last ShapeSegment
of Si . For instance, in the above example, it is easy to see

that a LOP P in sub-region A is the x.e value of [p=up] in

the optimal segmentation of [p=up]⊗[p=down] in A. Since

a CONCAT operation with k operands can have (k2) sub-
sequences, there can be a maximum of 2.k2 LOPs in A. The

SelectLOPs function (line 9) is used for selecting LOPs. It is a

variant of Algorithm 1 that returns both the final score as well

as the end points of lines that form the optimal segmentation.

Merging. Next, the algorithm incrementally merges nodes

in a bottom-up fashion to select LOPs over larger sub-regions

(lines 6 to 17). More specifically, the Merge function (line 23)

merges a sub-sequence t1 : si⊗si+1 ...⊗si+m−1 in the left child

with a sub-sequence t2 : sj⊗sj+1 ...⊗sj+n−1 in the right child

if (i) si+1...⊗si+m−1⊗sj ...⊗sj+n−1 is a subsequence of query Q ,

or (ii) si+1...⊗si+m−1⊗sj+1...⊗sj+n−1 is a subsequence of query
Q when si = sj (i.e., we consider the common boundary

ShapeSegment only once). While the score of the merged

subsequence for case (i) can be easily computed using the av-

erage of the scores of left and right subsequence weighted by

their number of ShapeSegments, i.e, m×score(t1)+n×score(t2)m+n ,

for case (ii) we rescore the common ShapeSegment by esti-

mating the slope of a line from the x.s of the last Shape-
Segment of t1 to x.e of the first ShapeSegment of t2. If
the sc is the score of common ShapeSegment, t1∗ and t2∗

are the scores of left and right subsequence without the

common ShapeSegment, then the score of the merged sub-

sequence is:
(m−1)×score(t1∗)+sc+(n−1)×score(t2∗)

m+n−1 . When multi-

ple sub-sequences in the children nodes generate the same

sub-sequence in the parent node, we select the sub-sequences

that result in maximum score after merging, i.e., the one with

the best optimal segmentation (line 24–25), thereby prun-

ing out LOPs corresponding to non-selected sub-sequences.

This merging process is repeated at each intermediate node.

Finally, at the root node, we select the points that result in

the maximum score for the entire sequence of operands.

Figure 4 depicts the logical order for scoring ShapeQuery
a⊗(b⊕(c⊗d)) over the sub-sub-regions. Here, a, b, c, and
d represent a ShapeSegment. The SegmentTree algorithm
starts by scoring individual ShapeSegments (e.g., a,b,c and
d in a⊗(b⊕(c⊗d))) independently over each of leaf nodes as

depicted in Figure 4. Next, it computes the scores of sub-

sequences in the intermediate nodes using the merging pro-

cess described below. For example, in Figure 4, node 4 depicts

the sub-sequences formed by combining sub-sequences from

nodes 1 and 2, and node 5 depicts the sub-sequences formed

by combining sub-sequences from nodes 3 and 4. When mul-

tiple sub-sequences in the children nodes generate the same

sub-sequence in the parent node, we select the sub-sequences

that result in maximum score after concatenation (i.e., the

one with the best optimal segmentation), thereby pruning

out LOPs corresponding to non-selected sub-sequences. For

example, at node 5, a⊗b can be computed from 1) a from node

3 and b from node 4, 2) a⊗b from node 3 and b from node

4, and 3) a from node 3 and a⊗b from node 4. Among the

3 concatenations, we pick the one that gives the maximum

score.

Theorem 3.2. Given the closure assumption, the bottom-up
algorithm with k CONCAT operands is optimal with a time
complexity ofO(nk4), i.e., linear in the number of points in the
trendlines.

Proof:We prove the above theorem via induction.

Base case. For a single node SegmentTree, there is no dif-

ference between the SegmentTree algorithm and DP, since

the SegmentTree algorithm uses DP to select the LOPs for a

single node.

Induction step. Let L and R be two sibling nodes in the

SegmentTree consisting of optimal scores for each possi-

ble subsequence of operands in the CONCAT operations,

and let P be their parent node. Let SLi(k−1) be the score of

sub-expression from operand i until k in L for the optimal

segmentation of (i − 1)th to kth operands in L and SR(k+1)j be

the score of the sub-expression from operand k + 1 until j
for the optimal segmentation of kth to j + 1th operands in R.
Let SPi j be the score of sub-expression of operand i until j in
P , formed by concatenation of operands i − 1 until k in L and

k until j + 1 in R. As per the Closure assumption, the optimal

segmentation corresponding to SPi j must include the optimal

segmentation i−1 until k in L and k until j+1 in R. Since kth
operand is common between L and R, we need to re-compute

its score over the sub-region from x.e of (k − 1)th operand

in L and x.s of (k + 1)th operand in R during concatenation.

Let scPk be the re-computed score of the kth ShapeSegment.
Then, Si j can thus be computed as:

Si j = MAX
k
{
(k−i)×SLi (k−1))+sc

P
k +(j−k)×S

R
(k+1, j))

(j−i+1) }
Since, for computing Si j , we consider all possible combi-

nations of optimal segmentations in L and R and pick the

one that gives the maximum score, it must be optimal.

9

Algorithm 2 Fuzzy Matching Algorithm

Input: L: a sub-region of trendline, Q : a CONCAT operation,

ScrFunc: scoring functions from Tables 3 and 4

Output: score
1: procedure ExecFuzzyQuery(L, Q , ScrFunc)
2: subReдions ← ComputeSubReдions(L) // leaf nodes
3: T ← ComputeSubSequences(Q)
4: nodes ← Queue()

5: // scoring of leaf segments
6: for each s in subReдions do
7: lops ← []

8: for each t in T do
9: lops[t]← SelectLOPs(s ,t)
10: end for
11: node ← [s .start, s .end, lops[t]]
12: nodes .add(node)
13: end for
14: // bottom-up processing
15: while nodes .size() > 1 do
16: s ← nodes .Size()
17: // pairwise merging of nodes at the same level
18: while s > 0 do
19: s1← nodes .deque(), s2← nodes .deque()
20: mlops ← []

21: for each t1,t2 in s1.lops .keys(),s2.lops .keys() do
22: score , lops ←Merge(L, s1[t1],s2[t2])
23: if score >mlops[t1⊗t2].score then
24: mlops[t1⊗t2] = {lops , score}
25: end if
26: end for
27: node ← [s1.start, s2.end,mlops]
28: nodes .add(node)
29: s = s − 1;

30: end while
31: end whilenode← nodes .deque()
32: return node .lops[Q].score
33: end procedure

Conclusion. Thus, by the principle of induction, the Seg-
mentTree algorithm must also be optimal over the entire

SegmentTree.
Time Complexity. For a sub-region of n points, the max-

imum number of leaf nodes is n/2 (since we need at least

2 points per sub-region) and therefore the total number of

nodes in the tree isn. At each of the leaf node, we estimate the

scores of each ShapeSegment independently, takingO(n×k)
operations across all leaf nodes. Each intermediate node

involves a merge step, involving concatenation of subse-

quences from left node with the right node. For k operands

in CONCAT, there can be a maximum of k2 subsequences
per node, requiring a total of k4 concatenations. Moreover,

each concatenation involves the computation of score scPk
of the kth ShapeSegment that intersects left and right child.

The computation of scPk involves the estimation of the slope

of line from x.e of (k − 1)th ShapeSegment in L to x.s of

a a,b,c,d a,b,c,d b,d… … a,b,c,d

a,a⊗b,a⊗c a,b,a⊗b,a⊗c,c⊗d,b⊕c⊗d a,b,a⊗b,a⊗c,c⊗d,(b⊕c⊗d)

a,a⊗b,a⊗c,c⊗d,a⊗(b⊕c⊗d) b,a⊗b,a⊗c,c⊗d,(b⊕c⊗d),a⊗(b⊕c⊗d)

a⊗(b⊕c⊗d)

…

a,b,c,d

5

3 4

1 2

6

2
43

1
6

Figure 4: Bottom-up scoring of ShapeQuery

k + 1th ShapeSegment in R, which can be done in constant

time from the statistics of kth ShapeSegment’s sub-region in

L and R (see Theorem 3.3). Thus, each merging step involves

O(k4) operations. Overall, the SegmentTree algorithm takes

O(n/2 × k4 + nk) ≈ O(nk4) time, i.e., linear in the number

of points in the sub-region. In practice, k4 is not a problem,

since not all combinations of sub-sequences lead to a valid

sub-sequence in the CONCAT operands, therefore the actual

number of merges are much fewer. Moreover, k is typically

small (≤ 5). □.

3.3 Pruning Optimization
A large number of ShapeQueries are sequential patternmatch-

ing queries, consisting of only a single CONCAT operation

on a sequence of simple patterns such as up, down, θ = x .
For such CONCAT operations, we can bound the final scores

of trendlines and filter low-scoring trendlines without scor-

ing them until the root node of the SegmentTree. We first

describe our key observations.

Observation 3.1 Given a sub-region L comprising of sub-

sub-regions: L1,L2, ...,Ln , the score of a ShapeSegment con-
sisting of patterns up or down over L, scoreup/down,L is bounded

between the maximum and minimum scores over any of the

smaller sub-regions, i.e.,MIN
i
(scoreup/down,Li) ≤

scoreup/down,L ≤ MAX
i
(scoreup/down,Li).

This observation holds because the scores of up or down
varymonotonically with the slope of the line, and the slope of

the line over the large sub-region is always bounded between

the maximum and minimum slopes of the lines over any

smaller regions,MIN
i
(slopeLi) ≤

slopeL ≤ MAX
i
(slopeLi)

However, when a slope (e.g., θ = x) is specified as pat-

tern, the above observation does not hold forMIN
i
(slopeLi)

≤ x ≤ MAX
i
(slopeLi), because the scorex,L can be more than

MAX
i
(scorex,Li) when |x − slopeL | ≤ MIN

i
(x − slopeLi). For

such cases, we set the upper bound to 1, the maximum pos-

sible score.

Observation 3.2 The score of an operator is bounded be-

tween the minimum and maximum scores of input Shape-
Segments.

10

Table 5: Bounds on scores for different patterns based on
scores at a given level i in the SegmentTree

Pattern Max possible Score Min possible Score
up max across all level i nodes min across all level i nodes
down max across all level i nodes min across all level i nodes

flat

max across all level i
nodes if all θ > 0 or all

θ < 0; otherwise 1

min across all level i nodes

θ = x
max across all level i
nodes if all θ > x or θ
< x ; otherwise 1

min across all level i nodes

This observation is clear from the scoring functions of

operators as defined in Table 4.

Based on the above observations, we can derive the bounds

on the final score of a ShapeSegment at the root node using
the maximum and minimum scores of the ShapeSegment
at a given level i in the SegmentTree. We summarize the

bounds for each of the patterns in Table 5.

Thus, instead of processing each trendline completely in

one go, we process trendlines in rounds. In each round, we

process one level of SegmentTree for all of the trendlines
simultaneously, and incrementally refine the upper and lower

bounds on their scores. Before moving on to the upper levels,

we prune the trendlines that have their upper bound score

lower than the current top-k lower bound scores. Overall, the

pruning optimization helps avoid processing to completion

for a large number of trendlines in the collection, and is

particularly effective when the user is looking for trendlines

with rare patterns.

3.4 Additional Optimizations
ShapeSearch supports a couple of additional optimizations

that result in faster scoring of trendlines.

Generating lines via Summary Statistics. For scoring a

sub-region, ShapeSearch fits a line to approximate it. This is

costly for fuzzy ShapeQueries where ShapeSearch needs to

score sub-regions of varying sizes, fitting one line for every

sub-region. We note that a summary of five statistics namely,∑
xi , yi ,

∑
xi .yi ,

∑
x2i , and n for a sub-region, is sufficient to

compute the slope of the line over the sub-region as follows:

θ=
(n×∑ xi .yi−

∑
xi

∑
yi)

(n×∑ x 2

i −(
∑
xi)2)

, δ=
∑
yi − θ ×

∑
xi .

Moreover, it is easy to see that the individual summaries over

two sub-regions (A and B) are sufficient to compute the slope

of the line over the combined region AB, without making

additional passes over the data.

θAB=
(nA+nB)∗(

∑
xAi .yAi+

∑
xBi .yBi)−(

∑
xAi+

∑
xBi)∗(

∑
yAi+

∑
yBi)

(nA+nB)×
∑((xAi)2+(xBi)2)−∑(xAi+xBi)2

Thus, the summary statistics help reduce data movement

as well as the amount of data processed during segmentation.

We summarize our finding using the following theorem.

Theorem 3.3 (Additivity). Given two adjacent segments A
and B, a line segment over the combined segment AB can be
estimated using linear regression on the summarized statistics
over the individual segments A and B.

Push-Down Optimizations. ShapeSearch applies a num-

ber of push-down optimizations when a ShapeQuery in-

volves location constraints. Consider a ShapeQuery: [p=
up,x.s=50, x.e=100][p=down][p=up] that searches for shapes

which are increasinд from 50 to 100 followed by a decreasing,

and then an increasinд pattern. ShapeSearch employs three

push-down optimizations for such queries: (1) LOCATION
primitives in ShapeQuery are pushed down to the trendline

generation component to prune trendlines that do not have

any value in the specified x ranges (e.g., 50 to 100 in the

above query), (2) When a ShapeQuery contains a Shape-
Segment with an p=up or p=down pattern along with both

start and end locations (e.g., [p=up, x.s=50,x.e=100] in the

above query), ShapeSearch prioritizes the segmentation of

ShapeSegments over such location primitives first, since the

trendlines with negative scores over such sub-regions tend

to have substantially lower scores. This helps the pruning

of low scoring trendlines much earlier in the SegmentTree,
and (3) Finally, ShapeSearch avoids computing summary
statistics over x ranges that are not used in the ShapeQuery
(e.g., 0 to 50 in the above query), since the values over such

ranges are ignored for segmentation and scoring. Overall,

as we will see in Section 5, these push-down optimizations

significantly help in improving the overall response time of

the ShapeSearch.

4 NATURAL LANGUAGE TRANSLATION
So far, we haven’t described how natural language queries

are parsed into ShapeQueries.
We now provide a brief overview of the key steps involved

in parsing. We use the following natural language query col-

lected from MTurk for illustration: “show me the trendlines

that are increasing from 2 to 5 and then decreasing”

Step 1. Primitives and Operators Recognition. Given a

natural language query, the first step is to map words to their

corresponding shape primitives and operators. We follow a

two-step process. First, using the Part-of-Speech (POS) tags

andword-level features, we classify eachword in the query as

either noise or non-noise. For example, words ∈ {determiner,

preposition stop-words} are more likely to be noise, while

words ∈ {noun, adjective, adverb, number, transition words,

conjunction} may refer to a primitive or operators. Next,

given a sequence of non-noise words, we use a linear-chain

conditional-random field model (CRF) [22] (a probabilistic

graphical model used for modeling sequential data, e.g., POS

tagging) to predict their corresponding primitives and op-

erator. For example, the above query is tagged as “show

(noise) me (noise) the (noise) trendlines (noise) that (noise)

are (noise) increasing (p) from (noise) 2 (x.s) to (noise) 5 (x.e)

and then (⊗) decreasing (p)”..
We train the CRF model [22] on the same 250 natural

language queries that we used for characterizing trendline

11

Table 6: NL Features. d(x) denotes the number
of words between current word and x, x+ and
x- denote next and previous x

Type Features

POS Tags pos-tag, pos-tag-, pos-tag+

Words word-, word+, word–, word++

synonym synonym, synonym+, synonym-,

d(synonym+), d(synonym-)

Space and

time preposi-

tions

time-preposition+, time-preposition-, space-

preposition+, space-preposition-, d(time-

preposition+), d(time-preposition-), d(space-

preposition+), d(space-preposition-)

Punctuation d(,+), d(,-) ,d(;+), d(;-), d(.+), d(.-)

Conjunctions d(and+), d(or-), d(and then+)

Miscellaneous d(x), d(y), d(next), ends(ing), ends(ly),

length(query)

Table 7: Common Ambiguities and their Resolution
Ambiguity (example queries with pre-
dicted entities)

Rules for Resolution

A1: Conflicting LOCATION and PATTERN in

a ShapeSegment (e.g., [decreasing (p) from 4

(x .s) to 8 (x .e)])

R1: Change the sub-primitive of LOCATION
from x to y or y to x . R2: Swap the start and

end positions of LOCATION.
A2: Multiple p in the same ShapeSegment
(e.g., [increasing (p) from 2 (x .s) to 5 (x .e) with

decreasing (p)] next (⊗))

R1: Move one of theps to the adjacent Shape-
Segment with missing p. R2: split the Shape-
Segment into two new ShapeSegmentswith
an OR operator between them

A3: Overlapping ShapeSegments with ⊗(e.g.,
increasing (p) from 4 (x .s) to 8 (x .e) and then

(⊗) decreasing (p) from 8 (x .s) to 0 (x .e)

R1: Change x to y, if y values missing. If

y values already present, replace ⊗ with ⊙
operator.

patterns (Section 1). We provide more details on how we

collected the queries in Appendix A.1. We extract a set of

features (listed in Table 6) for each non-noise word in the

sequence. In addition, ShapeSearch stores “synonyms” for

each primitve and operator (e.g., “increasing" for up, “next"

for CONCAT), and if a non-noise words closely matches

with them (e.g., with edit distance <= 2), we add the matched

primitive or operator as a feature called predicted-entity. This
idea is inspired from the concept of “boostrapping” in weakly-

supervised learning approaches [21, 39], and helps improve

the overall accuracy. We implemented the model using the

Python CRF-Suite library [5] with parameter settings: L1
penalty:1.0, L2 penalty:0.001, max iterations: 50, feature.possible-
transitions: True. On 5-fold cross-validation over the crowd-

sourced queries, themodel had an F1 score of 81% (precison =
73%, recall = 90%).

Step 2. Identifying Pattern Value. For each of the words

predicted of type p, e.g., increasing and decreasing in the

above query, we additionally map them to the corresponding

semantic pattern supported in ShapeSearch, e.g., “increasing”
is mapped to p=up. For this mapping, ShapeSearch computes

the similarity between the specified word and synonyms of

the supported patterns, first using edit distance and then

using wordnet [34]. The semantic pattern with the highest

similarity between any of its synonyms and the specified

word is selected.

Step 3. ShapeQuery Generation and Ambiguity Res-
olution. Next, we group primitives and operators into a

ShapeQuery. ShapeSearch first groups all the primitives

between two operators into a single ShapeSegment. For in-
stance, for the above query, the primitives are grouped as

follows: [increasing (p=up), 2 (x.s), 5 (x.e)] and then (⊗) [
decreasing (p=down)]. In some cases, this may lead to incor-

rect grouping of primitives, e.g., two patterns in the same

ShapeSegment. Moreover, there could be semantic ambiguity

because of incorrect entity tagging, e.g., decreasing (p=up)

from 5 (y.s) to 10 (y.e) where x.s and x.e values are wrongly

tagged as y.s and y.e respectively. ShapeSearch uses rule-

based transformations that try to reorder and change the

types of entities to get a correct and meaningful ShapeQuery.
In Table 7, we list three common ambiguities (A1, A2, A3)

and a sequence of rules (e.g., R1, R2) that are applied in order

to resolve these.

The parsed ShapeQuery is sent to the front-end, and dis-

played as part of the correction panel (Box 4 in Figure 2a)

for users to edit or further refine the parsed representation

if needed. The validated query is then executed to generate

the matching trendlines.

5 PERFORMANCE EVALUATION
In this section, we evaluate the runtime and accuracy of

ShapeSearch pattern matching algorithms. We first compare

the runtime of the exhaustive pattern matching algorithm

(Section 2.3) with four algorithms proposed in Section 3:

(i) the dynamic programming-based (DP) algorithm, (ii) the

Greedy algorithm, (iii) the SegmentTree algorithm, and (iv)

the SegmentTree algorithm with pruning. We also compare

with Dynamic Time Warping (DTW) [32], another dynamic-

programming algorithm that is typically used for matching

shapes in trendlines in systems like Zenvisage [38], to show

the efficiency of ShapeSearch relative to existing systems.

Next, we compare the accuracy of SegmentTree and Greedy

with respect to the results of DP. Note that SegmentTree and
Greedy are approximate while DP is an optimal algorithm

and gives the same results as that of the exhaustive algorithm.

Finally, we vary the characteristics of ShapeQueries to assess
the impact of different factors on performance.

Datasets and Setup. Figure 5 depicts the five real-world

datasets drawn from the UCI repository [6], and the list of

queries we used for our experiments. Each dataset consists of

trendlines with a mix of shapes, and the datasets differ from

each other in terms of number of trendlines (|V |) as well
as their length (|Vi |). The queries were selected to have at

least 20 trendlines with scores > 0 to ensure that the issued

ShapeQueries were relevant to the dataset. All experiments

were conducted on a 64-bit Linux server with 16 2.40GHz

12

Runtime (sec) Accuracy (%)

Dataset |V| |Vi | Query Exhuastive DP DTW Segment

Tree

Segment

Tree+Prune

Greedy Segment

Tree

Greedy

1 Weather 144 366 (θ=45◦⊗d⊗u⊗d) 290 52 11 5 2.8 0.9 85 25

2 Weather 144 366 ((u⊕d)⊗f⊗u⊗d) 211 55 9 4 3.2 1.1 90 30

3 Weather 144 366 (f⊗u⊗d⊗f) 244 47 9 5 3.3 1.4 100 25

4 Worms 258 900 (d⊗(θ=45◦
⊕θ=−20◦)⊗f)

4737 76 53 10 7 2.2 90 35

5 Worms 258 900 (d⊗θ=45◦⊗d) 4320 63 44 12 9 3.4 90 35

6 Worms 258 900 (u⊗d⊗u) 3953 68 42 9 6 2.5 90 20

7 50Words 905 270 (d⊗(u⊕(f⊗d))) 1046 105 28 7 5 1.1 90 25

8 50Words 905 270 (d⊗θ=45◦⊗d) 954 122 32 7 5 1.9 100 40

9 50Words 905 270 ((u⊕d)⊗(u⊕d)⊗f) 979 131 29 9 7 1.2 85 40

10 Housing 1777138 (f⊗d⊗u⊗f) 165 58 40 14 12 1.5 80 15

11 Housing 1777138 (u⊗d⊗u⊗f) 152 63 41 17 13 1.9 85 20

12 Housing 1777138 (u⊗f⊗((θ=45◦⊗
θ=60◦)⊕(u⊗d)))

157 52 35 18 14 1.2 75 15

13 Haptics 463 1092(u⊗d⊗f⊗u) 6869 890 62 16 12 3.1 90 40

14 Haptics 463 1092(d⊗u⊗d⊗f) 7189 924 58 20 15 2.6 95 25

Figure 5: Runtime and accuracy results

40
240
440

DP
Segment Tree
Segment Tree with Pruning

200 400 600 800
a) Number of Points

0
8

16

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(s
)

2 3 4 5 6
b) Number of ShapeSegments

0
25
50
75

100

La
te

nc
y

(s
)

200 400 600 800 1000
c) Number of Visualizations

0

12

24

La
te

nc
y

(s
)

Figure 6: Impact on vary-
ing characteristics of Shape-
Queries

Weather Worms 50Words R.Estate Haptics
0
1
2
3
4
5

La
te

nc
y(

s)

Without Pushdown With Pushdown

Figure 7:Average running time before and after push-down
optimizations on non-fuzzy queries.

Intel Xeon E5-2630 v3 8-core processors and 128GB of 1600

MHz DDR3 main memory. Datasets were stored in memory,

and we ran six trials for each query on each dataset.

5.1 Overall Run-time and Accuracy
Runtime Comparison. Figure 5 (Runtime) depicts the

runtime for each of the queries across all datasets. We see

the time taken by the exhaustive algorithm is prohibitively

large, rendering it no longer interactive. DP provides an or-

der of magnitude speed-up over the exhaustive approach;

however even DP can take 100s of seconds over trendlines

with only a few hundred points. Both Greedy and Segment-
Tree provide a 2× to 40× improvement in runtime compared

to DP, taking only a few seconds in the worst case. These

algorithms explore a much fewer number of segmentations

compared to the DP approach. We also see that these algo-

rithms are about 10× faster than the DTW algorithm, whose

runtime, like DP, varies quadratically with the number of

points in the trendline. Finally, SegmentTree with Pruning

further provides a speed-up of 10-30% by pruning low utility

trendlines. Since the improvement in performance of Seg-
mentTree and Greedy comes at the cost of accuracy, we next

compare the accuracies.

Acccuracy Comparison. Figure 5 (Accuracy) depicts the

accuracy of SegmentTree and Greedy relative to DP. We

do not compare the accuracy of DTW with ShapeSearch
algorithms since their scoring functions differ; instead we

perform an user study in the next section to compare the

effectiveness of ShapeSearch scoring functions with DTW

and other similar metrics. We define accuracy here to be the

number of trendlines picked by the algorithm that are also

present in the top 20 trendlines selected by DP. We see that

Greedy has a low accuracy (< 30%), since it gets stuck at local

optima. The accuracy of SegmentTree is closer to that of DP

and is never off by more than 2 trendlines when we look at

top 10 visualizations. Unlike Greedy, SegmentTree compares

the local patterns in the trendlines and those specified in the

ShapeQuery to select the segmentations that could result in

high score.

Figure 8 depicts the accuracy results over top-k visualiza-

tions (with k varying from 2 to 20) for 3 of the the datasets.

Annotations in each of the figures depict the average devia-

tion in % of the score of kth visualization that an algorithm

selects with respect to the score of the kth optimal visualiza-

tion, indicating how off the shapes of selected visualizations

are from optimal ones. We note that the accuracy of Seg-
mentTree improves as the number of output visualizations

increases, and is never off by more than 2 visualizations or

have more than > 12% deviation in scores when we look at

top 20 visualizations.

Overall, the runtime and accuracy results demonstrate

that the SegmentTree achieves comparable accuracy to
that of DP in much less time.

Next, we explore the impact of push-down optimizations,

discussed in Section 3.4, on the overall performance of queries.

Impact of Push-DownOptimizations.We issue non-fuzzy

queries, one query for each of the datasets, as depicted in

13

5 10 15 20
Number of Output Visualizations

 (Weather)

0
25
50
75

100

Ac
cu

ra
cy

 (%
)

15.89 8.44 7.52 6.12

45.74 31.82 40.38 44.63

5 10 15 20
Number of Output Visualizations

 (Worms)

0
25
50
75

100

Ac
cu

ra
cy

 (%
)

10.49 8.3 9.77 11.32

72.92
63.58 61.56 65.31

5 10 15 20
Number of Output Visualizations

 (50Words)

0
25
50
75

100

Ac
cu

ra
cy

 (%
)

9.92
12.65 13.82 8.97

40.07 43.81 45.29 53.69

Greedy Segment Tree

Figure 8: Accuracy with respect to DP over 3 real datasets with varying number of output trendlines. Annotations denote the
average deviation (in %) of the score of kth trendline chosen by algorithms with respect to the kth optimal trendline.

Table 8: Non-Fuzzy Queries
Name Non-Fuzzy Queries

Weather [p=down,x.s=1,x.e=4]⊗[p=up,x.s=4,x.e=10]⊗[p=down,
x.s=10,x.e=12]

Worms [p=down,x.s=50,x.e=100]

50 Words [p=down,x.s=200,x.e=400]⊗[p=up,x.s=800,x.e=850]
Real Estate [p=down,x.s=1,x.e=20]⊗[p=up,x.s=20,x.e=60]

⊗[p=down,x.s=60,x.e=138]
Haptics [p=up,x.s=60,x.e=80]

Table 8. Figure 7 depicts the runtimes for ShapeSearch (note

that all ShapeSearch algorithms behave similarly for non-

fuzzy queries) with and without push-down optimizations.

We observe that non-fuzzy queries execute very quickly

(< 4s for over 1000 trendlines with more than 1000 points

each), but pushdown optimizations help in further reduction

of runtime in proportion to the selectivity of the LOCATION
primitives in the query. For example, for ShapeQuery [p=up,

x.s=60,x.e=80] on the Haptics dataset, pushdown optimiza-

tions help reduce the runtime from 3s to < 1.2s .

5.2 Varying ShapeQuery Characteristics
We evaluated the efficacy of our SegmentTree-based opti-

mizations with respect to three different characteristics of

ShapeQueries, as discussed below.

Impact of number of data points. Figure 6 shows the

performance of algorithms as we increase the number of

data points in trendlines for a fuzzy ShapeQuery (u⊗d⊗u
⊗d). With the increase in data points, the overall runtimes

increases for all algorithms because of the increase in the

number of segmentations. Nevertheless, SegmentTree shows
better performance than DP after 100 data points since the

SegmentTree approach is less sensitive (linear time) to the

number of data points than that of DP (quadratic).

Impact of number of patterns. Figure 6 depicts the per-
formance of fuzzy ShapeQueries with varying the number

of ShapeSegments (alternating up and down patterns) and

issued over the weather dataset. As the number of ShapeSeg-
ments in the ShapeQuery grows, the overall runtimes of the

algorithms also increases, with the runtimes for Segment-
Tree and SegmentTree with pruning growing much faster

(k4) than DP (k). However, the overall time for DP is still

larger because the number of data points (366 in the weather

dataset) plays a more dominant (n2) role.

Impact of number of trendlines.We increased the num-

ber of trendlines from 100 to 1000 in the real-estate dataset

with a step size of 100 and issued a fuzzy ShapeQuery (u⊗d
⊗u⊗d); the results are depicted in Figure 6. While the overall

runtime for all approaches grows linearly with the number of

trendlines, the gap between SegmentTree and SegmentTree
with pruning grows wider. This is because more trendlines

get pruned as the size of the collection grows larger.

6 USER STUDY
We conducted a user study to perform a qualitative and quan-

titative comparison of ShapeSearch with two baseline tools:

our prior work Zenvisage [38] and Qetch [26], two recent

sketch-based systems for trendline pattern search (depicted

in Figure 9). These systems allow users to sketch a pattern

on a canvas, zoom in and out of the trendline to focus on

a specific sub-region, and apply filtering and smoothing to

match trendlines at varying granularities. While Qetch sup-

ports its own custom shape matching algorithm, Zenvisage

allows users to choose between the Euclidean or DTW dis-

tance measures depending on the task. Qetch additionally

supports a simple regex (via a repeat operator) to search for

repeated occurrences of a sketched pattern. We disabled the

sketching capability in ShapeSearch to isolate the benefits

of the novel NL and regex query mechanisms over sketch.

ShapeSearch∗ denotes ShapeSearchwith only NL- and regex-
based querying mechanisms. We recruited 24 (14M/10F) par-

ticipants with varying degrees of expertise in data analytics

via flyers and mass-emails. We employed within-subjects

study design between ShapeSearch∗ and each of the baseline

tools, using two groups of 12 participants each. Note that

by design, each participant encountered sketch capabilities

only once—either in Zenvisage or Qetch. Participants were

free to employ either NL or Regex for ShapeSearch∗.
Dataset and Tasks. Based on the domain case studies from

Section 1, as well as prior work in time series data min-

ing [14, 19, 31, 33, 43] and visualization [9–11, 27, 38], we

identified seven categories of pattern matching tasks, as de-

picted in Table 9. We designed these tasks on two real-world

datasets: the Weather and the Dow Jones stock datasets from

14

(a) Zenvisage (b) Qetch

Figure 9: Baseline interfaces for user study

the UCI repository [6] that participants could easily under-

stand and relate with. Together, the seven tasks spanned

both exploratory search as well as targeted pattern-based

data exploration, which helped us test the effectiveness of

individual interfaces in various settings.

Ground Truth.
For selecting the ground truth, three of the authors in-

dependently assigned a score in a range of 5 (best match)

to 0 (worst match) for each of the trendlines, and filtered

out trendlines with average score < 3.0. Next, we leveraged

20 mturk workers per task to rate each selected trendline

in a range of 0-3 (later scaled to 3 − 5). Each mturk worker

was presented with the task description in Table 9, along

with a collection of trendlines, each of which they had to

rate based on how closely the trendline matched the task

description. Filtering out noisy trendlines in the first step

helped minimize the number of ratings per task, thereby

improving the effectiveness of workers. Finally, we take the

average of the scores given by three authors and workers

as the ground truth score for a trendline. For a given task,

we measure the task-accuracy as (sum of the ground truth

scores of the top-K trendlines selected by the participant) ×
100 / (sum of the top-K ground-truth scores for the task). K
varied between 2 to 5 per task.

6.1 Key Findings
We describe our key findings below.

Overall Task Accuracy and Completion Times. As de-
picted in Figure 10a and Figure 10b, ShapeSearch∗ helped
participants achieve higher accuracy and less time overall
than Qetch and Zenvisage, and in particular for, 5 out of
7 tasks; however, for precise and complex shape matching
tasks, ShapeSearch∗ performed worse than baselines due to
the lack of sketch capabilities. On average across all tasks,

ShapeSearch∗ helped participants achieve an accuracy of

87%—8% more than Qetch and 17% more than Zenvisage—in

about 30-40% less time, a significant improvement. While

Zenvisage and Qetch involve less reasoning during query

synthesis, they often lead to significantly more queries is-

sued and manual browsing of trendlines for identifying the

desired ones. ShapeSearch∗, on the other hand, can accept

Table 9: Pattern Matching Tasks
Tasks Description
Exact Trend

Match (ET)

Find shapes similar to a specific shape, e.g., cities with weather

patterns similar to that of NY, stock trends similar to Google’s.

Sequence Match

(SQ)

Find shapes with similar trend changes over time, e.g., cities

with the following temperature trends over time: rise, flat, and

fall, stocks with decreasing and then rising trends.

Common

Trends (TC)

Summarizing common trends e.g., find cities with typical

weather patterns, stock with typical price patterns.

Sub-pattern

Match (SP)

Find frequently occurring sub-pattern, e.g., stocks that de-

picted a common sub-pattern found in stocks of Google and

Microsoft, cities with 2 peaks in temperature over the year.

Width specific

Match (WS)

Find shapes occurring over a specific window, e.g., cities with

steepest rise or fall in temperature over 3 months, peaks with

a width of 4 months.

Multiple X or

Y constraints

(MXY)

Find shapes with patterns over multiple disjoint regions of the

trendline, e.g., stocks with prices rising in a range of 30 to 60

in march, then falling in the same range over the next month.

Complex Shape

Matching (CS)

Find shapes involving trends along specific directions, and

occurring over varying duration, e.g., stocks with head and

shoulder pattern, cup-shaped patterns, W-shaped patterns.

more fine-grained user queries to rank relevant trendlines

effectively, enabling participants to retrieve more accurate

answers with less effort. In order to better understand the

differences between the tools, we separately analyze tasks

where ShapeSearch∗ did better and worse than the baselines.

Settings Where ShapeSearch∗Wins. Since sketch systems

are based on precise matching, for sequence and sub-pattern

matching tasks (SQ and SP), users drew multiple sketches for

a given sequence or subsequence to find all possible instances.

ShapeSearch∗, however, is effective at automatically consid-

ering a variety of shapes that satisfy the same sequence or

subsequence of patterns. Similarly, for tasks involving mul-

tiple constraints along the X and Y axes, or the width of

patterns (TC, WS, MXY), a large majority of the participants

gave more accurate results in less time with ShapeSearch∗.
ShapeSearch∗ supports a rich set of primitives for users to

add multiple constraints to the patterns, including search-

ing for patterns over multiple disjoint regions. While the

users could zoom into a specific region of the trendline and

sketch their desired patterns in the sketch systems, these

capabilities were not sufficient to precisely specify all of the

constraints at the same time. We believe that supporting

visual widgets in the baseline tools that internally leverages

the ShapeSearch primitives could remedy this issue.

Settings Where ShapeSearch∗ Loses. The opposite effect
was observed (more time, less accurate with ShapeSearch∗)
when finding trendlines exactly similar to a given trendline

(ET). This is understandable given that ShapeSearch∗ does
not possess sketching capabilities, which is a perfect fit for

this task, and that ShapeSearch∗ regex scoring functions

are targeted more towards approximate and fuzzy pattern

matching. For complex shapes (CS), Qetch performed the

best, followed by ShapeSearch∗, and then Zenvisage. Zenvis-

age performs the worst because the Euclidean and DTWmea-

sures used for matching shapes are sensitive to distortions in

the sketch drawn by users for such complex shapes. Qetch,

on the hand, applies corrections to distortions in shapes for

15

ET CS SQ TC SP WS MXY
Pattern Matching Tasks

20
40
60
80

100
Ac

cu
ra

cy
 (%

) Zenvisage Qetch ShapeSearch *

(a) Task Accuracy

ET CS SQ TC SP WS MXY
Pattern Matching Tasks

0
100
200
300

Ti
m

e
(s

)

Zenvisage Qetch ShapeSearch *

(b) Task Completion Time

ET CS SQ TC SP WS MXY
Pattern Matching Tasks

0
25
50
75

100

Us
er

 P

re
fe

re
nc

e
(%

) Sketch NL Regex

(c) User Preferences
Figure 10: User study results († and ∗ denote that ShapeSearch∗ had statistically significant improvements (α = 5%) relative to
Zenvisage and Qetch respectively

better matching. For ShapeSearch∗ the results were mixed.

We noted that the few participants who over-simplified the

shape with fewer patterns (e.g., [p=down][p=up] for “cup-

shaped” instead of [p=up][p=flat][p=up]) had poorer accu-

racy compared to those who used regex appropriately with

correct sequence and width constraints. Overall, we find that

complex patterns that involve fuzzy patterns and location

constraints are easier to describe using NL and regex than to

sketch. In contrast, complex shapes (e.g., cup shaped) are eas-

ier to draw and harder to describe. We believe ShapeSearch
with its sketching interface can address the challenges with

the latter, and thus support both types of patterns.

User Preferences and Limitations. In the end, we asked

participants to complete a survey to gauge their preferences

for the three mechanisms, sketch, NL, and Regex for each

task. (Recall that each participant encounters a given specifi-

cation mechanism in only one tool.) We asked participants

to select one or more of the three mechanisms they thought

were most suited for each of the tasks they performed. They

were allowed to select more than one if they felt multiple

mechanisms were helpful. Figure 10c depicts the % of par-

ticipants who selected the mechanism for each of the tasks.

As depicted in the figure, user preferences are correlated

with their accuracy and completion times: most participants

preferred the sketch-based interface for precise and complex

shape-tasks, and natural language and regex for other tasks.

When asked about their preferences in general, about 62%

of the participants believed that the three interfaces inte-

grated together would be most effective, 29% felt NL and

regex together without sketch would be sufficient for all pat-

tern matching tasks, and only 8% considered a sketch-based

tool as sufficient, validating our design of a tool that goes

beyond sketch capabilities. Participant P2 said “Almost al-
ways, I will go with Tool B [ShapeSearch∗]. I know exactly
what I am searching [for] and what the tool is going to do,
it is much more concise, I feel more confident in expressing
my query pattern". About 2/3rd of the participants said they

would opt for regex over natural language or sketch, if they

had to choose one. When asked how effective ShapeSearch
was in understanding and parsing their natural language

queries, the participants gave an average rating of 3.9 and
when asked how easy it was to learn and apply regular ex-

pressions, they gave a rating of 4.4. Participant P8 said “the
concept for visual regex by itself is very powerful and could be
helpful for most cases in general”.

Other findings.When asked about the effectiveness of us-

ing lines for matching trendlines, the average response was

positive with a rating of 4.1 on a scale of 5. Participant P4

said “Green lines are good, they make me more confident, help
me understand trendlines especially [the] noisy ones without
me having to spend too much time parsing signals. I can also
see how my [query] pattern was fitted over the trendline ...”.
Finally, participants suggested several improvements to

make ShapeSearch∗ more useful, such as supporting more

mathematical patterns; automatic regex validation and auto-

correction; query and trendline recommendations, and using

different colors for lines that correspond to different patterns

(ShapeSegments) in the ShapeQuery.

7 CASE STUDY : GENOMICS
To understand the use of ShapeSearch in a real-world setting,

we conducted an open-ended evaluation of ShapeSearch via

a case study with two bioinformatics researchers (R1 and R2).
Both researchers are graduate students at a major university

and perform pattern analysis on genomic data on a daily basis

using a combination of spreadsheets and scripting languages

such as R. Each session lasted for about 75 minutes, where

the researchers explored a popular mouse gene dataset [8]

that they often analyze as part of their work.

7.1 Findings and Takeaways
I. Both participants were able to grasp the functionalities of
ShapeSearch after a 15 minute introduction and demo session
without much difficulty. During this session, the participants

appreciated the ease of pattern search, saying “(R1) oh, this
feature [searching using combinations of patterns such as up
and down] is cool, ... something that we frequently do”, “(R2)
I like that you can change your patterns [queries] that easily,
and see the results in no time...”. Both participants concurred

that ShapeSearch could be a valuable tool in a biologist’s

workflow, and can help perform faster pattern-based data

exploration, compared to current R language scripting or

spreadsheet approaches.

II. Using succinct queries, participants could interactively ex-
plore a large number of gene groups, depicting a variety of
gene expression patterns. Both R1 and R2 were able to query

for genes with differential expressions over time. R1 initially
issued natural language queries to search for genes that sud-

denly start expressing themselves at some point, and then

gradually stop expressing, i.e., flat, followed by increase, and

16

then gradual decrease, a pattern signifying an effect of ex-

ternal stimulus such as a drug or a treatment. Thereafter, R1
was interested in understanding the variations in expression

rates, e.g., identifying groups of genes that rise and fall much

faster, or where changes are gradual within the same range

of values. To search for these patterns, she interactively ad-

justed the width of patterns, as well as the Y range in her

queries via regex. Finally, R1 also searched for groups of

genes that show similar changes in expression over specific

time duration, for finding those that regulated similar cell

mechanisms.

III. ShapeSearch helped participants validate their hypotheses,
and make new discoveries. R2 used regex to explore a group of
genes that increase with a slope of 45

◦
until a certain point,

and then remain high and stable (flat), as well as those with

the inverse behavior (ones that start high and then gradu-

ally reduce their expression and remain low and flat). Such

patterns are typically symbolic of permanent changes (e.g.,

due to aging) in cell mechanisms, often seen among genes

in stem cells. While exploring these patterns, R2 discovered
two genes, gbx2 and klf5, in the results panel, that had sim-

ilar expression patterns within the same range of values,

and mentioned that the two genes indeed have similar func-

tionality and are actively being investigated. Next to these

two genes, he saw another gene spry4 with almost similar

expression, and hypothesized that the similarity in shape

indicates that spry4 possibly had similar functionalities to

gbx2 and klf5, something that is not well-known, and could

lead to interesting discoveries if true. Overall, as can be seen

in queries issued by participants, most of the patterns can

be expressed using 4 or fewer number of lines, indicating

that it is rare to search for patterns with a large number of

ShapeSegments.
IV. ShapeSearch helped participants find genes with unex-
pected or outlier behaviors. During the end of her study, R1
mentioned that it is rare to see a gene with two peaks in their
expressions within a short window. However, on searching for

this pattern via natural language, she found a gene named

“pvt1” having two peaks within a short time duration of 10

time points. She found this surprising, and said there could

either be some preprocessing error, or some rare activity hap-

pening in the cell. She then searched for other unexpected

patterns (e.g., three peaks, always increasing).

V. Both NL and Regex were equally preferred. When asked

to compare between NL and regex, R1 said she could ex-

press most of her queries using natural language, and would

use regex only when the pattern is too long, and involves

multiple constraints. R2, on the other hand, said he would

use regex in all scenarios. He believed regex was not signifi-

cantly difficult to learn, and helped him feel more in control

and confident about what he was expressing, and whether

the system was correctly inferring and executing his issued

queries.

VI. Participants faced a few challenges during exploration.
They wanted to switch back and forth between queries, so

that they do not have to remember and reissue their previous

queries. In addition to better presentation of the the fitted

lines (e.g., coloring), they wanted to understand in more

detail how the scores were computed, and if they could tweak

the scoring according to their needs using visual widgets.

8 RELATED WORK
Our work draws on prior work in visual querying, symbolic

pattern mining, as well as natural language interfaces for

data analytics. In Table 10, we compare ShapeSearch capabil-

ities and expressiveness with three representative systems

from these areas: (1)our prior work Zenvisage, a general

purpose visual querying tool [38], (2) Qetch [26], a recent

sketch-based system, and (3) Shape Definition Language

(SDL), a symbolic pattern searching language for trendlines.

At a high-level, ShapeSearch builds on the system capabil-

ities of visual querying systems as well as expressiveness

of symbolic pattern languages, while extending both to suit

the needs of real domain users. Our user study in Section 6

compared ShapeSearch with (1) and (2) in terms of usability

and effectiveness. We summarize key differences with these

systems and others below.

Visual querying tools [27, 29, 35, 38, 42] help search for

visualizationswith a desired shape by taking as input a sketch

of that shape. Most of these tools perform precise point-

wise matching using measures such as Euclidean distance or

DTW. A few tools such as TimeSearcher [9] let users apply

soft or hard constraints on the x and y range values via

boxes or query envelopes, but do not support mechanisms

for specifying shape primitives beyond location constraints.

Qetch improves upon these systems by supporting a custom

similarity metric that is robust to distortions in the user

sketch, in addition to supporting a “repeat” operator for

finding recurring patterns. However, as depicted in Table 10,

and discussed in Section 6, Qetch and other visual querying

tools have limited expressiveness when it comes to fuzzy

pattern match needs. Furthermore, ShapeSearch introduces

a novel algebra that improves extensibility by acting as a

common “substrate” for various input mechanisms, along

with an optimization engine that efficiently matches patterns

against a large collection of trendlines.

Symbolic sequence matching papers approach the prob-

lem of pattern matching by employing offline computation

to chunk trendlines into fixed length blocks, encoding each

blockwith a symbol that describes the pattern in that block [7,

13, 16, 25, 37]. The most relevant one of these papers is on

the Shape Definition Language (SDL) [7], which encodes

each block using “up”, “down”, and “flat” patterns, much like

ShapeSearch, and supports a language for searching for pat-

terns based on their sequence or the number of occurrences.

Since SDL operates on pre-chunked-and-labeled trendlines,

17

Table 10: ShapeSearch vs. related systems capabilities
Aspect Zenvisage Qetch SDL ShapeSearch

System Capabilities
Precise Pattern ✓✓ ✓✓ ✗ ✓✓
Fuzzy Pattern ✗ ✓ ✓✓ ✓✓
Specification sketch sketch regex sketch, NL, Regex

Auto Smoothing ✗ ✓✓ ✓ ✓
Algorithm ED, DTW Custom Custom Custom

Ad hoc Patterns ✓ ✓ ✗ ✓✓
Normalization ✓ ✓✓ ✗ ✓(z-score)

Indexing Needed ✓ ✓ ✗ ✓
Scalability ✓✓ ✓ ✓ ✓✓
Extensibility ✗ ✗ ✗ ✓✓

Query Expressivity
Range Constraints ✓ ✓ ✗ ✓✓
Sub-Pattern Matching ✓ ✓ ✓ ✓✓
Sequence Matching ✗ ✗ ✓✓ ✓✓

Width Selection ✗ ✗ ✗ ✓✓

Multi- X or Y Constraints ✗ ✗ ✗ ✓
Quantifiers ✗ ✓(repeat) ✓✓ ✓✓

Iteration ✗ ✗ ✗ ✓
Nesting ✗ ✗ ✗ ✓

Back/Forward Reference ✗ ✗ ✗ ✓

the problem is one of matching regular expressions against

string sequences (one per pre-labeled trendline). Therefore,

SDL cannot rank these trendlines, instead only returning a

boolean score for whether the pattern matches the string

sequence. This limits the expressiveness of SDL (Table 10),

especially when the patterns are more complex, as well as

when they don’t align perfectly well with the boundaries of

the blocks used for chunking. Moreover, since the trendlines

are pre-labeled and indexed, SDL does not support on-the-

fly pattern matching where the same trendline can change

shapes based on filters or aggregation constraints. Shape-
Search, on the other hand, adopts a more online query-aware

ranking of trendlines without requiring precomputation, and

is thus more suited for ad-hoc data exploration scenarios.

There are a few visual time series exploration tools such as

Metro-Viz [12] and ONEX [30] that support other analytics

tasks such as anomaly detection and clustering. There is also

a large body of work on keyword- and natural language-

based interfaces for querying databases [24] and generating

visualizations [15, 36]. However, since the underlying shape

query algebra in ShapeSearch is different from SQL, parsing

and translation strategies from existingwork cannot be easily

adapted.

9 CONCLUSION
We presented ShapeSearch, an end-to-end pattern search

system, providing flexible mechanisms for domain experts to

effortlessly and efficiently search for trendlines with desired

shapes. We introduced ShapeQuery, which forms the core of

ShapeSearch, and helps express a large variety of patterns

with a minimal set of primitives and operators, as well as an

execution engine that enables interactive pattern matching

on a large collection of visualizations. Our user study, case

study with genomics researchers, along with performance

experiments demonstrate the efficiency, effectiveness, and

usability of ShapeSearch. ShapeSearch is a promising step

towards accelerating the search for insights in data, while

catering to the needs of expert and novice programmers

alike.

Acknowledgments. We thank the anonymous SIGMOD

2020 reviewers for their valuable feedback. We acknowledge

support from grants IIS-1652750 and IIS-1733878 awarded by

the National Science Foundation, grant W911NF-18-1-0335

awarded by the Army, and funds from Facebook, Adobe,

Toyota Research Institute, Google, and the Siebel Energy In-

stitute. The content is solely the responsibility of the authors

and does not necessarily represent the official views of the

funding agencies and organizations.

REFERENCES
[1] Coefficient of determination. https://bit.ly/2mRSB9A.

[2] Details omitted for anonymity.

[3] Investopedia. https://www.investopedia.com/terms/t/tripletop.asp.

[4] Min-max normalization. https://bit.ly/31au15y.

[5] Python crf-suite library (https://github.com/albertauyeung/python-

crf-named-entity-recognition). [Online; accessed 1-Oct-2018].

[6] Uci repository. https://archive.ics.uci.edu/ml/datasets/.

[7] R. Agrawal, G. Psaila, E. Wimmers, and M. Zait. Querying shapes of

histories. Very Large Data Bases. Zurich, Switzerland: IEEE, 1995.
[8] C. J. Bult, J. T. Eppig, J. A. Kadin, J. E. Richardson, J. A. Blake, and

M. G. D. Group. The mouse genome database (mgd): mouse biology

and model systems. Nucleic acids research, 36(suppl_1):D724–D728,
2008.

[9] P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interac-

tive pattern search in time series. In Visualization and Data Analysis
2005, volume 5669, pages 175–187. International Society for Optics and

Photonics, 2005.

[10] M. Correll and M. Gleicher. The semantics of sketch: Flexibility in

visual query systems for time series data. In Visual Analytics Science
and Technology (VAST), 2016 IEEE Conference on, pages 131–140. IEEE,
2016.

[11] M. Correll and J. Heer. Regression by eye: Estimating trends in bivariate

visualizations. In ACM Human Factors in Computing Systems (CHI),
2017.

[12] P. Eichmann, F. Solleza, N. Tatbul, and S. Zdonik. Visual exploration

of time series anomalies with metro-viz. In Proceedings of the 2019
International Conference on Management of Data, pages 1901–1904.
ACM, 2019.

[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence
matching in time-series databases, volume 23. ACM, 1994.

[14] T.-c. Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164–181, 2011.

[15] T. Gao, M. Dontcheva, E. Adar, Z. Liu, and K. G. Karahalios. Datatone:

Managing ambiguity in natural language interfaces for data visual-

ization. In Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, pages 489–500. ACM, 2015.

[16] M. N. Garofalakis, R. Rastogi, and K. Shim. Spirit: Sequential pattern

mining with regular expression constraints. In VLDB, volume 99, pages

7–10, 1999.

[17] X. Ge. Pattern matching in financial time series data. final project
report for ICS, 278, 1998.

[18] D. Gotz, F. Wang, and A. Perer. A methodology for interactive mining

and visual analysis of clinical event patterns using electronic health

record data. Journal of biomedical informatics, 48:148–159, 2014.
[19] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.

Elsevier, 2011.

[20] E. Keogh, S. Chu, D. Hart, and M. Pazzani. Segmenting time series: A

survey and novel approach. In Data mining in time series databases,
pages 1–21. World Scientific, 2004.

[21] Z. Kozareva, K. Voevodski, and S.-H. Teng. Class label enhancement

via related instances. In Proceedings of the conference on empirical

18

methods in natural language processing, pages 118–128. Association
for Computational Linguistics, 2011.

[22] J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. 2001.

[23] D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and

A. Parameswaran. You can’t always sketch what you want: Under-

standing sensemaking in visual query systems. IEEE transactions on
visualization and computer graphics, 2019.

[24] F. Li and H. Jagadish. Constructing an interactive natural language

interface for relational databases. Proceedings of the VLDB Endowment,
8(1):73–84, 2014.

[25] R. A. K.-l. Lin and H. S. S. K. Shim. Fast similarity search in the presence

of noise, scaling, and translation in time-series databases. In Proceeding
of the 21th International Conference on Very Large Data Bases, pages
490–501. Citeseer, 1995.

[26] M. Mannino and A. Abouzied. Expressive time series querying with

hand-drawn scale-free sketches. In Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems, page 388. ACM, 2018.

[27] M. Mohebbi, D. Vanderkam, J. Kodysh, R. Schonberger, H. Choi, and

S. Kumar. Google correlate whitepaper. 2011.

[28] E. Morganson, R. Gruendl, F. Menanteau, M. C. Kind, Y.-C. Chen,

G. Daues, A. Drlica-Wagner, D. Friedel, M. Gower, M. Johnson, et al.

The dark energy survey image processing pipeline. Publications of the
Astronomical Society of the Pacific, 130(989):074501, 2018.

[29] P. Muthumanickam et al. Shape grammar extraction for efficient query-

by-sketch pattern matching in long time series. In Visual Analytics
Science and Technology (VAST), 2016 IEEE Conference on, pages 121–130.
IEEE, 2016.

[30] R. Neamtu, R. Ahsan, C. Lovering, C. Nguyen, E. Rundensteiner, and

G. Sarkozy. Interactive time series analytics powered by onex. In

Proceedings of the 2017 ACM International Conference on Management
of Data, pages 1595–1598. ACM, 2017.

[31] R. T. Olszewski. Generalized feature extraction for structural pat-

tern recognition in time-series data. Technical report, CARNEGIE-

MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCI-

ENCE, 2001.

[32] L. Rabiner, A. Rosenberg, and S. Levinson. Considerations in dynamic

time warping algorithms for discrete word recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 26(6):575–582, 1978.

[33] C. A. Ralanamahatana, J. Lin, D. Gunopulos, E. Keogh, M. Vlachos,

and G. Das. Mining time series data. In Data mining and knowledge
discovery handbook, pages 1069–1103. Springer, 2005.

[34] R. P. Roetter, C. T. Hoanh, A. G. Laborte, H. Van Keulen, M. K. Van Itter-

sum, C. Dreiser, C. A. Van Diepen, N. De Ridder, and H. Van Laar. Inte-

gration of systems network (sysnet) tools for regional land use scenario

analysis in asia. Environmental Modelling & Software, 20(3):291–307,
2005.

[35] K. Ryall, N. Lesh, T. Lanning, D. Leigh, H. Miyashita, and S. Makino.

Querylines: approximate query for visual browsing. In CHI’05 Extended
Abstracts on Human Factors in Computing Systems, pages 1765–1768.
ACM, 2005.

[36] V. Setlur, S. E. Battersby, M. Tory, R. Gossweiler, and A. X. Chang. Eviza:

A natural language interface for visual analysis. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology,
pages 365–377. ACM, 2016.

[37] H. Shatkay and S. B. Zdonik. Approximate queries and representations

for large data sequences. In Data Engineering, 1996. Proceedings of the
Twelfth International Conference on, pages 536–545. IEEE, 1996.

[38] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Ef-

fortless data exploration with zenvisage: an expressive and interactive

visual analytics system. Proceedings of the VLDB Endowment, 10(4):457–
468, 2016.

[39] T. Siddiqui, X. Ren, A. Parameswaran, and J. Han. Facetgist: Collective

extraction of document facets in large technical corpora. In Proceed-
ings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 871–880. ACM, 2016.

[40] E. Terzi and P. Tsaparas. Efficient algorithms for sequence segmenta-

tion. In Proceedings of the 2006 SIAM International Conference on Data
Mining, pages 316–327. SIAM, 2006.

[41] R. A. Wagner, R. Tabibiazar, A. Liao, and T. Quertermous. Genome-

wide expression dynamics during mouse embryonic development re-

veal similarities to drosophila development. Developmental biology,
288(2):595–611, 2005.

[42] M. Wattenberg. Sketching a graph to query a time-series database.

In CHI’01 Extended Abstracts on Human factors in Computing Systems,
pages 381–382. ACM, 2001.

[43] L. Ye and E. Keogh. Time series shapelets: a new primitive for data

mining. In Proceedings of the 15th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages 947–956. ACM,

2009.

A APPENDIX
Here, we explain ourmethodology for crowdsourcing natural

language-based pattern queries in trendlines. We use crowd-

sourced queries for two purposes. First, we analyze them for

characterizing trendline patterns, that we explain in Section 1.

Second, we use it for training a parser for automatically

translating natural language queries to ShapeQueries. We

explain the features and translation steps in Section 4.

A.1 Crowd Study Methodology
We conducted the crowd study using Amazon Mechanical

Turk, where we asked workers to describe patterns in trend-

lines using English language sentences.We describe the steps

below.

We first manually collected a total of 50 trendlines (called

anchor trendlines) with varying patterns from 4 datasets:

Worms, 50 words, Haptics, Weather from the UCI Machine

repository [6]. We mixed each of the anchor trendlines with

19 other trendlines from the same dataset, to create 50 col-

lections of 20 trendlines each.

Using these collections, we conducted a Mechanical Turk

study with a total of about 265 workers. In order to en-

sure good quality, each worker was selected through a pre-

screening HIT that tested their basic English language flu-

ency and the ability to write reasonably meaningful English

sentences.

Each worker was presented with an interface depicting

20 trendlines corresponding to one of the 50 collections. We

highlighted the anchor trendline by bordering it with a green-

colored box. Moreover, all trendlines had X and Y axis values

labeled. We asked workers to describe the pattern in the

anchor trendline using an English sentence. In addition, we

suggested that their description should be helpful in locating

the anchor trendline if it was not highlighted. Workers had

to write the English description in a textbox at the top of the

interface.

19

After filtering out responses that did not address the task,

there were a total of 250 English sentences, with about 5 Eng-

lish sentences on average for each of the anchor trendlines.

Analysis. In addition to manual inspection, we performed

text-analysis on collected sentences to understand some of

the frequent words as well as sentence structure used by

workers for describing patterns. We noticed that a large ma-

jority (> 80%) of the sentences included either “increasing",“

decreasing", “flat" or their synonyms. Moreover, whenever

there were multiple occurrences of these words in the same

sentence, they were frequently separated by “and”, “and

then”, “next”, “,”. Many of the sentences also included or-

dering words such as first, second, or third. While a large

majority of the workers did not provide details on the X

and Y range values of individual patterns in the query, those

who did mostly mentioned the start and end locations of the

individual patterns. Overall, more than 98% of the sentences

included less than 20 words, and < 5 patterns per sentence.

We summarize the key characteristics of collected queries in

Section 1.

Labeling for NL to ShapeQuery translation .We also used

the collected sentences for training a conditional random

field (CRF) model for translating natural language queries to

ShapeQueries. In order to do so, we manually annotated the

words in the collected queries with primitives and operators

supported in the ShapeQuery algebra.We used the annotated

queries for training a conditional random field (CRF) model

for translating natural language queries to ShapeQueries.
We explained the features and translation steps in Section 4.

On 5-fold cross-validation over these queries, the model had

an F1 score of 81% (precison = 73%, recall = 90%), showing

that the structure and key constructs (e.g., primitives and op-

erators in ShapeQuery algeabra) in natural language-based

pattern queries have high degree of predictability.

A.2 Approximate Matching using Sketch
In this section, we provide more details on how a sketch is

translated to regex for approximate matching. This process

consists of two steps: 1) converting a sketch to a sequence

of minimal number of line segments, and 2) constructing

a regex query using the slopes of the line segments. We

describe each of these steps below.

1. Converting sketch to a sequence of lines. Given an

user-drawn sketch, ShapeSearch approximates it using as

fewer number of lines as possible. However, too few lines

can often lead to a poor approximation of the sketch, e.g.,

approximating a bell-shaped sketch with a single line seg-

ment. In order to avoid this, we minimize the number of lines

with a constraint that the approximation error is within a

specific threshold e . For doing so, we take as input a smooth-

ing granularity, s , between 0 and 1, that users can vary via

a slider (Figure 2a-2a). Higher the smoothing granularity,

the fewer the number of lines needed to approximate the

sketch, and vice-versa. Internally, smoothing is translated

to a R2
error [1] threshold, e , as e = 1 − s .We note that the

problem of finding the minimum number of lines within an

error threshold e is a well-studied problem in time series.

Problem 2. Given a time series T, find the minimal line ap-
proximation of T such that the combined R2 error for all lines
does not exceed e .

If we knew the minimal number of lines in advance, the

problem can be optimally solved using a dynamic program-

ming algorithm [40]. However, it is difficult to know the

minimum number of lines in advance, and thus we use an-

other top-down segmentation algorithm [20] that has been

well-studied in time series. The algorithm starts with a single

line approximation, and recursively segments lines into more

lines until the R2
error is below e . For choosing the point

for segmentation, e.g., from a single line to two lines, the

top-down algorithm considers every point for segmentation

and chooses the one that leads to the maximum reduction

in R2
error after segmentation. The time complexity of the

algorithm for a trendline with n points and K number of

lines is O(n2 × K).
2. Constructing a regex query. After approximating the

sketch with lines, ShapeSearch constructs a regex query us-

ing the slopes of the lines. Formally, givenK lines with slopes

θ1,θ3,θ3, ...,θk , ShapeSearch constructs the following regex:

[p= θ1]⊗[p= θ2] ... ⊗[p= θk]. After translation, the regex rep-
resentation of the sketch is shown to the user for validation

in the correction panel (Figure 2a Box 3) The validated query

is finally optimized and executed, and the top visualizations

that best match the ShapeQuery are presented in the results

panel (Figure 2a Box 4).

20

	Abstract
	1 Introduction
	1.1 Characterizing Shape Queries
	1.2 Our Approach
	1.3 ShapeSearch System Overview

	2 ShapeQuery Algebra
	2.1 Shape Primitives and Operators
	2.2 Formal semantics of ShapeQuery
	2.3 Scoring Methodology

	3 Executing Fuzzy ShapeQueries
	3.1 The Dynamic Programming Algorithm
	3.2 A Pattern-Aware Bottom-up Approach
	3.3 Pruning Optimization
	3.4 Additional Optimizations

	4 Natural Language Translation
	5 Performance Evaluation
	5.1 Overall Run-time and Accuracy
	5.2 Varying ShapeQuery Characteristics

	6 User Study
	6.1 Key Findings

	7 Case Study : Genomics
	7.1 Findings and Takeaways

	8 Related Work
	9 Conclusion
	References
	A Appendix
	A.1 Crowd Study Methodology
	A.2 Approximate Matching using Sketch

