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Indoor localization is an emerging application domain that promises to enhance the way we navigate in var-
ious indoor environments, as well as track equipment and people. Wireless signal-based fingerprinting is one
of the leading approaches for indoor localization. Using ubiquitous Wi-Fi access points and Wi-Fi transceivers
in smartphones has enabled the possibility of fingerprinting-based localization techniques that are scalable and
low-cost. But the variety of Wi-Fi hardware modules and software stacks used in today’s smartphones introduce
errors when using Wi-Fi based fingerprinting approaches across devices, which reduces localization accuracy. We

propose a framework called SHERPA-HMM that enables efficient porting of indoor localization techniques across
mobile devices, to maximize accuracy. An in-depth analysis of our framework shows that it can deliver up to 8x
more accurate results as compared to state-of-the-art localization techniques for a variety of environments.

1. Introduction

The arrival of Global Positioning System (GPS) technology within
smartphones has revolutionized the way we navigate in the outdoor
world. Today, indoor localization technology holds a similar potential to
disrupt the way we navigate within indoor spaces that are unreachable
by GPS. An example scenario is localizing patients, staff, and equipment
in large hospitals and assisted living facilities. Precise location infor-
mation can allow first responders closest to a patient to be notified in
emergencies. Some startups (e.g., Shopkick, Zebra) are also beginning
to provide indoor localization services that can help customers locate
products inside a store [1].

Unlike GPS for outdoor localization, no standardized solution exists
for indoor localization. Therefore, a myriad of techniques have been de-
veloped that use various sensors and radio frequencies. Some commonly
utilized radio signals are Bluetooth, ZigBee, and Wi-Fi [2]. Among these,
Wi-Fi based indoor localization has been the most widely researched,
due to its low setup cost and easy availability. Today, Wi-Fi access points
are deployed in most indoor locales around the world and all smart-
phones support Wi-Fi connectivity.

Despite the advantages of Wi-Fi based indoor localization, there are
also some drawbacks. Many prior solutions perform indoor localization
by measuring Wi-Fi Received Signal Strength Indicator (RSSI) values
and calculating distance from Wi-Fi Access Points (WAPs). These works
assume that wireless signal strength reduces in a deterministic manner
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as a function of distance from a signal source (i.e., WAP). But Wi-Fi sig-
nals suffer from weak wall penetration, multipath fading, and shadow-
ing effects in real-world environments, making it difficult to establish a
direct mathematical relationship between RSSI and distance from WAPs.
These issues have served as a motivation for using fingerprinting-based
techniques. Fingerprinting is based on the idea that each indoor location
exhibits a unique signature of WAP RSSI values. Due to its independence
from the RSSI-distance relationship, fingerprinting can overcome some
of the aforementioned drawbacks with Wi-Fi based indoor localization.

Fingerprinting is usually carried out in two phases. In the first phase
(called offline or training phase), the RSSI values for visible WAPs are
collected along indoor paths of interest. The resulting database of values
may further be used to train models (e.g., machine learning-based) for
location estimation. In the second phase (online or testing phase), the
models are deployed on smartphones and used to predict the location of
the user carrying the smartphone, based on real-time readings of WAP
RSSI values on the smartphone.

A majority of the literature that utilizes fingerprinting employs the
same smartphone for (offline) data collection and (online) location pre-
diction [3-]. This assumes that in a real-world setting, users would have
access to the same smartphone as the one used in the offline phase. But
today’s diverse smartphone market, with various brands and models,
largely invalidates such an assumption. In reality, the smartphone user
base is a distribution of heterogeneous devices that vary in antenna gain,
Wi-Fi chipset, OS version, etc. [8,25-30].
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Recent work has shown that the perceived Wi-Fi RSSI values for
a given location captured by different smartphones can vary signifi-
cantly [9]. This variation degrades the localization accuracy of con-
ventional fingerprinting. Therefore, there is a need for portable and
device heterogeneity-aware fingerprinting techniques. In this paper,
we present a lightweight Wi-Fi RSSI fingerprinting framework for
Smartphone Heterogeneity Resilient Portable localization with Hidden
Markov Models (SHERPA-HMM) that is portable across smartphones
with minimal accuracy loss. The novel contributions of our work are:

+ We conduct an in-depth analysis of Wi-Fi fingerprinting across
smartphones to emphasize the importance of device heterogeneity-
resilient indoor localization;

+ We formulate the indoor localization problem as a Hidden Markov
Model (HMM) that utilizes heterogeneity resilient metrics for user
path prediction;

+ We design the SHERPA-HMM framework for portable Wi-Fi
fingerprinting-based indoor localization; SHERPA-HMM employs a
lightweight software-based approach to combine noisy fingerprints
over distinct smartphones and pattern matching/filtering to improve
location accuracy;

+ We evaluate SHERPA-HMM against state-of-the-art localization tech-
niques, across a variety of Android-based smartphones that are used
for indoor localization along paths in real buildings.

2. Background and related work

Since the establishment of wireless RF signal based indoor local-
ization a few decades ago, a significant level of advancement has
been achieved in this area. In general, most indoor localization tech-
niques fall under three major categories: 1) static propagation model-
based, 2) triangulation/trilateration-based, and 3) fingerprinting-based.
Early indoor localization solutions used static propagation model-based
techniques that relied on the relationship between distance and Wi-Fi
RSSI gain [10]. These techniques only work well in open indoor ar-
eas as they do not take into consideration any form of multipath ef-
fects or shadowing due to walls and other indoor obstacles that in-
validate the direct distance-RSSI relationship. This method also re-
quired the creation of a gain model for each individual Wireless Ac-
cess Point (WAP) or Wi-Fi router, which is a cumbersome undertak-
ing. Triangulation/Trilateration-based methods use geometric proper-
ties such as the distance between multiple APs (Trilateration) and the
smartphone [11] or the angles at which signals from two or more WAPs
are received [12]. Such methodologies may be more resilient to smart-
phone heterogeneity but are not resilient to multipath and shadowing
effects. Some recent work has also investigated multipath effects for tri-
angulation [13], but the proposed approach cannot be implemented on
commodity smartphones, and hence has limited scalability.

Wi-Fi fingerprinting-based approaches associate several sampled lo-
cations (reference points) with the RSSI measured with respect to mul-
tiple WAPs [2-6]. These techniques are relatively resilient to multipath
reflections and shadowing as the reference point fingerprint captures
the characteristics of these effects leading to improved indoor localiza-
tion. Fingerprinting techniques use some form of machine learning tech-
niques to associate Wi-Fi RSSI captured in the online phase to the ones
captured at the reference points in the offline phase. Recent work on
improving Wi-Fi fingerprinting exploits the increasing computational
capabilities of smartphones. For instance, sophisticated Convolutional
Neural Networks (CNNs) have been proposed to improve indoor local-
ization accuracy on smartphones [4]. One of the concerns with utilizing
such techniques is the vast amounts of training data required by these
models to achieve high accuracy. This is a challenge as the collection of
fingerprints for training is an expensive manual endeavor and often the
lack of training data leads to poor accuracy.

To overcome this limitation, researchers often resort to building
more complex frameworks that utilize hybrid techniques such as com-
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bining fingerprinting with dead reckoning [32-34]. Dead reckoning
refers to the use of inertial sensors and a previous known location to
predict a future location. However, dead reckoning accumulates errors
over time, and needs to be further augmented via map matching to be
useful. Map matching utilizes compute intensive particle filtering based
approaches along with the knowledge of known physical features on a
map to improve localization accuracy [35,36]. These systems assume
that the location of a user in real time is given by a distribution of
particles. The location of every particle is then individually updated at
every location prediction cycle and interaction of these particles with
known physical features such as walls is also captured. Such method-
ologies often lead to highly compute intensive solutions. Utilizing such
complex frameworks levy high energy and computational requirements
on resource constrained smartphone platforms, despite their improving
capabilities. In [3], an energy-efficient hybrid fingerprinting approach
was proposed. However, most prior work, including [3], is plagued by
the same drawback, i.e., lack of support for smartphone heterogeneity
across both the offline and online phases. This leads to solutions that
perform poorly in real-world scenarios.

Coping with device heterogeneity is a significant research challenge
in most sensing domains. The recent improvements in the field of deep
learning have motivated researchers to apply these models to overcome
heterogeneity challenges. For example, the work in [45] suggests using
a probabilistic heterogeneity generator for training DNNs for speech and
sensor sampling applications, whereas the work in [46] extends this idea
to include the use of cycleGANSs for alleviating heterogeneity across mi-
crophones. Unfortunately, none of these works can be directly applied
to the domain of fingerprinting-based indoor localization. While these
works attempt to overcome the device heterogeneity challenge through
probabilistic data augmentation of heterogeneity features by comparing
signals of two devices, the heterogeneity features of each device could
be unique thereby limiting the scalability of this approach across de-
vices. Further, hyperparameters for GAN based techniques are known
to be difficult to adjust such that they produce meaningful information.
In contrast our work focuses on utilizing global similarities across het-
erogeneous devices and an intelligent combination of optimization tech-
niques to deliver a framework that performs consistently across a verity
of smartphones.

The most intuitive approach to address device heterogeneity in the
domain of fingerprinting-based indoor localization is to acquire RSSI
values and location data manually for each new mobile device [14]. This
is unfortunately not very practical. Once RSSI information is collected,
manual calibration can be performed through transformations such as
weighted-least squares optimizations and time-space sampling [15,16].
These techniques can be aided by crowdsourcing schemes. However,
such approaches still suffer from accuracy degradation across devices
[19].

In calibration-free fingerprinting, the fingerprinting data is trans-
lated into a standardized form that is portable across devices [17].
One such approach, known as Hyperbolic Location Fingerprint (HLF)
[18] uses the ratios of individual WAP RSSI values to form the finger-
print. But HLF significantly increases the dimensionality of the training
data in the offline phase. The Signal Strength Difference (SSD) approach
[19] reduces dimensionality by taking only independent pairs of WAPs
into consideration. Improvement in accuracy over this approach through
Procrustes-based shape analysis and uniform scaling of RSSI values was
proposed in [20]. The RSSI values are standardized via a Signal Ten-
dency Index (STI), while maintaining the dimensionality of the training
data. The STI-based technique was shown to perform better than SSD
and HLF. However, as STI is used in conjunction with Weighted Extreme
Learning Machines (WELMs) for best performance, it is very computa-
tionally expensive. Also, the experiments in [20] are performed with a
limited set of smartphones, in a one-room-environment that is heavily
controlled by the authors. An extension of this work, WinIPS [43], adds
to STI-WELM by collecting more data over time using additionally de-
ployed Wi-Fi APs whose sole purpose is to extract RSSI information from
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Wi-Fi packets. The newly collected data is then adapted to maintain re-
liability of the deployed indoor localization framework over time. This
work not only has all of the limitations of [20], but it also introduces
some new concerns. The WinIPS framework comes at a cost of deploy-
ing additional Wi-Fi access points. It improves the resilience to temporal
variation of the STI-WELM technique overtime, which is not the focus
of our work. The work in [44] is another data adaption technique to
support heterogenous devices by translating crowdsourced information
of one device into another through multivariate linear regression. This
work also employs HMMs to improve overall stability of the results. The
major drawback of the work in [44] lies in its very limited resolution of
localization accuracy, i.e., at the room or section level.

In contrast, our SHERPA-HMM framework provides a novel and com-
putationally inexpensive approach that is tested for a wider set of envi-
ronments and multiple mobile devices in realistic indoor settings. Unlike
some previous works, it delivers accurate results in the resolution of a
few meters.

3. Heterogenous fingerprint analysis

We begin with an analysis of the impact of smartphone heterogene-
ity on a state-of-the-art indoor localization technique: Euclidean-based
KNN [3]. To capture the impact of device heterogeneity we observe the
performance of the KNN technique to localize six users on five bench-
mark paths (Fig. 1) using six distinct devices (Table 1).

Fig. 2 shows the boxplots (distribution) for localization error (in the
online/testing phase) across all smartphones and indoor paths, for four

Lib_Study

Table 1
Details of smartphones used in experiments.

Smartphone Chipset Android version
OnePlus 3 (OP3) Snapdragon 820 8.0
LG V20 (LG) Snapdragon 820 7.0
Moto 72 (MOTO) Snapdragon 835 8.0
Samsung S7 (SS7)  Snapdragon 820 7.0
HTC U11 (HTC) Snapdragon 635 8.0

BLU Vivo 8 (BLU) MediaTech Helio P10 7.0

scenarios where the KNN model was trained on four different smart-
phones. The most interesting observation is that, in general, the least
error is achieved when the device under test is identical in the (offline)
training and (online) testing phases. For example, the average local-
ization error of KNN remains stable (< 2 m) when trained and tested
with the OP3 mobile device on all paths (Fig. 2(d)). But this trend does
not hold when the training device is not the same as the testing de-
vice. For example, training on the LG device leads to severe deteriora-
tion in accuracy in the Engr Labs path when testing with the OP3, BLU,
and MOTO smartphones (Fig. 2(c)). For the Engr Labs path in Fig. 2(a),
the average error can be 6x between the best-case training-testing sce-
nario (BLU-BLU), and worst-case scenario (BLU-OP3). This suggests that
a fingerprinting-based indoor localization framework can be extremely unre-
liable and unpredictable, due to device heterogeneity.
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Fig. 2. Error distribution for benchmark paths using KNN [3].

The RSSI values for the best and the two poorly performing training-
testing device pairs are shown in Fig. 3. The solid lines represent the
mean values, whereas the shaded regions represent the standard devi-
ations of RSSI values. From Fig. 3(a), it can be observed that there is
a significant overlap in the RSSI values for the LG and HTC devices.
This translates into a shorter Euclidian distance and therefore, produces
good results using KNN. On the other hand, in Fig. 3(b) we observe al-
most no overlap in the RSSI fingerprints. Instead, an inconsistent gain
difference can be observed across the two devices. Further, in Fig. 3(c),
it can be seen that the BLU device exhibits a significant amount of noise
due to variation in the WAP RSSI values for consecutive scans, which
can be attributed to its less stable Wi-Fi chipset, compared to the other
mobile devices. This leads to severe misprediction when using Euclidian-
based KNN. An interesting observation that can be made from looking
at Fig. 3 is that the overall shape of the fingerprints is similar, including
in Fig. 3(c), where the shape is similar to the mean fingerprint for the
BLU device.

From Fig. 3(c), the greater amount of noise from the BLU device is
apparent as compared to the other devices, such as the HTC. Identifying
and quantifying such noise when using a device for localization (i.e., in
the online phase, which is distinct from the offline phase where the lo-
calization technique is trained) would allow us to take additional steps
to improve localization accuracy. However, it is difficult to identify if a
device is capturing noisy fingerprints in the online phase, given a lim-
ited set of fingerprints along a path. One approach to quantifying noisy
readings could be to check for the Euclidian distance across consecutive
scans in the online phase. Since consecutive online scans are conducted
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using the same device, they should not change significantly over short
distances and be similar in terms of Euclidian distance.

To test this hypothesis, we walked over the Engr Labs indoor path
with the BLU (most noisy fingerprints) and HTC (most stable finger-
prints) smartphones while capturing Wi-Fi fingerprints with consecutive
scans during the walk. Fig. 4 depicts the distribution of the Euclidian
distance between consecutively captured Wi-Fi fingerprints for the BLU
and HTC devices over the Engr labs path. From Fig. 4, we observe that
the consecutive scan distances for the HTC device are distributed over
a very short range, denoting a stable collection of Wi-Fi fingerprints.
However, the distances for the BLU device are distributed over a much
wider range due to the variation/noise over consecutive Wi-Fi scans.
This approach can be used to identify mobile devices that capture unstable
fingerprints during the online phase.

The discussion in this section suggests that a portable methodology
that captures the pattern of similarity across fingerprints from hetero-
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Fig. 5. Reference points represented as states in a Hidden Markov Model with
given transition probabilities from one state to another.

geneous smartphones and is able to overcome the noisy behavior of the
testing devices, in an energy efficient manner, should deliver better ac-
curacy for indoor localization. These observations serve as the moti-
vation for our proposed SHERPA-HMM framework for lightweight and
portable localization, as discussed in Section 5. The next section pro-
vides a background on HMMs that are used by SHERPA-HMM.

4. Hidden Markov Model (HMM) formulation

In this section, we discuss the formulation of the indoor localization
process as a Hidden Markov Model (HMM). An HMM statistical predic-
tion model is one that estimates the next hidden state given the tran-
sition probability of moving from the current hidden state to the next
hidden state and probabilities of observable states [39]. HMMs are par-
ticularly renowned for identifying patterns that change with time and
have applications in the area of handwriting recognition [38], activity
recognition [41], speech synthesis [42], etc. In this paper, we utilize Wi-
Fi RSSI pattern similarity as observable (non-hidden) states and predict
the user’s location or path taken by user which are not directly observ-
able (hidden states).

As shown in Fig. 5, we can translate the indoor localization process
into a Markov process by first assuming that discrete localizable loca-
tions (denoted by L, L,,;, Ly,5...) on the indoor floor plan are the
states. As there is no direct way of checking if the predicted position or
state in the online phase is correct, these states are referred to as hid-
den states. Further, for a given path taken by a user in the online phase,
there may be certain known probabilities of going from one hidden state
to another. From Fig. 5, we observe that a user is 80% likely to go to
the next state and 20% likely to stay on the same states at any given
time-step (S,). In our case, we assume that a user moving on a path is
equally likely to move in all directions by a finite amount.

Emission Matrix (E [L x S])

Prediction Cycles (PC)
1 2 3 4 5 S

1]0.400.35|0.06 | 0.06 | 0.06
1

2 10.35/0.40|0.37|0.300.30
2 g

310.15/0.15|0.210.23 0.365——-

4 10.07|0.07 |0.32|0.37|0.24
4

(Normalized PCC Values)

510.03|0.03|0.04|0.04|0.30

Observed State Probabilities

PC1l «——
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Fig. 6 represents an example of transition and emission matrices for
a given path that are critical components of our HMM formulation. The
probabilities of transitioning from one state to another are also referred
to as the transition probabilities and are mathematically represented
as a matrix. The transition matrix T, is of size [L x L], where L is
number of discrete hidden states (locations in our case). The transition
matrix shown in Fig. 6 describes one such example that contains a total
of 5 locations or states on a path, thereby producing a matrix of size [5
x 5]. In Fig. 6, the current states are listed as rows and the next states
are represented by columns. So, the probabilities of transitioning from
state 5 (current state) to state 3 or state 4 (next state) would be 0.34 and
0.33, respectively, as per the transition matrix. Therefore, the transition
probability of going from any state i to a state j would be given by the
value of T,[i,j] in the transition matrix.

The observable state information is represented through the emission
matrix and is mathematically expressed by E [K x S] (as shown in
Fig. 6), where K is the number of observable states and S is the number
of subsequent measurements of the observable states (prediction cycles
in our framework). In the context of our work, the observable states are
the “Wi-Fi pattern similarity” of a scanned unknown Wi-Fi fingerprint
(online RSSI vector) with respect to the Wi-Fi fingerprints associated
with known locations (offline RSSI vectors). As the number of known
locations is L, the size of the emission matrix in the context of SHERPA-
HMM becomes [l x S]. In Fig. 6, as we have 5 locations on the path,
each measurement of the subsequent state or prediction cycle contains
5 probabilities (K = L = 5) in the emission matrix, each associated with
being at a specific state or location. The methodology for computing
the emission probabilities in our work is dependent on Pearson’s Cross
Correlation and is explained in greater detail in the next section.

An HMM based framework utilizes information from the observable
states (emission matrix) and known transition probabilities (transition
matrix) to identify the most likely path or series of hidden states. This
is achieved through the Viterbi algorithm [40]. The Viterbi algorithm
identifies the most likely sequence of hidden states, also known as the
Viterbi path, given the probabilities of observed states.

Here we explain the behavior of the Viterbi algorithm in the context
of our framework through a working example using Fig. 6. In the initial
state, we already have the user defined transition matrix of size [5 x 5].
However, the emission matrix is empty with 5 rows (K =L = 5) and 0
columns. In the first prediction cycle (S = 1), a column with emission

Transition Matrix (T, [L x L])
Next State
1 2 3 4 5

110.33/033|034| 0 0

210.25(0.25|0.25|0.25| O

02]02]02]|02]|0.2

Current State
w

4|1 0 |0.25/0.25|0.25|0.25

51 0 0 |0.34|0.33| 0.33

Probability of
staying in state 5

Probabilities of going
to state 3 and 4

e 1
Eg §| } } ! : : <«— Scan memory (S;,)
PC 4; i - ; | 1-5 Marker for predicted
I t i 1 ©
state in St cycle
PC5) 1 f T T " v

Fig. 6. The emission and transition matrices with populated probabilities over various prediction cycles. The values in the emission matrix represent the probabilities
associated with each observable state and are based on Pearson’s Cross Correlation. The values in the transition matrix describe the user defined probabilities of

going from one hidden state to another.
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probabilities is added to the emission matrix, such that the emission
matrix now has 1 column. The methodology for populating this column
with probabilities is described in Section 5.4.5.

For any of the future prediction cycles given by S = n, s.t. n > 1,
we calculate the probabilities associated with all possible sequences of
states or locations that the user could have visited in the n-1 state tran-
sitions. The probability of a sequence of states given by N = {g;, g5, 83

.. 8-.. 8y} is computed as:

i=(n—1)
P(N)= H (EIN[L, i1- EINTi+ 10, i +11- T,[i, i +11) 1)
i=1

where E[N[i], i] represents the emission probability of the observed state
at N[i] in the i prediction cycle, and 7,[i, i + 1] represents the transi-
tion probability of moving from statei toi + 1. The sequence of states or
locations with the highest probability across various prediction cycles is
reported as the path taken by the user, and the last state in the reported
sequence is produced as the current location of the user. For example,
as per the emission and transition probabilities given in Fig. 6, the most
likely sequence of states or path taken by the user after 3 prediction
cycles would be {1, 2, 2} (these are the states in the emission matrix
with the highest probabilities for each of the first 3 prediction cycles)
and after 5 prediction cycles would be {1, 2, 2, 4, 3}. In this manner,
given the emission and transition matrices, the Viterbi algorithm is able
to search for the most likely path taken by the user based on Eq. (1).
More details on the Viterbi algorithm can be found in [40].

5. SHERPA-HMM framework

In this section, we first discuss the Wi-Fi fingerprinting phase
(Section 5.1) and fingerprint pre-processing (Section 5.2) required by
SHERPA-HMM. Section 5.3 describes the offline training phase database
created in SHERPA-HMM. Section 5.4 describes the software-based
SHERPA-HMM framework and its main components that are used in the
online testing phase: a noise resilient fingerprint sampling, a pattern
matching metric, HMM-based location predictor, and additional opti-
mizations.

5.1. Wi-Fi fingerprinting

We utilize both the 2.4 GHz and 5 GHz Wi-Fi bands to capture the
RSSI of a WAP along with its Media Access Control (MAC) address
and the location (x-y coordinate) at which the sample (fingerprint) was
taken. The MAC address allows us to uniquely identify a WAP. The av-
erage RSSI values for WAPs obtained through multiple scans at each
location are stored in a tabular form, such that each row of RSSI values
(fingerprint vector) characterizes a unique location. Fingerprints are col-
lected along indoor paths with a smartphone. This step is essential for
any fingerprinting technique.

Through SHERPA-HMM we aim deliver a lightweight indoor lo-
calization solution that is as good as, if not better, than the non-
heterogenous case (KNN example in Section 3). Therefore, our goal was
to eliminate the impact of heterogeneity from the indoor localization
framework. Further, it should be noted that more complex frameworks
may be able to deliver higher accuracies but that would come at a cost
of longer prediction times that would further negatively impact the real-
time behavior of the framework. Additionally, the achievable localiza-
tion accuracy is also limited by other factors such as radio signal (Wi-Fi)
density, sampling reference point granularity and choice of radio sig-
nal in use. The use of freely available Wi-Fi based radio signal in public
buildings limits the achievable accuracy. Higher accuracies could be de-
livered by deploying custom radio beacons based on UWB or Bluetooth
technologies, but at a high cost.

With these considerations as a guide, we decided to establish a re-
alistic localization accuracy objective of 2 m which we try to achieve
through the fingerprint sampling granularity of 1 m. The 2 m accuracy
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objective is small enough to differentiate the user from being in a corri-
dor or a room and large enough to accommodate the saving that can be
achieved through our lightweight framework.

5.2. Fingerprint database pre-processing

The captured fingerprints can be easily polluted by temporarily vis-
ible untrusted Wi-Fi hotspots. Utilizing such RSSI values in our finger-
prints can significantly reduce the overall reliability and security of
our localization framework. Therefore, we only capture and maintain
RSSI values for trusted MAC addresses that are found to be reliable
WAP sources (e.g., by checking for visible WAPs across several days
and times-of-day). This pre-processing step helps to improve the overall
stability of the SHERPA-HMM framework.

5.3. Sherpa-hmm offline/training phase

In the training phase, a dataset containing the means of all finger-
prints taken at each sampled reference point (x-y coordinates shown as
blue dots in Fig. 1) is established and is stored in a tabular form identi-
cal to the fingerprinting dataset. Instead of storing multiple RSSI vector
fingerprints for each reference point location, the mean RSSI dataset rep-
resents a collection of RSSI vectors where the noise in individual sam-
ples has been averaged out. The noise in the training phase dataset is
heavily dependent on the smartphone used (as was observed in Fig. 3).
Therefore, storing the mean of RSSI vectors per reference point is an
essential step to ensure the portability of the training database across
heterogeneous mobile devices.

5.4. SHERPA-HMM online/testing phase
5.4.1. Motion-aware prediction deferral

Scanning for Wi-Fi fingerprints is one of the most energy intensive
aspect of fingerprinting-based indoor localization frameworks. In the
real-world, the user may choose to stop and look at the surroundings
while on a path. Any Wi-Fi scans or location prediction cycles that may
take place while the user has stopped would be wasted. To avoid such a
scenario, SHERPA-HMM tracks the number of steps taken by the user as
he or she walks along a path. SHERPA-HMM defers scanning for Wi-Fi
fingerprints until it detects that a significant number of steps have been
taken since the last location of the user was predicted. Based on the
experiments performed in Section 7, we know that the average localiza-
tion error over all paths for our framework is close to 2 m and also the
average step length of 0.5 m can be assumed based on [21]. Therefore,
SHERPA-HMM only scans for Wi-Fi fingerprints once the user has taken
at least four steps since the last location prediction started. We utilized
the default step detector in the Android API to achieve this functionality
[22].

5.4.2. Noise resilient fingerprint sampling

Noise in the testing phase presents a problem as it leads to degraded
localization accuracy. As observed in Fig. 3(c), scanned Wi-Fi finger-
prints in the testing phase can be significantly impacted by noise. Also,
the extent of noise observed varies from device to device. Therefore, the
shape of a single offline (training) fingerprint, based on only one Wi-Fi
scan, may not match that of the online (testing) fingerprint from a noisy
device. To overcome this challenge, we propose a methodology to re-
duce the impact of observed noise across heterogeneous smartphones
and establish a prominent pattern match across the training dataset and
the online phase samples.

As previously addressed, the mean RSSI vectors shown in Fig. 3 are
more reliable for establishing a pattern match across heterogeneous de-
vices instead of individually scanned RSSI fingerprints. Furthermore,
recent advances in smartphone technology have led to the development
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of robust Wi-Fi support in smartphones. From our preliminary exper-
iments, we found that some smartphones (Table 1) can deliver up to
1 scan in a second. These observations support the idea of executing
multiple Wi-Fi scans in the online phase and using their mean for each
location prediction.

Our framework opportunistically increases the number of scans re-
quired per prediction from 1 to 3 using the approach described in the
next section (section 5.4.3). Once multiple consecutive Wi-Fi scans are
completed, their mean fingerprint is calculated and used to predict a
user’s location. The online phase mean fingerprint is compared with the
mean fingerprint vectors from the offline database in the next step which
uses Pearson’s Cross-Correlation (PCC; discussed in Section 5.4.4). The
location prediction is then made using a lightweight HMM model with
PCC-based values embedded in the emission matrix (discussed in Sec-
tion 5.4.5).

5.4.3. Smart noise reduction with boosted scans per prediction

The key motivation behind considering multiple Wi-Fi scans per lo-
cation prediction is to overcome any unpredictable noise across finger-
prints from heterogeneous devices. However, too many Wi-Fi scans can
undesirably reduce the battery life of a smartphone. To strike a balance
between battery life and indoor localization accuracy, SHERPA-HMM
identifies situations in the localization process where consecutive fin-
gerprints are noisy and lead to degraded localization performance. In
such situations, SHERPA-HMM boosts the number of Wi-Fi scans per
prediction from one to up to three scans. To achieve this, SHERPA-HMM
keeps a track of two quantities: maximum movable distance (D,,q,) and
consecutive scan distance threshold (CSDT).

The maximum distance a user can move within two consecutive pre-
dictions is limited. From preliminary analysis and our previous work
[37], we found that in the situations where noisy fingerprints lead to
highly erroneous localization predictions, the distance between consec-
utive predictions is over a threshold of distance a human can move in
the allotted time. If the distance between consecutive location predic-
tions is larger than D, its respective flag is set and SHERPA-HMM
resorts to conducting a second scan. The maximum movable distance
(Dnax) threshold is governed by the following equation:

Dmax = (Tscan + Tpredicl) X Sgail (2)

where Ty, and Tpgi;are the times to complete the consecutive Wi-
Fi scans and to predict the user’s location respectively, and S,; is the
average gait speed of the user. In our case, T4, Was not significantly
variable across smartphones and therefore, an upper bound value for
TpregictWas empirically set to be 0.5 s for the devices shown in Table 1.
Also, an upper bound gait speed of 2 m/s was used for S,,; based on a

ai
large-scale study performed on human gait speeds [23]. %ﬁ preliminary
analysis found that the time taken for 1 Wi-Fi scan (number of default
scans) was heavily dependent on the smartphone being employed and
even varied for each smartphone itself. Therefore, SHERPA-HMM uti-
lizes a timer on the smartphone to record the time taken for consecutive
Wi-Fi scans at run-time and uses that value as T, in Eq. (2).

The consecutive scan distance threshold (CSDT) is the maximum al-
lowable noise across consecutive scanned fingerprints above which we
label the fingerprints as noisy. The value of CSDT is estimated based on
the Euclidian distance between the fingerprints collected by the train-
ing device at each reference point. The assumption is that if the noise
over consecutive scans is low, consecutive Wi-Fi fingerprints captured
by the same device should be very close in terms of Euclidian distance.
Based on a preliminary analysis performed on the HTC and BLU devices
(Fig. 4) the value of CSDT was set to 25 dB. For our setup with the
SHERPA-HMM framework, if the Euclidian distance between the first
two consecutive scans is above CSDT, the noise threshold flag is set,
and a third Wi-Fi scan is conducted. The mean of all three Wi-Fi scans
is then used to predict the user’s location. However, it is important to
note that some of the noise resilience comes from the use of HMMs,
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therefore noise threshold alone may not guaranty degraded localization
performance.

If both the noise threshold flag and the distance threshold flags are
set, then SHERPA-HMM resorts to conducting three scans per location
prediction until at least one of the flags are reset. In contrast to our
previous work SHERPA [37] that utilizes three scans per prediction by
default, the revised SHERPA-HMM framework only utilizes one scan per
prediction by default, two scans in the relatively uncommon case of
highly noisy devices, and very rarely boosts up to three scans per pre-
diction. In this manner, our revised framework delivers low-latency pre-
dictions in real-time. It is important to note that the second scan only
occurs when the last two consecutive location predictions are too far
away from each other, which usually only occurs when cheaper low-
quality instruments are in use. The condition for a third scan is only
met when there is sufficient noise in consecutive scans. The number of
times a third scan actually got triggered was found to be very limited.
Further, in the rare case that the user moves by a significant amount
by the time the third scan finishes, the resultant location slightly lags
behind. However, our Viterbi formulation is able to overcome this issue
by gaining confidence from later prediction cycles.

5.4.4. Heterogeneity resilient pattern matching: pcc

Pearson’s Cross-Correlation (PCC) [31] is measure of linear correla-
tion between two vectors. It is a popular metric in the field of signal
processing and pattern matching for voice. A 2D version of PCC is also
used in image processing for template matching, a method used for iden-
tifying any incidences of a pattern or an object within a template image.
PCC between a template vector (T) and a sample vector (X) can be ex-
pressed as:

PCC = cov(T, X) 3)

or ox

where, cov(T, X) represents the covariance and o and oy are their re-
spective standard deviations. PCC is limited to a range of —1 to 1, where
the sign represents negative or positive linear relationship, respectively,
and the magnitude represents the strength of a linear relationship. For
our purposes, a positive high value of PCC would suggest a strong simi-
larity between the template (offline database in our case) and the sam-
ple (online mean fingerprint in our case). From (3), we observe that PCC
is directly proportional to covariance (dot product of fingerprints) and
inversely proportion to the standard deviation of sample X and T. There-
fore, a sample exhibiting a high level of covariance with the template
and a low standard deviation is likely to produce a stronger PCC.

5.4.5. Shape similarity focused Hidden Markov Model

As discussed in Section 4, there are two inputs to a Hidden Markov
Model: the transition matrix and the emission matrix. The transition
matrix remains the same for a given path, whereas the emission matrix
is updated and fed to the Viterbi algorithm in each prediction cycle.

The transition matrix describes the probability of moving from one
location (hidden state) to the next. We set up the transition matrix such
that a user at a location can move in any direction by two steps in each
prediction cycle. For example, on a linear path a user at the location
with label [ has equal probability to go to the locations with label: [ - 2,
1-1,L 1+ 1,1 + 2 (0.2 each) in the next prediction cycle.

The formulation of the emission matrix is the most critical compo-
nent of the proposed framework. The emission matrix at any stage of the
prediction cycle is given by E [L x S], where L is the number of locations
and S is the number of Wi-Fi scans conducted so far. At each location
prediction cycle once one or more Wi-Fi scans have been completed
(as discussed in Section 5.4.3), the PCC for each of the RSSI vectors of
training data and the online mean RSSI vector is calculated. These PCC
values now form a column vector of length L. The PCC column vector
is normalized such that the sum of its values is 1. The normalized PCC
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column vector is now appended at the end of the emission matrix and
fed to the Viterbi algorithm along with the transition matrix. The Viterbi
algorithm in turn produces a series of the most likely reference points or
locations (Viterbi path) that the user has visited in the last S prediction
cycles. The last location of the series of reference points is the predicted
location of the user.

5.4.6. Optimizing emission matrix for prediction time

In the real-world, a user may walk a very long path before reaching
their final destination. This would result in a very large emission matrix,
as each location prediction event will add one new column to the emis-
sion matrix as discussed in Section 5 and represented in Fig. 6. This will
improve the overall localization accuracy of the user at each prediction
cycle, however, it will also slow down the time it takes to produce a
location prediction.

Even though we expect the location prediction of the user to im-
prove as the emission matrix size increases, it may take its toll on bat-
tery life and prediction time. Therefore, to maintain the QoS for the
SHERPA-HMM framework, we limit the maximum number of columns
for the emission matrix to a limit called Scan Memory (S,,). In the ex-
ample shown in Fig. 6, we observe that the width (number of columns)
of emission matrix increases by one in every prediction cycle up to the
Scan Memory limit of three. Once this limit is reached (PC 3), in each
consecutive prediction cycle, only the portion of emission matrix inside
the scan memory window is passed on to the Viterbi algorithm. This
process limits the width of the emission matrix to a constant. Now, as
the prediction cycles progress, the emission probabilities from old pre-
diction cycles are no longer in consideration, allowing SHERPA-HMM
to “forget” past noisy observations.

Based on our analysis in Section 7, we set the S,,, to a value of 3. In
this manner, the Viterbi algorithm at max predicts the last 3 locations
the user has been to, based on the last 3 Wi-Fi scan events. This opti-
mization limits the location inference time in a predictable manner and
in-effect optimizes our framework for energy consumption. Further, this
optimization enables our framework to disregard any errors that may
have been accumulated due to delays in Wi-Fi scans.

6. Experimental setup
6.1. Heterogeneous devices and fingerprinting

To investigate the impact of smartphone heterogeneity, we employed
six different smartphones (shown in Table 1). This allows us to explore
the impact of device heterogeneity based on varying chipsets and ven-
dors. We created an Android application that recorded the x-y coordi-
nate from the user and included a scan button. Once the scan button
was pressed, multiple Wi-Fi scans were performed. The RSSI value and
MAC address for each WAP were recorded in an SQLite database (Sec-
tion 5.1), and then pre-processed (Section 5.2).

6.2. Indoor paths for localization benchmarking

We compared the accuracy and stability of SHERPA-HMM and frame-
works from prior work on five indoor paths in different buildings at
a University campus. These paths are shown in Fig. 1; with each fin-
gerprinted location or reference point denoted by a blue dot. The path
lengths varied between 60 and 80 m, and the number of visible WAPs
along these paths varied from 78 to 218. Each path was selected due to
its salient features that may impact indoor localization. The Glover build-
ing is one of the oldest buildings on campus and constructed from wood
and concrete. This path is surrounded by a combination of labs that hold
heavy metallic equipment as well as large classrooms with open areas.
The Behavioral Sciences (Sciences) and Library (Lib_Study) are relatively
new buildings on campus that have a mix of metal and wooden struc-
tures with open study areas and bookshelves. The Engr Office path is
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on the second floor of the engineering building that is surrounded by
small offices. The Engr Labs path is in the engineering basement and is
surrounded by labs consisting a sizable amount of electronic and me-
chanical equipment. Both engineering paths are in the vicinity of large
quantities of metal and electronics that lead to noisy Wi-Fi fingerprints
and can hinder indoor localization. A total of 6 users, each carrying a
smartphone from a different vendor, walked on each indoor path and
collected samples (fingerprints) for each location on that path. This set
of data was utilized in the training phase. For the testing/online phase,
each of these 6 users walked on each of these paths in a random manner,
generating 10 walks each varying from 20 to 50 m in length.

6.3. Comparison with prior work

We selected four prior works to compare against SHERPA-HMM.
The first work (LearnLoc/KNN [3]) is a lightweight non-parametric ap-
proach based on the idea that similar data when observed as points in a
multi-dimensional space would be clustered together. Thus, given a vec-
tor of Wi-Fi fingerprints in the testing phase, KNN identifies the K closest
fingerprints based on Euclidean distance within its training model and
produces the weighted sum of the coordinates of those K fingerprints.
The second work (Rank Based Fingerprinting (RBF) [24]) claims that
the rank of WAPs in a vector of ranked WAPs based on RSSI values re-
mains stable across heterogeneous devices. It is functionally similar to
KNN with the only difference being that each RSSI fingerprint vector
in the training and testing phases is sorted and re-populated to store
the rank of WAPs instead of raw RSSI values. The third work combines
Procrustes analysis and Weighted Extreme Learning Machines (WELM)
[22] to predict the location of a user. Procrustes analysis allows the tech-
nique to scale and superimpose the RSSI fingerprints of heterogeneous
devices and denote the strength of this superimposition as the Signal
Tendency Index (STI). The STI metric is used to transform the original
RSSI fingerprints, and then used to train a WELM model in the online
phase (STI-WELM) with the help of cloud servers. Lastly, we also com-
pare SHERPA-HMM, to our previous work SHERPA [37], that utilizes
a Pearson Correlation-based pattern matching metric to identify loca-
tions that are associated with offline Wi-Fi fingerprints, and employs
lightweight optimizations to deliver high accuracy indoor localization
predictions in real-time.

7. Results
7.1. Sensitivity analysis on scans per prediction

To quantify the potential improvement of using mean RSSI vectors
in our framework, we conducted a sensitivity analysis to compare the
accuracy results for SHERPA-HMM using a single RSSI vector and the
vectors formed by considering the mean of 1 to 5 scanned fingerprints.
Fig. 7 depicts the overall localization error for various values of scans per
prediction over individual benchmark paths. Even though the overall
errors for the Engr Office and Glover paths are significantly lower than
the other paths (discussed further in Section 7.3), there is a similar trend
in reduction of localization error for all paths as the number of scans per
prediction increases. The most significant reduction is observed when
moving from 1 to 2 scans per prediction, whereas there is almost no
reduction as we move from 4 to 5 scans. This observation solidifies our
claim of improvement in accuracy by using more than one scans per
prediction, as was discussed in detail in Section 5.4.2.

It is important to note that scans per prediction not only impacts the
localization accuracy but also the energy consumed per prediction. A
single Wi-Fi scan can consume a notable amount of energy (~2400mJ
when using LG). This motivated us to explore the most suitable value
of maximum scans per prediction for SHERPA-HMM’s online phase. If
the value is too small, such as the case for the Lib_Study path in Fig. 7,
there might not be a significant improvement in localization accuracy.
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However, if the value is too large, the smartphone may end up consum-
ing a significant amount of energy for an insignificant improvement.
From Fig. 7, we observe that for most benchmark paths, a majority of
the improvement is achieved by conducting only 3 consecutive scans.
Therefore, the upper limit on scans per prediction is set to 3 for our
framework. We increase the number of scans per prediction from 1 to 3
in an intelligent manner, as discussed in Section 5.4.3.

7.2. Sensitivity analysis on scan memory

The scan memory variable discussed in Section 5.4.6 can signifi-
cantly impact the performance characteristics of the proposed SHERPA-
HMM framework. To quantify this, we perform a sensitivity analysis on
the scan memory variable in an effort strike a balance between predic-
tion latency and localization accuracy.

Fig. 8(a) and (b) present the trends on Viterbi path search times
and average localization error across all devices on various paths in
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our benchmark suite. For this experiment, we analyze the change in
Viterbi path search time and localization error when the scan memory
(emission matrix width) ranges from 1 to 5. Setting the value of 1 for
scan memory translates into only using the latest Wi-Fi scan for loca-
tion prediction without any historical knowledge, whereas a value of 5
suggests that the latest Wi-Fi scan along with previous four Wi-Fi scan
events were utilized to identify the current location. The results for this
experiment were averaged out over all the devices.

From Fig. 8(a), we observe that the time taken by the Viterbi algo-
rithm to deduce the most likely path taken increases linearly as scan
memory is increased in the range from 1 to 5. This trend is consistent
across the paths. We observe that the overall search time is generally the
highest for the Glover path. This is mainly due to the fact that the Glover
path is the longest benchmark path with 88 reference locations. Each
reference location translates into a unique state in the Hidden Markov
model. This increases the number of rows in the emission matrix. In
Fig. 8(a), we also observe that the search time grows by 5x as scan
memory is increased from 1 to 5.

From Fig. 8(b), we observe that as we increase scan memory the drop
in localization error is most significant up to the point where scan mem-
ory is 3, beyond which we observe diminishing returns. Another notable
aspect is that the most improvement is observed in the Lib_Study path.
This can be attributed to the fact that the Lib_Study has a more com-
plex zig-zag like path. This observation also highlights the prospective
improvements that can be gained by using HMM models in more com-
plex paths and dynamically increasing scan memory at run-time in an
intelligent manner.

From our observations in Fig. 8(a) and 8(b), we set the value of scan
memory for our HMM formulation to 3. This allows us to minimize the
localization error without significantly impacting the overall prediction
time of our proposed indoor localization framework. It is also important
to note that the value of scan memory that delivers the best accuracy
highly depends on the state space of the path. The user is responsible
for identifying a good value of state space for each path individually.

7.3. Performance of localization techniques

Fig. 9 shows the individual plots that represent the contrast in the
localization experiences of six users carrying smartphones from distinct
vendors. The paths along with the training phase device combinations
were chosen based on the analysis of the plots in Fig. 2. We focus on a
subset of cases that demonstrate significant deterioration in error (> 2
m) for the KNN technique.

From Fig. 9(a), it can be observed that HTC is the most stable de-
vice for KNN, i.e., is least affected by heterogeneity, by delivering an
average accuracy close to 2 m. In all other situations, localization er-
ror is heavily impacted by heterogeneity. Overall, in Figs. 9(a) and (b),
SHERPA-HMM can be seen to outperform RBF and STI-WELM with av-
erage accuracies in the range of 1-2 m whenever the localization error
from KNN is > 2 m. SHERPA-HMM is also better than our SHERPA in
most cases. We observe that RBF performs the worst when there is a
significant amount of metal structures in the environment. This is the
case for the engineering building paths (Engr. Labs, Engr Office) and the
path in the Sciences building. The perturbations in the Wi-Fi WAP RSSI
values due to the metallic surroundings cause the ranks of the WAP RSSI
values to become highly unstable. We noted that RBF performed better
than KNN for a few walks, but this was averaged out by poor results
from other iterations of the same walk.

From Fig. 9, we also observe that SHERPA-HMM outperforms STI-
WELM in most training-testing device pairs, other than the non-
heterogeneous cases (e.g., LG boxplot in 9(a), BLU boxplot in 9(b), etc.).
SHERPA-HMM is able to deliver better performance in most cases as it is
a purely pattern matching approach along a path. STI-WELM identifies
the closest sampled locations from the offline phase using the scaling
and shape matching based STI metric. The fingerprints of these closest
locations are then used to train a WELM based neural network in the
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online phase. The work in [20] (STI-WELM) assumes a constant gain
across heterogeneous devices which is not the case (from Fig. 2) and
does not compensate for noise across smartphones. The neural network
model itself is not especially designed for pattern matching, and sacri-
fices predictability of localization error for faster training time in the on-
line phase. Further, a neural network-based localization framework such
as STI-WELM requires extremely large sets of training data which may
not a be a realistic and scalable approach for indoor environments. In the
few cases that SHERPA-HMM is outperformed by STI-WELM, SHERPA-
HMM still performs within the acceptable range of accuracy and is very
close to STI-WELM in terms of median error. We also note that for
most paths considered in Fig. 9, SHERPA-HMM outperforms KNN. In
the few cases where it is outperformed by KNN, its accuracy loss is very
low.

In some of the cases such as in Fig. 9(d), we observe that SHERPA-
HMM delivers relatively higher localization error as compared to
SHERPA. We found that the major cause of this was that the HMM model
falsely predicts that a user has turned back when the user is actually
moving forward along a path. This is caused by noisy fingerprints and
the fact that we are using a simple transition matrix where the proba-
bility of the user moving in any direction is the same. Also, we do not
utilize other motion sensors such as magnetic and gyroscope to identify
situations where the user is changing directions [35]. However, even
with this drawback SHERPA-HMM is able to meet our target accuracy
of 2 m across the board.

The experiments performed in this work revealed that certain de-
vices such as the low-cost BLU smartphone produce particularly noisy
and inconsistent Wi-Fi RSSI measurements. Even though SHERPA-HMM
attempts to minimize the impact of noise by taking into account mul-
tiple Wi-Fi scans for each location prediction, users should be wary of
the quality limitations of such low-cost devices, especially when using
them for indoor localization and navigation.
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Fig. 10. Mean indoor location prediction time for SHERPA-HMM and frame-
works from prior work for the Lib_Study path using the OnePlus3 device.

7.4. Comparison of execution times

To highlight the lightweight design of our approach, we show the
mean execution time of location predictions for SHERPA-HMM and prior
work frameworks executing on the OP3 device. For brevity, results for
only one path (Lib_Study) are shown. The specific path was chosen for
this experiment as it was the largest one with 13,080 data points (60
m x 218 WAPs) available. The OP3 device was randomly chosen as we
expect the overall trends of this experiment to remain the same across
smartphones.

The results of this experiment are shown in Fig. 10. The RBF tech-
nique is found to take over 2 s to execute. This behavior can be at-
tributed to the fact that RBF requires sorting of Wi-Fi RSSI values for
every scanned fingerprint in the testing phase, unlike any of the other
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techniques. STI-WELM takes the least time to predict locations. How-
ever, the highly degraded accuracy with STI-WELM, especially in the
presence of device heterogeneity (as seen in Fig. 9) is a major limitation
for STI-WELM. After STI-WELM (Fig. 10), SHERPA is one of the quickest
localization frameworks with an average prediction time of 0.43 s that is
slightly lower than the lightweight Euclidean-based KNN approach that
takes 0.47 s for a prediction. Finally, SHERPA-HMM delivers its predic-
tion results in 0.48 s which is only slightly higher than KNN. As com-
pared to SHERPA, SHERPA-HMM takes ~0.05 s longer but has proven
to deliver significantly better results as shown in Section 7.3.

In summary, from the results presented in this section, it is evident
that our proposed SHERPA-HMM framework for is a promising approach
that provides highly accurate, lightweight, smartphone heterogeneity-
resilient indoor localization. A major strength of this framework is that
it can be easily ported across smartphones without the need of any cal-
ibration effort or cloud-based service to execute.

8. Conclusion and future work

In this paper, we proposed the SHERPA-HMM framework that is a
computationally lightweight solution to the mobile device heterogene-
ity problem for fingerprinting-based indoor localization. Our analysis
in this work provides important insights into the role of mobile device
heterogeneity on localization accuracy. SHERPA-HMM was able to de-
liver superior levels of accuracy as compared to state-of-the-art indoor
localization techniques using only a limited number of samples for each
fingerprinting location. We also established that developing algorithms
that can be easily ported across devices with minimal loss in localization
accuracy is a crucial step towards the actuation of fingerprinting-based
localization frameworks in the real world.

As part of our future work, we would like to focus on improving
the reliability of the proposed framework through incorporating iner-
tial and magnetic information in the HMM formulation. This would
greatly reduce the chances of the Viterbi algorithm predicting false user
movement direction changes. Another improvement could be to dynam-
ically increase the scan memory variable such that user predictions are
made with higher confidence in situations where the online
is noisy.
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