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Editor’s notes:

Mobile and IoT devices have proliferated our daily lives. However, these
miniaturized computing systems should be highly energy-efficient due
to their ultrasmall form factor. Hence, energy management is of utmost
importance for both mobile and loT devices. This article presents a

comprehensive survey on this topic.

—~Partha Pratim Pande, Washington State University

I WE ARE WELL into the era of explosive growth
for Internet of Things (IoT) devices, with almost
30 billion deployed worldwide today, and the num-
ber expected to grow to more than 75 billion by 2025
(about ten devices for every human on this planet).
IoT represents a growing network of heterogeneous
devices, combining commercial, industrial, resi-
dential, and cloud-edge computing domains. These
devices range from low-power sensors with limited
capabilities to multicore platforms on the high end.
Smart [oT devices that are part of this network take
many forms: industrial IoT devices controlling and
analyzing manufacturing lines, cameras, watches,
speakers, thermostats, drones, lights, sprinkler con-
trollers, door locks, retail kiosks, etc.—all with the
defining characteristic of having an IP address for
Internet connectivity, allowing communication and
data exchange with other devices and users.
Beyond [oT, most people are connected to the
Internet via mobile devices,such as smartphones and
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tablets. There are more
than five billion smart-
phones in use around
the world today. It is pro-
jected that the user base
just for this class of mobile
devices will grow to six bil-
lion by 2025, covering 71%
of the world’s population.

Together, IoT and mobile devices are enabling
a connected future that promises savings of time
and money with better automation and control in
industry and our everyday activities, as well as other
benefits such as better health care via remote moni-
toring, reduced electricity usage in smart homes and
offices, efficient fuel usage in smart and increasingly
autonomous vehicles, and more potent conservation
efforts, for example, monitoring-driven initiatives to
enhance air and water quality, etc.

All mobile devices and most IoT devices are port-
able, requiring a battery to operate. Typically, such
devices have relatively small form factors, which lim-
its the size of the battery that can be used in these
devices. Li-ion rechargeable batteries are the most
widely used batteries in these devices. However,
the energy density of this battery technology has
improved only minimally over the past few decades,
and dramatically better alternatives have yet to be
found. The resulting limited energy available from
these batteries, in turn, limits the capabilities of com-
ponents that can be used in these devices, such as
sensors, processors, wireless interfaces, memories,
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Figure 1. Average daily energy drain breakdown
of five groups of 1,520 users using the Samsung
Galaxy $3 and $4 smartphones [1].
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and displays. This is a major challenge, especially
given the need to run ever-more demanding appli-
cations on IoT and mobile devices, for example,
deep learning (DL) inference, augmented and vir-
tual reality, and high-definition video processing.
Figure 1 shows a breakdown of the average
energy usage across 1,520 users of the Samsung
Galaxy S3 and S4 mobile devices [1]. The users are
divided into five groups based on their activity levels.
It can be observed that the display (screen), proces-
sors [central processing units (CPUs) and graphics
processing units (GPUs)], wireless network radios
(Wi-Fi and cellular), and the system on chip (SoC)
consume-varying amounts of energy on average.
There is a strong motivation to minimize energy (and
power) across all of these components: to allow
mobile and IoT devices to last longer on a single bat-
tery charge (i.e., increased device uptime or battery
lifetime); to enable more sophisticated components
such as faster CPUs, GPUs, and neural processing
units (NPUs) to be selected if their energy and power
footprint can be intelligently managed; to prevent
thermal emergencies that can cause undesirable
performance throttling and component failures; and
to use cheaper and less bulky cooling and power
management integrated circuit subcomponents, to
achieve even smaller form factors and cost savings.
There are many efforts today that are actively
attempting to minimize the energy and power foot-
prints of high-end IoT and mobile devices, as well
as low-end IoT devices. Widely used mobile and IoT
CPUs (e.g., ARM’s Cortex family [2]) and GPUs (e.g.,
Qualcomm’s Adreno [3]) now include a large num-
ber of low-power and deep-sleep states that can be
quickly transitioned into and out of, to save energy and

reduce power. Memory technologies such as LP-DDR5
[4] and Macronix low-power Flash [5] allow support
for low-power main memory and secondary storage
operation. New wireless communication standards
and protocols are being designed for low-power
wireless communication, for example, IPv6 over low-
power wireless personal area networks (6LoWPANSs)
[6], long-range wide-area network (LoRaWAN) [7] for
long-range low-power communication, [Pv6 routing
protocol for low-power and lossy (RPL) networks [8],
Bluetooth low-energy (BLE) [9], and LTE Release 12
[10], which provides a powersaving mode and lower
overhead signaling procedure to improve energy effi-
ciency. Low overhead operating systems (OSs) such
as Contiki [11], TinyOS [12], FreeRTOS [13], and
Zephyr [14] provide lightweight software stacks for
resource-constrained loT devices. Even high-end loT
and mobile devices utilize OSs such as the Android
OS [15], which are increasingly optimized for working
with low-power modes to extend battery lifetime.

Despite the above-highlighted promising devel-
opments, there is still a huge design space for fur-
ther energy optimizations, with opportunities to
even more aggressively reduce energy in loT and
mobile devices. This article surveys the landscape
of such approaches to reduce energy in loT and
mobile devices.

Processing optimizations

State-ofthe-art mobile platforms integrate mul-
tiple general purpose CPUs, GPUs, and specialized
processing elements (PEs), such as audio, video,
and security engines [16], [17]. While these pro-
cessing units improve user experience, they also
increase power consumption, especially when they
are used heavily. For example, GPU power con-
sumption dominates the SoC power while running
graphics-intensive games [18]. Thus, platform-level
power management of all processing units in mobile
platforms is a key research problem [19].

Core configurations and the operating fre-
quency of PEs can be controlled at runtime. For
example, Snapdragon and Exynos SoCs enable
controlling the frequency of different CPU clusters
independently and provide over ten voltage—fre-
quency levels for each cluster [16], [20]. Power
management governors embedded in OSs, such
as powersave, performance, and interactive gover-
nors, support control of power states dynamically
at runtime [21]. These governors implement simple
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algorithms to control the PE frequencies as a func-
tion of their utilization. Hence, they leave much
room for dynamic optimizations. Due to the emer-
gence of millions of mobile applications, power
management of mobile platforms has become nec-
essary but remains a difficult problem.

In the past decade, multiple researchers have
addressed the power management problem for
mobile platforms [22]-[24]. Most of the modern-day
mobile platforms integrate CPU and GPU within a
single system. The power management technique
for these systems optimizes the performance, meas-
ured in frames per second (FPS), under power con-
sumption and thermal constraints [18], [25]. A task
allocation strategy for heterogeneous mobile sys-
tems was presented in [26]. This approach, called
SPARTA, first profiles the application behavior at
runtime. Then, a heuristic algorithm prioritizes and
allocates tasks at runtime. Another runtime task allo-
cation approach for the heterogeneous mobile sys-
tem was proposed in [27]. This approach chooses
the optimal design point from a set of design points
while maintaining the required performance. How-
ever, the aforementioned power management tech-
niques primarily rely on heuristic algorithms that do
not guarantee optimality for a given application. Qiu
and Pedram [28] modeled the mobile system as a
stochastic service request process and formulated
dynamic power management as a policy optimi-
zation problem. The authors solved this problem
through a policy iteration algorithm and evaluated it
using an event-driven simulator.

Machine learning

A new class of dynamic management algo-
rithms has emerged with the advent of machine
learning (ML) techniques. A number of recent
techniques construct multiple ML-based policies
offline [29]-[31]. These techniques characterize
applications during execution and choose a suitable
pre-existing power management policy. The major
drawback of this approach is the inability to capture
dynamic workload variations [32]. Gupta et al. [33]
proposed a phase-level instrumentation technique
to collect workload statistics at runtime. Specifically,
the workload is divided into snippets, and perfor-
mance application programming interface (PAPI)
calls are inserted between each snippet. Data col-
lected for each snippet is then used to control the
power states of PEs.
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Reinforcement leaming (RL) is a widely used ML
technique that enables online leaming [34]. RL is a
modelHree technique where the policy takes an action
and receives a reward from the environment based
on the action. Then, the policy is updated using the
reward. Several researchers have proposed the power
management technique using Qleaming [35]-[38].
The methodologies proposed in [35] and [36] use a
table to store the Q-values for state—action pairs. Since
the system states in standard mobile processors are usu-
ally continuous, they are divided into discrete bins and
stored in the Q+table. The efficiency of the approach
depends on the number of discrete bins in the Q+table.
If high accuracy of the policy is intended, then the
size of the (table can become very large. Such large
Q-+able sizes, in turn, require additional memory within
the platform and increase the execution time. To
address the limitations of the Q-table-based approach,
deep Qlearning-based power management policies
approximate Q-tables using a deep neural network and
experience replay buffers [37], [38].

RL-based power management policies have two
critical drawbacks. First, RL takes a significant num-
ber of iterations to converge to the optimal policy.
Second, the efficiency of RL depends on the design
of the reward function. It is hard to design a single
reward function that will produce a good power
management policy across different platforms. Imi-
tation learning (IL) is an effective ML technique suit-
able for sequential decision-making problems [39].
IL techniques construct a policy by using an Oracle
that captures the optimal behavior. Since an exact
IL approach can suffer from error propagation, data
aggregation algorithms are used to construct the
policy [40]. The first application of IL techniques to
dynamic power management was presented in [41].
However, this technique is only applicable to homo-
geneous processors. A recent technique develops a
DPM policy for heterogeneous mobile platforms by
constructing an Oracle using dynamic programming
[42]. The IL-based policy was shown to achieve sig-
nificant improvement in energy consumption with
respect to default governors in mobile platforms.

Apart from CPUs, different modeling and
management techniques are proposed for GPUs
[43]-[45] as well as interconnects and caches [46],
[47]. ML:based models are used to predict GPU per
formance in [43]. Similarly, Deitrich and Chakrabotrty
[44] proposed an autoregressive offline model to
estimate GPU performance. However, these models
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use the same features for all applications. This draw-
back is addressed by using GPU performance mod-
els that adapt to the workload at runtime [45].
In this methodology, features are selected offline
and model coefficients are leamed online through
a recursive leastsquares (RLS) technique. State-
of-the-art platforms enable controlling the frequency of
on-chip interconnects and caches (i.e., uncore) [48].
Recent techniques predict workload characteristics
and control the uncore frequency to minimize power
consumption with negligible performance loss [46],
[47]. Asummary of methodology and scope of different
power management techniques for mobile platforms
is provided in Table 1. This table shows which power
management methodologies are suited for different
kinds of workloads (such as single- and multi-threaded
applications and gaming applications), as well as the
evaluation platform. Finally, a comprehensive and sys-
tematic review of on-chip resource management tech-
niques can be found in [49].

Display optimizations

Display screens on smartphones, smartwatches,
and tablets tend to consume a major portion of over-
all energy and also power at any given time. Many
IoT devices (e.g., smart thermostats and wireless
weather stations) also rely on displays. There are
three popular display technologies that are widely
used in mobile and [oT devices: liquid crystal display
(LCD), organic light-emitting diode (OLED) display,
and active matrix electrophoretic display (AMEPD)
which is widely known as e-paper.

LCD displays

LCD screens are the oldest display technology. It
was first released for a mobile device in 1992, as part
of the Simon Personal Communicator, and featured
a black-and-white 160 x 293 LCD touchscreen, meas-
uring 4.5 x 1.4 in. Around the early 2000s, companies
such as Nokia and Sony released phones with color
LCDs, offering 256 colors. LCD displays rely on a white
backlight (or sidelight) that passes light through layers
of polarizing filters (which make all the light oscillate
the same way), a layer of liquid crystals (with transis-
tors at each pixel that can twist the crystals to change
the polarization of light as a function of the data to be
displayed) and a layer of color filters.

Today, several variants of LCDs are in use, most of
which use white LED backlights. Some recent displays
use quantum-dot LED-based LCDs (called QLEDs),
which use blue (instead of white) LEDs and nano-
crystals of various sizes to convert light into different
colors by altering its wavelength. Thin-film-transistor
LCDs (TFT-LCDs) are widely used in large displays,
such as HDTVs, computer monitors, and smart home
appliances with displays. Having been around a
long time, these displays have reached production
maturity and thus cost less than other options, but
have very poor energy efficiency and viewing angles.
In-plane switching LCDs (IPS-LCDs) use a different
crystal array orientation and an electrical excitation
approach for crystals to improve viewing angles and
lower power than TFT-LCDs; this type of display has
been used in many recent smartphones such as LG
G7, Nokia 7 Plus, and Apple iPhone XR.

...
Table 1. Methodology and the scope of different power management approaches for mobile platforms.
. Single- Multi- \
Reference Methodology Evaluation Platform thregded threaded Gaming
Policy lteration Event-driven simulation X
Heuristic Odroid XU+E x x v
[26], [27] Heuristic Odroid XU3 v v x
Control-theoretic Baytrail SoC x x 4
Multivariate Linear Regression Odroid XU3 v v X
Logistic Regression Odroid XU3 v v x
[36], [37] Reinforcement Learning Simulation v X X
Reinforcement Learning Odroid XU3 v v X
Imitation Learning Gemb5 v v x
Imitation Learning Odroid XU3 v v v
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For LCD displays, energy-reduction techniques
involve backlight reduction (as it is the most sig-
nificant factor in LCD energy consumption), as
well as dynamic tone mapping, and frame buffer
and refresh rate management. Early work in [50]
explored reducing backlight energy for video play-
back. A middleware-based strategy was designed to
adaptively reduce backlight levels while compensat-
ing the luminance in video frames, such that output
quality for the user was maintained. The strategy was
shown to save 100-625 mW, depending on the type
of video and the initial backlight setting, on a hand-
held Compaq iPAQ device. A histogram equalization
approach was proposed in [51] for pixel-level trans-
formation through dynamic tone mapping (mapping
a high dynamic range of luminance in the real world
to a limited range on a display) based on distortion
balancing and power management. The technique
was extended to video-streaming applications with
a human visual system aware [52] and algorithmic
[53] scaling of backlight dynamically. In contrast to
global backlight dimming approaches that control
the luminance of all pixels on the screen at the same
time, for example, [54], a local trimming approach
was proposed in [55] that divides the entire screen
into several blocks and pixels, and each block
is adjusted separately. Luminance reduction for
regions of noninterest on the screen (from a human
perception perspective) was proposed in [56] with
a neuromorphic saliency model. An approach to
exploit change blindness in humans to reduce back-
light levels gradually during usage was exploited in
[57]. As LCD power consumption is also affected by
the frame buffer refresh operations, Jiang et al. [58]
proposed a frame buffer compression model to min-
imize energy. The reduction of redundant frames for
further energy savings was explored in [59].

OLED displays

Unlike LCDs, OLED displays do not need a back-
light. Instead, each pixel (or subpixel of red, green,
or blue) lights itself up as a voltage is applied to a
complex molecule called an OLED. OLEDs have
greater contrast ratios than LCDs and can be flexible
(as they do not need a backlight layer and can be
thinner), allowing for their use in bendable and fold-
able phones and devices. Brightness at each pixel is
controlled by the value of the voltage applied, but
comparisons have shown that OLED screens are usu-
ally less brighter than LED LCD screens. OLEDs also
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have lower power consumption than LCDs when
displaying mostly dark content, but when displaying
mostly light material (such as the common dark text
on a light or white background), their power con-
sumption can be much higher than that of an LCD
and/or backlight combination. This explains the
interest in “dark” display modes, making their way
into Android and iOS recently.

There are two types of OLED displays: passive
matrix (PMOLEDs) and active matrix (AMOLEDs).
PMOLED display uses a simple control scheme in
which each row (line of pixels) is controlled sequen-
tially, one at a time, whereas AMOLED control uses
a TFT backplane to directly access and switch each
individual pixel on or off, allowing for higher reso-
lution and larger display sizes. PMOLEDs consume
more power than AMOLEDs due to the power needed
for their external circuitry. AMOLEDs also provide
faster refresh rates than PMOLEDs. Due to these ben-
efits, most mid- to high-end recent smartphones use
AMOLED displays, for example, Samsung Galaxy
S10/S10+, Apple iPhone XS, and Google Pixel 4/4XL.

As an OLED display is self-emitting, power con-
sumption is decided by the pixel color component
and brightness, as shown in Figure 2. Thus, various
pixel dimming and color transformation algorithms
have been proposed to enhance the energy effi-
ciency of OLED displays. The goal is to reduce the
power consumption without changing the visual
quality perceived by human eyes.

Several researchers have proposed techniques
to reduce the power consumption of OLED displays
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Figure 2. Power consumption for OLED
display on the Samsung Galaxy S5
smartphone [60].
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for graphical user interfaces (GUIs). For example,
a colortransformation-based method is proposed
in [61] that transforms the colors of a GUI into new
color combinations that require lower power con-
sumption for OLED displays. A smart interaction GUI
is designed in [62] to dim the pixels covered by finger
shadows. In [63], an approach was proposed to turn
off selective subpixels to display a GUI with a lower
resolution [63]. A shiftmask is proposed in [64] to
dim the window while a user is scrolling the page on
a browser. However, GUIs are just a small part of the
displayed content, and thus such approaches need
to be complemented with other methods.

Other methods focus on power savings when view-
ing images on OLED displays. In [65], a method is pro-
posed that involves image overexposure correction by
modifying pixel luminance and chrominance charac-
teristics, in a manner that reduces power consumption
on OLED displays. Histogram equalization is used in
[66] to increase the contrast of the displayed image, to
obtain more scope for pixel dimming. The approach
in [67] utilizes Itti's visual-attention model to dim pix-
els in regions with lower saliency (i.e., regions that are
less noticeable in an image by a human). A dynamic
voltage scaling (DVS) approach was proposed in [68],
to control the supply voltage and reduce power con-
sumption at the circuit level for viewing images on
OLED displays. But such DVS-based methods require
custom display driver circuitry and cannot be applied
to off-the-shelf OLED displays.

A few methods focus on saving power on OLED
displays for video content. An approach for adaptive
OLED power management was proposed in [69] to
control the brightness of areas that are not of interest to
the user playing a game. In [60], a framework for low-
power OLED-friendly video recording and playback
was proposed, with algorithms for pixel dimming,
and color range and tone mapping. In [70], the struc-
tural similarity index (SSIM) was adopted to guide the
fine-grained DVS and color compensation for video
streaming. An approach to reduce the brightness of
video frames while limiting visual impact via a color
blending method was proposed in [71].

Wireless radio optimizations

Mobile and [oT devices today have several wire-
less radio components, including those for Wi-Fi,
cellular (4G LTE/5G), GPS, Bluetooth, and NFC.
These components consume significant power and
energy, especially during streaming audio or video,

multiplayer gaming, and navigation. Thus, these
components have been the target of much focus and
research to minimize their energy footprint.

Location sensing

Some efforts, for example, [72]-[74], have focused
on energy-efficient location-sensing schemes aiming to
reduce high energy consumption caused by location
interfaces (e.g., WiFi and GPS) by deciding when to
enable or disable location interfaces or modify location
acquisition frequency. A variable rate logging (VRL)
mechanism is proposed in [75] that disables location
logging or reduces the GPS logging rate by detecting if
the user is standing still or indoors. An adaptive loca-
tionsensing framework is proposed in [76] that involves
substitution, suppression, piggybacking, and adapta-
tion of an application’s locationsensing requests to
conserve energy. In [77], the LearnLoc framework was
proposed to tradeoff energy with localization accuracy,
for indoor localization with smartphones. LearnLoc uti
lized the k-nearest neighbor and neural-network-based
ML models to predict indoor locations using Wi-Fi signal
strength and inertial sensor data, with the ability to vary
the Wi-Fi sampling rate, where a lower sampling rate
was shown to save energy but at the cost of reduced
localization accuracy and vice versa.

Interface selection

The selection of the wireless interface for data
communication (e.g., Wi-Fi versus 4G) has a signif-
icant impact on energy consumption. In [78] and
[79], techniques were proposed to select the most
energy-efficient data interface for wireless commu-
nication. Some studies compare specific wireless
interfaces (e.g., Zigbee and Bluetooth LE [80]) to
determine the most appropriate interface to use
under different conditions. The Bluesaver framework
was proposed in [81], which enabled low-latency
and low-energy wireless communication on mobile
devices by maintaining a Bluetooth and WiFi con-
nection simultaneously and switching between them
at the MAC layer. In [82], an approach was proposed
to reduce energy-hungry interactions between smart-
phones and smartwatches. A notification manager
was designed to automatically defer “phone-prefer-
able” notifications that require a user to take further
actions (such as checking detailed content and reply-
ing to a message) and piggyback them on “watch-pref-
erable” notifications that can be handled on a watch,
without further interaction with the phone.
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In [83], a comprehensive solution was proposed
for both data interface selection and location inter-
face optimization to reduce energy consumption on
mobile devices. The proposed middleware frame-
work explores various ML techniques toward learn-
ing and then predicting the data and location usage
requirements for a mobile user, based on their spati-
otemporal and device contexts. The context informa-
tion refers to the user’s device usage as a function of
the user’s location, time of day or week, and specific
application being used. Different ML algorithms were
explored to learn and predict these contexts, includ-
ing linear discriminant analysis, linear logistic regres-
sion, k-nearest neighbor, nonlinear logistic regression
with neural networks, and support vector machines.
Together with a device power model that was also
developed, the context predictions allowed a user-
and contextspecific selection of optimal strategies
for data interface and location interface selection and
optimization. It was shown that up to 85% energy sav-
ings could be achieved for minimally active users

Component enhancements

Individual wireless interfaces can also be optimized
for low-power operation. For instance, the 802.11
powersaving mode (PSM) [84] allows putting a wire-
less radio into a low-power sleep mode whenever it
encounters inactive periods. Many variants of PSM
have been proposed to dynamically adjust sleep-mode
periods based on traffic patterns [85] or extend the
sleep mode to intervals between packets for devices
with light workloads [86]. In [87], a solution was pro-
posed to allow energy-constrained devices to scale
down their Wi-Fi sampling rates (i.e., Wi-Fi downclock-
ing [88]) regardless of channel conditions, to improve
energy efficiency. This is accomplished by making
WiFi access points transmit packets with incremen-
tally increasing redundancy until successful reception
occurs at a device with a low sampling rate. In [89],
passive Wi-Fi was introduced, which allowed the gen-
eration of 802.11b transmissions using backscatter [90]
communication. The proposed system has two main
components: a plugged-in device and passive Wi-Fi
devices. The former contains powerconsuming RF
components, including a frequency synthesizer and
power amplifier, and emits a single-tone RF carrier. It
also performs carrier sense on behalf of the passive
WiFi device and helps coordinate medium access
control across multiple passive Wi-Fi devices. The pas-
sive Wi-Fi device backscatters the tone emitted by the

September/October 2020

plugged-in device to create 802.11b transmissions that
can be decoded on any device that has a Wi-Fi chipset.
It was shown that the proposed system consumed 4-5
orders of magnitude lower power than conventional
Wi-Fi, Bluetooth LTE, and Zigbee chipsets.

Memory and storage optimizations

Main memory

Mainstream computers today use DDRx DRAM as
the main memory. Due to the high power footprint of
DDRx, mobile, and IoT devices use low-power DDR
(LPDDR) main memory. LPDDR4, which is widely used
in mid- to high-end smartphones today, is optimized
for low-power operation, as well as rapid transition-
ing between various powersaving voltage—frequency
states. It also supports a feature called partial array
self-refresh (PASR), which enables the DRAM to retain
the state in only part of the memory, thereby reducing
self-refresh power. There have also been efforts to fur-
ther reduce main memory energy consumption. For
example, a new wide-10 3-D DRAM architecture was
proposed in [91] for energy-efficient memory accesses
on resourcelimited devices. In [92], a technique to
reduce the refresh power in mobile main memory was
proposed. It was shown that mobile devices are idle
most of the time; therefore, reducing refresh power in
the idle mode for main memory is essential to reduce
energy. The frequency of refresh operations in memory
can be reduced significantly by using strong multibit
error correction codes (ECC), but this incurs a high per-
formance overhead. To obtain both low refresh power
in idle periods and high performance in active periods,
a Morphable ECC (MECC) approach was utilized. Dur-
ing idle periods, MECC keeps the memory protected
with 6-bit ECC and uses a refresh period of 1 s, instead
of the typical refresh period of 64 ms. During active
operation, MECC reduces the refresh interval to 64 ms
and converts memoty from ECC6 to weaker single-bit
ECC, thereby avoiding the high latency of ECC-6. The
transition to the idle mode for a 1 GB memory with
16 million lines is shown to take 640 million cycles or
400 ms to perform the ECC-6 conversion for all lines.
As this is a high overhead, an approach is proposed,
which tracks only the memory that was accessed in
the active state and performs an ECC upgrade for only
those (accessed) regions of memory. The structure to
track the accessed regions of memory has 1,000 entries
(128B) and reduces the transition time to the idle mode
from 400 to 50 ms. Simulation results indicated that

13

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on November 10,2020 at 23:49:41 UTC from IEEE Xplore. Restrictions apply.



14

Design and Management of Mobile Platforms

whereas on average strong ECC causes a slowdown
of 10% (as high as 21%), with the proposed MECC
approach, the average slowdown is reduced to 1.2%.
MECC was also shown to reduce refresh power in idle
periods by 16x and idle power by 2x.

Secondary storage

While secondary storage is not a significant power
consumer in mobile and IoT devices, its long access
latencies can result in notable energy consumption.
Studies performed on the Samsung Galaxy Nexus S
smartphone in [93] indicated that for IO-intensive
workloads with predominantly random accesses,
more than 30% of the energy can be consumed in the
storage system (to access the smartphone’s internal
eMMC flash storage). While one could argue that the
[O-intensive workloads are not representative of com-
mon applications used in IoT and mobile devices,
the study does highlight the contribution of memory
and storage, which can matter for at least some appli-
cations. MobiFS [94] proposes trading durability for
improved memory energy efficiency in smartphones.
This is accomplished by reducing the amount of data
flushed to flash storage, and relaxing the timing of
flush operations, at the risk of data loss due to system
failures or power loss, which would be rare in most
mobile and IoT devices. Flashlogger [95] proposed
using amnesic compression techniques to lower
energy costs for storage in sensor systems. A fast stor-
age system based on battery-backed RAM to increase
the performance and energy efficiency of wearables
was proposed in [96]. Smartwatch storage energy was
explored in [97] where it was shown that the amount
of data written daily is 10x as large as the amount of
data read daily, and the amount of data written to the
flash storage each day is approximately as large as
the free space in the storage device. To minimize the
energy consumption associated with the IO activities
in the smartwatch, new file system management algo-
rithms were proposed that reduced flush operations
to flash. This was shown to reduce overall smartwatch
energy by 3% and IO energy by 60%.

Software optimizations

More than five million apps for smart devices
have been developed across the Apple App store
and Google Play store as of the end of 2019 [98].
Since each app consists of different resource require-
ments, constructing a unified resource management
policy for all of them is challenging. Therefore, a

variety of software and OS-level energy management
techniques have been proposed in [99] and [100].

Runtime software profiling can identify the most
power and energy-hungry resources that should be tar-
geted by dynamic management approaches. To this
end, the Powerscope tool profiles the energy usage of
active applications by mapping energy consumption
to a program structure [101]. It combines hardware
instrumentation to measure current levels with kernel
software support to perform statistical sampling of
system activity. Pathak et al. [102] proposed power
modeling based on system call tracing, using both
utilization- and nonutilization-based power behaviors.
The Appscope tool monitors applications’ hardware
usage at the kernel level to further improve the accu-
racy and observability [103]. More recently, a purely
software-based energy profiling tool was proposed for
Android apps [104]. The authors demonstrated the
practicality and accuracy of software implementation
against hardware measurements. A detailed survey
on software energy consumption and the potential
research directions was presented in [105].

The previous work on mapping software applica-
tions to heterogeneous PEs focused on static [106]
and runtime [107] techniques, assuming multiple
voltage—frequency levels. Similarly, Khdr et al. [108]
constructed an approach to assign applicationsto tiles
in multicore architectures depending on the degree
of parallelism and available voltage-frequency
levels of each tile. Although these approaches are
well suited for mapping applications onto a given
resource, there is still a need for techniques that help
to improve performance at the OS level.

Numerous researchers have addressed the need for
thermal and power management techniques at the OS
level. A hybrid of hardware and software techniques,
HybDTM, was proposed to lower system temperature
[109]. This technique utilized regression-based ther-
mal models to estimate the system temperature at
runtime. A scheduling technique at the OS level was
proposed to reduce the on-chip temperature [110].
The authors first presented a systematic study to show
that the rise- and fall-time of the temperature are more
than 10x higher than OS scheduler ticks. Within this
time constant, tasks that are responsible to increase
system temperature (hot tasks) are migrated to an
idle core. If the system utilization is high, then each
core is assigned hot and cold tasks. Whereas this tech-
nique reduces only the peak temperature, a recent
scheduling technique reduces both peak and average
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temperature of the system [111]. Recently, another
OS-level algorithm computed the maximum power
budget by predicting temperature over a time horizon
[112]. Then, this power budget was used to tum off
cores and throttle core frequencies to avoid temper-
ature violations. Similarly, a software level thermal
management technique for DRAM was proposed
in [113].

Apart from thermal management, different
dynamic management techniques at the OS level
are also discussed in the literature. Snowdon et al.
[114] proposed a platform that can execute different
power management policies. This platform showed
significant energy savings with minimal performance
loss when integrated with the Linux kernel. Xu et al.
[115] proposed modifications to the runtime power
management framework in the Linux OS. In this tech-
nique, all power management drivers are replaced
with a centralized agent. Zhang and Hoffmann [116]
implemented a hybrid of software- and hardware-ori-
ented power management techniques on Linux/x86
platforms. This technique provides competitive per-
formance with respect to Intel’s commercial hardware
platforms. A more detailed study on software-oriented
energy management techniques for heterogeneous
mobile systems was presented in [117].

Cloud offloading and distribution of
computation across loT networks

Cloud offloading became ubiquitous with the
adoption of smartphones and tablets. For example,
most of the speech recognition systems today offload
some or a majority of the tasks to cloud servers and
accelerators. Others train models in the cloud and use
inference on the mobile device. More generally, in [oT
and mobile devices, ML and DL are the major applica-
tions for studies of optimal offloading and distribution
of the computation and the communication (thanks
to the popularity of the domain and ease of structural
decomposition of the inference computation).

With the explosion of mobile applications and the
support of cloud computing for a variety of services
for mobile users, mobile cloud computing (MCC)
has been introduced as an integration of cloud com-
puting into the mobile environment. MCC brings new
types of services to take advantage of cloud computing
and supports static and dynamic offloading decisions
[118], [119]. For example, Khune and Pasricha [120]
proposed a framework for offloading computation
from apps to the cloud in a dynamic and opportunistic
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manner while considering factors such as the Wi-Fi or
cellular network channel conditions, and the com-
pute—communication characteristics of the applica-
tion. An RL-based middleware approach was proposed
for decision-making. Results of using this framework
across multiple apps from the Android app store
showed a reduction of up to 30% in energy consump-
tion and also improvements in the app response time.

An offloading strategy to optimize the performance
of loT DL applications with edge computing was pro-
posed in [121]. Parts of the layers of the DL network
used for inference (in this case for video data recog-
nition) are scheduled for execution on edge servers,
whereas the other layers are scheduled for cloud
computation. This idea can be used for both a static
decision and online dynamic scheduling that changes
the distribution of layers for offloading depending on
the complexity and number of images. Thomas et al.
[122] pushed ML inference computation out of the
cloud onto a hierarchy of IoT devices. They devel-
oped a refactoring algorithm for ML inference com-
putation to factor it over a network of devices without
significantly reducing prediction accuracy while also
exploring ML model approximations. The approach
significantly reduces system energy without reduc-
ing accuracy relative to sending all of the data to the
cloud. In [123], a cloud-offloading scheduler was
designed based on a Lyapunov optimization scheme.
They derived an online algorithm and proved perfor-
mance bounds for average power consumption and
also queue occupancy (which is indicative of delay).

The introduction of 5G wireless communication
has led to a further explosion in the amount of com-
putation and communication in [oT networks [124].
Multiedge computing (MEC) technology [125],
[126] has been introduced to offer cloud-computing
capabilities within the radio access networks
and help to satisfy 5G latency requirements. MEC
assumes that distributed nodes can be placed adja-
cent to end devices (device edge compute nodes)
and also closer to the cloud (cloud-edge compute
nodes on the networks at the periphery of the mobile
network and data centers). Typically, remote task
offloading incurs large over-the-air transmission and
computing delays. The pressure to reduce latency
in computing and decision-making is being driven
by 5G deployment, especially in the ultra-reliable
low-latency communication (URLLC) domain. The
URLLC domain has the latency requirement of 1 ms
and the requirement for reliability of transmitting
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within 1 ms of 99.99999%. The latency and reliabil-
ity requirements are critical for vehicle-to-everything
(V2X) use cases [124], as well as some industrial [oT
applications. These requirements lead to the need
for more optimal distribution of computation and
communication across multiple nodes of the IoT net-
work: end nodes and devices, a device edge, a cloud
edge, and the cloud data centers. Some recent work
has begun to explore offloading for energy-efficient
mobile edge computing over 5G networks [127].

Battery-aware design

Battery lifetime is a paramount metric in bat-
tery-powered mobile and [oT devices. Longer battery
lifetime brings numerous benefits, such as better user
experience, reduced maintenance costs in industrial
IoTs, and smoother operation of the [oT networks.
Modern devices are equipped with batteries that
have bounded energy capacity, usually expressed
in ampere-hours. Enhancing battery lifetime can be
attained via tailoring power management algorithms
to the characteristics of the battery technology, as
well as the improved energy efficiency of the system.

Battery modeling

The lifetime of the battery depends not only on
the rate of which the energy is consumed but also
on the dynamics of the load current. In general,
higher load current leads to a drop in the residual
capacity of the battery, whereas idle periods help
in partial capacity recovery [128]. In consequence,
the energy and voltage delivered by the battery
depend heavily on the usage pattern. Detailed and

1-c¢ c
< - > < >
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y by N
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i(t)
/—\ VW

Bound charge Available charge

Figure 3. Two-well model of the KBM. The
value of ¢ corresponds to the fraction of total
capacity is placed in the available charge well
(y1) and k is the rate constant [128].
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abstract battery models have been developed over
the years, which describe the relationship between
power consumption and the state of the battery.
In [129] and [130], detailed electrochemical mod-
els were proposed that represent the battery using
a set of coupled nonlinear differential equations
that require numerical solutions. Although detailed
models are highly accurate, they are not suitable
for runtime optimizations due to their heavy com-
putational overhead. Several high-level models
have been developed that provide a good trade-
off between runtime computational overhead and
accuracy. The widely adopted analytical models
are the kinetic battery model (KBM) [131] and the
diffusion-based models [132] that approximate the
nonlinearity of the battery using a set of two differ-
ential equations that can be solved analytically. The
KBM is an intuitive model that distributes the battery
change into two wells, the available charge well,
and the bound charge well as shown in Figure 3.
The available charge well delivers the load current,
whereas the bound charge well feeds electrons only
to the available charge well [128], [131].

Battery-aware resource management

Several dynamic processing-task-scheduling tech-
niques have been proposed that aim to elongate
battery lifetime while meeting desired performance
targets. One class of techniques have focused on
edge mobile devices. A dynamic scheduling algo-
rithm was proposed in [133] for devices running
periodic task graphs with real-time deadline con-
straints. This algorithm orchestrates the dynamic
voltage and frequency scaling (DVFS) assignments
of the processor and task scheduling while max-
imizing battery lifetime. As part of this work, the
authors proposed a set of battery aware scheduling
guidelines derived from the KBM battery model, for
example, scheduling the voltage and clock speed
assignments locally in a nonincreasing order. In
[134], a DVFS algorithm was introduced to optimize
for the total battery current of embedded systems
equipped with a multiprocessor that runs concur-
rent tasks. The work in [135] focused on deliver-
ing battery lifetime guarantees for a selected set of
applications and best effort for the remaining ones,
targeting smart mobile devices. This technique peri-
odically profiles the battery usage pattern of the
running applications and determines the battery
budget required for the priority applications to meet
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their performance deadlines. In [136], a CPU-GPU
control algorithm was presented that enhances the
energy efficiency of mobile devices to improve bat-
tery lifetime. This algorithm controls the DVEFS of the
CPU and GPU subsystem in a coordinated manner
to deliver the desired video FPS performance while
minimizing energy consumption. On the network
side, Pourazarm and Cassandras [137] and Gatzia-
nas et al. [138] introduced techniques to maximize
battery lifetime at the network level that utilize bat-
tery models to guide the scheduling decisions.

User-aware optimizations

The usage profile of mobile smart devices has
evolved over the years and today these devices
have become an essential part of our daily life.
This transformation has been driven by continued
growth in the sophistication and functionality of
applications. It has resulted in an ever-closer inter-
action between users and their smart devices. User
experience has emerged as a fundamental metric
in the realm of smart devices. Unsurprisingly, user
experience is a multidimensional metric and usu-
ally user specific. This metric cannot be ignored
when considering optimizations for energy effi-
ciency in mobile devices.

The display is the main user interface for mobile
systems. Both brightness and content of the display
impact user satisfaction. Schuchhardt et al. [139]
introduced an online learning algorithm that dynam-
ically controls the display brightness to meet individ-
ual users’ preferences. Figure 4 depicts a high-level
description of this control. It takes runtime contextual
data (e.g., ambient light, battery level, and location)
as part of the input in addition to occasional peruser
brightness preference feedback to improve the pre-
diction accuracy of the brightness preference of the
user. Egilmez et al. [140] presented a technique to
minimize power by reducing the frame rate of the
display to the tolerated level by the user. They lev-
eraged the intrinsic variations in people’s tolerance
to frame rates and introduced an adaptive algorithm
that dynamically predicts the tolerated frame rate of
individual users. Poyraz and Memik [141] adopted
a similar concept for the CPU subsystem where the
goal was to minimize the CPU processing rate while
ensuring user satisfaction.

Skin temperature is another important metric
for user experience in the realm of smart devices.
The significance of this metric is driven from the
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nontrivial amount of heat that can be generated
from these devices during normal usage when the
users are often in contact with the device surface.
Consequently, high skin temperature may lead to
discomfort or even cause harm to the users’ skin.
The skin temperature can be maintained within
the desired threshold using thermal management
algorithms that usually implement closed-loop feed-
back control. Such control requires feedback from
skin temperature where direct measurements are
usually not feasible in practice due to practical lim-
itations. The alternative solution is to estimate the
temperature using abstract thermal models. Egilmez
et al. [142] and Park et al. [143] proposed ML-based
models to estimate the skin temperature of mobile
devices that take inputs from internal sensors and
hardware counters of the device. Egilmez et al. [142]
also proposed a user-aware skin temperature ther-
mal management strategy. It used user-dependent
skin temperature thresholds to improve the user
experience, based on the observation that the sensi-
tivity of users to skin temperature varies across users.

Opportunities and challenges

The preceding sections have discussed the
state-of-the-art and trends with various modalities
of energy optimization for mobile and IoT devices.
Figure 5 summarizes the scope of the survey. In this
section, we summarize some of the emerging direc-
tions for energy minimization in such devices and
opportunities for new research.

Processing and software optimizations: Two critical
components of all energy management techniques
are the ability to accurately observe the power con-
sumption of all major resources and control their
power states independently. The former requires
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brightness
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Location Adaptive
brightness
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On-screen time
-
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Figure 4. Online learning control of display
brightness [139].
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Energy Management in loT and
Mobile Devices
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Figure 5. Summary of survey organization.

power meters, implemented either in software or using
a current sensor. While dedicated resources increase
the observability, they also incur significant imple-
mentation overhead. Similarly, individual voltage—
frequency islands improve controllability, again with
larger overhead. Hence, energy efficiency should be
maximized with limited observability and controllabil-
ity. This requires new approaches for co-optimizations
in hardware architectures (e.g., multiple core clusters
with different power-performance tradeoffs), software
(e.g., matching the power states of the clusters with
application requirements), and firmware support to
interface the hardware knobs with the OS.

Displays: We are gradually moving toward devices
with flexible displays that can be bent and folded, for
which variants of the OLED technology are a good
match. However, OLED displays are prone to burn-
ins. Mini LED displays and eventually Micro LED
displays that utilize miniaturized LED arrays require
an ultra-thin backlight layer or no backlight at all,
respectively. They could lead to very low power and
flexible displays that do not suffer from burn-in issues,
in mobile and IoT devices. E-paper displays (also
sometimes called e-ink displays) provide another
low-energy option for many IoT and mobile appli-
cations. These displays use millions of tiny capsules
that contain black and white ink particles. A charge
applied to the top and bottom of a capsule arranges
the ink particles to form an image or text. No back-
light is needed as the displayed content is visible with
reflected light, allowing e-paper displays to be much
thinner than TFT LCD displays. However, it is possible
to include a backlight as well as a touchscreen with
these displays, for example, as done in Amazon’s

Kindle Paperwhite and the Barnes and Noble Nook
e-readers. Color e-paper displays with high resolution
are emerging, providing another ultra-low-power dis-
play solution. These new technologies will benefit
from new approaches to more aggressively reduce
their power overheads in mobile and IoT devices.

Wireless radios: While longrange Wi-Fi and
short-range Bluetooth LE and Zigbee standards will
continue to be popular for low-cost wireless com-
munication with mobile and IoT devices, new stand-
ards are emerging. Low-power wide-area network
(LPWAN) standards such as LoRaWan will allow [oT
devices to be seamlessly connected over long dis-
tances (several kilometers) for low-bit rate commu-
nication. The rollout of 5G will also enable ultrahigh
bandwidth communication over long distances, but
new techniques will be essential to minimize power
consumption for participating devices.

Storage: The maturation of nonvolatile memory tech-
nologies based on spin-transfer torque effects and mem-
ristive effects will allow for opportunities to collapse the
traditional deep memory hierarchy into a shallower
one, with nonvolatile memory elements being closely
integrated within processor dies and on die stacks. New
research is needed to optimize such memories for ener-
gy-efficient operation with mobile and loT workloads.

Energy harvesting-aware design: Battery charging
and replacement remain among the leading factors
that deteriorate user experience. This challenge can
be addressed by pioneering research in two directions
that complement the energy management techniques
surveyed in this article. First, ambient energy sources,
such as light, body heat, radio frequency, and motion,
can be exploited to replace or complement the
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battery energy. Second, runtime energy management
techniques can match the consumed energy with the
available energy to provide uninterrupted operation
while optimizing the user experience.

Cloud offloading and distribution of computation
across loT networks: End-to-end [oT systems contain
multiple levels of hierarchy. The pressure to reduce
latency in computing and decision-making driven by
the 5G deployment, especially in the URLLC, pushes
the need for a smarter distribution of computation
and communication both at the time of system
design and at runtime. Research on optimal offload-
ing and distribution of computation and communica-
tion from performance, quality of service guarantees,
energy, reliability, and safety is required. To enable
the research on end-to-end exploration and opti-
mization of such large scale systems, it is critical to
develop simulation infrastructures for hierarchical
[oT systems with sufficiently accurate models for the
above metrics. Reference [144] is one of the recent
attempts for developing such a framework. ]
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