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Editor’s note:

Fingerprinting is essential for indoor navigation and localization due to
its low cost, accuracy, and resiliency to multipath effects in constrained
environments. This article aims to overcome the challenge of device
heterogeneity and describes a portable lightweight fingerprinting framework

while improving localization accuracy.

18

—Paul Bogan, University of Southern California

Il THE ARRIVAL OF GLOBAL positioning system
(GPS) technology has revolutionized the way we
navigate around the world. Today, every smartphone
comes with a builtin GPS that is invaluable for out-
door navigation. Indoor localization technology
holds similar potential to disrupt the way we navi-
gate within spaces that are unreachable by GPS,
e.g., malls, buildings, and tunnels. Several startups
such as IndoorAtlas, Target (Shopkick), and Zebra
have already started to provide services that can
help customers find products within a store [1].
Unlike GPS for outdoor localization, no standard-
ized solution exists for indoor localization. Therefore,
a myriad of techniques have been developed that use
various sensors and radio frequencies. Some com-
monly utilized radio signals are Bluetooth, radio-
frequency identification (RFID), ultrawideband (UWB),
and Wi-Fi [2]. Among these, Wi-Fi-based indoor
localization has been the most widely researched
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due to its low setup costs and easy
availability. Indeed, Wi-Fi access points
(WAPs) are already deployed in most
indoor locales, and all smartphones sup-
port Wi-Fi connectivity.

Despite the advantages of WiFi-based
indoor localization, there are also some
drawbacks. Wi-Fi signals suffer from weak
wall penetration, multipath fading, and
shadowing effects. These challenges make it diffi-
cult to establish a direct mathematical relationship
between the received signal strength indicator (RSSI)
and the distance from WAPs. These issues have served
as a motivation to use fingerprinting-based techniques.
Fingerprinting is based on the idea that different
indoor locations exhibit a unique signature of WAP
RSSI values. Due to its independence from the RSSI-
distance relationship, fingerprinting overcomes some
of the aforementioned drawbacks associated with
Wi-Fi-based indoor localization.

Fingerprinting is usually carried out in two
phases. In the first phase (i.e., the offline or training
phase), the RSSI values for visible WAPs are col-
lected along paths of interest. The resulting data-
base of values may further be used to train models
(e.g., machine-learning-based) for location estima-
tion. In the second phase (i.e., the online or testing
phase), the models are used to predict the location
of a user based on visible WAP RSSIs.

A majority of the research studies that uti-
lize fingerprinting employ the same smartphone
for (offline) data collection and (online) location
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prediction [3]—[5]. This assumes that, in a real-world
setting, users would have access to the same smart-
phone as the one utilized in the offline phase. Today’s
diverse smartphone market, consisting of various
brands and models, largely invalidates such an
assumption. In reality, the smartphone user base is
a distribution of heterogeneous mobile devices that
vary in antenna gain, Wi-Fi chipset, antenna shape,
operating system (OS) version, and so on.

Recent works have shown that the perceived
RSSI values for a given location captured by differ-
ent smartphones can vary significantly [6]. This var-
iation degrades the localization accuracy achieved
through conventional fingerprinting. Therefore, there
is a need for portable, device heterogeneity-aware
fingerprinting techniques.

Inthisarticle, we present arobust, lightweight, data-
driven Wi-Fi RSSlbased fingerprinting framework
(PortLoc) that is portable across heterogeneous
mobile devices with minimal accuracy loss. The
main contributions of our article are as follows.

We conduct an in-depth analysis of fingerprinted
data to highlight the importance of using data-
driven pattern-matching approaches for hetero-
geneous device-based indoor localization.

We identify computationally inexpensive metrics
that can be used to compare fingerprint features.
We design the PortLoc framework for truly porta-
ble Wi-Fi fingerprinting-based indoor localization.
We create a set of benchmarks by collect-
ing fingerprints with multiple heterogene-
ous devices across buildings, for testing the
performance of PortLoc against state-of-the-art
localization techniques.

Related work

A significant body of work has been devoted
to addressing the challenges associated with
Wi-Fi fingerprinting-based indoor localization.
Recent work on improving Wi-Fi fingerprinting
exploits the increasing computational capabilities
of smartphones. For instance, more sophisticated
convolutional neural networks (CNN) and ensem-
ble learning are being used in smartphones to
improve indoor localization accuracy [4], [5]. One
of the concerns with utilizing such techniques are
the severe energy limitations on mobile devices.
Pasricha et al. [3] proposed an energy efficient
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fingerprinting-based technique. However, all prior
works, including [3], are plagued by the same
major drawback, that is, the lack of device heter-
ogeneity across the offline and online phases. This
drawback leads to localization solutions that are
untested for real-world scenarios.

In general, devices used by localization solution
providers to collect Wi-Fi fingerprints across loca-
tions in the offline phase are different from the
devices owned by the users in the online phase.
Some of the known factors that introduce device
heterogeneity include different WiFi antennas,
smartphone design materials, hardware drivers, and
0S. Techniques to overcome this issue fall into two
major categories: calibration-based methods and
calibration-free methods.

The simplest calibration-based approach for het-
erogeneous device calibration is to acquire RSSI
values and location data manually for each new
device [7], which is, however, not very practical.
Once RSSI information is collected, manual cali-
bration can be performed through transformations
such as weighted least-square optimizations and
time-space sampling [8]. These techniques can be
aided by crowdsourcing schemes. However, such
approaches suffer from accuracy degradation [9].

In calibration-free fingerprinting, the finger-
printing data are translated into a standardized
form that is portable across devices. One such
approach, known as hyperbolic location finger-
print (HLF) [10], uses the ratios of individual
WAP RSSI values to form the fingerprint. Unfor-
tunately, HLF significantly increases the dimen-
sionality of the training data in the offline phase.
The signal strength difference (SSD) approach
[11] reduces the dimensionality by taking only
independent pairs of WAPs into consideration.
However, this approach causes accuracy deterio-
ration. Improvement in accuracy through Procru-
stes-based shape analysis and uniform scaling of
RSSI values was proposed in [6]. The RSSI values
are standardized through a signal tendency index
(STI) while maintaining the dimensionality of the
training data. The STI-based technique was shown
to perform better than SSD and HLF. Since STI is
used in conjunction with weighted extreme learn-
ing machines (WELMs) for best performance, it
is a computationally expensive technique. Also,
the overall experiments are performed with a
highly limited set heterogeneous smartphones in
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a one-room environment that is heavily controlled
by the authors. In contrast, our PortLoc framework
is a mobile-friendly, computationally inexpen-
sive approach that is tested over a wide range of
environments and heterogeneous mobile devices
under realistic settings.

Analyses of heterogeneous fingerprints

We first present an analysis of the impact
of smartphone heterogeneity on a conventional
indoor localization technique, i.e., Euclidean-based
K-nearest neighbor (KNN). To capture the impact of
device heterogeneity, we observe the performance
of the KNN technique to localize six users with six
distinct devices (Figure 1b) on five benchmark
paths (Figure 1a). Figure 2 shows the localization
accuracy across all smartphones and paths for four
scenarios where the KNN model was trained on four
different smartphones. The most interesting obser-
vation is that the best results are achieved when
the device under test is identical in the (offline)
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Figure 1. (a) Benchmark paths for indoor
localization showing path length, number
of WAPs, and key environmental features.
(b) Smartphones used in experiments.

training and (online) testing phases. For example,
the average localization accuracy of KNN remains
stable (< 2 m) when trained with OP3 on all paths
(Figure 2d). However, this trend does not hold
when the training device is not the same as the
testing device. For example, training on the BLU
smartphone leads to severe deterioration in accu-
racy in the Engr_Lab path when testing with the
MOTO, SS7, and OP3 smartphones (Figure 2a). For
the Engr_Lab path shown in Figure 2c, we observe
that the average error can be eight times between
the best-case scenario (LG-LG) and the worst-case
scenario (LG-OP3). This suggests that a nonporta-
ble fingerprinting-based localization work may be
extremely unreliable and unpredictable. However,
the degradation due to device heterogeneity is not
always observable, and KNN may be able to deliver
acceptable results in some cases. Examples of such
instances are shown in Figure 2b for the Glover,
Engr_Lab, and Engr_Office paths. From the results
shown in Figure 2, we set the acceptable limit on
average error to 2 m and focus only on cases where
the average error from KNN is beyond the accept-
able error limit.

To better comprehend the cause of degradation
in performance due to heterogeneity, we conduct
another experiment. As KNN only takes into
consideration the raw RSSI strength values of APs,
we compare the best performing heterogeneous
training-testing pair (LG-HTC) to the worst perform-
ing pair (LG-OP3) in terms of observed RSSI as seen
on the Engr_Lab path in Figure 2c. For this experi-
ment, we collected 100 RSSI fingerprints each using
the LG, HTC, and OP3 smartphones at the same loca-
tion on the Engr_Lab path.

The RSSI values for the best and the worst per-
forming training-testing device pairs are presented in
Figure 3a and b, respectively. The solid lines repre-
sent the mean values, whereas the shaded regions
represent the standard deviations of RSSI values.
From Figure 3a, there is a significant overlap in the
RSSI values for the LG and HTC devices. This trans-
lates to a shorter Euclidian distance and, therefore,
produces good results using KNN. On the other
hand, in Figure 3b, we observe only a slight overlap
in the RSSI fingerprints. This gap in overlap leads to
the deterioration of localization accuracy for the
LG-0OP3 device pair.

Another observation that can be made from
Figure 3 is that the individual RSSI values of both
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Figure 2. Average error for various benchmark paths using KNN algorithm. (a) Trained
with BLU. (b) Trained with HTC. (c) Trained with LG. (d) Trained with OP3.

fingerprints grow and drop at the same WAP.
Therefore, a metric that captures this pattern of
similarity for the two fingerprints should deliver
better accuracy for our purposes. This serves as the
core motivation for our proposed PortLoc frame-
work, which is discussed next.

PortLoc framework

In this section, we first discuss the fingerprinting
and fingerprint management process required by
PortLoc (see the “Wi-Fi fingerprinting” and “Finger-
print database preprocessing” sections). Then, we
present two variants of PortLoc based on two pattern
matching metrics to enable heterogeneity-resilient
indoor localization (see the “RSSI data-aware corre-
lation metrics” section).

Wi-Fi fingerprinting

We utilize both the 24- and 5-GHz Wi-Fi
frequencies to capture the RSSI of a WAP along with

September/October 2019

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on November 10,2020 at 23:54:09 UTC from IEEE Xplore. Restrictions apply.

its media access control (MAC) address and the
location (x—y coordinate) at which the sample was
taken. The MAC address allows us to uniquely iden-
tify a WAP. The RSSI values for WAPs visible at each
location are stored in a tabular form with the MAC
addresses and the location as table headers, such
that each row vector of RSSI values represents a fin-
gerprint for the location in that row. Fingerprints are
collected along an indoor path on a smartphone, by
the user. This is a time-consuming labor-intensive
manual step that is essential for any fingerprinting
technique. Therefore, unlike some previous works
[6], we collect a small number of samples per loca-
tion (see the “Heterogeneous devices and finger-
printing” section). It is important to note that the
deliverable accuracy from any fingerprinting-based
localization approach is directly correlated to the
granularity of sampling along a path. We chose to
sample at 1-m intervals along paths to achieve a suf-
ficient accuracy of a few meters.
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Figure 3. Average RSSI values of each WAP for training and testing pairs.
Shaded regions represent the standard deviation of RSSI. (a) RSSI values of
WAPs for LG-HTC device pair (best case). (b) RSSI values of WAPs for LG-OP3

device pair (worst case).

Fingerprint database preprocessing

The captured fingerprints can be easily polluted
by the temporarily visible Wi-Fi hotspots or third-
party-owned Wi-Fi APs. Utilizing such RSSI values in
our fingerprints can significantly reduce the overall
reliability and security of our localization framework.
Therefore, we only capture and maintain RSSI values
for trusted MAC addresses that are found to be reli-
able WAP sources. Further analysis of data revealed
that WAPs with very low RSSI values (< -90 dB) were
highly unstable and made it difficult to maintain the
shape of the RSSI fingerprint. This led us to filter out
all RSSI values that are < —-90dB. These preprocessing
steps improve the overall stability of PortLoc.

RSSI data-aware correlation metrics

To predict the users’ location in the online
phase of PortLoc, we compute the similarity metrics
discussed next for the fingerprint of the unknown
location and the database of known locations. The
weighted sum of the locations in the fingerprinting
database that produces the greatest value is the new
predicted location. The number of similar locations
taken into consideration is set to be the square root

of the fingerprinted samples per location taken in
the offline phase.

Spearman’s correlation coefficient

In Figure 3, we observed that individual RSSI
values for different smartphones may be further
apart, but the RSSI values rise and fall together.
When two or more variables increase (or decrease)
in the same direction but not always at the same
rate, they are known as monotonically depend-
ent variables. Spearman’s correlation coefficient
(SPRMN) is a nonparametric test of the monotonic
relationship between two variables. SPRMN for a
given sample is represented by rs and by design is
constrained as

-l<nr, <l

If the increase in one variable is followed by a
decrease in the other variable, this is called an inverse
monotonic relationship and is represented by a nega-
tive value. A positive value suggests that the variables
increase and decrease together. The magnitude of
rs represents the strength of the positive or negative
correlation between the two variables.
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Zero normalized cross-correlation

Zero normalized cross-correlation (ZNCC) is a
popular metric in the field of signal processing,
single particle analysis, and image matching. It is a
measure of similarity between two time-series as a
function of displacement. Unlike Spearman’s corre-
lation, ZNCC is not bounded within a range; instead,
it is purely based on the magnitude of the time
series. The higher the magnitude, the stronger the
match between the two time-series for the selected
time displacement. For our purposes, we assume
each fingerprint to be a time series and calculate the
value of ZNCC for zero displacement.

Experiments
Experimental setup

Heterogeneous devices and fingerprinting

To investigate the impact of device heterogeneity,
we employed six different smartphones (Figure 1b).
Note that three of the devices have the same chip-
set. This allows us to explore the impact of device
heterogeneity based on chipsets and vendors. We
created an Android application that recorded the
x-y coordinate from the user and included a scan
button. Once the scan button was pressed, 10 con-
secutive Wi-Fi scans were conducted with an inter-
val of 1 second. The RSSI value for each WAP and
its MAC address was recorded in an SQLite data-
base and then processed as described in the “Wi-Fi
fingerprinting” section.
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Indoor paths for localization benchmarking

We compared the accuracy and stability of PortLoc
and frameworks from prior work on five indoor paths
in different buildings on our campus. (Figure 1a; each
fingerprinted location is denoted by a blue dot). The
path lengths varied between 60 and 90 m.

Each path was selected due to its salient features
that may impact indoor localization. The Glover
building is one of the oldest buildings on campus
and constructed from wood and concrete. This path
is surrounded by a combination of laboratories that
hold heavy metallic equipment as well as large class-
rooms with open areas. A total of 78 unique WAPs
are visible on this path. The Behavioral Sciences
(Sciences) and Library (Lib_Study) are relatively new
buildings on campus that have a mix of metal and
wooden structures with open study areas and book-
shelves. We observed 112 and 218 unique WAPs on
the Sciences and Lib_Study paths, respectively. The
Engr_Office path is on the second floor of the engi-
neering building that is surrounded by small offices
and covered by 156 WAPs overall. The Engr_Lab path
is in the engineering basement and is surrounded by
laboratories consisting of a sizable amount of elec-
tronic and mechanical equipment with about 125 vis-
ible WAPs. Both of these paths have large quantities
of metal and electronics that lead to noisy Wi-Fi fin-
gerprints and can hinder indoor localization efforts.

Comparison with prior work
We selected three prior works to compare against
PortLoc. The first work (LearnLoc/KNN [3]) is a
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Figure 5. Average error for various techniques for benchmark paths and training
devices. (a) Trained with LG at Engr_Lab. (b) Trained with HTC at Engr_Lab.

(c) Trained with OP3 at Glover. (d) Trained with MOTO at Lib_Study.

(e) Trained with SS7 at Sciences. (f) Trained with LG at Engr_Office.

nonparametric approach based on the idea that
similar data, when observed as points in a multi-
dimensional space, would be clustered together.
The second work (rank-based fingerprinting (RBF)
[12]) claims that the rank of WAPs in a vector of
ranked WAPs based on RSSI values remains stable
across heterogeneous smartphones. Each vector of

ranked WAPs represents a point in Euclidian space,
and these points for a given location on a floor map
would be very close to each other. The third work
combines Procrustes analysis and WELMs [6] to pre-
dict the location of a user. Procrustes analysis allows
the technique to scale and superimpose the RSSI fin-
gerprints of heterogeneous devices and denote the
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strength of this superimposition as the STI. The STI
metric is used to transform the original RSSI finger-
prints and then later used to train a WELM model in
the online phase with the help of cloud servers.

Experimental results

Accuracy comparison for benchmark paths

Figure 4 shows the localization error across
indoor benchmark paths for the two variants of
PortLoc (PL_SPRMN, PL_ZNCC) and the prior
works (KNN, RBF, STI-WELM). The first notable
observation from Figure 4 is that the RBF technique
performs the worst on all paths. The baseline non-
heterogeneity-aware technique, KNN, significantly
outperforms RBF on all benchmark paths. KNN also
performs better than STI-WELM and PL_SPRMN in
most cases. PL_ZNCC delivers superior accuracy
as compared to prior works RBF and STI-WELM.
On the Glover path, where we observed the least
impact of smartphone heterogeneity, PL_ZNCC
closely tracks KNN performance. Unfortunately,
Figure 4 does not compare the performance of local-
ization frameworks on individual devices and thus
misrepresents the stability of KNN and other tech-
niques across paths.

Detailed performance of localization techniques

Figure 5 shows individual plots that represent the
contrast in the localization experiences of six users
carrying smartphones from distinct vendors. The
paths along with the training phase device combi-
nations were chosen based on the analysis of the
plots shown in Figure 2. We chose to focus on cases
that demonstrated significant deterioration in local-
ization error (above 2 m) for the nonheterogenei-
ty-aware baseline KNN technique.

From Figure 5a, HTC is the most stable device
for KNN, i.e., it is least affected by heterogene-
ity. In all other situations, localization is heavily
impacted by heterogeneity. Figure 5a is also the
only case where RBF performs better than KNN.
This suggests that the observed order of strengths
of RSSI values for WAPs remain relatively stable
in the case of Figure 5a as compared to all other
plots in Figure 5. Another notable aspect is that this
improvement is not maintained when the training
device is replaced by HTC in Figure 5b for the
same benchmark path. Overall, in Figure 5a and b,
PortLoc variants outperform RBF and STI-WELM
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whenever the localization error from the baseline
KNN technique is greater than 2 m.

We observe that the RBF technique performs the
worst when there is a significant amount of metal
in the surrounding environment. This is the case
for the engineering building paths (Engr_Lab and
Engr_Office) and the path in the Glover building.
The perturbations in the Wi-Fi AP RSSI values due to
the metallic surroundings cause the ranks of the AP
RSSI values to become highly unstable.

From Figure 5, we also observe that the proposed
PortLoc variants outperform STFWELM in most
training-testing device pairs. We believe PortLoc is
able to deliver superior performance as it is a purely
pattern-matching-based approach. On the other
hand, the STI-WELM framework identifies the closest
sampled locations from the offline phase using the
shape-matching-based STI metric. The fingerprints
of these closest locations are then used to train a
WELM-based neural network in the online phase
itself. This neural network model is not specially
designed for pattern matching and sacrifices predict-
ability of localization error for faster training time in
the online phase.

It is interesting to note that, under certain situations,
PL_SPRMN performs worse than STI-WELM, such as
on the Glover (Figure 5c¢), Lib_Study (Figure 5d), and
Sciences (Figure 5€). However, in all of these cases,
PL_ZNCC outperforms PL_SPRMN and STI-WELM.
In contrast, the PL_SPRMN technique seems to per-
form slightly better than PL_ZNCC in some training-
testing combinations for the engineering building
paths (Figure 5a, b, and f). These observations sug-
gest that there is no clear and obvious winner among
the two variants of PortLoc. We also note that, for
most paths shown in Figure 5, PortLoc variants,
especially PL_ZNCC, perform closest to KNN in the
case of nonsignificant heterogeneity-based accuracy
loss. Thus, our work strongly motivates the intelligent
combination of computationally inexpensive pattern
matching-based techniques to enhance the effec-
tiveness of device heterogeneity aware localization
frameworks that utilize fingerprinting.

IN THIS ARTICLE, we have established that the
proposed PortLoc framework is a computation-
ally inexpensive solution to the device heteroge-
neity problem in the fingerprinting-based indoor
localization domain. The advantage of establishing
portable machine learning models that can be
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easily ported across devices with minimal loss
in localization accuracy is a crucial step toward
the actuation of fingerprinting-based localization
frameworks in the real world. Our future work will
explore filtering strategies to further enhance the
accuracy of PortLoc. [ |
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