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Computational chemistry offers variety of tools to study properties of biological macro-
molecules. These tools vary in terms of levels of details from quantum mechanical treatment to
numerous macroscopic approaches. Here, we provide a review of computational chemistry
algorithms and tools for modeling the effects of genetic variations and their association with
diseases. Particular emphasis is given on modeling the effects of missense mutations on stability,
conformational dynamics, binding, hydrogen bond network, salt bridges, and pH-dependent
properties of the corresponding macromolecules. It is outlined that the disease may be caused by
alteration of one or several of above-mentioned biophysical characteristics, and a successful
prediction of pathogenicity requires detailed analysis of how the alterations affect the function
of involved macromolecules. The review provides a short list of most commonly used algorithms
to predict the molecular effects of mutations as well.

Keywords: Computational chemistry; mutations; diseases; stability; binding; human DNA
variants; pathogenic mutations.

1. Overview of Computational Chemistry Approaches

Computational chemistry is a sub-field of theoretical chemistry where the main focus
is solving chemically related problems by calculations.! It simply uses the mathe-
matical algorithms, statistics and large databases to integrate chemical theory and
modeling. Frequently, it utilizes high performance computing methods to solve
problems that require either huge amount of data or extensive calculations. When
computational chemistry deals with molecular biology phenomena, typically one
computes variety of properties as folding and binding free energies, electrostatic
potential, vibrational frequencies and normal modes, electronic excitation energy,
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Fig. 1. Different approaches used in computational chemistry to model biological systems.

NMR chemical shifts and coupling constants, reaction path and reaction rate.??
These properties are investigated via various modeling techniques, which range from
ab-initio, semi-empirical and molecular mechanics (MM).*” Here, we review different
approaches of computational chemistry depending on their level of detail from
quantum mechanics (QM), molecular dynamics (MD) to macroscopic approaches as
molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and statistical
methods (Fig. 1).

Quantum mechanical approach provides the greatest level of details and is used
when one is concerned about finest details of the phenomena being investigated. This
requires solving the Schrodinger equation for the system of interest and further
obtaining relevant energies and properties of molecules.®” Various techniques are
applied and here we briefly mention some of them. The Hartree-Fock (HF)® method
is one of the commonly used approaches in QM modeling of biological macro-
molecules. An important feature of the HF method is the mean field approximation.
Another alternative method in QM for macromolecular modeling is the Density
Functional Theory (DFT).? In the DFT total energy is expressed in terms of total
energy density rather than wave function. The Quantum Monte Carlo (QMC)'
which uses various energy functions as variational, diffusion and Green’s functions
and then applies Monte Carlo integration is an another alternative. While QM
modeling provides the most physical insights, it is computationally prohibited to be
applied on large systems as biological macromolecules, thus one takes advantage of
hybrid approaches.!'™'® Indeed, combination of QM and MM (QM/MM) is fre-
quently used in computational chemistry. Thus, QM describes the chemical processes
that are localized in space and time and those phenomena that involve slow motion of
atoms during a reaction are described via MM.'¢
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Other common approaches in computational chemistry are the first-principle
approaches that include MD and Monte Carlo (MC) simulations. The MD simulations
model the time-dependent behavior of a system of interest within the framework of
classical mechanics.!”2" It is typically used to probe the conformational flexibility of
macromolecules, to deliver snapshot of structural conformations, to guide binding via
steered MD, to fold macromolecules and many other applications.?!**> The MC
methods, on the other hand, are used to sample energy landscape and to deliver the
probability for each accessible conformation.?”** Both MD and MC could be quite
computationally demanding, if the simulated system is large and requires either long
simulation time or sampling of many different states. Thus, one applies techniques that
accelerate the sampling and improve the convergence. #1324

The trajectories generated via MD simulations can be used to compute the energy of
the system of interest. This approach is known as molecular mechanics Poisson—
Boltzmann (or Generalized Born) surface area (MM-PB/GBSA) method. Thus, using
the conformation generated with MD simulations, one partitions the energy into
vacuum (MM), polar solvation (PB or GB) and nonpolar (SA) components.'#?%2¢

Approaches based on statistical potentials are frequently used in computational
chemistry if one wants to investigate a particular class of problems. Thus, if one is
concerned about protein folding; binding and aggregation; or in general of protein
structure prediction and in fold recognition,?”?® instead of using first-principle
approaches, the corresponding potentials can be delivered from statistical analysis.
In such a case, knowledge-based potentials (KBP)'"'%** are delivered by analysis of
existing protein structures in Protein Data Bank (PDB).*

2. Overview of Computational Chemistry Methods to Predict Changes
Caused by Mutations

In this section, we will review different algorithms of computational chemistry that
are used to model the effect of mutations on protein wild type properties. We refer to
protein wild type properties as folding and binding free energies, conformational
dynamics, hydrogen bonds, salt bridges, electrostatic forces, and pH-dependence. We
focus on these properties because they can be modeled via the computational
chemistry approaches outlined above. Furthermore, since the goal of this review is to
review the computational chemistry approaches with regard to predicting disease-
causing mutations (variants), it should be pointed out that it was demonstrated that
there is a linkage between the change of the above-mentioned properties and pro-
pensity given mutation to be pathogenic (for more details see Refs. 31-34). Thus, the
ability to correctly predict the changes of wild type properties of the corresponding
macromolecules caused by mutations is critical for disease diagnostics.

2.1. Prediction of stability change

Biological macromolecules function by adopting a particular 3D structure. A
mutation, a change of the amino acid or nucleic acid, can affect the ability of the
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Table 1. Different approaches for predicting stability change upon mutation.

Type Name Description Reference
FEP & TI MD simulations Uses alchemical transformation from wild type to mu- 3842
tant protein to evaluate the stability change upon
mutation.
MM-PB/GASA  PoPMuSiC  Uses combination of statistical potentials and neutral 43
method to estimate AAG upon mutation.
SAAFEC Predict the effect of single point mutation on protein 44

folding free energy using a knowledge based MM/
PBSA approach.
HoTMuSiC  Uses artificial neutral and solvent accessibility depen- 45
dent combination of statistical potential to predict
stability change upon single mutation.

Empirical & DUET Uses computational approach estimate AAG upon 46
machine mutations in protein using support vector machine.
learning FoldX Predicts AAG upon mutation using empirical force field. 47
I-Mutant Predicts AAG upon mutation through support vector 48
machine.
SDM Uses statistical potential energy function to estimate 49
AAG upon mutation.
CUPSAT Uses mean force atom pair and torsion angle potentials 50
to evaluate AAG upon mutation.
AUTO-MUTE Uses machine learning methods and knowledge based 51
statistical contact potential to calculate AAG upon
mutation.

macromolecule to fold properly. This is addressed by computing the effect of
mutations on folding free energy. In what follows, we outline some of the most
popular approaches to predict the change of the folding free energy caused by
mutations (see also Refs. 32, 35-37). The approaches can be grouped into first-
principle (free energy perturbation (FEP) of thermodynamic integration (TT)), MM-
PB/GASA and empirical methods (Table 1).

The FEP/TI protocols are used in computational chemistry for computing free
energy difference between wild type and mutant proteins.***? While they are con-
sidered to be the most accurate, the FEP/TI are computationally demanding and
cannot be applied on large-scale modeling. Reasonable alternative are the methods
based on MMPB/GBSA approach. Several such approaches were developed and are
available via webservers (Table 1). The short list includes PoPMuSiC,** SAAFEC**
and others (Table 1). Since MMPB/GBSA is known to overestimate the energy
changes, most of the protocols use adjustable parameters to provide optimal weight
of the corresponding energy components.** The optimization of the parameters is
done by benchmarking against experimental data of folding free energy changes
caused by mutations (taken from various databases as ProTherm,'”"> ProDa-
taTherm” and SPROUTS"). Empirical or statistical methods use either empirical
formula or machine learning to optimize their predictions using the above databases.
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Fig. 2. Thermodynamics cycle for the estimation of folding free energy change upon mutation. The wild
type amino acid is shown with brown color, while the mutated with green. Folded state is represented by
the corresponding PDB structure (in ribbon presentation) and unfolded state is shown as disordered
peptide.

Short list includes DUET,* FoldX,*” I-Mutant,*® SDM,*’ CUPSAT,”® and AUTO-
MUTE.”! While these methods are quite fast, they are typically not performing well
on cases that are not similar to the cases in the training database.

All above approaches suffer the same uncertainty — the model of unfolded state.
It should be emphasized that computing the change of the folding free energy
requires either the change of the folding free energy of wild type and mutant protein
to be modeled (vertical arrows in Fig. 2) or the change of the free energy of unfolded
and folded state upon mutation of the wild type protein (horizontal arrows in Fig. 2).
Typically, the above-mentioned approaches either ignore the unfolded state (via
training or another procedure) or adopt simplified model of the unfolded state made
of one (PoPMuSiC) or several residues (SAAFEC) only. This is clear oversimplifi-
cation, since it is well documented that unfolded state is not an extended chain
of amino acid, instead it is quite compact and there are residual interactions. To
address this issue, recently we proposed that unfolded state could be modeled via
tools that generate structures for intrinsically disordered proteins.®®

2.2. Prediction of binding free energy change

Similar classification (as for the folding free energy) for the tools for predicting
binding free energy can be applied here. The FEP and TI were used to predict the
change of the binding free energy caused by mutations.***® However, as mentioned

1930001-5


https://www.worldscientific.com/action/showImage?doi=10.1142/S0219633619300015&iName=master.img-003.jpg&w=241&h=221

J. Theor. Comput. Chem. Downloaded from www.worldscientific.com
by 24.196.187.124 on 10/20/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

M. Koirala & E. Alexov

Table 2. Different approaches for prediction of binding energy change upon mutation.

Type Name Description Reference

FEP & TI MD simulations Uses alchemical transformation from wild type to mutant 33, 38
protein to evaluate the affinity change upon mutation.
MM-PB/GBSA BeATMuSiC Estimates change in binding energy change upon mutation 56
using coarse-grained model and statistical potentials.
MutaBind Uses MM force fields energies and fast side-chain optimi- 57
zation algorithm to compute the change in binding
affinity upon mutation.
SAAMBE Models the effects of mutations on protein—protein binding 58
free energy using modified MM/PBSA approach and
additional set of knowledge-based terms.
SAMPDI Estimates the effects of mutations on protein-DNA 59
binding affinity using modified MM/PBSA approach
and additional set of knowledge-based terms.
PremPDI Estimate the effect of single mutations on protein-DNA 35
binding affinity using MM force field energies and fast
side chain optimization algorithm.

Empirical & FoldX Models mutations using rotamer approach and empirical 48
machine force field.
learning BindProfX Estimates the binding free energy change as the logarithm 61

of relative probability of mutant amino acid over wild
type ones. It combines interface profile (conservation)
with FoldX prediction.

mCSM Estimates the effect of mutation on protein based on atom 62
distance patterns with Gaussian process regression.
ELASPIC Machine learning approach to estimate the effects of 63

mutations on protein—protein interaction. Uses
sequence, energy and molecular features with
decision tree.

above, they are quite computationally demanding and cannot be applied on genome-
scale investigations. Much more frequently used are MM-PB/GBSA-based approa-
ches (Table 2). The short list includes BeAtMuSiC,”® MutaBind,”” SAAMBE,*®
SAMPDI,*® and PremPDI.*® They are all trained against databases of experimen-
tally measured changes of the binding free energy as SKEMPI,*> PBDBind**“’ and
others. Empirical and machine learning algorithms include FoldX,* BindProfX,!
mCSM®? and ELASPIC® (Table 2). Note that in this case, the issue with unfolded
state is no longer present. This is because the unfolded state is the same for the
complex and separated monomers, so it cancels out in the thermodynamic cycle.

2.3. Change of conformation dynamics

Another important characteristic of biological macromolecules is their conforma-
tional dynamics. A change of the wild type dynamics can severely affect the function.
Typically, one investigates macromolecular dynamics via MD approaches. Most
commonly used packages are NAMD,* CHARMM,* Amber,* GROMOS,"
GROMACS,’® TINKER," and others. The change of conformational dynamics is
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attained computationally by comparing the root mean square deviation (RMSD) of
wild type and mutant structures obtained via MD simulations. In addition, fre-
quently researchers use root mean square fluctuations (RMSF) to identify structural
regions affected by the mutations.

2.4. Prediction of change of H-bond network

Hydrogen bonds are essential for macromolecular stability, flexibility and details of
the corresponding reaction. Any deviation of the native H-bond network is expected
to affect the function of the corresponding macromolecule. The simplest approach of
predicting the effect of mutation on H-bonds is to compare the H-bonds of wild type
and mutant structures being obtained either experimentally or computationally (via
side chain replacement). In the last case, one can employ energy minimization to
reduce plausible conformational clashes and to further optimize the H-bonds before
making the assessment. More sophisticated approaches require MD simulations and
analysis of the corresponding snapshots. All MD packages listed above provide tools
for such kind of analysis, the most used is VMD.”™ Some of other tools include
Chimera,” PyMOL™ and RASMOL.™

2.5. Prediction of change of salt-bridges

Salt bridges are also essential component of macromolecular structure and any
change of their network may cause significant structural and functional alterations.
Similarly, to the approaches for investigating H-bond network, one can apply simple
protocol of the structures of the wild type and mutant or to use snapshot delivered
via MD. In both cases, one can use VMD,”’ Chimera,”' PyMOL,” and RASMOL"
to analyze the H-bond network changes caused by mutations.

2.6. Electrostatic forces

Electrostatic forces are frequently omitted from the analysis of effect of mutations,
however, recently it was demonstrated that the changes of electrostatic forces due to
mutations can be used to discriminate pathogenic from benign mutations.”™ There
are no many resources available for modeling electrostatic forces in molecular biology
with the prominent exception of DelPhiForce.”>™ This tool allows for modeling the
electrostatic forces acting on individual atom(s), residue(s) or molecular partuners.
Thus, by comparing the forces within wild type residues and mutant, one can see the
differences and attribute them to the effect of these differences on the functionality of
the corresponding molecule.

2.7. Prediction of pH-dependence

The pKa values of titratable groups in macromolecules determine the pH-depen-
dence of their stability, interactions and enzymatic activity.”*" Any changes of the
pKa’s may affect the wild type properties of the corresponding macromolecule.
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However, it should be clarified that these pKa changes should be considered in
conjunction with the pH at which the corresponding macromolecule is supposed to be
functioning. If the pKa’s and their changes are outside this functional pH range, it
may be considered that they are not relevant for functionality in vivo. There are
several tools for predicting pKa’s of titratable groups. The short list includes Del-
PhiPKa,*"%! MCCE,*?% ProPKA,** H++,% and CPHMD.®*® Among them, Del-
PhiPKa is the only one that computes pKa’s of proteins, RNAs and DNAs.%”

3. Molecular Effects and Their Linkage with Diseases

Mutation is the permanent change in the nucleotide sequence of DNA, which occurs
during its replication or recombination. The mutation results in substitution, dele-
tion or insertion. Many mutations are repaired before protein synthesis occurs, so
they do not have any effects on the function of the corresponding biomolecules. Some
of the mutations have positive effect on the corresponding organism and they are
called beneficial mutations. However, other mutations may drastically reduce the
ability of the organism to survive and such mutations are called harmful mutations.
If such a change occurs in a fraction of population but not in a single case, the change
is termed single nucleotide polymorphism (SNP).*® Here, we focus on reviewing
computational chemistry tools for modeling effects of mutations that results in a
change of the amino acid sequence of the corresponding protein, the nonsynonymous
mutations.?” In this section, we will review the effects caused by nonsynonymous
mutations on protein stability, binding, dynamics, H-bonds, salt bridges, electro-
static forces, and pH-dependence and their associations with different diseases.?” In
most cases we will illustrate the linkage between the change of above-mentioned
properties and diseases taking examples from our own work, however, it should be
clarified that our work represent just a tiny fraction of numerous investigations on
this topic.

3.1. Protein stability changes and their association with diseases

Usually, the change in folding free energy (AAG) is used to determine the stability
change of a protein due to a mutation. Depending on the sign of AAG, one assesses
that the mutation stabilizes or destabilizes the protein. It is expected that any
deviation of wild type properties, resulting in over stabilized or destabilized protein,
will have negative effect of its function. However, there is no “golden rule” or “golden
threshold” to indicate that if the magnitude is large than the cut-off, the mutation
will abolish protein function and thus most probably will be pathogenic. Perhaps the
best thing to do it to impose another measure like if wild type stability changes by
more than a particular percentile, then the functionality will be affected. However,
since in vast majority of cases, especially in case of genomic-scale studies, the wild
type stability is unknown, one simply uses arbitrary cut-off of 1 or 2 kcal/mol. Here,
we provide several examples of mutations affecting protein stability and being
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associated with diseases. Thus, it was shown that the mutation M35R in spermine
synthase destabilizes the protein and causes Snyder-Robinson syndrome.®® On the
opposite side of spectra is the mutation H101Q in CLIC2 protein, which is shown to
increase CLIC2 protein stability and is associated with mental disorder.®"° Most
frequently mutations destabilize the corresponding protein’’ and cause various
diseases.?® Some of the diseases are Alzheimer’s disease,”? Salt & Pepper syndrome’?
and Snyder-Robinson syndrome.’* Furthermore, mutations in LMNA gene, which

9 mutations in retinal proteins causing retinal

97

are associated with muscular disease,
96 and mutations in prion protein associated with prion disease,
examples of mutations that destabilize the corresponding protein. Similarly, the
destabilizations of protein due to mutations are also seen in many neuro-degenerative
diseases such as Parkinson’s disease.”® A particular example of destabilizing muta-
tion causing Snyder-Robinson syndrome is shown in Fig. 3(a).

disease are also

3.2. Mutation affecting protein-protein and protein-DNA binding and
their linkage with disease

Mutations also have an effect on protein—protein affinity, which can be calculated via
the change of protein binding free energy.’® Many diseases are caused by altered
protein—protein, protein—-RNA and protein—-DNA interactions. It was repeatedly
demonstrated that cancer mutations frequently occur at protein binding interfaces.””
Likewise, mutations in SLC12A3 gene, G439S and G741, which cause Gitelman
syndrome are also associated with the change of binding energy.'’° Mutation G56S in
spermine synthase destabilize the homo-dimer and is associated with Snyder-
Robinson syndrome.®® Many Rett syndrome-causing mutations are causing alter-
ation of protein-DNA binding.?®!°! Another example are mutations in MLI2 gene,
W5065X and R5179H, which leads to Kabuki Syndrome and affect protein
binding.'’* A particular example is shown in Fig. 3(b).

3.3. Mutations affecting protein conformation and linkage with disease

Proteins function by sampling various conformations. If a mutation affects the
conformational space of a protein, it is expected that the function will be affected as
well. For example, the mutation L61P in CEP63 protein, which causes aneuploidy
and solid tumors in humans,'®® is predicted to increase protein flexibility. Two
mutations in the human protoporphyrinogen oxidase (hPPO) gene associated with
variegate porphyria, R59Q and R59G, were demonstrated to change hPPO ability to
sample relevant conformations.'’* A mutation, L427P, in dystrophin protein was
also demonstrated to cause change in conformational flexibility, and to be associated
with Becker muscular dystrophy.'%® Mutations in KDM5C gene, N142S and R108W,
which are associated with X-linked mental retardation and syndrome Claes—Jensen
type disease also alter conformational dynamics of corresponding proteins.'%® A
particular example is shown in Fig. 3(c).
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Fig. 3. (Color online) Molecular effects of mutations linked with different diseases: (a) part of spermine
synthase zoomed at wild type Met35 (left) and mutant Arg35 (right); mutation is associated with Snyder—
Robinson syndrome; (b) part of spermine synthase homo-dimer (chain A in blue and chain B in green)
zoomed at wild type Glu56 (left) and mutant Ser56 (right); mutation is associated with Snyder—Robinson
syndrome; (¢) RSMF of KDM5C ARID domain for mutation R108W based on 100ns MD simulations;
mutation is associated with X-linked mental retardation, the syndrome Claes—Jensen type disease;
(d) region of wild type 1150 (left) and mutant T150 (right) in spermine synthase; the H-bonds are shown in
blue dotted lines; one can appreciate the change of H-bond network caused by the mutation; mutation is
causing Snyder-Robinson syndrome; (e) Region of wild type R108 (left) and mutant W108 (right) in
KDMS5C protein demonstrating removal of salt bridge; mutation is associated with syndrome Claes—Jensen
type disease; (f) The change of electrostatic forces on kinesin residues bound to tubulin dimer calculated by
DelphiForce due to mutation E253K.

3.4. Mutations affecting H-bond and linkage with diseases

H-bonds networks are very important for the biological functions of macromolecules.
So mutations resulting in removal or addition of hydrogen donor or acceptor have
significant effect on structural integrity.'°” It has been investigated that a mutation
in CEP63 gene, L61P, resulting in change in H-bond has effect on protein flexibility
and associated with aneuploidy and solid tumors.'%® Likewise, the mutation R595W
in CPT1 protein results in a change of H-bond network, has effect on protein
structure and is associated with mitochondrial fatty acid oxidation disorder.'?”
Mutations in multiple sites of amyloid-/3 peptide causing change of H-bond network
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are associated with the Alzhemier’s Disease.''® Another well studied effect of I150T
mutation in spermine synthase which causes Snyder Robinson syndrome is
predicted to alter the H-bond network in the active site.''! A particular case is
shown in Fig. 3(d).

3.5. Mutations affecting salt bridges and causing diseases

Salt bridges are also very important for protein stability and function. Thus, an
autistic spectrum disorder is attributed to a salt-bridge deleting mutation, R102Q, in
neuronal calcium sensor-1(NCS-1) protein.'*®
disease is predicted to be caused by removal of salt-bridge in KDM5C protein due to
the mutation R108W.'%6 Similarly, the mutation R148H in a globular prion protein
associated with Creuzfeldt—Jakob disease affects salt bridge interactions.'*!'*? An-
other mutation, D178N, in the same protein and altering salt bridge interaction,
causes fatal familial insomnia (FFI)."'%!'% A particular example is shown in Fig. 3(e).

The syndromic Claes—Jensen-type

3.6. Mutations altering electrostatic forces and causing diseases

Electrostatic forces are very important to understand various molecular phenomena,
especially those involving long-range interactions.!'* One can analyze the change of
electrostatic forces between wild type and mutant and from there to assess the
linkage with diseases. For example, mutation L.249Q) in kinesin-3 family KIF1A and
Y276C in kinesin-1 families showed significant change of electrostatic forces. Both
mutations are associated with diseases as Parkinsonism and peripheral neuropathy.”
A particular example is shown in Fig. 3(f).

3.7. Mutations affecting pH- dependence and linkage with disease

pH is an important regulatorily factor for macromolecular function and mutations
affecting pH-dependent characteristics of protein may be deleterious. It was dem-
onstrated that H101Q mutation in CLIC2 protein, which is associated with
X-linked intellectual disability (ID) affects pH-dependence.*” Mutations affecting
several residues of TTR gene are associated with human amyloidosis and have
effect on pH-dependence as well.!'® Mutations in multiple sites of amyloid-3 pep-
tide aggregation associated with Alzheimer’s disease are also pointed out to alter
the pH-dependence.!*°

4. Conclusions

In this work, different approaches of computational chemistry and their applications
to model the effects of mutations and their association with diseases were reviewed.
The review focuses on tools of computational chemistry; therefore, it is limited to
methods that use structural information of any kind. Many widely used approaches
to predict pathogenic mutations are not included simply because they are based on
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machine learning and utilize evolution information (residue conservation, frequency
of mutation, etc.). Thus, the review target computational chemistry audience and
attempts to bridge computational chemistry with personalized medicine and precise
diagnostics.

It should be outlined that the methods mentioned in this review do not represent
exclusive list of all resources available. Here, we attempted to provide only a short list
of tools that in our opinion are frequently used to predict effects of mutations of
macromolecular stability, binding and conformational dynamics, along with some
structural features and pH-dependence. Furthermore, the examples provided are
only for illustration and were taken from authors works, while clearly realizing that
many other researchers contributed to such kind of investigations as well.
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