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Computational chemistry o®ers variety of tools to study properties of biological macro-

molecules. These tools vary in terms of levels of details from quantum mechanical treatment to

numerous macroscopic approaches. Here, we provide a review of computational chemistry

algorithms and tools for modeling the e®ects of genetic variations and their association with
diseases. Particular emphasis is given on modeling the e®ects of missense mutations on stability,

conformational dynamics, binding, hydrogen bond network, salt bridges, and pH-dependent

properties of the corresponding macromolecules. It is outlined that the disease may be caused by

alteration of one or several of above-mentioned biophysical characteristics, and a successful
prediction of pathogenicity requires detailed analysis of how the alterations a®ect the function

of involved macromolecules. The review provides a short list of most commonly used algorithms

to predict the molecular e®ects of mutations as well.

Keywords: Computational chemistry; mutations; diseases; stability; binding; human DNA

variants; pathogenic mutations.

1. Overview of Computational Chemistry Approaches

Computational chemistry is a sub-¯eld of theoretical chemistry where the main focus

is solving chemically related problems by calculations.1 It simply uses the mathe-

matical algorithms, statistics and large databases to integrate chemical theory and

modeling. Frequently, it utilizes high performance computing methods to solve

problems that require either huge amount of data or extensive calculations. When

computational chemistry deals with molecular biology phenomena, typically one

computes variety of properties as folding and binding free energies, electrostatic

potential, vibrational frequencies and normal modes, electronic excitation energy,
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NMR chemical shifts and coupling constants, reaction path and reaction rate.2,3

These properties are investigated via various modeling techniques, which range from

ab-initio, semi-empirical and molecular mechanics (MM).4,5 Here, we review di®erent

approaches of computational chemistry depending on their level of detail from

quantum mechanics (QM), molecular dynamics (MD) to macroscopic approaches as

molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and statistical

methods (Fig. 1).

Quantum mechanical approach provides the greatest level of details and is used

when one is concerned about ¯nest details of the phenomena being investigated. This

requires solving the Schrodinger equation for the system of interest and further

obtaining relevant energies and properties of molecules.6,7 Various techniques are

applied and here we brie°y mention some of them. The Hartree–Fock (HF)8 method

is one of the commonly used approaches in QM modeling of biological macro-

molecules. An important feature of the HF method is the mean ¯eld approximation.

Another alternative method in QM for macromolecular modeling is the Density

Functional Theory (DFT).9 In the DFT total energy is expressed in terms of total

energy density rather than wave function. The Quantum Monte Carlo (QMC)10

which uses various energy functions as variational, di®usion and Green's functions

and then applies Monte Carlo integration is an another alternative. While QM

modeling provides the most physical insights, it is computationally prohibited to be

applied on large systems as biological macromolecules, thus one takes advantage of

hybrid approaches.11–15 Indeed, combination of QM and MM (QM/MM) is fre-

quently used in computational chemistry. Thus, QM describes the chemical processes

that are localized in space and time and those phenomena that involve slow motion of

atoms during a reaction are described via MM.16

Fig. 1. Di®erent approaches used in computational chemistry to model biological systems.
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Other common approaches in computational chemistry are the ¯rst-principle

approaches that includeMD andMonte Carlo (MC) simulations. TheMD simulations

model the time-dependent behavior of a system of interest within the framework of

classical mechanics.17–20 It is typically used to probe the conformational °exibility of

macromolecules, to deliver snapshot of structural conformations, to guide binding via

steered MD, to fold macromolecules and many other applications.21,22 The MC

methods, on the other hand, are used to sample energy landscape and to deliver the

probability for each accessible conformation.22,23 Both MD and MC could be quite

computationally demanding, if the simulated system is large and requires either long

simulation time or sampling ofmany di®erent states. Thus, one applies techniques that

accelerate the sampling and improve the convergence.14,13,24

The trajectories generated viaMD simulations can be used to compute the energy of

the system of interest. This approach is known as molecular mechanics Poisson–

Boltzmann (or Generalized Born) surface area (MM-PB/GBSA) method. Thus, using

the conformation generated with MD simulations, one partitions the energy into

vacuum (MM), polar solvation (PB or GB) and nonpolar (SA) components.12,25,26

Approaches based on statistical potentials are frequently used in computational

chemistry if one wants to investigate a particular class of problems. Thus, if one is

concerned about protein folding; binding and aggregation; or in general of protein

structure prediction and in fold recognition,27,28 instead of using ¯rst-principle

approaches, the corresponding potentials can be delivered from statistical analysis.

In such a case, knowledge-based potentials (KBP)11,15,29 are delivered by analysis of

existing protein structures in Protein Data Bank (PDB).30

2. Overview of Computational Chemistry Methods to Predict Changes

Caused by Mutations

In this section, we will review di®erent algorithms of computational chemistry that

are used to model the e®ect of mutations on protein wild type properties. We refer to

protein wild type properties as folding and binding free energies, conformational

dynamics, hydrogen bonds, salt bridges, electrostatic forces, and pH-dependence. We

focus on these properties because they can be modeled via the computational

chemistry approaches outlined above. Furthermore, since the goal of this review is to

review the computational chemistry approaches with regard to predicting disease-

causing mutations (variants), it should be pointed out that it was demonstrated that

there is a linkage between the change of the above-mentioned properties and pro-

pensity given mutation to be pathogenic (for more details see Refs. 31–34). Thus, the

ability to correctly predict the changes of wild type properties of the corresponding

macromolecules caused by mutations is critical for disease diagnostics.

2.1. Prediction of stability change

Biological macromolecules function by adopting a particular 3D structure. A

mutation, a change of the amino acid or nucleic acid, can a®ect the ability of the

Computational chemistry methods to investigate the e®ects caused by DNA variants linked with disease
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macromolecule to fold properly. This is addressed by computing the e®ect of

mutations on folding free energy. In what follows, we outline some of the most

popular approaches to predict the change of the folding free energy caused by

mutations (see also Refs. 32, 35–37). The approaches can be grouped into ¯rst-

principle (free energy perturbation (FEP) of thermodynamic integration (TI)), MM-

PB/GASA and empirical methods (Table 1).

The FEP/TI protocols are used in computational chemistry for computing free

energy di®erence between wild type and mutant proteins.38–42 While they are con-

sidered to be the most accurate, the FEP/TI are computationally demanding and

cannot be applied on large-scale modeling. Reasonable alternative are the methods

based on MMPB/GBSA approach. Several such approaches were developed and are

available via webservers (Table 1). The short list includes PoPMuSiC,43 SAAFEC44

and others (Table 1). Since MMPB/GBSA is known to overestimate the energy

changes, most of the protocols use adjustable parameters to provide optimal weight

of the corresponding energy components.44 The optimization of the parameters is

done by benchmarking against experimental data of folding free energy changes

caused by mutations (taken from various databases as ProTherm,45,52 ProDa-

taTherm53 and SPROUTS54). Empirical or statistical methods use either empirical

formula or machine learning to optimize their predictions using the above databases.

Table 1. Di®erent approaches for predicting stability change upon mutation.

Type Name Description Reference

FEP & TI MD simulations Uses alchemical transformation from wild type to mu-

tant protein to evaluate the stability change upon
mutation.

38–42

MM-PB/GASA PoPMuSiC Uses combination of statistical potentials and neutral

method to estimate ��G upon mutation.

43

SAAFEC Predict the e®ect of single point mutation on protein
folding free energy using a knowledge based MM/

PBSA approach.

44

HoTMuSiC Uses arti¯cial neutral and solvent accessibility depen-
dent combination of statistical potential to predict

stability change upon single mutation.

45

Empirical &

machine
learning

DUET Uses computational approach estimate ��G upon

mutations in protein using support vector machine.

46

FoldX Predicts��G upon mutation using empirical force ¯eld. 47

I-Mutant Predicts ��G upon mutation through support vector

machine.

48

SDM Uses statistical potential energy function to estimate
��G upon mutation.

49

CUPSAT Uses mean force atom pair and torsion angle potentials

to evaluate ��G upon mutation.

50

AUTO-MUTE Uses machine learning methods and knowledge based
statistical contact potential to calculate ��G upon

mutation.

51

M. Koirala & E. Alexov
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Short list includes DUET,46 FoldX,47 I-Mutant,48 SDM,49 CUPSAT,50 and AUTO-

MUTE.51 While these methods are quite fast, they are typically not performing well

on cases that are not similar to the cases in the training database.

All above approaches su®er the same uncertainty ��� the model of unfolded state.

It should be emphasized that computing the change of the folding free energy

requires either the change of the folding free energy of wild type and mutant protein

to be modeled (vertical arrows in Fig. 2) or the change of the free energy of unfolded

and folded state upon mutation of the wild type protein (horizontal arrows in Fig. 2).

Typically, the above-mentioned approaches either ignore the unfolded state (via

training or another procedure) or adopt simpli¯ed model of the unfolded state made

of one (PoPMuSiC) or several residues (SAAFEC) only. This is clear oversimpli¯-

cation, since it is well documented that unfolded state is not an extended chain

of amino acid, instead it is quite compact and there are residual interactions. To

address this issue, recently we proposed that unfolded state could be modeled via

tools that generate structures for intrinsically disordered proteins.55

2.2. Prediction of binding free energy change

Similar classi¯cation (as for the folding free energy) for the tools for predicting

binding free energy can be applied here. The FEP and TI were used to predict the

change of the binding free energy caused by mutations.33,38 However, as mentioned

Fig. 2. Thermodynamics cycle for the estimation of folding free energy change upon mutation. The wild

type amino acid is shown with brown color, while the mutated with green. Folded state is represented by

the corresponding PDB structure (in ribbon presentation) and unfolded state is shown as disordered
peptide.

Computational chemistry methods to investigate the e®ects caused by DNA variants linked with disease
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above, they are quite computationally demanding and cannot be applied on genome-

scale investigations. Much more frequently used are MM-PB/GBSA-based approa-

ches (Table 2). The short list includes BeAtMuSiC,56 MutaBind,57 SAAMBE,58

SAMPDI,59 and PremPDI.35 They are all trained against databases of experimen-

tally measured changes of the binding free energy as SKEMPI,32 PBDBind34,60 and

others. Empirical and machine learning algorithms include FoldX,48 BindProfX,61

mCSM62 and ELASPIC63 (Table 2). Note that in this case, the issue with unfolded

state is no longer present. This is because the unfolded state is the same for the

complex and separated monomers, so it cancels out in the thermodynamic cycle.

2.3. Change of conformation dynamics

Another important characteristic of biological macromolecules is their conforma-

tional dynamics. A change of the wild type dynamics can severely a®ect the function.

Typically, one investigates macromolecular dynamics via MD approaches. Most

commonly used packages are NAMD,64 CHARMM,65 Amber,66 GROMOS,67

GROMACS,68 TINKER,69 and others. The change of conformational dynamics is

Table 2. Di®erent approaches for prediction of binding energy change upon mutation.

Type Name Description Reference

FEP & TI MD simulations Uses alchemical transformation from wild type to mutant

protein to evaluate the a±nity change upon mutation.

33, 38

MM-PB/GBSA BeATMuSiC Estimates change in binding energy change upon mutation

using coarse-grained model and statistical potentials.

56

MutaBind Uses MM force ¯elds energies and fast side-chain optimi-

zation algorithm to compute the change in binding
a±nity upon mutation.

57

SAAMBE Models the e®ects of mutations on protein–protein binding

free energy using modi¯ed MM/PBSA approach and
additional set of knowledge-based terms.

58

SAMPDI Estimates the e®ects of mutations on protein–DNA

binding a±nity using modi¯ed MM/PBSA approach

and additional set of knowledge-based terms.

59

PremPDI Estimate the e®ect of single mutations on protein–DNA

binding a±nity using MM force ¯eld energies and fast

side chain optimization algorithm.

35

Empirical &
machine

learning

FoldX Models mutations using rotamer approach and empirical
force ¯eld.

48

BindProfX Estimates the binding free energy change as the logarithm

of relative probability of mutant amino acid over wild

type ones. It combines interface pro¯le (conservation)
with FoldX prediction.

61

mCSM Estimates the e®ect of mutation on protein based on atom

distance patterns with Gaussian process regression.

62

ELASPIC Machine learning approach to estimate the e®ects of

mutations on protein–protein interaction. Uses

sequence, energy and molecular features with

decision tree.

63
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attained computationally by comparing the root mean square deviation (RMSD) of

wild type and mutant structures obtained via MD simulations. In addition, fre-

quently researchers use root mean square °uctuations (RMSF) to identify structural

regions a®ected by the mutations.

2.4. Prediction of change of H–bond network

Hydrogen bonds are essential for macromolecular stability, °exibility and details of

the corresponding reaction. Any deviation of the native H–bond network is expected

to a®ect the function of the corresponding macromolecule. The simplest approach of

predicting the e®ect of mutation on H–bonds is to compare the H–bonds of wild type

and mutant structures being obtained either experimentally or computationally (via

side chain replacement). In the last case, one can employ energy minimization to

reduce plausible conformational clashes and to further optimize the H–bonds before

making the assessment. More sophisticated approaches require MD simulations and

analysis of the corresponding snapshots. All MD packages listed above provide tools

for such kind of analysis, the most used is VMD.70 Some of other tools include

Chimera,71 PyMOL71 and RASMOL.72

2.5. Prediction of change of salt-bridges

Salt bridges are also essential component of macromolecular structure and any

change of their network may cause signi¯cant structural and functional alterations.

Similarly, to the approaches for investigating H–bond network, one can apply simple

protocol of the structures of the wild type and mutant or to use snapshot delivered

via MD. In both cases, one can use VMD,70 Chimera,71 PyMOL,71 and RASMOL72

to analyze the H–bond network changes caused by mutations.

2.6. Electrostatic forces

Electrostatic forces are frequently omitted from the analysis of e®ect of mutations,

however, recently it was demonstrated that the changes of electrostatic forces due to

mutations can be used to discriminate pathogenic from benign mutations.73 There

are no many resources available for modeling electrostatic forces in molecular biology

with the prominent exception of DelPhiForce.74,75 This tool allows for modeling the

electrostatic forces acting on individual atom(s), residue(s) or molecular partners.

Thus, by comparing the forces within wild type residues and mutant, one can see the

di®erences and attribute them to the e®ect of these di®erences on the functionality of

the corresponding molecule.

2.7. Prediction of pH-dependence

The pKa values of titratable groups in macromolecules determine the pH-depen-

dence of their stability, interactions and enzymatic activity.76–79 Any changes of the

pKa's may a®ect the wild type properties of the corresponding macromolecule.

Computational chemistry methods to investigate the e®ects caused by DNA variants linked with disease
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However, it should be clari¯ed that these pKa changes should be considered in

conjunction with the pH at which the corresponding macromolecule is supposed to be

functioning. If the pKa's and their changes are outside this functional pH range, it

may be considered that they are not relevant for functionality in vivo. There are

several tools for predicting pKa's of titratable groups. The short list includes Del-

PhiPKa,80,81 MCCE,82,83 ProPKA,84 H++,85 and CPHMD.86 Among them, Del-

PhiPKa is the only one that computes pKa's of proteins, RNAs and DNAs.87

3. Molecular E®ects and Their Linkage with Diseases

Mutation is the permanent change in the nucleotide sequence of DNA, which occurs

during its replication or recombination. The mutation results in substitution, dele-

tion or insertion. Many mutations are repaired before protein synthesis occurs, so

they do not have any e®ects on the function of the corresponding biomolecules. Some

of the mutations have positive e®ect on the corresponding organism and they are

called bene¯cial mutations. However, other mutations may drastically reduce the

ability of the organism to survive and such mutations are called harmful mutations.

If such a change occurs in a fraction of population but not in a single case, the change

is termed single nucleotide polymorphism (SNP).38 Here, we focus on reviewing

computational chemistry tools for modeling e®ects of mutations that results in a

change of the amino acid sequence of the corresponding protein, the nonsynonymous

mutations.59 In this section, we will review the e®ects caused by nonsynonymous

mutations on protein stability, binding, dynamics, H–bonds, salt bridges, electro-

static forces, and pH-dependence and their associations with di®erent diseases.37 In

most cases we will illustrate the linkage between the change of above-mentioned

properties and diseases taking examples from our own work, however, it should be

clari¯ed that our work represent just a tiny fraction of numerous investigations on

this topic.

3.1. Protein stability changes and their association with diseases

Usually, the change in folding free energy (��G) is used to determine the stability

change of a protein due to a mutation. Depending on the sign of ��G, one assesses

that the mutation stabilizes or destabilizes the protein. It is expected that any

deviation of wild type properties, resulting in over stabilized or destabilized protein,

will have negative e®ect of its function. However, there is no \golden rule" or \golden

threshold" to indicate that if the magnitude is large than the cut-o®, the mutation

will abolish protein function and thus most probably will be pathogenic. Perhaps the

best thing to do it to impose another measure like if wild type stability changes by

more than a particular percentile, then the functionality will be a®ected. However,

since in vast majority of cases, especially in case of genomic-scale studies, the wild

type stability is unknown, one simply uses arbitrary cut-o® of 1 or 2 kcal/mol. Here,

we provide several examples of mutations a®ecting protein stability and being

M. Koirala & E. Alexov
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associated with diseases. Thus, it was shown that the mutation M35R in spermine

synthase destabilizes the protein and causes Snyder-Robinson syndrome.88 On the

opposite side of spectra is the mutation H101Q in CLIC2 protein, which is shown to

increase CLIC2 protein stability and is associated with mental disorder.89,90 Most

frequently mutations destabilize the corresponding protein91 and cause various

diseases.38 Some of the diseases are Alzheimer's disease,92 Salt & Pepper syndrome93

and Snyder-Robinson syndrome.94 Furthermore, mutations in LMNA gene, which

are associated with muscular disease,95 mutations in retinal proteins causing retinal

disease96 and mutations in prion protein associated with prion disease,97 are also

examples of mutations that destabilize the corresponding protein. Similarly, the

destabilizations of protein due to mutations are also seen in many neuro-degenerative

diseases such as Parkinson's disease.98 A particular example of destabilizing muta-

tion causing Snyder-Robinson syndrome is shown in Fig. 3(a).

3.2. Mutation a®ecting protein-protein and protein-DNA binding and

their linkage with disease

Mutations also have an e®ect on protein–protein a±nity, which can be calculated via

the change of protein binding free energy.58 Many diseases are caused by altered

protein–protein, protein–RNA and protein–DNA interactions. It was repeatedly

demonstrated that cancer mutations frequently occur at protein binding interfaces.99

Likewise, mutations in SLC12A3 gene, G439S and G741, which cause Gitelman

syndrome are also associated with the change of binding energy.100 Mutation G56S in

spermine synthase destabilize the homo-dimer and is associated with Snyder-

Robinson syndrome.88 Many Rett syndrome-causing mutations are causing alter-

ation of protein-DNA binding.38,101 Another example are mutations in MLI2 gene,

W5065X and R5179H, which leads to Kabuki Syndrome and a®ect protein

binding.102 A particular example is shown in Fig. 3(b).

3.3. Mutations a®ecting protein conformation and linkage with disease

Proteins function by sampling various conformations. If a mutation a®ects the

conformational space of a protein, it is expected that the function will be a®ected as

well. For example, the mutation L61P in CEP63 protein, which causes aneuploidy

and solid tumors in humans,103 is predicted to increase protein °exibility. Two

mutations in the human protoporphyrinogen oxidase (hPPO) gene associated with

variegate porphyria, R59Q and R59G, were demonstrated to change hPPO ability to

sample relevant conformations.104 A mutation, L427P, in dystrophin protein was

also demonstrated to cause change in conformational °exibility, and to be associated

with Becker muscular dystrophy.105 Mutations in KDM5C gene, N142S and R108W,

which are associated with X-linked mental retardation and syndrome Claes–Jensen

type disease also alter conformational dynamics of corresponding proteins.106 A

particular example is shown in Fig. 3(c).

Computational chemistry methods to investigate the e®ects caused by DNA variants linked with disease
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3.4. Mutations a®ecting H–bond and linkage with diseases

H–bonds networks are very important for the biological functions of macromolecules.

So mutations resulting in removal or addition of hydrogen donor or acceptor have

signi¯cant e®ect on structural integrity.107 It has been investigated that a mutation

in CEP63 gene, L61P, resulting in change in H–bond has e®ect on protein °exibility

and associated with aneuploidy and solid tumors.108 Likewise, the mutation R595W

in CPT1 protein results in a change of H–bond network, has e®ect on protein

structure and is associated with mitochondrial fatty acid oxidation disorder.109

Mutations in multiple sites of amyloid-� peptide causing change of H–bond network

(a) (b)

(c) (d)

(e) (f)

Fig. 3. (Color online) Molecular e®ects of mutations linked with di®erent diseases: (a) part of spermine
synthase zoomed at wild type Met35 (left) and mutant Arg35 (right); mutation is associated with Snyder–

Robinson syndrome; (b) part of spermine synthase homo-dimer (chain A in blue and chain B in green)

zoomed at wild type Glu56 (left) and mutant Ser56 (right); mutation is associated with Snyder–Robinson
syndrome; (c) RSMF of KDM5C ARID domain for mutation R108W based on 100ns MD simulations;

mutation is associated with X-linked mental retardation, the syndrome Claes–Jensen type disease;

(d) region of wild type I150 (left) and mutant T150 (right) in spermine synthase; the H–bonds are shown in

blue dotted lines; one can appreciate the change of H–bond network caused by the mutation; mutation is
causing Snyder–Robinson syndrome; (e) Region of wild type R108 (left) and mutant W108 (right) in

KDM5C protein demonstrating removal of salt bridge; mutation is associated with syndrome Claes–Jensen

type disease; (f) The change of electrostatic forces on kinesin residues bound to tubulin dimer calculated by

DelphiForce due to mutation E253K.
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are associated with the Alzhemier's Disease.110 Another well studied e®ect of I150T

mutation in spermine synthase which causes Snyder Robinson syndrome is

predicted to alter the H–bond network in the active site.111 A particular case is

shown in Fig. 3(d).

3.5. Mutations a®ecting salt bridges and causing diseases

Salt bridges are also very important for protein stability and function. Thus, an

autistic spectrum disorder is attributed to a salt-bridge deleting mutation, R102Q, in

neuronal calcium sensor-1(NCS-1) protein.108 The syndromic Claes–Jensen-type

disease is predicted to be caused by removal of salt-bridge in KDM5C protein due to

the mutation R108W.106 Similarly, the mutation R148H in a globular prion protein

associated with Creuzfeldt–Jakob disease a®ects salt bridge interactions.111,112 An-

other mutation, D178N, in the same protein and altering salt bridge interaction,

causes fatal familial insomnia (FFI).110,113 A particular example is shown in Fig. 3(e).

3.6. Mutations altering electrostatic forces and causing diseases

Electrostatic forces are very important to understand various molecular phenomena,

especially those involving long-range interactions.114 One can analyze the change of

electrostatic forces between wild type and mutant and from there to assess the

linkage with diseases. For example, mutation L249Q in kinesin-3 family KIF1A and

Y276C in kinesin-1 families showed signi¯cant change of electrostatic forces. Both

mutations are associated with diseases as Parkinsonism and peripheral neuropathy.73

A particular example is shown in Fig. 3(f).

3.7. Mutations a®ecting pH- dependence and linkage with disease

pH is an important regulatorily factor for macromolecular function and mutations

a®ecting pH-dependent characteristics of protein may be deleterious. It was dem-

onstrated that H101Q mutation in CLIC2 protein, which is associated with

X-linked intellectual disability (ID) a®ects pH-dependence.89 Mutations a®ecting

several residues of TTR gene are associated with human amyloidosis and have

e®ect on pH-dependence as well.115 Mutations in multiple sites of amyloid-� pep-

tide aggregation associated with Alzheimer's disease are also pointed out to alter

the pH-dependence.116

4. Conclusions

In this work, di®erent approaches of computational chemistry and their applications

to model the e®ects of mutations and their association with diseases were reviewed.

The review focuses on tools of computational chemistry; therefore, it is limited to

methods that use structural information of any kind. Many widely used approaches

to predict pathogenic mutations are not included simply because they are based on

Computational chemistry methods to investigate the e®ects caused by DNA variants linked with disease
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machine learning and utilize evolution information (residue conservation, frequency

of mutation, etc.). Thus, the review target computational chemistry audience and

attempts to bridge computational chemistry with personalized medicine and precise

diagnostics.

It should be outlined that the methods mentioned in this review do not represent

exclusive list of all resources available. Here, we attempted to provide only a short list

of tools that in our opinion are frequently used to predict e®ects of mutations of

macromolecular stability, binding and conformational dynamics, along with some

structural features and pH-dependence. Furthermore, the examples provided are

only for illustration and were taken from authors works, while clearly realizing that

many other researchers contributed to such kind of investigations as well.
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