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Modeling unfolded states of proteins has implications for protein folding and stability. Since in

unfolded state proteins adopt multiple conformations, any experimentally measured quantity is

ensemble averaged, therefore the computed quantity should be ensemble averaged as well. Here,

we investigate the possibility that one can model an unfolded state ensemble with the coil model
approach, algorithm such as \°exible-meccano" [Ozenne V et al., Flexible-meccano: A tool for

the generation of explicit ensemle descriptions of intrinsically disordered proteins and their

associated experimental observables, Bioinformatics 28:1463–1470, 2012], developed to

generate structures for intrinsically disordered proteins. We probe such a possibility by using
generated structures to calculate pKas of titratable groups and compare with experimental

data. It is demonstrated that even with a small number of representative structures of unfolded

state, the average calculated pKas are in very good agreement with experimentally measured
pKas. Also, predictions are made for titratable groups for which there is no experimental data

available. This suggests that the coil model approach is suitable for generating 3D structures of

unfolded state of proteins. To make the approach suitable for large-scale modeling, which

requires limited number of structures, we ranked the structures according to their solvent
accessible surface area (SASA). It is shown that in the majority of cases, the top structures with

smallest SASA are enough to represent unfolded state.

Keywords: Unfolded state; pKas; electrostatics; Poisson–Boltzmann; dielectric constant; con-

formations.

1. Introduction

The unfolded state and intrinsically disordered proteins (IDPs) or regions (IDRs)

adopt a conformational landscape which is still not very well understood. Generating

the \right" conformational ensemble of an unfolded state is not an easy task and

needs knowledge of how the protein was unfolded, including what denaturants were
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used and what the conditions were.1 In some cases, the unfolded state ensembles

contain hydrophobic clusters and/or well-de¯ned secondary structure elements.2–4

The importance of knowledge of unfolded state is demonstrated in modeling folding

free energy, the di®erence of the energy of folded and unfolded states. Consequently,

the structural information of the unfolded state is valuable for mechanistic and

thermodynamic studies of folding.

Ionizable side chains represent about 30% of the proteins' residues and are crucial

for stability and solubility of proteins.5–7 The pKa values of ionizable residues de-

termine the pH-dependence of protein folding and binding energies.8–13 In some

cases, modeling the pH-dependence of stability requires knowledge of pKas in un-

folded state.14–17 While it is frequently assumed that the pKas in an unfolded state

are unperturbed (equal to intrinsic pKas), there are also studies that show the role

of electrostatic interactions between charged residues in the denatured state.18,19

Additionally, some studies described the impact of changes in the protonation state

of ionizable residues in the formation of hydrophobic clusters in denatured state.20

This indicates that some titratable groups may have perturbed pKas in their

unfolded state.

Experimentally, the pKa values of titratable residues in the unfolded state were

measured for some proteins using NMR spectroscopy, site-directed mutagenesis and

CD temperature-denaturation measurements.21–24 Most of these experiments have

indicated that the pKa values of acidic residues are lowered in unfolded state com-

pared with intrinsic pKas.21,22,25 These studies are used in this work to benchmark

DelPhiPKa along with 3D models of unfolded states.

Previous attempts to model pKas of unfolded states were applied to either

molecular dynamics (MD) simulation to generate structures of unfolded state14 or

Gaussian-chain model.15–17 MD with arti¯cially increased van der Walls atomic radii

was used to \unfold" the proteins and obtained structures to calculate pKas of

unfolded state.14 Alternatively, the electrostatic interactions in unfolded state were

estimated with Gaussian-chain model and then were used to compute the corre-

sponding pKas.15–17 In our work, we took a di®erent approach, taking advantage of

advances made in the ¯eld of IDPs.

A great amount of e®ort has been invested to develop methods to predict the

conformational ensembles of IDPs. A straightforward approach to model the con-

formational ensemble of unfolded state is the MD simulation.26 Another approach,

the coil models, alternatively describes the conformational ensemble of IDPs by

sampling di®erent conformational states of individual residues using the coil libraries

based on the experimental information of residue-speci¯c f’;  g angles.27–30 Several

studies showed that the results from coil modeling accurately reproduce experi-

mental data such as J-coupling,27 residual dipolar couplings (RDCs)28,30 and small-

angle X-ray scatterings (SAXS) curves for both IDPs28,30 and unfolded proteins.31

Thus, in our work the unfolded proteins are generated via coil models and we use the

conformational ensembles generated by a particular software, the °exible-meccano

software.30

N. Tajielyato & E. Alexov

1950020-2

J. 
Th

eo
r. 

C
om

pu
t. 

C
he

m
. 2

01
9.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 2

4.
19

6.
18

7.
12

4 
on

 1
0/

20
/1

9.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



Our interest in modeling unfolded state stems from the importance of unfolded

state in calculating folding free energy changes due to amino acid mutations, since this

is related to understanding e®ects of disease-causing nonsynonymous single nucleotide

polymorphisms (nsSNPs).32–35 All available methods based on energy di®erence

between two states, folded and unfolded, use an approximation and consider only a few

residues as representative of unfolded state.36–39 This is clearly a severe assumption

that omits residual interactions in unfolded state. With this work, we would like to

suggest that one can explicitly generate representative full length structures of un-

folded state using the tools for modeling IDPs, the °exible-meccano software.30

In this work, we use the °exible-meccano software30 to generate ensemble of

structures for unfolded state of selected proteins for which there is experimental data

of pKas in unfolded conditions. These structures are used to compute pKas of

titratable residues with DelPhiPKa40,41 and results compared with experimental

data. To provide some guidance how to select minimal number of representative

structures (to be applicable for large-scale calculations), we investigate the possi-

bility of the generated structures ranked with respect to solvent accessibility surface

area (SASA). Furthermore, we make predictions for pKas of unfolded state for

titratable groups that are not reported in the literature.

2. Methods

The main purpose of this investigation is to probe if structures generated with

°exible-meccano can be used as representative structure for modeling unfolded state.

Such a possibility is tested via comparing experimental pKas of unfolded state and

predicted pKas with DelPhiPKa using structures generated with °exible-meccano.

However, one can use this approach to predict pKas delivered via unfolding

experiments and to infer the pH-dependence of folding as well.

Dataset: We searched for proteins with experimentally measured pKa values of

titratable residues in the unfolded state. This resulted in the following cases: Turkey

Ovomucoid Third Domain (OMTKY3),25 Barnase,21 chymotrypsin inhibitor 2

(CI2),22 protein G B1 domain (PGB1)23 and Hen Egg white Lysozyme (HEWL).42

Unfolded state: The °exible-meccano algorithm30 was used to generate ensemble of

structures for the unfolded state. This method builds multiple di®erent copies of the

polypeptide chain based on the random sampling backbone dihedral angle potential

wells assuring that these conformations do not self-overlap (Fig. S1). This method was

shown to successfully reproduce the experimental data such as RDC and SAXS by

averaging over the built-ensembles.30 Thus, we generated 1000 structures for each

protein in our data set using default parameters of °exible-meccano software.

pKas calculations: The pKas calculations of titratable residues were performed by

DelPhiPKa which is a Poisson–Boltzmann-based approach.41 Most of the calcula-

tions were done using default values of DelPhiPKa parameters. However, to study

the e®ect of D2O (deuterium oxide or heavy water) and H2O in case of thermal

denaturation, we considered a range of solvent dielectric constants of 74, 75, 78.5 and
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80 since most of these experimental works were done for the H2O/D2O at 25�C in

which H2O and D2O have dielectric constants of 78.39 and 78.06.43 A dielectric

constant of 4 and 8 was considered for each protein to test the sensitivity of results.

The charge and radius parameters were assigned using PARSE.44 The salt concen-

tration was set to a value that matches the experimental conditions. Therefore, the

salt concentrations for OMTKY3, Barnase, CI2, PGB1 and HEWL were 0.2, 0.05,

0.05, 0.001 and 0.144 M, respectively.

Solvent accessible surface area: SASA was calculated by VMD45 for each struc-

ture in structural ensembles with the solvent probe radius of 1.4 �A. It was used to

rank the structures according min/max SASA.

3. Results and Discussions

Here, we report DelPhiPKa calculated pKas of ionizable groups using °exible-mec-

cano generated structures. For each of the proteins, we generated 1000 structures

and carried pKas calculations. At the same time, we address the possibility to reduce

the number of needed structures by selecting the top 15, either with maximum (very

extended structures) or minimum (relatively compact structures) SASA. We also

investigate the e®ect of di®erent values of internal and external dielectric constants.

Lysines and arginines are excluded from our investigation, because there is no

experimental data.

3.1. OMTKY3

A study of the pH dependence of OMTKY3 stability showed that among all the

titratable residues, the pKas of Asp7 and Asp27 are perturbed and therefore they

contribute to the pH dependence of OMTKY3 stability.25 The pKa of Asp7 and

Asp27 in unfolded state were reported as 3.9 and 3.6.

We calculated the pKa values of titratable residues using all 1000 structures and

considering ionic concentration of 200mM and solvent and solute dielectric constant

of 80 and 8, respectively (Table 1). It can be seen that predicted values for Asp7 and

Asp27 are 3.87 and 3.56, which are almost the same as the ones found in the

experimental work.25 Additionally, we predicted the pKas of all other acidic groups

Table 1. Predicted pKa values of titratable residues in unfolded state of OMTKY3. (1), (2) and (3) are
the average pKa's of all 1000 snapshots, 15 structures with minimum SASA, and 15 structures with

maximum SASA. The standard deviations are given in parenthesis.

Unfolded state set Asp7 Asp27 Glu10 Glu19 Glu43 His52

Predicted pKað1Þ 3.89(0.3) 3.69(0.29) 3.97(0.24) 3.84(0.34) 3.89(0.31) 6.31(0.49)

Predicted pKa with

minimum SASAð2Þ
3.96(0.44) 3.71(0.30) 3.9(0.15) 3.51(1.00) 3.83(0.39) 6.13(0.92)

Predicted pKa with

maximum SASAð3Þ
3.96(0.16) 3.7(0.22) 3.96(0.07) 3.9(0.1) 3.96(0.05) 6.30(0.37)

N. Tajielyato & E. Alexov

1950020-4

J. 
Th

eo
r. 

C
om

pu
t. 

C
he

m
. 2

01
9.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 2

4.
19

6.
18

7.
12

4 
on

 1
0/

20
/1

9.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



and His52, for which there is no experimental data. To see the e®ect of reducing the

number of structures used in the modeling, the pKa values were re-calculated using

only 15 snapshots with maximum and minimum SASA. As it can be seen, the only

residue where pKa is a®ected by the accessible surface area selection is Glu19. For the

minimum SASA set, the pKa value of this residue is perturbed from the model

compound value by more than 0.5 units.

The thermal denaturation of OMTKY3 was done in H2O and D2O.45 To consider

the e®ect of D2O on the pKas of unfolded state, we calculated the pKas of titratable

residues using solvent dielectric constant of 74, 75 and 78.5 (Table S1). Moreover, to

investigate the e®ect of protein (solute) dielectric constant on the pKa values in

unfolded state, we performed calculation using protein dielectric constant of 4 as well

(Table S2). Our results show that the e®ect of D2O on pKa values of titratable residues

in unfolded state is negligible (Table S1). Moreover, the results using dielectric con-

stant of protein of 4 and 8 are practically the same. Therefore, the calculations of pKas

in unfolded state are not sensitive to these parameters (Table S2).

3.2. Barnase

The thermal unfolding experiments of barnase suggested that pKa values of all acidic

residues, Asp and Glu, on average are 0.4 lower than of the model component

values.21 Thus, there is no experimental data for individual pKas, but just a tendency

that acid pKas are perturbed on average by 0.4 pH units. To see if our modeling can

reproduce this trend, we calculated the individual pKa values for all Asp, Glu and

His residues for each structure in unfolded ensemble (1000 structures) and then

averaging over all pKas of Asp and Glu separately (Table 2). The calculations were

done at ionic concentration of 0.05, solvent dielectric constant of 80 and protein

(solute) dielectric constant of 8. The results show that pKas of all Asp and Glu are

lower than the ones in model component (model component values for our calcula-

tions are Asp ¼ 3:9, Glu ¼ 4:0 and His ¼ 6:5). Moreover, the averaged pKas of Asp

and Glu are 0.27 and 0.37, respectively, lower than the model pKas, results which are

in good agreement with the experimental observations. The pKa value of His18 is

provided as well for future comparison.

Similarly, as above, we repeated the modeling using only 15 structures that have

minimum or maximum of SASA out of 1000 snapshots (Table 2). The result of the

structures with the minimum SASA shows that the average �pKa values of Asp and

Glu are 0.47 and 0.57, which are better predictions compared to the ones with the

maximum SASA, 0.19 and 0.29. This speaks in favor of models that are more

compact, allowing for residual interactions in unfolded state.

To test the sensitivity of results, with respect to the value of internal and external

dielectric constants, we carried calculations with in solvent dielectric constant of 74,

75, 78.5 as well (Table S3). No signi¯cant e®ect was observed in the range of di-

electric constant values. Similarly, repeating the modeling with internal dielectric

constant of 4 had negligible e®ect of predicted pKas (Table S4).
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3.3. CI2

Thermal denaturation experiments of CI2 at ionic concentration of 50mM demon-

strated that the pKa values of acidic residues, Asp and Glu, in the unfolded state are

on average 0.3 unit lower than their pKa values of the model compound.22 Thus, we

calculated the pKa values of all titratable residues, no histidine residue present in

CI2, using 1000 snapshots of unfolded CI2. The DelPhiPka calculations were done at

ionic concentration of 0.05 M, solvent dielectric constant of 80 and protein (solute)

dielectric constant of 8. Additionally, we carried out pKas calculations using only for

15 snapshots with maximum and minimum SASA (Table 3).

We observe that all the �pKa shifts are positive, which means that the predicted

pKa values are lower than the model pKas. Moreover, the average of �pKa value for

Asp is 0.308 and for Glu is 0.22, which are close to the experimental values. Fur-

thermore, we observe that the average �pKa of Asp and Glu are 0.329 and 0.37,

respectively, for snapshots with minimum SASA. On the other hand, the predicted

values for snapshots with maximum SASA are in less agreement with the experiment

(Table 3). This again indicates that compact structures are better representatives for

unfolded state.

As above, we do not observe signi¯cant e®ect of the internal or external dielectric

constant values (Tables S5 and S6).

3.4. PGB1

The pH-dependent stability of PGB1 with the mutations T2Q, N8D, and N37D

(PGB1-QDD) was determined by measuring the pKa values for unfolded state under

native conditions.23 The pKas values of acidic groups were measured in the presence

of H2O/D2O at 25�C with the counterion concentration about 1mM (Table 4).

We calculated the pKa values of the corresponding titratable residues (note that

no histidine residue is present in PGB1) in the unfolded structures for solvent di-

electric constant of 80 and protein dielectric constants of 8 (Table 4). We calculated

the pKa values for 15 structures while having the minimum and maximum SASA as

well. No clear trend is observed in this case to indicate what model of unfolded state

is better for the pKas calculations.

Also, the predicted results for solvent dielectric constants of 74, 75 and 78.5 and

the protein (solute) dielectric constants of 4 are shown in Tables S7 and S8. No

signi¯cant impact of the dielectric constant values was found.

3.5. HEWL

The pKa values of several acidic residues in thermally unfolded state of HEWL for

di®erent pH and 50mM Britton–Robinson bu®er were reported.42 For some of these

residues, signi¯cant shifts from their model pKas were observed.42

We calculated the pKa of those corresponding acidic residues using salt concen-

tration of 144mM for 1000 snapshots of unfolded structure of HEWL with solvent

Modeling pKas of unfolded proteins to probe structural models of unfolded state

1950020-7

J. 
Th

eo
r. 

C
om

pu
t. 

C
he

m
. 2

01
9.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 2

4.
19

6.
18

7.
12

4 
on

 1
0/

20
/1

9.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



T
ab

le
4.

P
re
d
ic
te
d
p
K
a
v
al
u
es

of
ac
id
ic
re
si
d
u
es

in
u
n
fo
ld
ed

st
at
e
of

P
G
B
1-
Q
D
D
.
T
h
e
�
p
K
a
sh
if
t
is
(p
K
a
m
od

el
co
m
p
ou

n
d
���

ca
lc
u
la
te
d
p
K
as
).
(1
),
(2
)
an

d

(3
)
ar
e
th
e
av

er
ag

e
p
K
a
of

al
l1
00

0
sn
ap

sh
ot
s,
15

st
ru
ct
u
re
s
w
it
h
m
in
im

u
m

S
A
S
A
an

d
15

st
ru
ct
u
re
s
w
it
h
m
ax

im
u
m

S
A
S
A
.T

h
e
st
an

d
ar
d
d
ev
ia
ti
on

s
ar
e
p
re
se
n
te
d

in
p
ar
en
th
es
is
.

U
n
fo
ld
ed

st
at
e
se
t

A
S
P
0
8

A
S
P
22

A
S
P
36

A
S
P
37

A
S
P
40

A
S
P
46

A
S
P
47

G
L
U
15

G
L
U
19

G
L
U
27

G
L
U
42

G
L
U
56

E
x
p
er
im

en
ta
l
p
K
a

3.
72

3.
87

4.
11

4.
2

4.
24

4.
1

4.
03

4.
41

4.
46

4.
47

4.
9

4.
83

E
x
p
er
im

en
ta
l
�
p
K
a

0.
28

0.
13

�0
.1
1

�0
.2

�0
.2
4

�0
.1

�0
.0
3

0.
09

0.
04

0.
03

�0
.4

�0
.3
3

P
re
d
ic
te
d
p
K
að

1
Þ

3.
48
5(
0.
42
)
3.
83
6(
0.
47
)
3.
83
5(
0.
56
)
3.
98
2(
0.
51
)
4.
05
8(
0.
44
)
3.
92
9(
0.
45
)
3.
90
5(
0.
56
)
3.
67
5(
0.
52
)
3.
90
9(
0.
44
)
3.
85
2(
0.
39
)
4.
20
8(
0.
45
)
3.
73
7(
0.
24
)

�
p
K
a
ð1
Þ
sh
if
t

0.
41
4

0.
06
3

0.
06
4

�0
.0
82

�0
.1
58

�0
.0
29

�0
.0
05

0.
32
4

0.
09

0.
14
7

�0
.2
08

0.
26
2

P
re
d
ic
te
d
p
K
a
w
it
h

m
in
im

u
m

S
A
S
A

ð2
Þ
3.
55
2(
0.
56
)
3.
94
2(
0.
57
)
3.
79
6(
0.
79
)
3.
45
8(
1.
12
)

3.
7(
1.
19
)

3.
82
9(
0.
68
)

4.
04
(0
.4
6)

3.
43
6(
1.
08
)
3.
89
1(
0.
44
)
3.
34
9(
1.
29
)
4.
25
5(
0.
51
)
3.
57
3(
0.
47
)

�
p
K
a
ð2
Þ
sh
if
t

0.
34
7

�0
.0
42

0.
1

0.
44

0.
19

0.
07

�0
.1
4

0.
56

0.
1

0.
65

�0
.2
55

0.
42

P
re
d
ic
te
d
p
K
a
w
it
h

m
ax

im
u
m

S
A
S
A

ð3
Þ
3.
53
(0
.3
8)

3.
92
4(
0.
20
)

3.
73
(0
.4
7)

4.
07
(0
.2
4)

4.
18
(0
.2
8)

4.
02
(0
.3
1)

3.
99
(0
.2
5)

3.
81
(0
.1
6)

3.
94
9(
0.
09
)

3.
82
(0
.2
)

4.
18
(0
.1
2)

3.
74
4(
0.
05
)

�
p
K
a
ð3
Þ
sh
if
t

0.
36
7

�0
.0
24

0.
16
2

�0
.1
71

�0
.2
8

�0
.1
26

�0
.0
9

0.
18
9

0.
05

0.
17

�0
.1
8

0.
25
5

T
ab

le
5.

P
re
d
ic
te
d
p
K
a
v
al
u
es

of
ti
tr
at
ab

le
re
si
d
u
es

in
u
n
fo
ld
ed

st
at
e
of

H
E
W

L
.
(1
),
(2
)
an

d
(3
)
ar
e
th
e
av

er
ag

e
p
K
a
of

al
l
10

00
sn
ap

sh
ot
s
an

d
15

st
ru
ct
u
re
s

w
it
h
m
in
im

u
m

S
A
S
A
,
15

st
ru
ct
u
re
s
w
it
h
m
ax

im
u
m

S
A
S
A
.
T
h
e
st
an

d
ar
d
d
ev
ia
ti
on

s
ar
e
p
re
se
n
te
d
in

p
ar
en
th
es
is
.

U
n
fo
ld
ed

st
at
e
se
t

A
sp
18

A
sp
48

A
sp
52

A
sp
66

A
sp
87

A
sp
10

1
A
sp
11

9
G
lu
7

G
lu
35

H
is
1
5

E
x
p
er
im

en
ta
l
p
K
a

3.
4(
0.
2
)

2.
9(
0.
3)

4(
0.
2)

3.
1(
0.
1)

���
4.
4(
0.
2)

3.
6(
0.
2)

���
5(
0.
2)

���
P
re
d
ic
te
d
p
K
að

1
Þ

3.
48

(0
.4
1)

3.
76

(0
.3
3)

3.
81

(0
.3
0)

3.
63

(0
.4
6)

3.
82

(0
.2
9)

3.
69

(0
.3
1)

3.
6(
0.
37

)
3.
73

(0
.4
1)

3.
77

(0
.3
4)

6
.2
1
(0
.5
8
)

P
re
d
ic
te
d
p
K
a
w
it
h

m
in
im

u
m

S
A
S
A

ð2
Þ

3.
41

(0
.5
7)

3.
71

(0
.2
4)

3.
83

(0
.2
3)

3.
29

(1
.0
)

3.
71

(0
.3
8)

3.
75

(0
.2
9)

3.
26

(0
.4
5)

3.
79

(0
.2
3)

3.
79

(0
.1
9)

6
.3
3
(0
.3
9
)

P
re
d
ic
te
d
p
K
a
w
it
h

m
ax

im
u
m

S
A
S
A

ð3
Þ

3.
54

(0
.2
5)

3.
77

(0
.1
6)

3.
82

(0
.2
2)

3.
79

(0
.1
7)

3.
83

(0
.1
7)

3.
85

(0
.2
2)

3.
72

(0
.2
1)

3.
87

(0
.0
7)

3.
79

(0
.2
7)

6
.4
(0
.2
2
)

N. Tajielyato & E. Alexov

1950020-8

J. 
Th

eo
r. 

C
om

pu
t. 

C
he

m
. 2

01
9.

18
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 2

4.
19

6.
18

7.
12

4 
on

 1
0/

20
/1

9.
 R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



and protein dielectric constants of 80 and 8, respectively (Table 5). There is good

correlation between the experimental and predicted pKa values for Asp18, Asp66,

Asp101, Asp119, Asp35, Glu35 except Asp48 (Fig. S2). Moreover, we calculated the

pKa values only for 15 snapshots with maximum and minimum SASA. The better

correlation between the experimental estimated pKa values with the calculated ones

is seen for the snapshots with the minimum SASA.

Moreover, the predicted results for solvent dielectric constants of 74, 75 and 78.5

and the protein (solute) dielectric constants of 4 are shown in Tables S9 and S10.

Again, there is no signi¯cant di®erence observed for changes in these parameters.

4. Conclusion

The investigation showed that unfolded state can be modeled with the coil model,

algorithm such as \°exible-meccano", if one is concerned about pKa values of acidic

groups. Even more, the number of snapshots representing are not many and one can

be successful using only 15 structures with minimum SASA. This reduces the

computational cost of modeling.

Apart from testing the possibility to model unfolded state to compute pKas of

titratable groups, we also delivered predictions for pKas that are not experimentally

measured yet.

While we attempted to justify the usage of \°exible-meccano" for modeling pKas

in unfolded state, it is tempting to generalize the observation and to consider that

generated ensemble can be used for any other type of modeling. Thus, we speculate

that snapshots can be used to model unfolded state in cases of computing folding free

energy and folding free energy caused by mutations.
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