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ABSTRACT Organismal ploidy and environmental stress impact the rates and types of mutational events.
The opportunistic fungal pathogen Candida albicans, serves as a clinically relevant model for studying the
interaction between eukaryotic ploidy and drug-induced mutagenesis. In this study, we compared the rates

and types of genome perturbations in diploid and tetraploid C. albicans following exposure to two different  ploidy
classes of antifungal drugs; azoles and echinocandins. We measured mutations at three different scales:  mutagenesis
point mutation, loss-of-heterozygosity (LOH), and total DNA content for cells exposed to fluconazole and  antifungals

caspofungin. We found that caspofungin induced higher mutation rates than fluconazole, although this is
likely an indirect consequence of stress-associated cell wall perturbations, rather than an inherent genotox-
icity. Surprisingly, we found that antifungal drugs disproportionately elevated genome and ploidy instability
in tetraploid C. albicans compared to diploids. Taken together, our results suggest that the magnitude of
stress-induced mutagenesis results from an interaction between ploidy and antifungal drugs. These findings
have both clinical and evolutionary implications for how fungal pathogens generate mutations in response

to antifungal drug stress and how these mutations may facilitate the emergence of drug resistance.

Mutations are the source material for adaptation. The mutational
spectrum ranges from small-scale mutations, such as base substitutions
and indels, to larger-scale mutational events such as gross chromosomal
rearrangements and aneuploidy. Despite the presence of DNA repair
mechanisms, all organisms incur mutations at a low level (Friedberg
2003); however, the rate of mutagenesis increases under stressful envi-
ronments in both prokaryotes and eukaryotes (Tenaillon et al. 2004;
Foster 2008; Petrosino et al. 2009; Forche et al. 2011; Maharjan and
Ferenci 2017; Liu and Zhang 2019). For example, in yeast, the addition
of inorganic salts, such as lithium chloride, increases the mutation rate
by 3.5-fold (Liu and Zhang 2019). While stress increases mutational
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rates, it also shifts the mutational spectrum. Nutrient depletion, including
phosphorus and nitrogen deficiencies, shifts the types of mutations from
indels to base substitutions, as well as increasing the mutation rate by
sevenfold in E. coli (Maharjan and Ferenci 2017). Taken together, stress-
ful environments promote mutagenesis, thus generating more genetic
variation for natural selection to ultimately act upon.

While environmental stress impacts the rates and types of mutation,
it is not the only factor that influences the mutational landscape. Ploidy,
the number of sets of chromosomes in an organism, is an important
determinant of the mutational spectrum (Selmecki et al. 2015; Sharp
et al. 2018). The opportunistic fungal pathogen, Candida albicans is a
clinically-relevant model for studying the interaction between eukary-
otic ploidy and stress-induced mutagenesis because of two key prop-
erties: the mutational rate and spectrum shift extensively when
C. albicans is exposed to stress (Forche et al. 2011) and C. albicans
exists across a range of ploidy states — from haploid to polyploid
(Rustchenko 2007; Selmecki et al. 2010; Hickman et al. 2015; Todd
et al. 2017). For example, C. albicans haploids potentially purge dele-
terious mutations that accumulate in diploids. However, there is a
fitness cost associated with haploidy and/or the homozygous state,
and haploidy is transient (Hickman et al. 2013). C. albicans is most-
frequently isolated as a heterozygous diploid (Jones et al. 2004; Braun
et al. 2005; Abbey et al. 2011; Muzzey et al. 2013) and can generate and
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maintain gross-chromosome rearrangements in laboratory and clinical
isolates (Selmecki et al. 2009, 2010; Ford et al. 2015; Todd et al. 2017,
2019). Interestingly, large-scale genome mutational events, such as loss
of heterozygosity (LOH), occur 1000-fold more frequently than point
mutations (Forche et al. 2011). Tetraploid C. albicans can be isolated
from patients (Suzuki et al. 1986; Legrand et al. 2004; Abbey et al. 2014),
and generated in the laboratory through diploid-diploid mating or
endoreplication (Forche et al. 2008). Tetraploids are pseudo-stable
and undergo concerted chromosome loss, a process that generates cell
heterogeneity through chromosome re-assortment, aneuploidy, and
SPO11-dependent recombination (Hull et al. 2000; Magee and Magee
2000; Bennett and Johnson 2003; Forche et al. 2008; Hickman et al.
2015). Moreover, large-scale mutational events occur 30-fold more fre-
quently in tetraploid C. albicans relative to the diploid state (Hickman
et al. 2015). In summary, the mutational spectrums of haploid, diploid
and tetraploid C. albicans are distinct, which is consistent with findings
in other polyploid eukaryotes (Mayer and Aguilera 1990; Pavelka et al.
2010; Selmecki et al. 2015; Sharp et al. 2018).

As an opportunistic pathogen, Candida albicans is isolated in 40—
60% of fungal infections in humans (Pfaller and Diekema 2007, 2010;
Pfaller et al. 2008; Pfaller 2012; Perfect 2017) and encounters diverse
stressors within its human host. In vitro stress-induced mutagenesis
studies show that stressors such as febrile temperature (39°) elevate the
rate of LOH and increase the frequency of whole-chromosome mis-
segregation by ~fivefold (Forche et al. 2011). C. albicans also encoun-
ters antifungal drugs, which are used to treat infection and include the
azoles, which target the cell membrane, and echinocandins, which target
the inner cell wall (Pappas et al. 2016; Perfect 2017). Antifungal drugs are
potentially mutagenic, as fluconazole increases LOH rates (Forche et al.
2011) and generates aneuploidy (Harrison ef al. 2014; Robbins ef al. 2017;
Stone et al. 2019), which is commonly associated with azole-resistance
(Selmecki et al. 2006, 2009; Robbins et al. 2017; Stone et al. 2019). With
only a limited number of drugs that effectively treat fungal infections
(Pappeas et al. 2016), a deeper understanding of drug-induced mutagen-
esis is necessary to understand the emergence of resistance.

While fluconazole-induced mutagenesis has been studied in diploid
C. albicans, no study to date has examined how other types of antifun-
gal drugs impact C. albicans genome stability, or how ploidy impacts
this phenomena. In this study, we investigated the rates and types of
mutations generated in diploid and tetraploid C. albicans exposed to
two classes of antifungal drugs, echinocandins and azoles. We found
that caspofungin elicited very high mutation rates regardless of ploidy,
although this is likely an indirect consequence of stress-associated cell
wall perturbations, rather than an inherent genotoxicity. Surprisingly,
we found that antifungal drugs disproportionately elevated genome and
ploidy instability in tetraploid compared to diploid C. albicans. These
findings indicate that there is an interaction between ploidy and drug
exposure that determines the magnitude of stress-induced mutagenesis.
These results have evolutionary and clinically relevant implications for
how fungal pathogens generate mutations that potentially drive the
emergence of antifungal drug resistance.

MATERIALS AND METHODS

Yeast strains and media

The strains used in this study are listed in Table S1. MH297 was
constructed by replacing the HIS4 open reading frame with the dom-
inant drug-resistant NAT gene by lithium acetate transformation.
Transformants were selected on YPD containing 50 pg/mL NAT
and subsequently replica-plated onto media lacking histidine to verify
candidates whose HIS4 was knocked-out. MH296 resulted from mating
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two diploid his4A:: NAT/his4-G929T. All strains were stored as glycerol
stocks at -80° and maintained on YPD (1% yeast extract, 2% bacto-
peptone, 2% glucose, 1.5% agar, 0.004% adenine, 0.008% uridine)
at 30°. Antifungal drug treatments were made from the following
stock solutions: 1 mg fluconazole (ACROS Organics CAS#86386-73-
4) was diluted into 1 mL DMSO, 1 mg caspofungin (Sigma-Aldrich
CAS#179463-17-3) was diluted into 1 mL ddH,0, and 10 mg calcofluor
white (Sigma-Aldrich CAS#4404-43-7) was diluted into 1 mL ddH,0.
Yeast cultures were grown in casitone (0.9% bacto-casitone, 0.5% yeast
extract, 1% sodium citrate, 2% glucose) in the presence or absence of
the drug treatments. Synthetic complete media (SDC; 0.17% yeast
nitrogen base without amino acids or ammonium sulfate, 0.5% ammo-
nium sulfate, 2 sodium hydroxide pellets, 0.004% uridine, 0.2% syn-
thetic complete media, 2% agar, 2% glucose) was used for counting
viable colony forming units (CFUs) following drug exposure.

Drug susceptibility assay

The minimum inhibitory concentration (MIC) for diploid and tetra-
ploid C. albicans was performed as previous described (Rosenberg et al.
2018) with slight modification. Briefly, single colonies were inoculated
in YPD and incubated with shaking for ~16hrs at 30°. Yeast cultures
were subsequently normalized to 0.01 OD and 200 was spread onto
casitone plates containing 1% agar and left to dry for 10 min. Standardized
E-test strips (Biomeureix) of fluconazole (0.016 pg/mL - 256 p.g/mL)
and caspofungin (0.002 pg/mL - 32 ng/mL) were placed upon the
plates and incubated for 24 hr at 30° and then photographed.

HIS4 reversion assay

The reversion rate of the his4-G929T allele was performed as previously
described (Forche et al. 2011) with slight modification. Briefly, 10 single
colonies of MH296 and MH297 were inoculated into 6 mL YPD and
incubated with shaking for 24 hr at 30°. 1 mL of overnight cultures were
aliquoted to 4 mL of the following media: no-drug, 1 pg/mL flucona-
zole, 10 pg/mL fluconazole, 0.25 pug/mL caspofungin, 2.5 g/mL cas-
pofungin, and 100 wg/mL calcofluor white. All treatments were
incubated with shaking for 5 days at 30°. To determine the number
of viable colonies for each treatment, 500 L was taken from each
culture for serial dilution and 100 pL of the 10* or 10~> dilutions
were plated onto SDC. To determine the number of revertants, the
remaining 4.5 mL the cultures were harvested by centrifugation,
washed with H,O, resuspended with 300 wL ddH,0 and plated onto
large, 150mm x 15mm plates containing media lacking histidine. Plates
were incubated for 48 hr at 30° before counting. The rate of reversion
was determined by fluctuation analysis (Luria and Delbriick 1943). All
experiments were performed in triplicate.

GAL1 loss of heterozygosity assay

The rate of LOH at the GALI locus was performed as previously de-
scribed (Hickman et al. 2015). Briefly, 12 single colonies of MH84
(galIA/GALI) and MH128 (gal1A/gal1A/gal1A/GALI) were inoculated
into 2 mL casitone in the presence or absence of drugs and incubated
with shaking for 24 hr at 30°. Cells were harvested by centrifugation,
washed once with ddH,0, resuspended in 1 mL ddH,0 and serially
diluted. To determine total cell viability for each treatment, 100 pL
of the appropriate dilution was plated onto SDC (10~> for no-drug;
10~* for fluconazole; 10~2 for caspofungin and calcofluor white) and
counted after 48 hr incubation at 30°. To select for cells that sponta-
neously lost GALI during the 24 hr incubation, 100 wL of the appro-
priate dilution (10~ ! for no-drug; 10~ for fluconazole; 10° for caspofungin
and calcofluor white) was plated onto 2-deoxygalactose (2-DOG;
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0.17% yeast nitrogen base without amino acids, 0.5% ammonium sulfate,
0.004% uridine, 0.004% histidine, 0.006% leucine, 0.1% 2-deoxygalactose,
3% glycerol) and counted following 72 hr incubation at 30°. The LOH rates
were determined by the method of the median (Lea and Coulson 1949)
using the median estimator equation: £ — In(m) — 1.24 = 0.

All experiments were performed in triplicate. At least 48 single
colonies from each treatment of MH84 and MH128 were picked from
SDC and 2-DOG plates and stored as glycerol stocks at -80° for sub-
sequent flow cytometry analysis.

Flow cytometry assay

Single colony isolates obtained from SDC and 2-DOG following 24 hr
drug treatment were analyzed for total DNA content using flow
cytometry (Hickman et al. 2015).

Briefly, strains were inoculated into 900 wL YPD and incubated with
shaking for ~16 hr at 30°. 50 pL of the overnight cultures were
re-inoculated into 450 pL fresh YPD and incubated for ~6 hr.
200 L of cells were harvested, washed with ddH,0, and resuspended
in 20 wL 50:50 TE (50 mM Tris, pH 8; 50 mM EDTA). Cells were fixed
with 95% ethanol and incubated overnight at 4°. The following day,
cells were washed twice with 50:50 TE, resuspended with 50 pL RNAse
A (1 mg/ml) and incubated for 1 hr at 37°. Cells were then collected via
centrifugation and resuspended with 50L proteinase K (5 mg/ml), and
incubated for 30 min at 37°. Cells were subsequently washed with 50:50
TE, resuspended with 50 wL SybrGreen (1:100 dilution in 50:50 TE;
Lonza, CAT#12001-798, 10,000X) and incubated overnight at room
temperature, shielded from light. Cells were collected via centrifugation
and resuspended with 150 pL 50:50 TE, briefly sonicated, and analyzed
using an LSRII flow cytometer, with 10,000 events collected for each
sample. To calibrate the LSRII, laboratory diploid (SC5314;(Gillum
et al. 1984)) and tetraploid (mating product of RBY16 and CHY477;
(Bennett and Johnson 2003)) strains were used and also served as internal
controls. G1 peak values were determined by FITC-A intensity fit with
the multi-Gaussian cell cycle model (FloJoV10). To assess the frequency
of deviations in total DNA content, G1 peaks of experimental samples
were compared to the mean G1 peak for either MH84 (n = 45) or MH128
(n = 48). Deviations to total DNA content were defined as any experi-
mental sample with a G1 peak greater than 2 standard deviations from
the mean G1 of its respective parental strain (MH84 or MH128).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 8 software.
Data sets were tested for normality using the D’Agostino & Pearson
omnibus normality test. To test for difference between the no-drug
treatment and the drug treatments, we used the non-parametric, un-
paired, Mann-Whitney U-test.

Data availability

All strains are available upon request. The authors ensure that the
required data for reproducing these findings and confirming the con-
clusions are available in the article and corresponding figures and tables.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.8872604.

RESULTS

C. albicans cell viability depends on ploidy and exposure

to antifungal drugs

To asses if antifungal drug susceptibility differs between diploid and
tetraploid C. albicans, we determined the minimum inhibitory concen-
tration (MIC) of fluconazole (FLU) and caspofungin (CAS) for an
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isogenic diploid and tetraploid pair. We observed no differences in
drug susceptibility between the two ploidies and determined the MIC
for fluconazole to be ~1 pg/mL (Figure S1A) and for caspofungin to be
less than 0.25 pg/mL (Figure S1B). To determine the cell viability after
antifungal drug exposure, we measured diploid and tetraploid colony
forming units (CFUs) following 24-hour exposure to antifungal drug
treatments representing 1x and 10x the MIC (Figure 1A & B). While we
detected minor, but statistically significant, CFU reductions following
exposure to fluconazole compared to the no-drug treatment, we ob-
served that growth rates in fluconazole were substantially slower (S1C
& S1D). We found that exposure to caspofungin reduced CFUs more
severely than fluconazole, in both diploid and tetraploid C. albicans
(Figure 1A & B). Interestingly, the low concentration of caspofungin
inhibited cell viablility to a greater degree than the high concentration, a
phenomenon coined the “the paradoxical effect of echinocandins”
(Wagener and Loiko 2017). Importantly, there were differences in total
CFUs for diploid and tetraploid C. albicans in the no-drug treatment,
where there were 50% fewer CFUs for tetraploids compared to diploids.
We saw a similar reduction for fluconazole, where there were ~50%
fewer tetraploid CFUs than diploid. In contrast, caspofungin impacted
tetraploid CFUs more severely, with a 90% reduction compared to
diploid (Figure 1C). This demonstrates that antifungal drugs impact
diploid and tetraploid C. albicans differently, despite having similar
MICs and suggests there is a drug x ploidy interaction impacting cell
viability.

Drug x ploidy interactions impact the rates of

genome instability

Given that short-term antifungal drug exposure impacted cell viability of
diploid and tetraploid C. albicans, we next investigated if antifungal
drug exposure increased mutation rates. Since mutations range from
small-scale, (i.e., single nucleotide mutations) to large-scale (i.e., chro-
mosome events including recombination and aneuploidy), we mea-
sured both point mutation and LOH rates in diploid and tetraploid
C. albicans following exposure to fluconazole and caspofungin. To
assess the point mutation rate, we used a his4-G929T (located on
Chr4) reversion assay (Forche et al. 2011) and found that the reversion
rate in the no-drug treatment was extremely low for both diploid (~4 X
10719 events/cell division) and tetraploid (~12 x 10710 events/cell di-
vision) C. albicans. Exposure to antifungal drugs had minor impacts on
point mutation rates (Table S2). For example, exposure to high con-
centrations of fluconazole and caspofungin increased the tetraploid
mutation rate only by twofold. Due to the rarity of revertants, and
the fungicidal nature of caspofungin, it was technically challenging to
capture enough reversion events to determine statistical significance.

While point mutations are rare, large-scale genomic rearrangements
occur frequently in C. albicans and are easily detected through loss-of-
heterozygosity assays (Lea and Coulson 1949; Forche et al 2011;
Hickman et al. 2015). We found that diploid C. albicans exposed to
caspofungin, but not fluconazole, showed significant increases in LOH
rates compared to the no-drug treatment (Figure 2A). In contrast, for
tetraploid C. albicans, exposure to either drug resulted in significant
increases in LOH rates compared to the no-drug treatment (Figure 2B).
However, the degree to which the specific antifungal drug elevated
LOH rates differed: fluconazole increased the LOH rate by ~threefold,
whereas caspofungin increased the LOH rate by ~100-fold.

We also observed significant differences in LOH rates between
diploid and tetraploid C. albicans (Figure 2C). In the no-drug treat-
ment, the rate of LOH was 1.0x10~> events/cell division in the diploid
state (Figure 2A, dashed line), whereas the tetraploid LOH rate was
2.9 x10™* events/cell division (Figure 2B), a difference of ~30-fold
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(Figure 2C), and consistent with previous reports (Hickman et al.
2015). If antifungal drugs elevate LOH rates to the same extent in both
diploid and tetraploid C. albicans, then we hypothesized that there
would also be a 30-fold difference across all drug treatments. Indeed,
this is what we observed in caspofungin, where the tetraploid LOH rate
was ~40-fold higher than that of diploid (Figure 2C). In contrast, the
fluconazole-induced LOH rate was 60-fold higher in tetraploids com-
pared to diploids (Figure 2C). In addition to the individual contribu-
tions from ploidy (P = 0.0024, two-way ANOVA) and drug treatment
(P = 0.0011, two-way ANOVA), we detected a significant interaction
between these two variables (‘interaction’ P = 0.0019, two-way
ANOVA; Figure S2) on LOH rates.

Regardless of ploidy, we observed that caspofungin significantly
increased LOH rates, a surprising result since there is no evidence for its
genotoxicity, yet some evidence that it induces apoptosis (Hao et al.
2013). To test whether the caspofungin-induced increase in LOH
rates was due to genotoxicity of this drug, or simply an indirect
consequence of cell wall stress, we exposed diploid and tetraploid
C. albicans to calcofluor white, a cell-wall damaging agent (Walker
et al. 2008). Importantly, both calcofluor white and caspofungin ac-
tivate the MKCI pathway to elicit a downstream stress response
(Munro et al. 2007; Walker et al. 2008; Heilmann et al. 2013). We
found that at concentrations of 100 wg/mL, calcofluor white
inhibited cell viability to a similar degree as 0.25 wg/mL caspofungin
(Fig. S3) and elevated LOH rates in diploid (Figure 2A) and tetra-
ploid (Figure 2B) C. albicans. The calcofluor white-induced LOH
rates were comparable to what we observed in caspofungin, and
suggests that caspofungin-induced LOH is an indirect consequence
of cell wall stress rather than an inherent genotoxicity. Surprisingly,
we saw that calcofluor white elicited a ploidy-specific impact on LOH
rates, in which diploids were more severely impacted than tetraploids
(Figure 2C). This was unexpected since caspofungin did not have any
ploidy-specific responses.

Antifungal exposure results in modest gains of total

DNA content in diploids

Since exposure to antifungal drugs increased LOH rates, we examined
whether there were corresponding changes in total DNA content.
Following selection for LOH, we isolated single colonies and measured
their total DNA content by flow cytometry (Figure 3A, 2-DOG). We
found some changes to total DNA content following LOH selection
(Figure $4). To quantify if these changes were gains or losses, we
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compared the G1 peak size of LOH derivatives to the mean G1 peak
size of diploid controls. The no-drug, high caspofungin, and calcofluor
white treatments did not elicit a meaningful frequency of LOH deriv-
atives displaying changes to total DNA content (Figure 3B). However,
high fluconazole and low caspofungin resulted in 35% and 20% of LOH
derivatives displaying changes to total DNA content, respectively. Fur-
thermore, when we detected changes, all were modest gains to DNA
content (Figure 3B). These results suggest that chromosome mis-seg-
regation is associated with fluconazole-induced LOH, consistent with
previous findings (Forche et.al, 2011). Additionally, our results with
caspofungin-induced LOH imply that most of these LOH events did
not occur through chromosome mis-segregation mechanisms.

It is possible that the changes to total DNA content are a general
response to antifungal drug stress, and not specifically associated
with LOH events. Therefore, we measured total DNA content of
single colony isolates obtained in the absence of LOH selection
(Figures 3A, SDC and S4). The no-drug, low fluconazole, and high
caspofungin treatments did not elicit a meaningful frequency of
isolates displaying changes to total DNA content (Figure 3C). How-
ever, high fluconazole and low caspofungin resulted in 8% and 20%
of isolates displaying gains in total DNA content, respectively. Calco-
fluor white resulted in ~14% of isolates with changes to total DNA
content, in which half were gains and half were losses (Figure 3C).

Next, we investigated whether there was a relationship between the
frequency of changes to total DNA content (with and without LOH
selection), and the mutagenicity of the specific drug treatment. To do
this, we plotted the total fraction of isolates displaying changes to total
DNA content (gains + losses) with LOH selection (Figure 3D, filled
circles) and without LOH selection (Figure 3D, open circles) by the rate
LOH for each drug treatment. If there is no relationship and these two
variables are independent of each other, we hypothesize that there
would not be a difference in the fraction of isolates with changes to
total DNA content between selection regimes. Indeed, this is the case
for the no-drug, caspofungin, and low fluconazole treatments (Figure
3D), despite the 100-fold increased LOH rate in caspofungin. While
high fluconazole did not significantly alter the rate of LOH, there were
high frequencies of isolates displaying total DNA content changes in
the presence and absence of LOH selection. However, LOH derivatives
had a substantially higher fraction of isolates displaying changes in total
DNA content (Figure 3D, filled purple circle), suggesting that LOH
events and changes to total DNA content were not independent in this
treatment.
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Antifungal exposure results in drastic losses of total

DNA content in tetraploids

While we observed a relationship between changes in total DNA content
and LOH in high fluconazole for diploids, we wanted to determine
whether antifungals affected this relationship in tetraploids. Following
LOH selection, we isolated single colonies and measured total DNA
content by flow cytometry. For tetraploids, we found substantial devi-
ations in total DNA content occurring across all treatments (Fig. $4).

We quantified these deviations similarly to our diploid analysis, and
compared the G1 peak size of the LOH derivatives to tetraploid and
diploid controls to categorize changes to total DNA content into two
groups: 1) LOH derivatives with G1 peaks between 2C and 4C, or above
4C (indicating aneuploidy), and 2) LOH derivatives with ~2C content,
(indicating a halving of total tetraploid DNA content). LOH selection
led to reductions in total DNA content, with 52-65% of LOH deriva-
tives showing aneuploid genome contents for all treatments, except for
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the presence or absence of drugs for 24hrs and plated on 2-DOG to select LOH events or on SDC to determine determine total viable growth. At
least 48 single colonies were picked from each plate type, prepared, and analyzed for flow cytometry. B) Frequency of diploid LOH derivatives
(2-DOG) with deviations to total DNA content after 24-hr drug treatments. Isolates with G1 peaks greater than the 2C control were considered
‘gains’ in DNA content, and those with G1 peaks less than the 2C control were considered ‘losses’. C) Frequency of diploid isolates with deviations
to total DNA in the absence of LOH selection (SDC) after 24-hr drug treatments. Data are represented similarly to (B). D) The frequency of
deviations to total DNA content associated with the absence (open symbols) or presence (filled symbols) of selection for LOH events is plotted on
the x-axis. The y-axis indicates the LOH rate for each drug treatment (represented by their respective colors).
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Figure 4 Tetraploids frequently exhibit substantial changes in total DNA content regardless of selection for LOH events. A) Frequency of
tetraploid LOH derivatives (2-DOG) with deviations to total DNA content after 24-hr drug treatments. Isolates with G1 peaks greater than the 4C
control were considered ‘gains’ in DNA content, and those with G1 peaks less than the 4C controls were considered ‘losses’. A small subset of
isolates had G1 peaks that were within +/— 2SD of the 2C control and are indicated by the filled bars. B) Frequency of tetraploid isolates with
deviations to total DNA in the absence of LOH selection (SDC) after 24-hr drug treatments. Data are represented similarly to (A). C) The frequency
of deviations to total DNA content associated with the absence (open symbols) or presence (filled symbols) of selection for LOH events is plotted
on the x-axis. The y-axis indicates the LOH rate for each drug treatment (represented by their respective colors).

high caspofungin, where only 20% are in this category (Figure 4A).
Furthermore, a small number of LOH derivatives had DNA content at
~2C, though this varied depending on drug treatment. For example,
2% of LOH derivatives were ~2C in the high fluconazole compared to
~18% in calcofluor white. These results support the model that tetra-
ploids selected for LOH events are accompanied by reductions in DNA
content (Hickman et al., 2015).

While it is likely that the changes to total tetraploid DNA content
are specifically associated with LOH events, these changes may be a
general response to antifungal drugs. Therefore, we measured total
DNA content of single colony isolates obtained in the absence
of LOH selection (Figure S4). In the no-drug treatment, there
were only a few minor deviations from tetraploidy, and a similar
fraction detected in caspofungin, although these were mostly losses
(Figure 4B). For fluconazole, 20-30% of isolates had aneuploid
genome content and a small fraction had converged to diploidy.
This supports the premise that fluconazole promotes ploidy insta-
bility, given that we also observed changes to DNA content in
diploids. Interestingly, in calcofluor white, there were ~40% of
isolates with ~2C DNA content. This rapid convergence to dip-
loidy was notable given the short exposure time and absence of
LOH selection. Furthermore, this was specific to calcofluor white
and not a general response to cell wall perturbations, as we did not
observe similar changes in caspofungin.

For each drug treatment, we plotted the total fraction of isolates
displaying changes to total DNA content (gains + losses) with LOH
selection (Figure 4C, filled circles) and without LOH selection (Figure
4C, open circles) by the rate of LOH. Deviations to total tetraploid DNA
content were frequently (10-62%) detected in the absence of LOH
selection across all treatments (Figure 4C), and is in contrast to diploids
(Figure 3D). Furthermore, tetraploid instability was substantially ele-
vated in isolates selected for LOH events. For no-drug and low caspo-
fungin treatments, we saw a strong relationship between devations to
total DNA content and selection for LOH; for fluconazole and high
caspofungin treatments there was a moderate relationship; and for
calcofluor white there was no relationship. This was due, in part, to
the high ploidy instability observed in the absence of LOH selec-
tion and may also reflect LOH events that are not due to chromosome
mis-segregation.
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DISCUSSION

Both stress-induced mutagenesis and organismal ploidy impact muta-
tion rates and spectra, but these two phenomena are often studied in
isolation. Here, we investigated how antifungal drug stress impacts
mutation rates of small- and large-scale genomic events in diploid
and tetraploid C. albicans. We found a significant interaction be-
tween ploidy and antifungal drug stress on LOH rates (‘interaction’
P = 0.0160, two-way ANOVA, Figure S2). This was surprising, since
we expected that the relative increase in drug-induced LOH rate would
be similar between diploid and tetraploid C. albicans, despite inherent
differences in their baseline rates. In fact, we observed this for caspo-
fungin which substantially elevated genome instability for both ploidy
states. However, fluconazole treatments impacted tetraploid C. albcians
more severely than diploid C. albicans. Our findings support a model in
which the magnitude of stress-induced mutagenesis is the result of a
drug x ploidy interaction.

While C. albicans genomic responses to fluconazole has been well-
studied (Forche et al. 2011; Harrison et al. 2014; Hickman et al. 2015;
Popp et al. 2017), the genomic responses to caspofungin are largely
uninvestigated, as most studies regarding caspofungin focus on mech-
anisms of resistance (Munro et al. 2007; Pfaller et al. 2008; Walker et al.
2008; Lee et al. 2012; Wiederhold 2016; Revie et al. 2018). Here, we
found that caspofungin increased the rate of LOH (Figure 2) and point
mutations (Table S2) for both diploid and tetraploid C. albicans com-
pared to the no-drug and fluconazole treatments. Furthermore, expo-
sure to caspofungin increased the frequency at which diploids and
tetraploids changed total DNA content (Figure 3, 4 and S4). While
an increase in caspofungin-induced genome instability was expected,
given that it induces apoptosis (Hao et al. 2013), the degree to which
this occurred was unexpected. These findings prompted us to test
which is whether caspofungin is genotoxic or if the mutagenicity is
an indirect result from stress to the cell wall. To test this, we exposed
C. albicans to calcofluor white, a drug that interferes with the proper
construction of the fungal cell wall (Walker et al. 2008) and found that
genome instability was induced to a similar degree as caspofungin
(Figure 2, 3 and 4) (Walker et al. 2008). This result suggests that
caspofungin-induced mutagenesis is not due to its direct genotoxicity,
but likely is an indirect consequence of perturbations to the cell wall.
Intriguingly, caspofungin has a paradoxical effect on fungal cells, a
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phenomenon in which supra-MIC concentrations are permissible for
proliferation, despite being susceptible at the MIC (Wagener and Loiko
2017). C. albicans restructures its cell wall at supra-MICs of caspofun-
gin to better mediate this stress (Walker et al. 2008; Wagener and Loiko
2017). In our study we also saw the paradoxical effect of caspofungin
in both diploid and tetraploid C. albicans viability and LOH rates
(Figures 1 and 2). Our findings suggest that the magnitude of caspo-
fungin-induced mutagenesis is dependent on its concentration, in
which low concentrations signal a stronger stress response and elicit
more genomic perturbations.

Given that there is a drug x ploidy interaction for LOH rates
(Figure S2), we expected to see a similar relationship for how frequently
changes to total DNA content occurred. Indeed, this is the pattern that
we observed. Caspofungin increased the frequency of changes to total
DNA content in both diploid and tetraploid C. albicans (Figures 3 and
4), consistent with its impact on LOH rates (Figure 2C). However, the
directionality of genome size changes depended on ploidy. In diploids
these changes were exclusively gains in DNA content, but in tetraploids
they were predominantly losses. Fluconazole also elicited gains in DNA
content in diploids (Figure 3) and losses in tetraploids (Figure 4).
However, the frequency of these changes was substantially greater in
tetraploids, indicative of a ploidy-specific response, consistent with the
fluconazole-induced increase in tetraploid LOH rates (Figure 2C).

There is a relationship between LOH events and changes to total
DNA content for diploids exposed to fluconazole (Forche et.al, 2011),
in which LOH events are predominantly associated with chromosome
mis-segregation, and our findings also support this. Interestingly, this
was not the case for caspofungin, where changes to total DNA content
were not necessarily associated with selection for LOH, since high
ploidy instability was observed even in the absence of LOH selection.
For tetraploids, the co-occurrence of LOH and deviations in total DNA
content is well established (Hickman et al., 2015; Gerstein et al., 2017),
and our findings also support this. A majority of tetraploid LOH de-
rivatives showed reductions in DNA content, regardless of drug treat-
ment and in fact, the absence of drug resulted in the highest frequency
of isolates with changes to DNA content. Therefore, the relationship
between LOH and changes to DNA content is strongest in the no-drug
treatment and weaker in the drug treatments (Figure 4C), and suggests
that chromosome mis-segregation is not the major mechanism by
which LOH occurs in tetraploids exposed to drugs. Taken together,
we show that tetraploid C. albicans genomes are more unstable than
diploids, and this instability is exaggerated upon antifungal drug
exposure.

Tetraploid genome instability has been shown, both theoretically
and experimentally, to facilitate rapid adaptation in yeast (Berman and
Hadany 2012; Selmecki et al, 2015), and this premise has important
implications for the emergence of antifungal drug resistance. Resistance
to antifungal drugs can result from point mutations, though the target
genes differ between fluconazole and caspofungin (Revie et al. 2018).
Furthermore, homozygosis of azole-resistance alleles (i.e., LOH) sub-
stantially increases fluconazole MICs compared to heterozygous geno-
types (Flowers et al. 2012; Ford et al. 2015). Likewise, aneuploidy is
commonly associated with azole resistance (Selmecki et al. 2006, 2009;
Robbins et al. 2017; Revie et al. 2018; Stone et al. 2019) and recent
studies suggest that aneuploidy is beneficial for growth in caspofungin
(Yang et al. 2019). Our study explicitly demonstrates that antifungal-
induced genome instability impacts tetraploids more profoundly than
diploids, and results in extremely high LOH rates and frequency of
genome size changes, that are likely to contain aneuploid chromo-
somes. Thus, tetraploids have the capacity to provide an abundance
of genetic variation for natural selection to act upon.
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