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Small nanoparticles, a.k.a. nanoclusters, of transition metals have been studied extensively for a wide range

of applications due to their highly tunable properties dependent on size, structure, and composition. For

these small particles, there has been considerable effort towards theoretically predicting what is the most

energetically favorable arrangement of atoms when forming a nanocluster. In this work, we develop a

computational framework that couples density-functional theory calculations with mathematical

optimization modeling to identify highly stable, mono-metallic transition metal nanoclusters of various

sizes. This is accomplished by devising and solving a rigorous mathematical optimization model that

maximizes a general cohesive energy function to obtain nanocluster structures of provably maximal

cohesiveness. We then utilize density-functional theory calculations and error term regression to identify

model corrections that are necessary to account with better accuracy for different transition metals. This

allows us to encode metal-specific, analytical functions for cohesive energy into a mathematical

optimization-based framework that can accurately predict which nanocluster geometries will be most

cohesive according to density-functional theory calculations. We employ our framework in the context of

Ag, Au, Cu, Pd and Pt, and we present sequences of highly cohesive nanoclusters for sizes up to 100

atoms, yielding insights into structures that might be experimentally accessible and/or structures that could

be used as model nanoclusters for further study.

1 Introduction

Small transition metal nanoclusters possess properties that
are highly dependent on size, shape, and composition.
Optimizing these material parameters can lead to drastically
improved material performance for application in

catalysis,1–4 electronics,5 and biological systems.6 One key
research question in the study of small transition metal
nanoclusters is to identify the most stable morphology for a
nanocluster of exactly N metal atoms.7 While it is possible to
determine stable sizes of small nanoclusters experimentally
by measuring the frequency in which those sizes appear
during synthesis, morphological trends in small clusters are
difficult to elucidate since small particles cannot be observed
in high enough resolution to discern specific atomic
arrangements.8 Therefore, understanding small nanocluster
morphology requires complementary theoretical calculations
and predictions.
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Design, System, Application

Due to their many tunable characteristics, including size, shape, and composition, small metallic nanoclusters are an important material class for a broad range of
applications. To date, many approaches for identifying minimum energy, or ground-state, structures have been explored in the theoretical study of nanoclusters. In
this work, we propose that the task of identifying a minimal energy nanocluster structure can be handled with design methods and optimization algorithms
common in many other fields, notably including process design. Our approach constitutes a rigorous framework for casting the design of mono-metallic
nanoclusters as a special class of optimization problems called mixed-integer linear programs, which can be solved readily and exactly using well-established
numerical methods. By contrasting the results of our optimization model with density-functional theory calculations, we evaluate the accuracy of our solutions and
regress corrective factors to improve energy predictions. This approach allows for the quick determination of unintuitive, energetically favorable structures that are
amenable for synthesis and/or can be utilized for further scientific study. Although the focus in this work is on mono-metallic, face-centered cubic nanoclusters, the
framework can be extended to accommodate multi-metallic systems and additional crystal geometries.
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In order to determine the most stable structure for a
nanocluster, one must identify the configuration of atoms
with the lowest total energy, as assessed with some empirical
or semi-empirical function, or some ab initio calculation for
the potential energy.9 However, determining the global
minimum energy structure for a nanocluster of N atoms is a
highly combinatorial problem that is a member of the NP-
hard complexity class of computational problems.10 This
means that, in principle, one might be required to evaluate
the energy of each possible arrangement of atoms, which is
generally an intractable task. Despite such challenges,
sophisticated meta-heuristic search algorithms have been
employed to search for minimum energy mono- and bi-
metallic nanocluster morphologies.11,12 Approaches of this
type include genetic algorithms,13 basin-hopping,14 and
simulated annealing.15 While the reported structures are in
general highly stable, and may indeed be ground state
geometries, they are not provably optimal against the stability
metric used because meta-heuristic search algorithms use
arbitrary termination criteria that lack guarantees of
searching the entire solution space. Without a proof of
optimality upon completion, such algorithms might converge
to a local minimum, as opposed to the true, global
minimum. In this work, we propose a complementary
approach that is based on a mathematical optimization-
based framework, and we formulate a mixed-integer linear
programming (MILP) model for determining minimum
energy structures of three-dimensional, mono-metallic
nanoclusters. The distinctive feature of our approach is that,
when solved to algorithmic termination by an appropriate

MILP numerical solver, the model returns a low energy
nanocluster that is guaranteed to be globally optimal up to
the accuracy of the energy functional used and the flexibility
afforded by the explicitly encoded lattice.

The geometry of a minimum energy nanocluster of a
given size is assumed in this work to be the one that
attains the maximum cohesive energy (Ecoh). The cohesive
energy is chosen as a good proxy for the particle's overall
stability because it measures the cumulative strength of
interatomic bonding between atoms. As a first pass, our
mathematical model utilizes an analytical cohesive energy
function first proposed by Tománek et al.,16 which
stipulates that the contribution of each atom to the total
cohesive energy of a particle depends only on its
coordination number (CN), i.e., the number of neighbors
surrounding this atom within the lattice. Previous work
has successfully utilized the CN as a catalytic site
descriptor to design transition metal surfaces via mixed-
integer linear programming techniques.17 The work
presented here extends such techniques towards the
design of three-dimensional nanoclusters. Notably, the
rigorous optimality guarantees afforded to us by the
MILP-based approach often allow us to identify unintuitive
and previously unconsidered designs that complement the
breadth of existing results in the identification of low-
energy small nanoclusters. It should be noted, however,
that the new approach only seeks structures on a
predefined, discrete lattice. This means that only
structures that conform to the chosen lattice can be
identified as optimal, highlighting the need for the user
to provide a lattice input that can accommodate
reasonable expectations about the geometry of highly
cohesive structures.

The contributions of the present work are three-fold. First,
we use rigorous mathematical modeling and optimization to
identify highly cohesive nanocluster geometries. Next, we use
high-accuracy, computational chemistry methods to regress
metal-specific models for nanocluster cohesive energy. And
finally, we conduct a comprehensive computational study to
identify sequences of minimum energy structures unique to
different metals and for a wide range of sizes (number of
atoms). The remainder of the manuscript is structured as
follows. In section 2, we discuss a model for cohesive energy
that solely depends on the coordination number of a
nanoparticle's atoms. In section 3, we utilize this cohesive
energy function to derive and solve a mathematical
optimization model for identifying highly cohesive mono-
metallic nanoclusters at given sizes. Utilizing density-
functional theory, in section 4 we calculate the exact cohesive
energies of our nanocluster structures, and we use these
results to regress more accurate, metal-specific models of
cohesive energy. We then embed these more accurate
functions within the optimization model and re-solve it to
identify optimally cohesive structures for various metals of
interest. Finally, we conclude with some final remarks in
section 5.
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2 Square root bond-cutting model of
cohesive energy

The cohesive energy, Ecoh, of a material represents the
energetic benefit imparted when neutral metal atoms come
together from infinite separation to form a crystalline solid.
It has been shown that the moment expansion method for
determining the electron density-of-states can accurately
describe cohesion in transition metals.18,19 Based on this
result, a transition metal atom contributes to the
cohesiveness of a nanocluster proportionally to the square
root of its coordination number.16,18,19 Therefore, the average
(per atom) cohesive energy of a transition metal nanocluster
can be represented as a function of the coordination
numbers of all its N atoms according to eqn (1).

Ecoh ¼ EBULK
coh

N

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNi

CNmax

r
þ ER (1)

In the above equation, CNi refers to the coordination
number attained by the ith atom, CNmax is an integer
parameter specifying the maximum attainable coordination
number for a given crystal lattice, EBULKcoh is the cohesive
energy of the bulk material, and ER is a residual energy term.
The residual term ER represents repulsive interactions
between atoms in a nanocluster at non-equilibrium
interatomic distances. Whereas this term is especially
prevalent at small sizes N,20 there generally exists no
closed-form representation for it. Hence, we shall initially
neglect it by assuming ER = 0. This model with no
residual energy term is also referred to as the square root
bond-cutting (SRB) model for cohesive energy.21

Importantly, the SRB model is MILP-representable via
standard modeling methods described in the following
sections, opening up interesting possibilities for its
inclusion as the basis of a tractable optimization model
for nanocluster design.

From this point onwards, when we refer to cohesive energy,
we will be referring to its dimensionless form, which is the
above defined quantity (Ecoh) normalized to (divided by) the
value of EBULKcoh , and which can thus attain values between 0
and 1, irrespective of the identity of the material involved.

3 Mathematical optimization-based
design

We shall now propose a mathematical optimization modeling
framework for determining the minimum cohesive energy
structures of three-dimensional, mono-metallic nanoclusters.
In this framework, sites on a crystal lattice are indexed via
the set i ∈ I. We refer to this set as a canvas, as it constitutes
the space wherein an allotment of N atoms can be placed to
design the nanoclusters. For each lattice site i, we introduce
a binary design variable, Yi, to indicate the presence or not of
an atom on this site. If Yi = 1, an atom exists at canvas
location i, while if Yi = 0, the canvas site is devoid of an atom.

Using this framework, it is possible to represent any
nanocluster design as a collection of “0/1” values for all
design variables in the canvas.

The size and shape of the canvas should be carefully
selected by the modeler. For example, if one wishes to
design a face-centered cubic (FCC) nanocluster with N =
100 atoms, a possible canvas to use would be a
cuboctahedral geometry and 561 lattice sites (i.e., 5 shells
of a perfect cuboctahedron). However, one should keep in
mind that the difficulty of solving the nanocluster
optimization model depends upon the size of the canvas
(degrees of freedom) in relation to how much of the
canvas should be occupied (size of the nanocluster), and
that there exists a trade-off between numerical tractability
and flexibility to accommodate any conceivable
nanocluster design of a particular size N. Finally, it
should be noted that, although we focus this study on
FCC nanoclusters, the concept of a canvas, and thus our
proposed optimization model, can be easily extended for
the design of nanoclusters with any crystalline geometry.

3.1 Basic optimization model

Given the degrees of freedom Yi to indicate the placement of
atoms as well as auxiliary variables CNi to encode the
coordination number at every canvas location i ∈ I,‡ the basic
optimization model to identify maximally cohesive transition-
metal nanoclusters is given below in eqn (2) to (10).

max
Yi;CNi

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CNmax

p
X
i∈I

ffiffiffiffiffiffiffiffi
CNi

p
(2)

s:t:
X
i∈I

Y i ¼ N (3)

Yi ¼ 1f g⇒ CNi �
X
j∈Li

Y j

( )
∀i∈I (4)

{Yi = 1} ⇒ {CNi ≥ CNmin} ∀ i ∈ I (5)

{Yi = 0} ⇒ {CNi ≤ 0} ∀i ∈ I (6)

0 ≤ CNi ≤ CNmax ∀i ∈ I (7)

Yi ∈ {0,1} ∀i ∈ I (8)

All atoms are connected (9)

Nanoclusters are non-hollow (10)

The model's objective function, eqn (2), consists of the
(dimensionless) SRB cohesive energy function, which we seek
to maximize. Eqn (3) defines the nanocluster's size (number

‡ In this context, the “coordination number of an unoccupied location is
regarded to be equal to 0.
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of atoms), where N is an integer parameter of the model to
be provided as a constant. For occupied canvas locations,
eqn (4) sets the auxiliary variables CNi to their applicable
values,§ where the sets Li have been defined to represent the
neighboring sites to each location i. At the same time, eqn
(5) ensures that all atoms adhere to some minimum value,
CNmin, which is provided to avoid low-coordinated,
unrealistic atom placement. Eqn (6) enforces that, if no atom
is placed at location i, then the corresponding CNi variable
attains the value of 0, hence, prohibiting unoccupied
locations from contributing to the objective function. Note
that the implication constraints 4 to 6 can be transformed to
standard linear equations using well-known MILP modeling
techniques, such as the so-called big-M reformulation, which
is what we used in our implementation.

Eqn (7) declares the non-negativity of the coordination
number variables, as well as enforces applicable upper
bounds on their possible values. Here, the upper bound of
CNmax is chosen as the maximum achievable coordination
number in a given canvas, as determined by the applicable
lattice. Finally, eqn (8) explicitly enforces the integrality
constraint for the binary variables Yi.¶ We remark that, for
the FCC geometry used in this study, we use constant values
CNmin = 3 and CNmax = 12, meaning that any given atom is
allowed to have at least three and at most twelve nearest
neighbors. For other crystalline geometries, other appropriate
values should be used (e.g., for body-centered cubic, CNmax =
8).

There also exist two additional requirements on our
nanocluster designs, namely those of connectivity and non-
hollowness. The purpose of requiring connectedness is to
avoid presumed solutions where the N atoms have been
divided into two or more smaller nanoclusters. The
requirement for non-hollowness is imposed to avoid
nanocluster designs that feature void enclosed volume.
Because it is not straightforward to represent such
requirements as explicit constraints on our model's decision
variables, we only present them conceptually in eqn (9) and
(10), respectively. These two constraints are enforced
dynamically during the solution procedure via a lazy-
constraint interface, which is available in modern MILP
solvers. Omitting many details at the interest of brevity, the
main idea is to inspect every design as soon as it is returned
by the numerical solver, and if found to be either
disconnected or hollow, to add an integer cut constraint to
the model so as to explicitly render this specific design
infeasible, eliminating the possibility that this design persists
as the final optimal solution identified by the framework.

3.2 Concave objective function

We remark that the objective function is a non-linear,
concave function in variables CNi. Whereas at first glance
this equation appears incompatible with an MILP model, we
can reformulate it into an MILP-representable form due to
the special mathematical structure of the model, namely the
integrality of variables CNi and the fact that we seek to
maximize such a concave function. More specifically, we
introduce a new set of auxiliary variables, CNRi, to represent
the square root value of the coordination number at each
canvas location i ∈ I, adding also the following bound
definitions.

0 � CNRi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNmax

p
∀i∈I (11)

We can now choose to model the square root of the
coordination number not as a smooth function, rather as a
set of secant lines passing through points on the curveffiffiffiffiffiffiffiffiffi
CNi

p
at integer values of CNi, as shown in Fig. 1 for the

case of an FCC lattice. Note how this approximation of the
square root function is exact at all locations of interest,
namely the integer values of CN. The secant-line definition
of CNRi is then imposed in the model via eqn (12), where
αℓ and βℓ are appropriate constants to represent the slope
and intercept, respectively, of each consecutive secant line
ℓ.

CNRi ≤ αℓCNi + βℓ ∀i ∈ I, ∀ℓ ∈ {1,2,…,CNmax} (12)

Finally, the objective function is then replaced with eqn
(13). Note that, because we are maximizing the cohesive
energy, the optimizer has the incentive to choose the exact
value of the applicable (intersection of) secant lines, as it is
the maximally attainable value permitted by the inequality in
eqn (12). Hence, this substitution models the SRB cohesive

§ We remark that coordination numbers are defined here via ≤ inequality
constraints (as opposed to strict equalities) at the interest of yielding an MILP
model with tighter LP relaxations. Due to the direct maximization of variables
CNi in the objective function, the coordination number evaluations will be exact
at any optimal solution.
¶ Note how the integrality of variables CNi need not be explicitly declared, as it
is implied by the integrality of variables Yi.

Fig. 1 Square root bond-cutting model for cohesive energy
(dimensionless) of an FCC atom i, plotted against CNi. Also shown are
the secant lines used to exactly represent the evaluations of cohesive
energy at integral CNi values.
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energy not only in a linear form, but also exactly (i.e., without
approximation error).

1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CNmax

p
X
i∈I

CNRi (13)

3.3 Symmetry breaking

Due to the highly symmetric nature of crystallographic spaces,
there exist many isomorphically equivalent ways to represent
the same nanocluster in a canvas, by means of rotation,
translation and reflection operations. More specifically, the
FCC lattice is close-packed and has two-, three- and four-fold
axes of symmetry. Symmetry of this form makes the MILP
model more difficult to solve to optimality due to the large
number of equivalent, feasible solutions. In order to mitigate
this effect, eqn (14) and (15) were added to the model as
symmetry-breaking constraints. These constraints aim to
eliminate some isomorphic solutions from the design space,
while guaranteeing that at least one representative solution
remains feasible in the resulting model, and hence, that at
least one isomorphic equivalent of the optimal nanocluster is
accessible from the design space induced by the model.X

i∈Isþ
Yi −

X
i∈Is −

Yi ≥ 0 ∀s∈ 1; 2; 3f g (14)

X
i∈Isþ

Yi −
X
i∈Is −

Yi �
X
i∈Is0

Yi ∀s∈ 1; 2; 3f g (15)

The sets Is
+, Is

− and Is
0 in the symmetry-breaking

constraints represent suitable partitions of the canvas, as
dictated by three intersecting crystallographic planes, s. Any
lattice site i in the canvas can be viewed as being “above”
plane s, i ∈ Is

+, “below” plane s, i ∈ Is
−, or “on” plane s, i ∈

Is
0. By restricting the distribution of atoms in the canvas to

be approximately balanced, many isomorphically equivalent
solutions are removed from the set of feasible solutions.

3.4 Improving numerical tractability

The mathematical optimization model presented in the
previous section can be addressed by any off-the-shelf MILP
solver. However, the latter being a form of numerical
software, it is subject to numerical tractability issues when
applied on models that feature large feasible spaces, such as
those that arise when we use large values of N. In order to
improve solution performance at all N values we wish to
consider in this study, we choose to apply our model
sequentially, increasing the value of N one at a time. As we
do so, we adapt the canvas for optimizing the N-atom
nanocluster based on the shape of the optimal (N − 1)-atom
design. In addition, recognizing that in large clusters there is
a significant amount of bulk atom sites, we fix certain binary
variables in central locations of the canvas, again being
informed by optimal solutions preceding in the sequence.

Below we elaborate further on these algorithmic
enhancements to our framework.

3.4.1 Adaptively selecting the canvas size and shape. In
order to ensure that the MILP solver has enough degrees of
freedom to enumerate and identify the optimal nanocluster
at a given size, a sufficiently large canvas must be used.
Ideally, this size of the canvas should be as large as possible,
so that the MILP solver has access to a design space that is
guaranteed to include the optimal nanocluster geometry.
However, the tractability of the problem scales inversely with
the size of the canvas. In order to alleviate this issue, the
shape and size of the canvas is determined by the optimal
solution of the (N − 1)-atom nanocluster. Starting with N = 4,
where the optimal solution is easily determined (e.g., using
the unenhanced framework) to be a tetrahedron,‖ all
following canvases can be constructed by taking the (N − 1)-
atom optimal nanocluster and expanding it by two complete
shells around that particle. We have empirically determined
that this procedure leads to sufficiently large design spaces,
as maximizing cohesive energy will tend toward centralized,
roughly spherical shapes. It also ensures that the canvas is
not excessively large at smaller values of N.**

3.4.2 Simplifying by fixing select atom positions. Another
enhancement we have applied in order to improve our
framework's numerical tractability is the fixing (to the value
of 1) of certain Yi variables based on optimal solutions at
smaller N values. This decreases the complexity of the
optimization problem by decreasing its degrees of freedom
(number of the unfixed binary decision variables). Physically,
this forces some lattice positions to be occupied by an atom
in all solutions considered in the design space.

The algorithm for selecting which atoms to fix is as
follows. If N ≥ m, consider the set of the previous m optimal
nanoclusters, O = {N – 1, N – 2,…, N – m}. Enumerate all
rotations of each of the nanoclusters in O that satisfy the
symmetry-breaking constraints of eqn (14) and (15), and
denote the set of these transformed nanoclusters as O*. The
atoms that will be fixed at lattice locations i are those that
appear in all nanoclusters in the set O*. In other words, if a
particular atom is present in the m previous optimal
solutions, we expect it to arise again in the current solution.
In this work, m = 6 was used at all N sizes, because this
setting was found to provide sufficiently conservative sets of
lattice locations to fix, while also significantly improving the
tractability at all N.

4 Results and discussion

The nanocluster optimization model was solved with and
without the numerical enhancements of canvas sizing and
atom fixing. In the model instances solved without

‖ The design problem is technically infeasible for values of N ≤ 3, due to the
requirement for minimum coordination equal to 3 for all atoms.
** In practice, canvases designed this way will not be regular cuboctahedra,
though this poses no concern in terms of defining the optimization model,
which can be cast for any irregularly shaped canvas I.

MSDEPaper

Pu
bl

is
he

d 
on

 2
5 

Se
pt

em
be

r 2
01

9.
 D

ow
nl

oa
de

d 
on

 1
1/

11
/2

02
0 

4:
42

:2
7 

PM
. 

View Article Online

https://doi.org/10.1039/c9me00108e


Mol. Syst. Des. Eng., 2020, 5, 232–244 | 237This journal is © The Royal Society of Chemistry 2020

enhancements, the canvas was taken to be the 561 lattice site
cuboctahedron. Resulting cohesive energies at consecutive
sizes N are shown in Fig. 2a and b. Each model was solved
using the MILP solver CPLEX 12.8,22 using a one hour time
limit and four threads in parallel mode. Additionally, each
run was provided with an initial solution via the MIP start
feature of this solver. The initial solution used at a given N
was generated by taking the (N − 1)-atom nanocluster
solution and attaching on its surface a single atom in the
most favorable (out of all feasible options) position.

First, it should be noted that, as N increases, the best
integer solutions asymptotically approach the value of 1, that

is, the optimal cohesive energies approach the bulk cohesive
energy of the material, which is consistent with the expected
behavior of the SRB function. However, there are some
instances where the cohesive energy does not trend
monotonically as N increases. This has been observed in the
literature and can be explained via the concept of magic
number effects.23

It is also clear that, without enhancements, the solver fails
to prove the optimality of its best identified designs (red
dots) for cases as low as N = 10. This is likely due to poor LP
relaxations that are observed while integrality is relaxed, as
the mass of all N atoms is diffused across all sites in the
canvas. It is also clear that, without enhancements, the solver
fails to prove the optimality of its best identified designs (red
dots) for cases as low as N = 10.

On the other hand, once the proposed enhancements are
enabled, the performance of the MILP solver drastically
improves, and the solver is able to close the optimality gap in
all cases except the regimes N = 54–64 and N = 70–80, where
some very small gaps remain. This can be explained by
inspecting how the set of central fixed atoms evolves over N.
In the ranges where the upper and lower bound are not equal
at termination, there are approximately ten fewer fixed binary
variables, when compared to the following and preceding
sequences. This increase in free binary variables decreases
the tractability of these instances, as compared to those with
fewer degrees of freedom, leading to non-zero, yet small, gaps
after the imposed time limit.

Table 1 shows some representative optimal solutions. We
observe that these generally possess a somewhat octahedral
shape, in accordance with empirical expectation.
Furthermore, it is worthy to note that there was never a case
when, by solver termination, the unenhanced framework had
identified an integral solution that was better that the one
having been identified by the enhanced framework. To this
end, we believe that the algorithmic enhancements do not
cause optimal solutions to be eliminated from the design
spaces, and hence, they are welcome to adopt moving
forward inasmuch as they improve tractability without any
deterioration in solution optimality. The schematics of all
optimal structures are plotted in the Appendix, while the
exact atomic coordinates are provided as XYZ files in the
ESI.†

4.1 Metal-specific model corrections

The SRB model for cohesive energy is known to be an
approximation for the true cohesive energy of small metallic
clusters. Firstly, the SRB cohesive energy model neglects the

Fig. 2 Best solutions and best upper bounds at termination for N = 4–
100, using the MILP model without (2a) and with (2b) algorithmic
enhancements.

Table 1 Representative optimally-cohesive nanocluster geometries, as predicted by the MILP-model maximizing the SRB cohesive energy

N = 10 N = 20 N = 30 N = 40 N = 50 N = 60 N = 70 N = 80 N = 90 N = 100
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residual energy term for non-ideal interatomic interactions
proposed by Tománek et al.16 Secondly, the SRB cohesive
energy model has no metal-specific considerations,
essentially assuming that all metals will form bonds in the
same way, which is a poor assumption for small nanoclusters
where quantum effects are prominent. Thus, there exists a
need to develop more accurate, metal-specific, yet still MILP-
representable, formulas for cohesive energy that correct the
SRB model.

4.1.1 Collection of nanocluster structures for comparison.
First, the enhanced optimization framework, in its original
form using the SRB model as its objective, was utilized to
identify a set of highly cohesive nanocluster geometries at a
range of sizes. For this, we used the solution pool of the
CPLEX solver, which allows us to identify the k-best integral
solutions to an MILP model at a computational cost that is
only marginally higher than that of a standard run to identify
just the (one) optimal solution. More specifically, for sizes N
= 13–25, the best k = 10 nanocluster geometries were
collected, with an additional data point at N = 20 to include a
perfect tetrahedron. For N = 26–40, we collected the best k =
3 nanocluster geometries, while for N = 41–100, only the
optimal nanocluster was collected. This led to a total of 236
highly cohesive nanoclusters, with most of the data in the N

= 13–40 size regime. With all values of N, a four hour time
limit was imposed to collect such solution pools.

4.1.2 Comparison with DFT-predicted energies. The
identified optimal and near-optimal structures were then
evaluated with density functional theory (DFT) for their “true”
cohesive energies in the context of five transition metals of
interest, namely silver (Ag), gold (Au), copper (Cu), palladium
(Pd) and platinum (Pt). These metals were chosen due to their
array of applications in catalysis and alternative energy
applications.24–26 All DFT calculations were performed in the
CP2K computational package27 with the PBE functional,28

DZVP basis set,29 and GTH pseudopotentials.30 These methods
have been successfully used in the past to evaluate the
energetics of metal clusters.21 Note that we used the MILP-
predicted optimal clusters as input structures for the DFT
calculations, with their interatomic distances being set to
those in the bulk. The bulk cohesive energy, as calculated by
PBE, was used as a consistent energy reference for our
comparisons with DFT. Single-point energy evaluations were
performed on the interatomic scaled monometallic clusters.31

The parity plots between the energies predicted by the
SRB cohesive energy function and by DFT are shown in Fig. 3
(black dots). From the parity plots of Fig. 3, it is clear that
the SRB cohesive energy is over-estimating the cohesive

Fig. 3 Parity plots between cohesive energies calculated by the SRB model (y-axis), with and without metal-specific corrections, and by DFT
(x-axis) for various metals.
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energy in all cases. This is likely due to (metal) group-
dependent effects such as stresses and surface
relaxations,32,33 which are not considered by the metal-
agnostic SRB function and which may be the source of the
prediction errors observed. We remark that, in our DFT
calculations, metal-specific stresses are present because we
do not relax the nanoclusters and rather constrain the atoms
to sit on perfect lattices with set bulk interatomic spacings.
The latter can deviate from DFT-calculated spacings and can
also change in a metal-dependent fashion at the nanoscale.

The degree of error varies across metals. In fact, the SRB
function estimates the cohesive energy of the group 11
metals (Au, Ag, Cu) significantly better than the group 10
metals (Pd, Pt). In general, the approximation is poorer at
lower cluster sizes, and better at larger sizes. Indeed, the SRB
approximation is known to increase in accuracy for all metals
as nanoclusters approach bulk material size. Finally, it
should be noted that the outlier in each plot of parity is the
N = 20 tetrahedron. This structure is known to exhibit special
quantum effects that enhance its stability in DFT calculations
for group 10 metals like Au.34,35 Hence, it is not surprising

that the SRB model, which ignores such effects, does a poor
job at predicting its cohesive energy.

4.1.3 Regression of corrective terms. Using the parity plots
from the previous analysis as a guide, metal-specific
corrective terms in the coordination-dependent function for
cohesive energy can now be identified using a constrained
regression process. The focus has been on deriving
corrections that are MILP-representable, so that they can be
embedded in our MILP-based nanocluster design framework.
Furthermore, it is desirable for these corrections to reference
quantities already encoded in our optimization formulation
(e.g., the coordination numbers CNi), so as not to further
increase its complexity. To achieve this, a linear regression

Fig. 4 Metal-specific corrections to the original SRB model for
cohesive energy, identified via constrained regression based on DFT
predicted values.

Table 2 Comparison of a few optimal nanocluster structures as determined by the SRB function (first row) and the new optimal structures determined
by the corrected models for different metals (second row)

N
=19 N = 22 N = 36 N = 42 N = 83

SRB

Metal-specific

Pd19 Ag22 Au36 Cu42
Pt83

Fig. 5 Methodology for designing nanoclusters that are optimally
cohesive under DFT accuracy.
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was performed, the details of which are found in the
Appendix. The general form for the corrected dimensionless
cohesive energy models (Emcoh, where the superscript m stands
for a specific metal) is shown in eqn (16). The basis functions
- or features- we used to determine the regression coefficients
γmk are the fractions, fCNk, of atoms in the nanocluster that
attain a specific coordination number k (between the
admissible values CNmin and CNmax), as per the definition of
eqn (17). Conceptually, this selected functional form of Emcoh
captures metal-specific cohesive energies via an “offset” from
the SRB model prediction.

Em
coh ¼ ESRB

coh þ
XCNmax

k¼CNmin

γmk fCNk (16)

fCNk :¼ 1
N

XN
i¼1

1 CNi¼kf g

 !
∀k∈ CNmin;…;CNmaxf g (17)

After solving the regression model discussed in the
Appendix, we obtain metal-specific variations of the cohesive
energy from the SRB model, as shown in Fig. 4. The most
dramatic shifts in the per-atom energy contributions are
exhibited for the case of Pd, which reflects the fact that the
SRB function over-estimates the DFT-predicted energies the
most. Interestingly, for the cases of Pd, Cu and Au, there are
consistent decreases in energetic contributions from all CN
values, while the Pt and Ag models promote contributions
(i.e., impart cohesive energy greater than the SRB model)
from highly-coordinated atoms. We note that these results

Fig. 6 Most cohesive structure according to the SRB cohesive energy function for every N.
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may, in part, be due to the fact that transition metals are
well-known to possess metal-dependent nanoscale strain,9,32

which could be captured here through the metal-specific
deviations from the SRB function.

4.2 Metal-specific cohesive energy optimization

Using the collected DFT data and methods outlined
previously, metal-specific functions for nanocluster cohesive
energy were regressed to predict nanocluster cohesive
energies with greater accuracy. The same set of highly
cohesive nanoclusters is evaluated with the metal-specific
cohesive energy models and plotted against the DFT
predictions in Fig. 3. It is clear that the new cohesive energy
function predicts the cohesive energies of these nanoclusters
much better than the original SRB function.

In fact, because of the shifts in per-CN cohesive energy
contributions in the surrogate models for each metal m, Emcoh,
it is possible that the optimal, most cohesive structures at a
certain size N might change from what was determined
previously using merely the SRB function. In order to design
transition metal nanoclusters that are guaranteed to possess
maximal cohesive energies against the more accurate, DFT-
based evaluation, the surrogate cohesive energy functions
were embedded in the formulation of our mathematical
optimization model. More specifically, the original objective
function (eqn (2)) of the optimization model was replaced
with the surrogate models by simply shifting the set-points of
the secant lines (Fig. 1). Apart from this change in the

Fig. 7 New optima at various N, as determined by the Cu-corrected
function for cohesive energy.

Fig. 8 New optima at various N, as determined by the Au-corrected
function for cohesive energy.

Fig. 9 New optima at various N, as determined by the Ag-corrected
function for cohesive energy.
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objective function, the rest of the optimization model
remained unchanged. The examples of new optima
determined this way are shown in Table 2. The new optima
identified for all sizes N and metals m we considered in this
study are depicted in Fig. 7–11, and the corresponding
structure files are provided in the ESI.†

It should be noted that the nature of the canvas used in this
study (FCC lattice) means that only FCC structures are identified
here as optimally cohesive. This can be a valid assumption for
certain regimes, such as in the case of smaller Pd clusters that
have been shown to trend toward FCC structures over non-
crystalline alternatives.36 Furthermore, the modified octahedral
shape of many of the optimal nanoclusters predicted by our
framework at intermediate sizes is in agreement with some
previously reported results.37–39 However, we should
acknowledge that non-FCC structures featuring decahedral40 or
icosahedral9,41 geometries can also arise in transition metal
nanoclusters. This is due to the fact that such 5-fold symmetric
structures maximize the coordination of surface atoms, which is
especially favored at small N where the strain induced by this
surface packing is not prohibitive. Whereas the current study
did not search over the space of non-FCC geometries, and thus
could not obtain results reflecting the above cases, our
framework could be modified to do so via the use of
appropriately defined canvases that can accommodate all
reasonably expected possibilities regarding non-FCC
placements, including 5-fold symmetric lattices. In addition, we
could introduce additional terms to our objective function of
cohesive energy so as to reproduce special cases of enhanced
stability that arise due to magic number phenomena via
electronic shell closures23 (e.g., the N = 20 Au tetrahedron33,34)
or relativistic effects42 (e.g., planar Au nanoclusters41,43–45). In

any case, it should be highlighted that, once optimal FCC
structures are obtained under the current model setup, it is
advisable to subject them to local energetic relaxation using any
appropriate, sophisticated functional of choice, in order to
determine the precise off-lattice placement, whenever
applicable.

5 Conclusions

In this work, we developed a methodology that combines
mathematical optimization with DFT calculations for
designing highly cohesive transition metal nanoclusters (see
Fig. 5). We first focused on using the SRB cohesive energy
function and developed a mathematical optimization model
to identify highly cohesive structures of small, mono-metallic
nanoclusters ranging in sizes from 13 to 100 atoms. We
showed that the tractability of this optimization model can
be significantly improved with careful selection of the design
canvas and a core part of the latter where the presence of atoms

Fig. 10 New optima at various N, as determined by the Pd-corrected
function for cohesive energy.

Fig. 11 New optima at various N, as determined by the Pt-corrected
function for cohesive energy.
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can be safely assumed. DFT calculations were then used in the
context of constrained regression to quantify required
corrections to the SRB function so that the true energetics of
small nanoclusters can be satisfactorily captured. Embedding
these corrections into the optimization model led to the
identification of unintuitive, yet optimally cohesive (up to DFT
accuracy), nanocluster designs of gold, silver, copper, palladium,
and platinum. Moving forward, these designs can serve as
model structures for a wide spectrum of computational
chemistry studies involving nanoclusters in fields ranging from
catalysis to targeted delivery.

Appendix
SRB function corrections via constrained regression

The constrained regression optimization model used to
identify coefficients for the metal-specific cohesive energy
functions is shown in eqn (18)–(21). This regression
model, which is parameterized by the metal type m, was
applied separately for each specific m investigated in this
study. The objective function (eqn (18)) represents the
sum of squared errors for each of the n = 236 nanocluster
structures used as input data (see section 4.1.1 for further
details as to the origin of these structures). The error for
a particular nanocluster structure j is calculated as the
difference between its DFT-predicted cohesive energy and
its evaluation of energy Emcoh from eqn (16). In order to
ensure that the same linearization methods can be used
on the new objective function in the context of the MILP
optimization model (see discussion in section 3.2),
constraints for concavity of the new Emcoh functions are
added to the regression via eqn (19). Additionally, a set of
hierarchical constraints (eqn (20)) is added to enforce that
the cohesive energy functions increase monotonically with
the CN, while the assertion in eqn (21) enforces that no
correction is required for the contribution of bulk atoms,
which always equals one (in dimensionless terms).
Together, these constraints ensure that no individual
atom's energy contribution surpasses that of the bulk.

min

γmk

Xn
j¼1

EDFT
coh; j − ESRB; j

coh þ
X12
k¼3

γmk fCNk; j

 ! !2
(18)

s:t:

ffiffiffiffiffi
k
12

r
þ γmk ≥

ffiffiffiffiffiffiffi
kþ1
12

q
þ γmkþ1 þ

ffiffiffiffiffiffiffi
k − 1
12

q
þ γmk − 1

2

0
@

1
A∀k

¼ 4;…; 11f g (19)

ffiffiffiffiffi
k
12

r
þ γk �

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1
12

r
þ γkþ1 ∀k ¼ 3;…11f g (20)

γm12 = 0 (21)

Optimal nanoclusters

We present here the detailed list of nanocluster designs
identified via our optimization framework. Fig. 6 shows the
optimal clusters identified by maximizing the SRB function
for cohesive energy. Fig. 7 to 11 show optima identified by
maximizing the metal-specific functions (Emcoh) of cohesive
energy. Note that, at the interest of space, we only present
the structures that differ from the ones predicted by the SRB
function.
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