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ABSTRACT ARTICLE HISTORY
Communicating and understanding climate induced environmen- Received 28 August 2018
tal changes can be challenging, especially using traditional repre- Accepted 27 September 2020

sentations such as graphs, maps or photos. Immersive

SHRdRDT- ; e A KEYWORDS
visualizations and experiences offer an intuitive, visceral approach Virtual reality; 3d
to otherwise rather abstract concepts, but creating them scienti- visualization;
fically is challenging. In this paper, we linked ecological model- geovisualization; scientific

ing, procedural modeling, and virtual reality to provide an visualization; landscape
immersive experience of a future forest. We mapped current visualization
tree species composition in northern Wisconsin using the Forest

Inventory and Analysis (FIA) data and then forecast forest change

50 years into the future under two climate scenarios using

LANDIS-II, a spatially-explicit, mechanistic simulation model. We

converted the model output (e.g., tree biomass) into parameters

required for 3D visualizations with analytical modeling.

Procedural rules allowed us to efficiently and reproducibly trans-

late the parameters into a simulated forest. Data visualization,

environment exploration, and information retrieval were realized

using the Unreal Engine. A system evaluation with experts in

ecology provided positive feedback and future topics for

a comprehensive ecosystem visualization and analysis approach.

Our approach to create visceral experiences of forests under

climate change can facilitate communication among experts,
policy-makers, and the general public.

1. Introduction

Climate change threatens humans and natural ecosystems and is often deemed
a 'wicked’ problem (Incropera 2015). Unprecedented cuts in global emissions are
required to mitigate the harmful effects of climate change, but that would necessi-
tate international energy agreements, which have proved elusive for political
reasons. In part, climate change is difficult to envision and does not readily inspire
action (Clayton et al. 2015), given that most individuals are psychologically distant
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from its effects (Liberman and Trope 1998, Singh et al. 2017). Additionally, ‘doom
and gloom’ research findings can leave individuals with feelings of fear and power-
lessness (Lertzman 2015). Previous research suggests that there are three principles
important for engaging the public on climate change issues by: 1) using localized
scenarios instead of presenting remote locations and long time periods; 2) harnes-
sing the power of visualization on human cognition to overcome abstract change;
and 3) connecting the present to the future and connecting different locations
(Sheppard 2012). Virtual reality (VR) can address these principles, transforming an
abstract concept like climate change into concrete and realistic experiences.

Forest ecosystems are the largest terrestrial carbon sink on earth, providing an
effective and low-cost way to offset global emissions of greenhouse gases (Canadell
and Schulze 2014, Bastin et al. 2019). Reciprocally, forests are influenced by climate
change, with altered precipitation patterns and higher temperatures causing longer
growing seasons, increasing summer drought, and altering tree species distributions
and abundance (e.g. Joos et al. 2002, Zhang et al. 2012). In the past, scientists have
relied on graphs, maps and fact sheets to convey climate change research results, but
these tools are often insufficient for inspiring concrete actions and bridging the gap
between research and policy. The notion of embedding alternative future landscape
visualizations with structured participatory vision to experience future or past states of
the environment has been discussed in the literature (Sheppard 2015), but has seldom
been used in practice.

Since the pioneering work in the 1960’'s (Heilig 1962, Sutherland 1968), there have
been numerous applications of VR in the game and film industry, architecture,
training in the military and elsewhere. Researchers argue that VR and related inter-
active media, such as computer games, are inherently spatial by placing users in an
artificial space, making them rely upon spatial metaphors whether or not they dis-
play spatial information (Maceachren and Brewer 2004). The applications of virtual
environments (VEs) in geography has been discussed extensively in earlier literature
(Fisher and Unwin 2001). Recently, researchers have explored opportunities for high
graphics quality VEs on landscape modelling and geography in an online assessment
with over 2200 responses. Results showed that a computer-generated environment
could be used in a similar way as photographs to assess landscape visual quality
(Swetnam and Korenko 2019). Another study used online geospatial games to
simulate the influence of land management on hydrology and water quality
(Ahlgvist et al. 2018). Google Earth VR offers both bird’s eye views and close-up
views in different places around the Earth, although the available locations are quite
limited.

Someday, we will be able to create experiences for every place on earth and ‘be
there’ through immersive experiences, while also being able to investigate a place
spatially, temporally, and semantically. Spatially, VR can offer experiences beyond
constraints of physical space by providing a contextualized and embodied experi-
ence across regions, scales or from different perspectives (Dede 2009). Temporally,
we can connect immersive experiences to historical information or future projections,
moving a user back or forward in time (Ch'ng 2009, Huang et al. 2018). We can
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visualize and analyze ecosystems and climate change scenarios not as distant events
but in direct and/or familiar contexts (Sheppard 2012). Semantically, we can connect
the experience to databases and other additional information that may be useful for
understanding a place (Marriott et al. 2018); we are also able to quickly translate
spatial field and remote sensing data such as light detection and ranging (LiDAR) and
photogrammetry data into immersive experiences.

In this article, we describe a data-driven workflow that combines publicly-available
datasets, an ecological model, and a widely-used game engine to create
a compelling VR forest.! The workflow allows for modeling efficiency, large-scale
creation and placement, fast prototyping, input-output functionality, controllability
and reproducibility. The resulting immersive experience presented is a forest ecosys-
tem, including topography, species composition and density, coarse woody debris,
and understory conditions. The prototype described here can potentially be applied
in various capacities, including education, public engagement, and forest manage-
ment planning.

In this paper, we will briefly describe the state of the art of modeling forest landscapes.
We then demonstrate the feasibility of modeling, visualizing, and experiencing environ-
mental change using a forest in Wisconsin about forty-five miles northwest of Green Bay,
Wisconsin, US, as an example. We also invited experts for a heuristic evaluation of the
system that showed positive responses and allowed us for laying out future research
avenues.

2. Background

Given the preponderance of evidence for climate change, researchers have turned
to various tools to understand the impacts of rising temperatures and altered
precipitation and disturbance regimes on ecological systems. After theoretical or
conceptual tools which are most suited for hypothesis testing, the simplest tool
used by researchers is analytical modeling or a regression-based approach (Bolliger
et al. 2005, Perry and Enright 2006). This assumes, however, that past relationships
between variables can be used to predict the future (see Gustafson 2013 for
a discussion about the fallacy of this argument). Since we know that ecological
systems can show abrupt changes (Alley et al. 2003), species can shift and reorga-
nize into novel, no-analog plant communities (Williams and Jackson 2007), and it is
difficult to extrapolate to large scales with analytical modeling, many scientists
have turned to using computer models for projecting how climate change will
affect ecosystems (e.g. (Mladenoff 2004). Over the last 20 years, there has been
a rapid development of landscape models fueled by increased computing capacity,
spatial data and improvements in spatial analysis, which has shifted the emphasis
from purely gap models at the plot scale to a whole range of simulation models at
large (landscape) scales. These simulation models differ in their treatment of spatial
processes, resolution, and their utility (i.e., theoretical, tactical, or strategic plan-
ning), which has been described elsewhere (Scheller and Mladenoff 2007, He 2008).
The most recent simulation models incorporate multiple stochastic processes, for
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example, dispersal and disturbances, such as fire and insects, and mediate spatial
interactions across a heterogeneous landscape, and the most sophisticated spatial
models simulate feedbacks among ecological processes. We used the LANDIS-II
model (Scheller et al. 2007) because it is widely-used, captures a large suite of
ecological processes and has previously been used to inform landscape
management.

The field of computer graphics has developed methods to model natural envir-
onments from individual plants to ecosystems. Sketch-based methods allow for
modeling plants through artistic drawing (Wither et al. 2009), while bio-inspired
approaches can model plants and ecosystems based on biological processes
(Makowski et al. 2019, Kohek et al. 2019). Plant models can also be created from
images (Tan et al. 2007, Neubert et al. 2007), videos (Li et al. 2011) and laser
scanning (Zhang et al. 2014). Geometry reduction methods have also been pro-
posed given the increasingly complex scenes (Decaudin and Neyret 2009, Neubert
et al. 2011, Gumbau et al. 2011, Zhang et al. 2017, Kohek and Strnad 2018). After
the generation of 3D models, real-time rendering is required to display the models
on screen with realistic lighting, shading, and colors. Real-time forest rendering
methods include point-/line-based rendering; image-based rendering, volume-
based rendering, polygon-based rendering, and progressive transmission (Bao
et al. 2012, Bruneton and Neyret 2012).

New software tools have emerged in recent years. They can be broadly divided
into vegetation modeling and ecosystem modeling tools. Vegetation modeling tools
focus on individual plants, such as xFrog, SpeedTree, Onyx, Marlin Studios,
PlantFactory, Laubwerk, and others. Ecosystem modeling tools include Visual
Nature Studio (VNS), Terrasolid, Bionatics, Terragen, GRASS, Object Raku Technology
(Favorskaya and Jain 2017), VUE and CityEngine. These tools vary in their levels of
functionality and flexibility.

Data-driven 3D landscape visualization has dramatically advanced in the last two
decades. We conducted a literature review of data-driven, geographical information
science (GIS)-based landscape visualizations which utilize spatial datasets, instead
of computer graphics methods which usually generate landscapes according to
mathematical laws and algorithms that mimic the geometries, or simulate pro-
cesses and patterns in natural environments (Table 1). Our review identifies several
gaps: (1) There have been very few VR visualizations, with generally low graphics
and/or performance, (2) Much cutting-edge technological advancement in land-
scape visualization has occurred well outside of geography, ecology and environ-
mental science (Swetnam and Korenko 2019). (3) In the visualization fields, data-
driven approaches which utilize GIS data have been lacking. (4) There has been
very little research on visualizing forests under climate change. To address these
gaps, we integrated spatially-explicit ecological modeling with efficient 3D proce-
dural modeling to create reproducible and scientific visualizations of a forest’s
future under climate change. Additionally, we created high quality visualization
and rendering in state-of-the-art VR.
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3. Methodology

The general workflow is as follows: (1) forecast forest change using the LANDIS-Il modeling
framework, (2) convert LANDIS-II output into variables and formatting necessary for 3D
modeling, (3) model the forest procedurally in Esri CityEngine, (4) import the forest into the
Unreal Engine and add necessary environmental elements (sky, understory vegetation,
snags, deadfall, and ground cover), (5) optimize the VR experience, (6) add interactions. We
applied this workflow to two climate scenarios to highlight potential differences between
them (see Figure 1). The data and codes for steps (1)-(3) are available at Figshare,z.3

3.1 Forecast forest change

Forest landscape simulation model

To forecast future changes in the forests of Wisconsin, we used LANDIS-II, a spatially-dynamic
landscape model that simulates plant establishment, growth, and mortality as a function of
climate and multiple interacting disturbances (Scheller et al. 2007). LANDIS-II was chosen
because of its robust representation of ecological processes, but also because it simulates
individual species (e.g., bur oak instead of all oak species). It was designed for forest planning,
forest management, habitat conservation, and ecological restoration; it therefore estimates
many different outcomes of interest including the amount of wildlife habitat, total carbon
storage, etc. Finally, LANDIS-Il is one of the most widely-used landscape models in the U.S. and

Run simulations in LANDIS-IT  Tr | imulati tput Procedural Modeling
Species Number of trees
Hcrghl
Crown .i * ii
diameter
.\ )
Tttt . X Spatial

contagion

VR development ’

Skyvbox, A AR SS Groundcover
i'o' ABERRD Bl Be
= -
[ersi= - - pRBScs Be BE
processing sddsss BE B0
., Wedsstat 8O
Interactions

Environmental elements

Optimization '
: (LOD system, pelygon Fy
4% | reduction, " i; &
& sefting adjustment, e1c.) »

Static images;
videos

i S . I‘;ﬁ
ba®

Vive imae source: hitp:medin steampowered. com/appsvalve 201 5/ Alex_Viachos_Advanced_VR_Rendering GDU2015 pdi?#5

Skyboy image source; hrps:Forume svencoop.comshowibmead php 048 7-GFX-Varias-Skybones

Figure 1. The general workflow was to forecast forest change using the LANDIS-Il modeling frame-
work, convert LANDIS-Il output into the variables needed for 3D modeling, model the forest
procedurally in Esri CityEngine, import the forest into the Unreal Engine and add necessary environ-
mental elements (sky, understory vegetation, snags, deadfall, and ground cover), optimize the VR
experience and add interactions.
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has been used in over 56 landscapes, including the midwestern U.S. (Scheller and Mladenoff
2005, Gustafson and Sturtevant 2013, Lucash et al. 2017). In LANDIS-II, the landscape is
comprised of interconnecting grid cells, which in our study were one hectare in size. Each
raster cell contains species-age cohorts of trees and these cells are dynamic over time
(Mladenoff 2004). To populate our landscape with species-age cohorts, we combined imputed
maps of Forest Inventory and Analysis (FIA*) plot data with FIA maps of species distribution
(Wilson et al. 2012). We used the Net Ecosystem Carbon and Nitrogen (NECN) extension of
LANDIS-II v6.1 (Scheller et al. 2011), to forecast future changes and parameterized NECN using
life history attributes (e.g., shade tolerance®) and biogeochemistry (e.g., leaf carbon to nitrogen
ratios) of each tree species. We also used soil data from the Soil Survey Geographic Database
(SSURGO®), vegetation data from the literature (e.g. maximum growth rates) and data from
past studies (Lucash et al. 2017, 2018). Once NECN was parameterized, we divided our land-
scape into 38 climate ecoregions (regions with homogenous climate) using isocluster analysis
of temperature and precipitation using the methods outlined in (Lucash et al. 2017).

Our historical climate data were derived from the University of Idaho meteorological data’
over the period 1979-2010 using area-weighted averages. Our climate change projection was
a hot and dry scenario using HadGEM2-ES365-r1i1p1_ rcp 8.5, which was derived from the
Bias Corrected Constructed Analogs V2 Daily Climate Projections from Coupled Model
Intercomparison Project Phase 5 (CMIP5) from the United States Geological Survey (USGS)
data portal.® Typical model runs of LANDIS-Il produce maps of biomass (g/m2) for each
species over time. While species biomass is well-suited for traditional information visualization
approaches, such as choropleth maps, it is not sufficient for creating realistic, scientifically
informed 3D visualizations as the basis for immersive experiences. To address this issue, we
created a new extension of LANDIS-II called Output Biomass Community, which creates maps
detailing the species, age and biomass of each cohort in each raster cell of the landscape at
each specified time period. The NECN and Output Biomass Community extensions of LANDIS-
Il were run for 50 years; changes in species composition over time reflect the integration of
model algorithms of cohort growth, competition, establishment and mortality under the two
different climate scenarios (Scheller et al. 2011, Lucash et al. 2017).

To automate the creation of a 3D forest, biomass was not sufficient and a more concrete
representation of trees was needed, such as height, crown size, and number of trees. To
convert LANDIS-II output to these metrics, we used the largest forest plot inventory dataset
available in the FIA database.” We utilized all 34,495 plots in WI and Michigan (MI), which
contained 804,815 trees. After aggregating the data from the tree-level to the 1 ha resolution
of our landscape, we regressed age against each parameter (e.g., age vs height, age vs.
number of trees) for each species present in our landscape (a sample image of balsam fir is
shown in Figure 8 in the supplementary material) using a second order polynomial (Table 3 in
the supplementary material). Then we used those polynomial equations to take the age and
species output from LANDIS-Il and convert them into height, number of trees and crown size.

Spatial contagion was also critical for 3D modeling. It quantifies of how evenly spaced
or clumped a species grows on the landscape. This parameter was not available in any
database, so we used expert opinion to derive this index (0-1) for each species (Table 3).
The value ranges from 0 to 1, with high values indicating that the species grows in a few
large, clumped patches, and lower values indicating that the species occurs in many small
patches (O'Neill et al. 1988, Li and Reynolds 1993).
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3.2 3D visualization of tree data

The forest was procedurally generated with Computer Generated Architecture (CGA) rules
in CityEngine'® which has the advantages of large-scale modeling (~30,000 trees in this
case) and automation over traditional 3D modeling software. Procedural modeling/gram-
mar-based modeling uses a set of predefined CGA rules to iteratively refine a model by
creating more details. It is specialized in global control, individual model positioning,
level-of-detail (LOD) control, and large model data handling (Miller et al. 2006).
Procedural modeling is suitable when large numbers of iterations of design, architectures,
or blocks which obey certain standardized rules have to be created (Esri 2019). It is
suitable for both built and natural environments (Huang et al. 2018). However, to achieve
the same LOD as hand-modeling, procedural rules would have to be rather complex. In
this project, we used procedural modeling as a distribution tool to control the attributes
and spatial relationships of 3D models created by hand-modeling.

Our 3D modeling work started with creating the terrain using the DEM with a resolution of
1/3 arc-second (~8.80 m with WGS 1984/UTM zone 16 N projection).’’ LANDIS-II modeling
results were read by Python to CityEngine, and then the 3D modeling work was completed in
CityEngine. We wrote the procedural rules to be able to generate trees according to different
parameters from LANDIS-Il. Each row in the csv output of LANDIS-Il was considered to be
a cohort of trees with a given set of derived characteristics (height, crown size, age, species,
and spatial contagion). At the meantime, the same tree species was usually constituted of
several cohorts. 3D modeling was done iteratively with each cohort, where we scattered and
generated all trees in the same cohort in one loop, and then continued on to the next record,
until all cohorts of trees were generated to form the entire forest. Different cohorts of trees mix
together during the process. The procedural modeling process is shown in the pseudocode in
the supplementary material. The following parameters were controlled:

(1) height and crown size: Each tree model was scaled according to its height and
crown diameter.

(2) spatial contagion: we used the Gaussian function to distribute tree cohorts. The
standard deviation (o) in the Gaussian distribution was used to quantify different spatial
contagions (smaller o signifies larger species contagion). In our visualization, o to spatial
contagion was not a one to one mapping as we did not have precise knowledge of how
aggregated one specific value of spatial contagion is.

(3) species: because we had access to a wide suite of online tree libraries, we did not
model our own tree models from scratch. Instead, we used two plant libraries, 3D
Vegetation with LumenRT package,'? and XfrogPlants. Because the two libraries did not
cover all types of trees in our dataset, certain approximations were made. For example,
trees of the same genus were sometimes visualized by one model (approximation details
are in Table 4 of the supplementary material).

We conducted our model simulations and VR development in the forests of Wisconsin
about forty-five miles northwest of Green Bay, Wisconsin, US, along the shores of Lake
Michigan. Our study area contains ~2 million hectares of land in central WI, including the
Menominee Reservation. This study area region is an ideal location to test the integration of
landscape modeling and VR under different climate change scenarios for several reasons: 1)
it is located in a region which has already experienced reductions in forest health due to
climate change, (2) projections indicate temperatures will continue to rise sharply over the
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next 50-100 years, and (3) this landscape is located at the nexus between northern hard-
woods and boreal forest and therefore has a high potential for changes in tree species and
declines in diversity. The area that have been visualized is 300 m by 300 m with 28,939 trees.

3.3 VR development

We had three design considerations in mind from the beginning: graphics, usability and
system performance. In terms of graphics, we used the Unreal Engine for its AAA graphics
and large dataset handling capability. In Unreal, we remade two-sided translucent foliage
materials with wind effects to create realistically-behaving leaves, adapted and used
a heterogeneous landscape material’® (Figure 2); and created the understories which
included a diverse understory of 44 difference species (ferns, grass, wild flowers, trunks,
bush, clover, root, nettle, etc.) with Unreal procedural foliage spawner diverse unders-
tories based on the natural environment of Wisconsin (Figure 2). After content creation,
we used post-processing to bring scenes to life. In terms of usability, we followed an
iterative design approach (Nielsen 1993). We gathered desired functions from ecologists

Figure 2. The heterogeneous understories. The bottom image shows a partial list of the understories
species used.
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before the initial design and conducted several rounds of evaluations with VR experts
after having the initial prototype to refine. Finally, to ensure the system performance, we
optimized the experience to deliver adequate frames per second (around 70) by using the
native level-of-detail (LOD) system in the Unreal Engine, reducing polygon count, mini-
mizing dynamic lighting, decreasing global settings while maintaining graphics quality.

4, Results
4.1 Results from LANDIS-II

In the LANDIS-II simulations, we found that climate change increased the biomass of some
species but not others in our 9 ha landscape. Red oak, sugar maple, and white cedar all had
higher biomass, while red maple, white pine, and balsam fir all had lower biomass under
climate change (Figure 3). Figure 7 shows some of the differences reflected in our
visualizations.

While this information is well-suited for traditional data transfer to other researchers and for
traditional visualization approaches, such as choropleth maps, it is not sufficient for creating
realistic, scientifically informed 3D visualizations as the basis for immersive experiences. Using
our new Output Biomass Community extension of LANDIS-Il and the regression equations
developed with FIA, we were able to estimate the number of trees, height and crown width
under climate change for each 1-ha plot (Figure 4). Because we regressed density, height, and
crown-height against age (and because biomass is generally correlated with age), the
visualized parameters generally mimicked biomass with declines in balsam fir, red maple,
and white pine and increases in red oak and sugar maple.
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Figure 3. Average species biomass under no climate change (historical) and climate change scenarios
(HadGEM2 rcp 8.5).
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4.2 Results from 3D modeling and VR

The virtual forest system provides an embodied experience in which the users can freely
explore and interact with the forest intuitively with either Oculus Rift or HTC Vive. Figure 5
shows a user querying how specific species responds to climate change. The rendered forest
and the demo video'* can be found online and in the supplementary material. Upon
entering the virtual forest, users can teleport with either hand. Slightly different from the
common teleportation methods, the hand emits a waving laser. Users can also change the
direction that they will be facing after teleportation by gently swiping to different directions
on the touchpad. We implemented a 3D user interface (3DUI) using the Unreal Blueprint and
an online asset called VR Integrator Radial and Dockable Menus."” There are different
functionalities which are suggested by ecologists that can be accessed from the main
menu (Huang et al. 2019a): (1) select climate change scenarios. Users can explore historical
and dry/hot scenarios. (2) retrieve information from the database (e.g., species name, height,
diagram of biomass). (3) learn species identification by selecting in the species browser
(Figure 6). Users can view species vulnerability and climate change adaptivity (4) change
viewing height. Previous research has found that the exocentric and the egocentric per-
spectives evoke different types of learning: egocentric perspectives enables participants’
actional immersion and motivation through embodied, concrete learning, whereas exo-
centric perspectives foster abstract, symbolic intelligence gained from distancing oneself
from the context (Dede 2009). The above functions can be used simultaneously.

The Unreal profiling tool showed the GPU memory usage was around 2000 MB; object
count was 107,416 for the entire forest; in the test area, the scene polygon count averaged
25 million; frame per second (fps) averaged at 70. The VR application was tested on HTC
Vive and Oculus Rift with a gaming PC (3.60 GHz Intel i7-6950 processor, 64 GB RAM, and
two NVidia GTX 1080 Ti graphics cards).
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Figure 5. A user exploring how specific species (such as red pine) responds to climate change.
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Figure 7. Visualization of white ash and black ash from the same location under historic climate
(1979-2010, top) and climate change (HadGEM2 rcp 8.5, lower). In our simulations, the number of
white ash trees decreased 57.28%, while black ash decreased only 1.8%, which are visible in
visualizations.



INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE . 15

Graph of BalsamFir

o
o
& - £ e o ]
o = o
oﬁogsoe g
8 g 8 82, 8 3
o EREERE co 38
o gﬂ .0 ooo BOO
o e 2@ 5 8
e g o o °
o o
g§ 2 8 OOSEQ. 8 o 4
g g8
e B c 8
§ g" ° o
o 8 8 o
E BE ED
o
2 ag o og
8
o
3 o %
E o
1 | 1 |
50 100 150 200

Age
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5. Evaluation
5.1 Modified heuristics evaluation

To evaluate the VR experience, we adapted the VR heuristics evaluation method
(Sutcliffe and Gault 2004). Heuristics evaluation is tailored to situations of small
numbers of expert evaluators. The original heuristics evaluation method was not
delivered through questionnaires but required VR experts to identify issues present
in the system and categorize them according to 12 heuristics. We designed questions
that reflect the meaning of the 12 heuristics, such that the domain experts, who may
lack extensive VR knowledge, are able to evaluate the VR system. In addition, it
provides a common evaluation standard for all evaluators. For the presence heur-
istics, we adopted the Spatial Presence Experience Scale (SPES) (Hartmann et al.
2016) as part of our questionnaire since it is already an established measure. Five
expert evaluators, unrelated to the project, with an ecology background from the
Department of Geography at Pennsylvania State University were invited to complete
the heuristics evaluation.

5.2 Evaluation results

Table 2 shows the questionnaires we designed grouped by 12 heuristics, and the mean
score for each of the heuristics. The overall score is 6.25 on a 7-level likert scale, indicating
a highly positive rating of the system in terms of usability and graphics.
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Table 2. Questionnaire adapted from heuristic evaluation method

Heuristics

Questionnaire item

Mean

Median

Natural engagement

Compatibility with the user’s
task and domain

Natural expression of action

Close coordination of action
and representation

Realistic feedback

Faithful viewpoints

Navigation and orientation
support

Support for learning

Clear turn-taking
Sense of presence

Score except for presence
Overall score with all factors

o The overall graphics look good (for example, aesthetics,
color schemes, lightings, 3D models details, textures, no
serious lag or flickering).

o | think the interactions with the menus were intuitive.

o | think the interactions with the environment and objects
were intuitive.

o The virtual environment is close to my expectation of real
world environment. There was no unexpected objects/
events that contradict my knowledge and/or physics laws
(for example, floating objects, etc.).

o | feel the interactions were compatible with the tasks
needed to be performed.

o My body representation allowed me to act and explore in a
natural manner.

o | had no issue with the hardware (e.g., headset, earphones,
straps, controllers)

o The system responded to my actions smoothly and without
delay.

o The effects of my actions were immediately visible and
conform to the laws of physics and my perceptual
expectations.

o The visual representation of the virtual world mapped to my
normal perception.

o The viewpoint change by head movement was rendered
without delays that could impact my overall experience.

o | was able to know where | was in the virtual environment
and was able to navigate from place to place.

o | feel the system provided support for learning of the virtual
environment.
o N/A

o | felt like | was actually there in the environment of the
presentation.

o It seemed as though | actually took part in the action of the
presentation.

o It was as though my true location had shifted into the
environment in the presentation.

o | felt as though | was physically present in the environment
of the presentation.

o The objects in the presentation gave me the feeling that |
could do things with them.

o | had the impression that | could be active in the
environment of the presentation.

o | felt like | could move around among the objects in the
presentation.

o It seemed to me that | could do whatever | wanted in the
environment of the presentation.

5.87

5.8

5.8

5.9

6.8

6.8

6.4

6.6

3.9 (five-
level likert
scale)

6.35
6.25

6

~

In addition to the questionnaire, we also gathered open-ended responses. In terms of
system design, evaluators generally commented on the graphics having high visual
fidelity, and the interactions being smooth and intuitive: 'l like the variability in the forest,
everything was not the same. | never felt lost, | always had control of when and where
I moved.’, ‘l like the menu options and found them easy to interact with. | liked being able
to toggle between species and have the text on the screen telling me which climate
scenario | was looking at.’ “I think the trees looked decently close to what they look like in
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reality, ‘Graphics are detailed and realistically represent a deciduous forest as a whole.’
‘Texture and lighting were good.” Although some evaluators mentioned that ‘though the
details necessary to identify trees to the species level are lacking'.

Comparing this kind of VR visualization with 2D visualizations, the evaluators com-
mented on the benefits of having interactivity, embodiment, agency, multiple reference
frames, and immediate feedback in VR: ‘This visualization goes a step further by immer-
sing the user in a 3D environment that allows the user to feel like they are really exploring
the environment rather than just looking at it from a static viewpoint or just scrolling
around a screen., and (the advantages over 2D maps are) ‘interactive experiences and
being able to see the consequences of our actions immediately are two advantages of this
method’. However, evaluators also acknowledged that 2D maps might have higher
precision, information density, and simplicity: ‘In some ways [virtual reality] might be
less concise as say a heatmap of tree densities, so slight changes might be lost, but in
more extreme cases | think it provides a compelling view." These problems could be
mitigated by integrating 2D maps into the VR experience.

In regards to questions about tool applicability to user groups, evaluators mentioned
the following: 1. land managers and property owners for landscape change communica-
tion; 2. forest managers and conservation planners for visualizing climate change impacts
on biodiversity, species composition and abundance; 3. researchers who are interested in
different environmental scenarios, and 4. decision makers.

5.3 Demos and informal evaluations

In addition to the formal evaluation, we also gathered feedback from an international
audience of VR experts as well as ecology experts. We held a demo session at the IEEE
Conference on Virtual Reality and 3D User Interfaces in 2019 (IEEE VR 2019), and demoed
a simplified, less interactive Oculus Go version at the 2019 annual meeting of the
International Associate for Landscape Ecology. Both demos received positive feedback.

Summarizing the feedback from formal and informal evaluations, the following functions
were identified for future developments: 1. increase tree bark and leaf resolution to enable
close-up observation and tree identification; 2. add seasonal changes to the forests; 3. create
experiences after wildfire or an insect outbreak forest fire impacts; 4. add additional
scenarios such as insect/pathogen outbreak, etc,; 5. add additional climate scenarios, to
see how they would affect the forest; 6. add an analysis tool such as a larger scale measuring
tool to try to catch the changes in height for the entire set or subset of trees.

6. Discussion and conclusions

Given that climate change is projected to have a large effect on forest species composi-
tion and structure, visualizing these shifts is important for communicating climate change
to a wider audience. We created data-driven 3D modeling and immersive experiences by
visualizing output from a forest change model. The designed workflow allows for model-
ing efficiency, large-scale creation and placement, fast prototyping, input-output func-
tionality, controllability and reproducibility. Our approach can also be adapted to other
ecological systems.
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We demonstrated 3D modeling efficiency, large-scale creation and placement with the
hybrid approach of combining hand-modeling and procedural modeling. With procedural
modeling, it took less than 20 seconds to generate ~30,000 trees. In contrast, hand-
modeling is not only time-consuming, but also repetitive, cost-intensive, and subjective.
As the size of the scene and the number of objects increase, the advantages of procedural
modeling increase dramatically compared to hand-modeling (Esri 2019). However, hand-
modeling allows for more details than procedural modeling. Using a hybrid approach, we
applied procedural rules to realistic trees created by hand-modeling, and it took only
seconds to minutes to generate medium to large scenes with rich details, combining the
strength of both procedural modelling and hand-modeling.

3D modeling and immersive visualizations of output from ecological models using fast
prototyping is important as it provides a feedback loop for scientists that benefits from
the constraints of real-world environments and corresponding 3D models. For example,
during the first iterations of our 3D modeling and prototyping, the 3D visualizations
revealed some potential problems- trees were too dense and tree crown widths were too
small. These kinds of problems are much harder to notice with graphs and maps than with
immersive visualizations as humans have evolved to be more observant of discrepancies
inside 3D environments than 2D illustrations. We were able to trace the problem back to
the algorithms in the FIA crosswalk between LANDIS-Il and Unreal, correct the problem in
the equations, and update the visualization.

Data input-output functionality, controllability and reproducibility presented in our
workflow are also crucial for scientific visualization (i.e., scene extension or modification
with the addition or adjustment of parameters). There have been many successful com-
mercial examples of 3D landscape visualizations, but most software has been designed for
3D artists and has focused on ease of creating visually appealing scenes rather than for
scientific visualization. The workflow provided here is both efficient and has the potential of
being automated further, and it allows for detailing exactly and explicitly which assump-
tions were made to design the immersive, visceral forest experiences.

There also remain challenges with the developed prototype. First, our predefined 3D
models are unable to dynamically change according to growth, disease and interactions
with neighboring trees once the visualization is created. The visualizations are a ‘snapshot’
of the simulations, and reflect the tree growth, competition, and disturbance interactions at
a given point in time. Although not included here, disturbances like wind, disease, wildland
fire, and insects, could be included in the simulation model (www.landis.org) and then
visualized using this workflow. Second, in the evaluation, we have focused on the system
graphics and usability. Although the experts mentioned that the forest was realistic based on
their knowledge of the forest in the area, and suggested ways this could be useful for
stakeholders, we did not validate the visualization against reality. Currently, we are conducting
another round of validation which compares our visualizations directly with the plot
photographs.

In summary, we created a high-quality experience of ‘walking’ through the forests of the
future under climate change by combining a state-of-the-art ecological model with VR,
which can potentially help experts, decision-makers, and lay-people to develop a better
picture of how climate change might affect forests. By using an efficient, procedurally-driven
method, we can provide people with access to the effects of climate change in their own
backyards through an embodied, visceral experience. With immersive technologies
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becoming a medium of mass communication, there are additional opportunities to further
our understanding of what communicating environmental change in a more visceral way
means from a perceptual and cognitive perspective. While beyond the scope of this article,
we consider it essential to advance empirical evaluations of how uncertainty can be included
in rather explicit 3D models (Huang et al. 2019b) to understand what embodied experiences
mean in terms of creating a connection to nature and a more empathetic response to those
affected by climate change, and whether visceral experiences allow for creating ripple effects
that facilitate system thinking and potential long-term changes in human behavior.

Notes

1. The demo video of the visualization can be found at https://vimeo.com/320844373 and in the

supplementary material.

10.6084/m9.figshare.11873883

10.6084/m9.figshare.11873967

https://www.fia.fs.fed.us/

https://www.feis-crs.org/feis/

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627

http://www.climatologylab.org/gridmet.html

http://cida.usgs.gov/gdp/

https://apps.fs.usda.gov/fia/datamart/datamart.html

http://www.esri.com/software/cityengine

https://viewer.nationalmap.gov/basic/?basemap=b1&category=ned,nedsrc&title=3DEP%

20View

12. https://www.arcgis.com/home/item.html?id=0fd3bbe496c14844968011332f9f39b7

13. https://www.unrealengine.com/marketplace/en-US/product/environment-set

14. https://vimeo.com/320844373

15. https://www.unrealengine.com/marketplace/en-US/product/vr-integrator-radial-and-
dockable-menus
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