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Abstract
Directional distances provide useful, flexible measures of technical efficiency of production
units relative to the efficient frontier of the attainable set in input-output space. In addition,
the additive nature of directional distances permits negative input or outputs quantities. The
choice of the direction allows analysis of different strategies for the units attempting to
reach the efficient frontier. Simar et al. (Eur J Oper Res 220:853–864, 2012) and Simar and
Vanhems (J Econom166:342–354, 2012) develop asymptotic properties of full-envelopment,
FDH and DEA estimators of directional distances as well as robust order-m and order-α
directional distance estimators. Extensions of these estimators to measures conditioned on
environmental variables Z are also available (e.g., see Daraio and Simar in Eur J Oper Res
237:358–369, 2014). The resulting estimators have been shown to share the properties of their
corresponding radial measures. However, to date the algorithms proposed for computing the
directional distance estimates suffer from various numerical drawbacks (Daraio and Simar in
Eur J Oper Res 237:358–369, 2014). In particular, for the order-m versions (conditional and
unconditional) only approximations, based on Monte-Carlo methods, have been suggested,
involving additional computational burden. In this paper we propose a new fast and efficient
method to compute exact values of the directional distance estimates for all the cases (full
and partial frontier cases, unconditional or conditional to external factors), that overcome all
previous difficulties. This new method is illustrated on simulated and real data sets. Matlab
code for computation is provided in an “Appendix”.

Keywords Directional distances · Conditional efficiency · Robust frontiers · Environmental
factors · Nonparametric methods

1 Introduction

Production theory and efficiency analysis examine how production units (i.e., DecisionMak-
ing Units or DMUs) transform quantities of inputs (e.g., labor, energy and capital) into
quantities of outputs (e.g., goods and services). The technical efficiency of a particular unit
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is then measured by distance in some direction from the unit’s location in input-output space
to the technology, i.e., the frontier of the production set.

Traditional nonparametric efficiency estimators based on radial contractions of inputs or
radial expansions of outputs to reach the frontier have been proposed by Farrell (1957),
Charnes et al. (1978) and Deprins et al. (1984).1 More recently, estimators of directional
distance efficiency have been proposed by Chambers et al. (1996, 1998). The directional
measures of efficiency and their corresponding estimators nest the input and output-oriented
versions of the original DEA and FDH estimators, but also permit estimation of efficiency
along other paths to the frontier. In addition, the directional estimators permit negative values
of input or output quantities, unlike the earlier radial estimators. This enhanced flexibility
has made directional measures and their estimators popular in recent years.

The conditional efficiency estimators based on FDH and DEA have been extended to
robust order-m and order-α type estimators; see Daraio and Simar (2014) for an introduction
and Simar and Wilson (2013, 2015) for comprehensive summaries. These robust estimators
are based on the idea of estimating distance from a given DMU’s position in input-output
space to a partial frontier lying “close” to the full frontier (i.e., the boundary of the production
set). Partial frontiers provide an alternative benchmark, and provide advantages over the full-
envelopment FDH and DEA estimators in terms of the resulting statistical properties. Inclu-
sion of environmental variables may reflect heterogeneity of the DMUs and their operating
environments. Environmental variables are neither inputs nor outputs, but instead are external
(to the DMU) factors that may affect the performance of the units. Efficiency estimates are
conditioned on these variables in the sense that efficiency is estimated given the environment
described by the environmental variables. Bădin et al. (2014) provide an overview.

The statistical properties of both conditional and unconditional directional distance esti-
mators have been derived by Simar and Vanhems (2012) and Simar et al. (2012) for both
the full-envelopment and robust, partial frontier cases. However, as observed by Daraio and
Simar (2005), computation of directional distance estimates is problematic due to numer-
ical issues as well as a substantial computational burden due to reliance on Monte-Carlo
approximations required to computed the estimates.

This paper provides a new, fast and efficient method to compute exact values of the
directional distance estimates for all the cases (i.e., both the full frontier case as well as
the robust, partial-frontier cases, and both conditional or unconditional cases). The new
method eliminates the need for Monte-Carlo approximations and provides exact solutions.
This avoids the substantial computational burden that has been incurred until now. In addition,
the new method avoids numerical problems that can arise in applications when the previous
computational methods are used in applications. This new method is illustrated on both
simulated and real data, and Matlab code is provided for use by practitioners.

The results provided in this paper are relevant to practitioners, in particular because the
robust directional distance estimators (both conditional and unconditional) are widely used.
Conditional efficiency analyses have been applied to carry out innovation studies at regional
level (Broekel 2012) and environmental analyses at both national (Halkos and Tzeremes
2014; Halkos et al. 2016; Halkos and Managi 2016; Manello 2017) as well as regional
levels accounting for governance issues (Halkos et al. 2015) and growth (Halkos et al. 2016;
Halkos and Tzeremes 2013b). Applications in agriculture (Serra and Lansink 2014) include
the efficiency of family firms (Balez̆entis and DeWitte 2015) and the analysis of the effect of
public subsidies on farm efficiency (Minviel and De Witte 2017). Examples of applications

1 The Data Envelopment Analysis (DEA) estimators proposed by Farrell (1957) and Charnes et al. (1978)
impose convexity on the production set, while the Free Disposal Hull (FDH) estimator proposed by Deprins
et al. (1984) does not.
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in the financial sector include Mallick et al. (2016), Matousek and Tzeremes (2016) and
Tzeremes (2015). Other interesting applications examine libraries (DeWitte and Geys 2011),
primary schools (Cordero et al. 2017a, b), secondary schools (Haelermans and De Witte
2012), municipalities (Cordero et al. 2017a, b), the health care sector (Varabyova et al. 2016;
Varabyova and Schreyögg 2017; Ferreira et al. 2018), water utilities (Zschille 2015), waste
management (Fuentes et al. 2015; Guerrini et al. 2016), culture and eco-efficiency (Halkos
and Tzeremes 2013a) and local police departments (Verschelde and Rogge 2012).

The paper is organized as follows. The next section introduces the basic concepts and
notation and provides an outline of the issues addressed by the paper. Section 3 presents the
full frontier cases distinguishing between unconditional and conditional analyses, Sects. 4 and
5 analyze the partial frontier approaches, presenting again for each of them the unconditional
and conditional cases. Section 6 reports the outcome of the application of the new proposed
method for computing directional distances to simulated as well as real data. Section 7
provides conclusions and a brief summary of the main results. Matlab code implementing
the new computational method is provided in “Appendix”.

2 Statistical framework and notation

This section introduces the basic concepts and notation needed to present the new computa-
tional methods for directional distances in the various cases of interest. We first summarize
the concepts of directional distance functions and their conditional versions which allow
analysis of possible heterogeneity due to some environmental factors. We then give the intu-
ition behind the robust partial frontiers (order-α and order-m) in the context of directional
distances. Finally, we discuss the drawbacks of the existing algorithms for computing these
various directional distances and the need for the new computational methods provided later
in this paper.

2.1 Directional distances and their probabilistic formulation

Consider a productionprocess inwhich p inputs are used to produceq outputs. Theproduction
set

" = {(x, y) ∈ Rp+q | x can produce y} (2.1)

is the set of technically feasible combinations of inputs and outputs. The efficient frontier of
" is defined by

"∂ = {(x, y) ∈ " | (γ −1x, γ y) /∈ " ∀ γ > 1}. (2.2)

Traditional approaches to efficiencymeasurement basedon the ideas of Farrell (1957),Debreu
(1951) and Shephard (1970) involve measuring the distance from a production plan (x, y)
to the efficient frontier "∂ in either the input or output direction by considering either the
maximum feasible, proportionate reduction in input quantities (without lowering any output)
or the maximum feasible, proportionate increase in output quantities (without raising any
input).With these radialmeasures of efficiency, only non-negative values of input and output
quantities can be accommodated.

Nonparametric estimators of the attainable set " are often based on envelopment of the
cloud of observed points Xn = {(Xi , Yi )}ni=1. The Free Disposal Hull (FDH), suggested by
Deprins et al. (1984), only assumes free disposability of both inputs and outputs, whereas the
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Data Envelopment Analysis (DEA) estimators proposed by Farrell (1957) and popularized
by Charnes et al. (1978) assume convexity of " as well as free disposability of inputs and
outputs. The properties of the resulting estimators of efficiency measures, in the radial cases,
have been derived in Park et al. (2000) for the FDH case and in Kneip et al. (2008) for the
DEAwith varying returns to scale and Park et al. (2010) for the DEAwith constant returns to
scale. It is now well-known that these estimators suffer from the “curse of dimensionality.”
When the dimension p+q increases, the rates of convergence become slower. For individual
efficiency measures, bootstrap techniques are required to make inference, estimate bias and
estimate confidence intervals. For more details, see the recent surveys by Simar and Wilson
(2013, 2015) and the references therein.

Directional distances introduced by Chambers et al. (1996) and discussed by Färe and
Grosskopf (2004) provide useful and flexible ways to measure technical efficiency of units
relative to the efficient frontier. The directional distance function

β(x, y | dx , dy) = sup{β > 0 | (x − βdx , y + βdy) ∈ "} (2.3)

projects the input-output vector (x, y) onto the technology in a direction specified by a vector
d = (dx , dy) ≥ 0. The choice of the directions dx and dy for measuring the distance from the
unit operating at (x, y) ∈ " to the frontier allows analysis of different strategies for the units
to reach the efficient frontier. Note that some directions (but not all) can be set equal to zero,
indicating the components of X andY that are “inactive” in the optimizationdescribed in (2.3).
For instance is the vector dx = 0, and if all the outputs take positive values, then the Farrell–
Debreu radial output efficiency measure is given by 1+ β(x, y | 0, y). Alternatively, in the
input orientation, if all the inputs take positive values, the Farrell–Debreu radial efficiency is
given by 1 − β(x, y | x, 0). Note that the additive nature of directional distances allows to
treat negative inputs and outputs, which is not the case for radial distances.

In practice all these quantities are unknown and must be estimated from a sample of
observationsXn = {(Xi , Yi )}ni=1. Therefore, in order to evaluate the properties of the resulting
estimates, and to make inference, a statistical model is required. We adopt the probabilistic
formulation of Cazals et al. (2002) and extended by Daraio and Simar (2007). The production
process is characterized by the process that generates a vector of inputs and outputs defined
over an appropriate probability space. Let X ∈ Rp denote a p-vector of inputs and Y ∈ Rq

denote a q-vector of outputs. The joint distribution of (X , Y ) has support over ". Now
consider the joint probability HXY (x, y) = Pr(X ≤ x, Y ≥ y), which is the probability of
finding a unit (X , Y ) dominating the point (x, y). As shown by Cazals et al. (2002), under
the free disposability assumption2

" = {(x, y) ∈ Rp+q | HXY (x, y) > 0}. (2.4)

Simar and Vanhems (2012) show that under free disposability,

β(x, y | dx , dy) = sup{β > 0 | HXY (x − βdx , y + βdy) > 0}. (2.5)

Nonparametric estimators of the attainable set are typically obtained by envelopment tech-
niques. Simar and Vanhems (2012)) and Simar et al. (2012) show that the resulting estimators
of the directional distances share properties similar to those of the radial measures.

In this paper we will focus on the FDH family of estimators, without imposing convexity
of the attainable set. In this case, it can be shown that the FDH estimator of β(x, y | dx , dy)
can also be obtained by plugging (2.5) into the empirical version of HXY given by

2 Free disposability of inputs and outputs means that if (x, y) ∈ ", then (̃x, ỹ) ∈ " for all (̃x, ỹ) such that
x̃ ≥ x and ỹ ≤ y. In a sense, it assumes the possibility of wasting resources.
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Ĥn,XY (x, y) =
1
n

n∑

i=1

1(Xi ≤ x, Yi ≥ y), (2.6)

where 1(·) is the indicator function [1(a) = 1 if a is true and 0 otherwise]. We will see below
how to implement this in practice, in particular when some (but not all) elements of (dx , dy)
are set at zero.

2.2 Introducing environmental variables

The probabilistic characterization of the production process defined above allows quite natu-
rally introduction of environmental factors into the process. Consider the case where external
environmental variables Z ∈ Z ⊂ Rr represent heterogeneity factors that may influence the
production process. To accommodate these variables, the probability space considered so
far has to be augmented. We consider the probability space (&,F,P) on which the random
variables X , Y , Z are defined and we denote by P the support of the joint distribution of
(X , Y , Z). Let "z denote the support of (X , Y ) given Z = z. Thus the attainable set for
firms facing external conditions Z = z is given by

"z = {(x, y) ∈ Rp+q | x can produce y if Z = z}
= {(x, y) ∈ Rp+q | HXY |Z (x, y | z) > 0}, (2.7)

where HXY |Z (x, y | z) = Pr(X ≤ x, Y ≥ y | Z = z). The variables in Z can affect the
production process either (i) through "z the support of (X , Y ), (ii) through the conditional
distribution of (X , Y ) given Z , affecting e.g. only the probability of a firm to reach its optimal
boundary, or (iii) through both (i) and (ii).

It is easy to see that " = ⋃
z∈Z "z , so that "z ⊆ ", for all z ∈ Z. In the very

particular case where the joint support of (X , Y , Z) can be written as the Cartesian product
P = " ×Z, Z has no impact on the boundaries of" and"z = " for all z ∈ Z (this is called
the “separability condition” in the literature; e.g., see Simar and Wilson 2007, 2011). In the
latter case, Z may eventually influence the production process only through the probability
of reaching its optimal boundary. Daraio et al. (2018) provide a procedure for testing this
separability condition.

Now we can define the conditional directional distance function

β(x, y | dx , dy, z) = sup{β > 0 | HXY |Z (x − βdx , y + βdy | z) > 0}. (2.8)

Here again, we can recover the conditional version of the radial Farrell–Debreu measures by
the appropriate choice of the distance vector. A nonparametric estimator ofβ(x, y | dx , dy, z)
is obtained from a sample Xn = {(Xi , Yi , Zi )}ni=1 by plugging a nonparametric estimator
of HXY |Z (x, y | z) into (2.8). This conditional version requires smoothing over the values
of Zi in a neighborhood of z since observations with exact values Zi = z are typically not
available. We use the empirical, localized analog of HXY |Z (x, y | z) given by

Ĥn,XY |Z (x, y | Z = z) =
∑n

i=1 1(Xi ≤ x, Yi ≥ y)Kh(Zi , z)∑n
i=1 Kh(Zi , z)

, (2.9)

where Kh(Zi , z) are appropriate kernel functions (with compact support) and h is a vector of
r bandwidths, one for each component of z. In fact, it can be shown that the conditional FDH
estimator is a localized version of the unconditional case, where the localization is tuned
by the bandwidths h. The estimator is the FDH estimator computed over the subsample of
observations i = 1, . . . , n such that ||Zi − z|| ≤ h (see Cazals et al. 2002; Daraio and
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Simar 2005 for details).3 The asymptotic properties of the resulting estimators of the radial
conditional measures have been established in Jeong et al. (2010) and adapted to directional
distances in Simar and Vanhems (2012). To summarize, we keep similar properties as in the
unconditional case but with a reduced number of observations: n is replaced by n

∏r
j=1 h

( j).
Conditioning on Z requires the determination of an r -vector of bandwidths. For the radial

oriented efficiency scores, Bădin et al. (2010) suggest adapting least squares cross validation
techniques from the literature. However, Simar et al. (2016) show (see their Appendix B) that
better monotonicity properties of the resulting efficiency estimates are achieved by searching
for the optimal bandwidth when estimating the joint probability HXY |Z (x, y | z).4 Here
direct methods suggested by Li et al. (2013) can be used (Matlab code for this purpose is
provided by Bădin et al. (2018). A detailed methodology on how to analyze the effect of Z on
the production process has been proposed by Bădin et al. (2012, 2014). Simar et al. (2016)
show how to adapt the approach when Z is latent and hence unobserved. This requires an
additional model and an instrument to identify Z .

2.3 Partial frontiers: robust approaches

Nonparametric FDH and DEA estimators are envelopment estimators in the sense that the
corresponding estimate of " (or of "z) envelops the cloud of observed data points. Con-
sequently, these estimators are highly sensitive to extreme data points and outliers. This
provides the major interest in the robust version of these estimators developed for radial
measures by Cazals et al. (2002), Aragon et al. (2005) and Daouia and Simar (2007). Simar
and Vanhems (2012) extend these concepts to directional distances. In all cases, the idea is
to define a less-extreme boundary to use as a benchmark, i.e. to define a partial frontier in
contrast to the full frontier used above. By construction, some data points may lie outside
the partial-frontier, but nonetheless the partial frontier provides a useful benchmark for eval-
uating efficiency. Two classes of partial frontiers have been suggested in the literature: the
order-α quantile frontier and the order-m partial frontier. In this summary we give only some
intuitive definitions for the case of one output and with the output orientation (e.g. dx = 0 and
dy = 1) for the unconditional case where Z does not play a role. In the remaining sections
of the paper we will derive expressions for the most general cases.

For any α ∈ (0, 1] the directional distance of order-α is given by

βα(x, y | 0, 1) = sup{β | SY |X (y + β | x) > 1 − α}, (2.10)

where SY |X (y | x) = Pr(Y ≥ y | X ≤ x) = HXY (x, y)/FX (x) is the conditional survival
function of Y given X ≤ x . Note that if α → 1, we are back the usual full frontier measure
[for d = (0, 1)]. So for α < 1, the benchmark frontier for the unit (x, y) [i.e. where
βα(x, y | 0, 1) = 0] corresponds to the α-quantile of the conditional distribution of the
output among the population of units using less inputs than x .

Then the partial order-α frontier (or the “order-α quantile frontier”) is given by

ϕα(x) = y + βα(x, y | 0, 1), (2.11)

where y can be any value in the support of SY |X (· | x). Note that βα(x, y | 0, 1) can take
negative values if y is large and hence this unit lies above the conditional quantile frontier of
order-α.

3 The inequality ||Zi − z|| ≤ h has to be understood component by component |Z ( j)
i − z( j)| ≤ h( j).

4 See the discussion in Footnote 6 below.
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The order-m frontier in the same (output) orientation can be defined for any integer m as

ϕm(x) = E [max(Y1, . . . , Ym) | X ≤ x] , (2.12)

where the Y j are independent, identically distributed (iid) realization of the output Y , con-
ditionally on X ≤ x . Here, as m → ∞, we are back to the usual full-frontier measure. So
the benchmark frontier is the expected value of the maximum output among m peers drawn
from the population of units using less inputs than x . It can be shown that when Y takes only
positive values,

ϕm(x, y) =
∫ ∞

0
[1 − (1 − SY |X (y | x))m]dy. (2.13)

Note again that βm(x, y | 0, 1) = ϕm(x) − y can take negative values for large values of y.
Nonparametric estimators are obtained by plugging in the empirical versions of the con-

ditional survival function. They share interesting properties, in particular, and by contrast to
the full frontier estimates, they achieve the parametric

√
n-rate of convergence independently

of the dimension of the problem (p+ q). The statistical properties of the order-m estimators
have been established by Cazals et al. (2002) and for the order-α cases by Daouia and Simar
(2007). These include the conditional to Z cases. Simar and Vanhems (2012) extend these
to the directional distances cases.

We will provide below general expressions for evaluating the directional distance to these
partial frontiers (conditional and unconditional to Z ) and their estimators. Recall that their
robustness properties rely on the fact that for large α (or m) we estimate a partial frontier
not far from the full frontier, but for α < 1 and finite m, the estimators will not envelop all
the data points and so are robust to extreme data points and outliers. Comparisons of the two
concepts from a robustness point of view can be found in Daouia and Ruiz-Gazen (2006)
and Daouia and Gijbels (2011a). Daouia et al. (2010, 2012) show how these partial frontiers
can be used for estimating the full frontier, letting α → 1 and m → ∞ when n → ∞ but at
an appropriate rate.

2.4 Aim of the paper

After the summary in the preceding sections, we next focus on the computational issues of
directional distance functions. Simar and Vanhems (2012) show the equivalence between
directional distances and hyperbolic radial distances after a monotonic transformation of the
coordinate space of the inputs and the outputs. To summarize, for the “active” variables (those
with components in d being > 0), the transformation is defined as

X∗ = exp(X⊘dx ) and Y ∗ = exp(Y⊘dy), (2.14)

where ⊘ is the Hadamard component-wise division of vectors. The “non-active” variables
can remain as they are.

This transformation is useful for obtaining the theoretical properties of the resulting esti-
mators but may create some numerical problems for their practical computations (Daraio
and Simar 2014). The exponential transformation may provide huge numbers that have to
be carefully handled to avoid numerical problems when handling ratios (which is typical in
FDH approaches).5 Also the log transformation at the end, for coming back to original units,
may create other problems. Simar and Vanhems (2012) observe that this is particularly the

5 Note e.g. that exp(50) is already of the order 5 × 1021. So without rescaling the variables we may have
numerical imprecision and overflow conditions on digital computers. Note that the corresponding elements of
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case for the order-m estimators where the log(w) comes in an integral starting at w = 0.
The integral is well defined but its numerical treatment can be difficult. So for the order-m
estimators (either conditional on Z or unconditional on Z ), only approximate solutions based
on Monte-Carlo simulations have been proposed so far. These Monte-Carlo approximations
are not easy to implement (especially for the conditional-on-Z case; see Daraio and Simar
2014 for discussion), and may involve substantial computational burden to achieve reason-
able precision. In this paper we propose an alternative, but equivalent, formulation of the
directional distances which avoids all of these drawbacks. In the same set up and for the
different nonparametric robust conditional and unconditional cases covered by Simar and
Vanhems (2012) and by Daraio and Simar (2005) we propose a fast and efficient formula for
computing the directional distances, also in the most general cases where some components
of dx and of dy might be equal to zero. In addition, we provide simple expressions for the
exact computation of the order-m directional distances (both unconditional and conditional).
The main difficulty is to provide a formulation capable of handling cases where some of the
inputs or outputs are inactive (i.e., with d-elements equal to zero). This is important since it
reflects one of the most interesting flexibility properties of the directional distance functions.

In the next sections we detail how our method can be applied in various scenarios, cases.
“Appendix” provides the Matlab code implementing our methods.

3 Full frontier cases

3.1 Unconditional case

To fix the notation, and without loss of generality, let us partition dx = (dx1 , dx2), where
dx2 = 0 is of dimension p2 ≥ 0. Then dx1 > 0 is of dimension p1 = p − p2. Note that dx2
could be an empty vector with p2 = 0. We use similar notational convention for the elements
of dy = (dy1 , dy2) with dy2 = 0 of dimension q2 ≥ 0. We partition all the inputs and outputs
analogously, noting that X2 and/or Y2 could be empty vectors. So X1 and Y1 are the active
variables in the optimization equations above.

Following Appendix B in Simar and Vanhems (2012), in the presence of inactive direc-
tions, the directional distance is defined as

β(x, y | dx , dy) = sup{β > 0 | HX1Y1|X2Y2(x1 − βdx1 , y1 + βdy1 | x2, y2) > 0}, (3.1)

where HX1Y1|X2Y2(x1, y1 | x2, y2) = Pr(X1 ≤ x1, Y1 ≥ y1 | X2 ≤ x2, Y2 ≥ y2) is the
conditional probability of dominating (x1, y1) given that X2 ≤ x2, Y2 ≥ y2. This is in
the spirit of the probabilistic characterization of the Farrell–Debreu concept of efficiency
introduced by Cazals et al. (2002). For instance, in the pure output orientation dx = 0 and
dy > 0, the efficient frontier for a unit (x, y) is given by the upper support of the conditional
distribution of Y given X ≤ x . Note also that for units where HX2Y2(x2, y2) > 0, for the full
frontier case, the directional distance may also be computed as

β(x, y | dx , dy) = sup{β > 0 | HXY (x1 − βdx1 , x2, y1 + βdy1 , y2) > 0}. (3.2)

As explained below, the latter equivalence will not be valid for the robust versions of the
frontiers where the conditioning on X2 ≤ x2, Y2 ≥ y2 has to be used, as in (3.1).

Footnote 5 continued
the direction vector have to be rescaled accordingly, to avoid misinterpretation of the resulting β. This creates
additional potential for confusion or errors.
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Directional distances are independent of the units of measurement as described in Färe
et al. (2008) and formally proven in Appendix A in Simar and Vanhems (2012). The property
can be stated as follows:

β(θ◦x, λ◦y | θ◦dx , λ◦dy) = β(x, y | dx , dy) for θ ∈ Rp
+, and λ ∈ Rq

+, (3.3)

where ◦ indicates the Hadamard product or component-wise multiplication of vectors. This
property inspires the transformation of the variables that will make easy the characterization
of directional distances and will facilitate the computation of their estimators. Consider first
the case where all components of d are > 0. We have indeed as a consequence of (3.3) the
following identity:

β(x, y | dx , dy) = β(x⋆, y⋆ | i p, iq), (3.4)

where ik is a vector of ones of length k, x⋆ = x⊘dx and y⋆ = y⊘dy . More generally, when
some elements of d are zero, we consider the transformation

X⋆
1 = X1⊘dx1 and X⋆

2 = X2

Y ⋆
1 = Y1⊘dy1 and Y ⋆

2 = Y2, (3.5)

which leads to

β(x, y | dx , dy) = sup{β > 0 | HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − βi p1 , y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0}, (3.6)

where HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
is the version of HX1Y1|X2Y2 in the new coordinate system.

Now the nonparametric estimator of the distance is obtained by plugging in the empirical
version of HX⋆

1Y
⋆
1 |X⋆

2Y
⋆
2
in (3.6). This yields

Ĥn,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1, y
⋆
1 | x⋆

2, y
⋆
2) =

Ĥn,X⋆
1,X

⋆
2Y

⋆
1 ,Y

⋆
2
(x⋆

1, x
⋆
2, y

⋆
1, y

⋆
2)

Ĥn,X⋆
2Y

⋆
2
(x⋆

2, y
⋆
2)

=
∑n

i=1 1(X
⋆
1,i ≤ x⋆

1, X
⋆
2,i ≤ x⋆

2, Y
⋆
1,i ≥ y⋆

1, Y
⋆
2,i ≥ y⋆

2)∑n
i=1 1(X

⋆
2,i ≤ x⋆

2, Y
⋆
2,i ≥ y⋆

2)
.

(3.7)

Some algebra leads to the following explicit formula for the FDH estimator of β(x, y |
dx , dy), namely

β̂(x, y | dx , dy) = sup{β > 0 | Ĥn,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − βi p1 , y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0},

= max
{i |X2,i≤x2,Y2,i≥y2}

⎡

⎢⎣ min
k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 − X⋆,k

1,i , Y
⋆,ℓ
1,i − y⋆,ℓ

1

}
⎤

⎥⎦ , (3.8)

where for a vector a, a j represents its j th component. The formulation (3.8) is easy
to program in modern high-level languages like R or Matlab. The Matlab function
FDH_dirdist_new(x,y,dx,dy,X,Y) in the Appendix computes β̂(x, y | dx , dy)
using the expression in (3.8).
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3.2 Conditioning on environmental factors Z

Simar and Vanhems (2012) provide the conditional (on environmental factors Z ∈ Rr ),
directional measure

β(x, y | dx , dy, z) = sup{β > 0 | HX1Y1|X2Y2Z (x1 − βdx1 , y1 + βdy1 | x2, y2, z) > 0},
(3.9)

where HX1Y1|X2Y2Z (x1, y1 | x2, y2, z) = Pr(X1 ≤ x1, Y1 ≥ y1 | X2 ≤ x2, Y2 ≥ y2, Z = z)
is the conditional probability of dominating (x1, y1) given that X2 ≤ x2, Y2 ≥ y2 and Z = z,
noting the difference in conditioning between the inactive inputs, the inactive outputs and
the factors Z . This distribution is given by

HX1Y1|X2Y2Z (x1, y1 | x2, y2, z) =
HX1,X2,Y1,Y2|Z (x1, x2, y1, y2 | z)
HX1,X2,Y1,Y2|Z (∞, x2,−∞, y2 | z)

. (3.10)

The nonparametric estimator of the distribution in 3.10 requires smoothing in z using a
kernel with compact support (see Daraio and Simar 2005). Following Simar et al. (2016), the
optimal bandwidths hz can be obtained through leave-one out cross validation for estimating
the conditional distribution HX1,X2,Y1,Y2|Z .

6 Then we have

Ĥn,X1Y1|X2Y2Z (x1, y1 | x2, y2, z)

=
∑n

i=1 1(X1,i ≤ x1, X2,i ≤ x2, Y1,i ≥ y1, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) , (3.11)

where, with some abuse of notations when Z is multivariate, K (·) is the chosen kernel
function [for multivariate Z we use a product kernel, hz = (h1z , . . . , h

r
z) and the division

by hz is component-wise]. The version for the transformed variables (X⋆, Y ⋆) is the same
after adapting the notation. This estimator will be useful for the robust frontiers below. For
the conditional full frontier, only the knowledge of the bandwidth hz is needed. We know
from Daraio and Simar (2007) and Jeong et al. (2010) that the conditional FDH estimator is
a localized version of the FDH estimator, where “localizing” means using only observations
(Xi , Yi ) such that ∥Zi − z∥ ≤ hz (component-wise). So the expression in (3.8) transforms
as follows:

β̂(x, y | dx , dy, z) = sup{β > 0 | Ĥn,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2 Z

(x⋆
1 − βi p1 , y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 0},

= max
{i |X2,i≤x2,Y2,i≥y2,|Zi−z|≤hz}

⎡

⎢⎣ min
k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 − X⋆,k

1,i , Y
⋆,ℓ
1,i − y⋆,ℓ

1

}
⎤

⎥⎦ ,

(3.12)

6 Note thatwhen some elements of the direction vector d are zero,we condition on the inactive variables (X2 ≤
x2) and (Y2 ≥ y2), but for bandwidths selection, the argument from the Appendix A of Simar et al. (2016)
remains valid. We select the optimal bandwidth (by cross-validation) for estimating HXY |Z (x, y | Z = z)
rather the ones for estimating the conditional distributions HX1Y1|X2Y2Z (x1, y1 | X2 ≤ x2, Y2 ≥ y2, Z = z).
It is easy to see that for fixed (x1, y1, z), the resulting Ĥn,X1Y1|X2Y2Z (x1, y1 | X2 ≤ x2, Y2 ≥ y2, Z = z)
defined in (3.10) cannot decrease with x2 and cannot increase with y2, and so for β̂(x, y | dx , dy , z) which is
required by the same economic reasoning. Everything else constant (i.e., producing the same level of outputs
y1 with the same level of inputs x1 and under conditions z), the efficiency should increase when decreasing
some of the inputs in x2 or by increasing some of the outputs in y2. This property is not guaranteed by using
bandwidths hz(x2, y2) changing with the levels of the inactive variables (x2, y2).
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where we see clearly after comparing with (3.8) that under the max operator, that conditional
directional distance are localized versions of the unconditional FDH estimator.

The Matlab function ZFDH_dirdist_new(hz,x,y,z,dx,dy,X,Y,Z) in
“Appendix” computes β̂(x, y | dx , dy, z) as described in (3.12), where hz has been deter-
mined in advance.

4 Robust version: order-˛ quantile frontiers

4.1 Unconditional case

Daouia and Simar (2007) introduced order-α quantile frontiers for radial measures in the
multivariate case. These have been adapted to directional distances in Simar and Vanhems
(2012). Their definition in the more general case where some elements of dx and/or of dy
may be equal to zero can be presented as follows. For any α ∈ (0, 1], and for any (x2, y2)
such that HX2Y2(x2, y2) > 0,

βα(x, y | dx , dy) = sup{β | HX1Y1|X2Y2 (x1 − βdx1 , y1 + βdy1 | x2, y2) > 1 − α},
= sup{β | HX1X2Y1Y2 (x1 − βdx1 , x2, y1 + βdy1 , y2) > (1 − α)HX2Y2 (x2, y2)},

(4.1)

noting that using the quantile of the complete joint distribution HX1X2Y1Y2 [uncondi-
tional to (X2, Y2)] would give different objects unless both X2 and Y2 are empty and so
HX2Y2(x2, y2) = 1.7 Note also that a negative value of βα(x, y | dx , dy) indicates a unit
(x, y) lying above the order-α frontier. In the transformed coordinate system this gives

βα(x, y | dx , dy) = sup{β | HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − βi p1 , y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 1 − α}. (4.2)

Now Consider the random variable

Wx,y(X⋆
1, Y

⋆
1
)
= min

k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 − X⋆,k

1 , Y ⋆,ℓ
1 − y⋆,ℓ

1

}
(4.3)

Clearly, the conditional survival function of Wx,y(X⋆
1, Y

⋆
1

)
is given by

SW (w | x2, y2) = Prob
(
Wx,y(X⋆

1, Y
⋆
1
)

≥ w | X2 ≤ x2, Y2 ≥ y2
)

= HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − wi p1 , y
⋆
1 + wiq1 | x⋆

2, y
⋆
2), (4.4)

which allows definition of βα(x, y | dx , dy) through the quantiles of Wx,y(X⋆
1, Y

⋆
1

)
. The

nonparametric estimator is obtained by plugging the empirical version of HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
into

the last equation. Consider the sequence Wx,y(X⋆
1,i , Y

⋆
1,i

)
for i = 1, . . . , n. Define Nx,y

2 =
nĤn,X⋆

2Y
⋆
2
(x⋆

2, y
⋆
2), the number of observations in the original sample with X2,i ≤ x2 and

Y2,i ≥ y2 (note that N
x,y
2 = n if both X2 and Y2 are empty, with all the directions in d being

> 0).
Next, define the order statistics

Wx,y
(1) ≤ Wx,y

(2) ≤ · · ·Wx,y
(Nx,y

2 )
(4.5)

7 This would be more in the vein of the quantile frontier introduced by Daouia et al. (2017) and adapted to
directional distances in Daraio and Simar (2005). This approach has the drawback of being defined only for
quantiles (1−γ )where γ > 1− HX2Y2 (x2, y2) [γ = 1− (1−α)HX2Y2 (x2, y2), with α > 0], so if the point
(x2, y2) is on the edge of their possible values, only quantiles with very large values of γ would be available.
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of the variablesWx,y(X⋆
1,i , Y

⋆
1,i

)
only for the Nx,y

2 observationswith X2,i ≤ x2 andY2,i ≥ y2:
It immediately follows that

β̂α(x, y | dx , dy) =
{
Wx,y

(αNx,y
2 )

if αNx,y
2 ∈ N

Wx,y
([αNx,y

2 ]+1)
otherwise,

(4.6)

where [a] denotes the integer part of a. Note that if α = 1we recover the full frontier estimate
β̂(x, y | dx , dy).

The Matlab function OrderAlpha_dirdist_new(x,y,dx,dy,X,Y,alpha) in
“Appendix” computes β̂α(x, y | dx , dy) using the expression in (4.6), where α ∈ (0, 1] is
selected a priori.

4.2 Conditioning on environmental factors Z

The conditional (on Z = z) version of the order-α directional distance estimator is rather
easy to derive using the conditional distribution and its nonparametric estimator described
above in (3.10) and (3.11). The definition of the order-α conditional directional distance, for
any α ∈ (0, 1], is given by

βα(x, y | dx , dy, z) = sup{β | HX1Y1|X2Y2Z (x1 − βdx1 , y1 + βdy1 | x2, y2, z) > 1 − α},
(4.7)

= sup{β | HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2 Z

(x⋆
1 − βi p1 , y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 1 − α}.

(4.8)

The conditional (on Z ) survival function of Wx,y(X⋆
1, Y

⋆
1

)
is given by

SW |Z (w | x2, y2, z) = Prob
(
Wx,y(X⋆

1, Y
⋆
1
)

≥ w | X2 ≤ x2, Y2 ≥ y2, Z = z
)

= HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2 Z

(x⋆
1 − wi p1 , y

⋆
1 + wiq1 | x⋆

2, y
⋆
2, z). (4.9)

Its nonparametric estimator can be written as

Ŝn,W |Z (w | x2, y2, z) =
∑n

i=1 1(Wi ≥ w, X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) , (4.10)

=
∑Nx,y

2
j=1 1(Wx,y

( j) ≥ w)K
(
(Zx,y

[ j] − z)⊘hz
)

∑n
i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K

(
(Zi − z)⊘hz

) , (4.11)

where Zx,y
[ j] is the observation Zi corresponding to the j th order statistic Wx,y

( j) . Therefore

Ŝn,W |Z (w | x2, y2, z) =

⎧
⎪⎨

⎪⎩

1 if w ≤ Wx,y
(1)

Lk+1 if Wx,y
(k) < w ≤ Wx,y

(k+1), k = 1, . . . , Nx,y
2 − 1

0 if w > Wx,y
(Nx,y

2 )
,

(4.12)

where for k = 1, . . . , Nx,y
2 − 1,

Lk+1 =
∑Nx,y

2
j=k+1 K

(
(Zx,y

[ j] − z)⊘hz
)

∑n
i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K

(
(Zi − z)⊘hz

) . (4.13)
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Finally, the explicit expression of the conditional order-α directional distance is given by

β̂α(x, y | dx , dy, z) =
{
Wx,y

(k) if Lk+1 ≤ 1 − α < Lk, k = 1, . . . , Nx,y
2 − 1

Wx,y
(Nx,y

2 )
if 0 ≤ 1 − α < LNx,y

2
.

(4.14)

These formulae extend to the general directional distance case allowing some elements of
d to equal zero, and hence include the expressions derived in Daouia and Simar (2007) for
output radial distances as special cases.

The Matlab function ZorderAlpha_dirdist_new(kernelz,hz,x,y,z,dx,
dy,X,Y,Z,alpha) in “Appendix” computes β̂α(x, y | dx , dy, z) using (4.14), where a
valueα ∈ (0, 1] is passed to the function as an argument. The kernels for the components of Z
can be Gaussian, Quartic, Epanechnikov or Uniform. The bandwidths hz must be determined
before this call.

5 Robust version: order-m partial frontiers

5.1 Unconditional case

Cazals et al. (2002) introduce order-m partial frontiers and corresponding radial efficiency
measures, while Simar and Vanhems (2012) extend these to directional distances. Cazals
et al. give an explicit, exact expression for computing the nonparametric estimator in the
univariate case (e.g., q = 1 in the output orientation or p = 1 in the input orientation),
but so far only Monte-Carlo approximations are available for more general cases (see Simar
and Vanhems 2012 or Daraio and Simar 2014 for discussion). Below, we provide an exact
expression for the estimators which is easy and fast to compute for any p ≥ 1 or q ≥ 1. The
method also allows some elements of the direction vector d to be zero, and includes both the
unconditional as well as the conditional-on-Z cases.

The order-m directional distance is defined as follows (see Simar and Vanhems 2012). For
any integerm ≥ 1 and for any (x2, y2) such that HX2Y2(x2, y2) > 0, considerm iid variables
(X1, j , Y1, j ), j = 1, . . . ,m drawn from the conditional distribution HX1Y1|X2Y2(x1, y1 |
x2, y2) and define the random set "̃

x,y
m = ⋃m

j=1{(x1, u, y1, v) ∈ " | x1 ≥ X1, j , u ≤
x2, y1 ≤ Y1, j , v ≥ y2}. Next, define the random measure

β̃m(x, y | dx , dy) = sup{β | (x1 − βdx1 , x2, y1 + βdy1 , y2) ∈ "̃
x,y
m }. (5.1)

Then the order-m directional distance is given by

βm(x, y | dx , dy) = E(β̃m(x, y | dx , dy) | X2 ≤ x2, Y2 ≥ y2). (5.2)

Similar to the interpretation in Cazals et al. (2002), βm(x, y | dx , dy) in (5.2) benchmarks
the unit (x, y) against the expectation of the “best” among m peers using less inactive inputs
X2 and producing more inactive outputs Y2. A negative value of βm(x, y | dx , dy) indicates
a unit at (x, y) operating above the order-m frontier.

We can now see what happens in the transformed coordinate system (X⋆, Y ⋆) defined
above. We have

β̃m(x, y | dx , dy) = sup{β | H̃m,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − βi p1 , y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0}, (5.3)

where H̃m,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
is the empirical version (in the new coordinate system) of HX⋆

1Y
⋆
1 |X⋆

2Y
⋆
2

obtained from the random sample {(X1, j , Y1, j )}mj=1. Hence by defining Wx,y(X⋆
1, Y

⋆
1 ), as

above in (4.3), but now for the m transformed observations {(X⋆
1, j , Y

⋆
1, j )}mj=1, it is clear that
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β̃m(x, y | dx , dy) = max
j=1,...,m

{
Wx,y(X⋆

1, j , Y
⋆
1, j )

}
(5.4)

where the (X⋆
1, j , Y

⋆
1, j ) are distributed according HX⋆

1Y
⋆
1 |X⋆

2Y
⋆
2
.

The survival function of Wx,y(X⋆
1, Y

⋆
1 ) is given by

SW (w | x2, y2) = Pr(Wx,y(X⋆
1, Y

⋆
1 ) ≥ w | X2 ≤ x2, Y2 ≥ y2)

= HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
(x⋆

1 − wi p1 , y
⋆
1 + wiq1 | x⋆

2, y
⋆
2). (5.5)

Consequently, the distribution function of β̃m(x, y | dx , dy) is given by

Gx,y
m (w) = Pr(β̃m(x, y | dx , dy) ≤ w) = [1 − SW (w | x2, y2)]m . (5.6)

This leads to an equivalent expression for βm(x, y | dx , dy), namely

βm(x, y | dx , dy) =
∫ β(x,y|dx ,dy)

0
w dGx,y

m (w). (5.7)

It is straightforward to confirm that Gx,y
m (0) = [1 − SW (0 | x2, y2)]m = 0 and that

Gx,y
m (w) = 1 for all w ≥ β(x, y | dx , dy). Integration by parts then gives the desired

result,

βm(x, y | dx , dy) = β(x, y | dx , dy) −
∫ β(x,y|dx ,dy)

0
Gx,y

m (w) dw. (5.8)

Nonparametric estimation is now easy. Plugging the empirical version Ĥn,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2
into

(5.5) leads to

β̂m(x, y | dx , dy) = β̂(x, y | dx , dy) −
∫ β̂(x,y|dx ,dy)

0
Ĝx,y

m (w) dw, (5.9)

where Ĝx,y
m (w) =

[
1 − Ŝn,W (w | x2, y2)

]m . As shown above, Ŝn,W (w | x2, y2) is easily
obtained from the order statistics of the Nx,y

2 variablesWx,y(X⋆
1,i , Y

⋆
1,i

)
defined in (4.3) such

that X2 ≤ x2, Y2 ≥ y2, i.e., W
x,y
(1) ≤ · · · ≤ Wx,y

(Nx,y
2 )

. Then an explicit expression for the

order-m directional distance estimator is given by

β̂m(x, y | dx , dy) =
Nx,y
2∑

j=1

Wx,y
( j)

[(
j

N x,y
2

)m

−
(
j − 1

Nx,y
2

)m]

. (5.10)

The Matlab function Orderm_dirdist_new(x,y,dx,dy,X,Y,m) in “Appendix”
organizes the computations for evaluating β̂m(x, y | dx , dy) as described in (5.10), where m
is an integer ≥ 1 chosen a priori.

5.2 Conditioning on environmental factors Z

The conditional-on-Z case follows similar arguments. The definition of the conditional
order-m directional distance is now based on the conditional (on Z ) versions of the vari-
ous distributions used above in Sect. 5.1.

For any integer m ≥ 1 and for any (x2, y2) such that HX2Y2|Z (x2, y2 | z) > 0, con-
sider m iid variables (X1, j , Y1, j ), j = 1, . . . ,m drawn from the conditional distribution
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HX1Y1|X2Y2Z (x1, y1 | x2, y2, z) and define the random set "̃
x,y,z
m = ⋃m

j=1{(x1, u, y1, v) ∈
" | x1 ≥ X1, j , u ≤ x2, y1 ≤ Y1, j , v ≥ y2, Z = z}. Define the random measure

β̃m(x, y | dx , dy, z) = sup{β | (x1 − βdx1 , x2, y1 + βdy1 , y2) ∈ "̃
x,y,z
m }. (5.11)

Then the conditional order-m directional distance is defined by

βm(x, y | dx , dy, z) = E(β̃m(x, y | dx , dy) | X2 ≤ x2, Y2 ≥ y2, Z = z). (5.12)

Following the arguments used in Sect. 5.1 for the unconditional case, we have

β̃m(x, y | dx , dy, z) = sup{β | H̃m,X⋆
1Y

⋆
1 |X⋆

2Y
⋆
2 Z

(x⋆
1 − βi p1 , y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 0},

= max
j=1,...,m

{
Wx,y(X⋆

1, j , Y
⋆
1, j )

}
, (5.13)

where now the (X⋆
1, j , Y

⋆
1, j ) are distributed according to HX⋆

1Y
⋆
1 |X⋆

2Y
⋆
2 Z

. The conditional (on
Z ) survival function of Wx,y(X⋆

1, Y
⋆
1 ) is given by

SW |Z (w | x2, y2, z) = Pr(Wx,y(X⋆
1, Y

⋆
1 ) ≥ w | X2 ≤ x2, Y2 ≥ y2, Z = z)

= HX⋆
1Y

⋆
1 |X⋆

2Y
⋆
2 Z

(x⋆
1 − wi p1 , y

⋆
1 + wiq1 | x⋆

2, y
⋆
2, z). (5.14)

Finally, using reasoning analogous to that in Sect. 5.1, we have

βm(x, y | dx , dy, z) = β(x, y | dx , dy, z) −
∫ β(x,y|dx ,dy ,z)

0
Gx,y,z

m (w) dw, (5.15)

where Gx,y,z
m (w) =

[
1 − SW |Z (w | x2, y2, z)

]m .
The nonparametric estimator is obtained by plugging the estimator of the survival function

SW |Z described in (4.12) into (5.15), yielding

β̂m(x, y | dx , dy, z) = β̂(x, y | dx , dy, z) −
∫ β̂(x,y|dx ,dy ,z)

0
Ĝx,y,z

m (w) dw, (5.16)

where Ĝx,y,z
m (w) =

[
1 − Ŝn,W |Z (w | x2, y2, z)

]m . Simple analytical derivations reveal that
the estimator can be computed by the explicit formula

β̂m(x, y | dx , dy, z) =
Nx,y
2∑

k=1

Wx,y
(k)

(
[1 − Lk+1]m − [1 − Lk]m

)
, (5.17)

where the Lk+1 are defined in (4.13) for k = 1, . . . , Nx,y
2 − 1, noting that L1 = 1 in (4.13),

and defining LNx,y
2 +1 = 0.

TheMatlab function Zorderm_dirdist_new(kernelz,hz,x,y,z,dx,dy,X,
YZ„m) given in “Appendix” computes values for β̂m(x, y | dx , dy, z) using (5.17), where
m ≥ 1 is an integer, kernelz is the kernel chosen for Z and hz is the vector of bandwidths.

6 Numerical illustrations

In this section we demonstrate how much is gained by the new computational methods intro-
duced above, relative to the existing algorithms involving Monte Carlo methods proposed
by Simar and Vanhems 2012 and Daraio and Simar (2005). For the full frontier estimates
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and the order-α (both unconditional and conditional) the gain in computing speed is negli-
gible. Nonetheless, the new methods avoid potential numerical problems related to ratios of
exponentials and logarithms (recall footnote 5).

The new methods proposed for computing the exact value of the order-m directional
distances (either unconditional or conditional) are remarkably faster than the existing Monte
Carlo methods that have been used until now and that provide only (good) approximations
of the exact values. The results presented above provide indeed exact expressions that are
easy to implement in practical applications. The results presented below indicate that even
if one is willing to accept precision to only two decimal places, the existing Monte Carlo-
based algorithms require roughly 200 times the CPU time required by the new exact methods
presented above. To obtain precision to 3 decimal places, the old methods require roughly
1000 times the CPU time required by the new methods.

It is important to note that implementation of the older Monte-Carlo algorithm is com-
plicated when some elements of the direction vector d are zero. We used the algorithms
suggested by Daraio and Simar (2005).8 For the conditional-on-Z case, some complications
arise due to step (1) of the algorithm where observations have to be sampled according to the
weights given by the kernel function. These complications are avoided by the new methods
developed above.

6.1 Simulated data

We first generate n frontier points in a p+ q = 4 dimensions as follows. We simulate p = 2
inputs coordinates of frontier points X ∂

j,i ∼ Unif(0, 1), independently for j = 1, 2 and for
i = 1, . . . , n. Then the coordinates of the q = 2 efficient outputs are defined by

Y ∂
1,i = X∂,0.5

1,i × X∂,0.5
2,i

and

Y ∂
2,i = X∂,0.4

1,i × X∂,0.3
2,i . (6.1)

The directional distance inefficiencies are drawn as βi ∼ N+(0, 0.752) for i = 1, . . . , n.
Then we choose a common directional vector (dx , dy) as the population median point, say
(x0, y0). The median input frontier point is fixed by x∂

0 = (0.5, 0.5)′, and the corresponding
output frontier point is given by applying (6.1) to obtain y∂

0 = (0.5, 0.6156)′. Then the
median of the distribution of the directional distances is β0 = 0.5059. So the median point
of our DGP is finally given by x0 = x∂

0 /(1 − β0) and y0 = y∂
0 /(1 + β0). This provides the

chosen directional vector dx = x0 = (1.0119, 1.0119)′ and dy = y0 = (0.3320, 0.4088)′.
Now we can define the random sample of inputs and outputs as

Xi = X∂
i − βi x0,

Yi = Y ∂
i + βi y0.

Finally, we simulate independent Z ∼ N (1, 32). In this illustration, we are not interested
interpreting the results, but rather in investigating how much computing time is saved by
our new approach over the existing, previous method. Hence we choose the bandwidth by

8 There is an unfortunate typo in Appendix B of Daraio and Simar (2005). The last line before step (1)
of the algorithm appears as D∗

x,y = {(X∗
i , Y

∗
i ) | X∗

i ≤ x∗, Y ∗
i ≥ y∗} but should instead be defined as

D∗
x,y = {(X∗

i , Y
∗
i ) | X∗

2,i ≤ x∗
2 , Y

∗
2,i ≥ y∗

2 }, where only the inactive variables are concerned here.
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Least Squares Cross Validation (LSCV) in estimating the conditional probability HXY |Z as
motivated above in Sect. 2.2.

We have p = q = 2 and r = 1. For the numerical illustration we choose n = 1000 and
m = 100 andα = 0.99 (in the next example using real datawe discuss howone should choose
these robustness parameters in practice).With these two values the percentage of points above
the partial frontiers are similar with 23% for order-α and 21% for order-m. Note that here
with the one particular simulated sample providing Tables 1 and 2, the bandwidth obtained
by LSCV is hz = 10.4502. We know (see e.g Li et al. 2013) that in principle the “true”
optimal bandwidth is hz = inf, because Z is independent of (X , Y ), but in finite sample
it may be smaller. Of course, as soon as the selected bandwidth is larger than the range of
(Z1, . . . , Zn), the practical results are the same as if hz = ∞.

The time required for computing the full frontier, the conditional full frontier, the order-α,
the conditional order-α, the order-m and the conditional order-m for the n = 1000 units using
the newmethods presented above was only 2.11 s running on a 2.6 GhzMacBook-Pro laptop
computer running MacOS 10.13 with 8 GB of memory and using Matlab version R2015a.
Using the Monte-Carlo algorithms for the order-m and conditional order-m with limited
precision (MC = 200 replications for both cases as often recommended in the literature)
requires 418.18 s of CPU time for producing the same full table of results (an increase
in computation time by a factor of 198.2). Table 1 shows estimates obtained with the two
approaches for the first 10 units, with subscripts “MC” identifying the order-m estimates
computed via Monte Carlo methods. Comparing the MC estimates β̂m,MC with the exact
estimates β̂m gives an idea of the loss of precision due to the Monte-Carlo approximations
when using the old method.

Increasing the number of Monte-Carlo trials to 1000 requires 2071.64 s of CPU time (a
factor around 1000 compared to the CPU time required by our new method). The results are
reported in Table 2. The Monte Carlo approximations are improved over those in Table 1,
but still some error remains.

The statistical properties of these directional distance estimators have been established
(see Simar and Vanhems 2012). For the unconditional full frontier case we know the order
of the error of estimation is Op

(
n−1/(p+q)), in our setup Op

(
n−1/4), whereas it is of order

Op
(
n−1/2) for the partial efficiency measures. But it is interesting to see what this means in

practice in our setup here by doing some Monte-Carlo simulations (1000 repeated random
samples of sizen, for various sample sizes) and look at theMonte-CarloBias and at theMonte-
Carlo Root-Mean-Squared Errors (RMSE) of the estimators over 1000 generated samples
by comparing the obtained estimators to the true values of the corresponding directional
efficiency measures.

We do the exercise for the directional efficiencies computed at the median point (x0, y0)
above defined. For achieving this, we have to know the true values of the directional efficiency.
This is easy to obtain for the full frontier case, but not for the partial order frontier (see, e.g.,
Simar and Wilson 2013 for simplified examples where exact formula are available). But we
can compute the true values by simulating a huge sample size. We did one estimation with a
sample of size n = 5 × 107 where the order of the errors is 1.4 × 10−4 for the partial order
frontiers and 1.2 × 10−2 for the full frontier (in the latter case we know the true value by
construction, see above).We obtain the true values appearing in the first row of Table 3, which
are exact for the full frontier efficiencies and correct up to 4 decimal places for the partial
efficiencies (confirmed by testing a couple of samples of this huge size). Since hz = ∞, the
true values of the conditional measures are identical to the unconditional ones. We select
z0 = 1.
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In the Monte-Carlo trials we select the bandwidths by LSCV over 10 pilot MC-samples
and take the median of the results. In all the cases this value is much larger than the range of
the sample in Z , so we select hz = 100 in all the cases, giving, as expected, almost identical
estimates (at least when using the exact new formulas developed in this paper).

Note also that in this exercise, to give an idea of the gain in computing time (with a gain in
numerical precision for the order-m cases), in the case of n = 10, 000, the computing time
with the new exact formulas for the 1000Monte-Carlo samples is 33 s, but 7100 s (almost 2 h)
for the traditional Monte-Carlo approximations with only MC = 200 for the order-m cases
(for n = 20, 000, these computing times grow up respectively to 43 s and 12, 632 s = 3.5 h).

The results Table 3 confirm the theoretical results of Simar and Vanhems (2012). To
summarize: (i) the full frontier estimates converge, but slowly as n increases (curse of
dimensionality); (i i) the partial frontiers are much more reliable in small samples (due
to the parametric

√
n-consistency); (i i i) the conditional estimates here are identical to the

unconditional ones (since Z is independent of the production process); and (iv) the Monte-
Carlo approximations of the order-m, with MC = 200 replications, does not work so badly
for small samples, but when the sample size increases the limited number of Monte-Carlo
replications used to estimate the efficiencies introduces approximation error which becomes
dominant (if MC is held constant) when n is large. So not only are our new formulas exact
and faster, but also in these cases have better statistical behavior.

6.2 Real data on banks

In this section we illustrate our new methods using real data on US commercial banks
observed in 2002. These data are also used by Simar and Wilson (2007), Bădin et al. (2012)
and Florens et al. (2014) for analyzing the of environmental factors on the production process,
while Daraio et al. (2018) use the same data to illustrate their test of the separability condition
described by Simar and Wilson (2007).

As explained by Florens et al. (2014) and Daraio et al. (2018), the three inputs (purchased
funds, core deposits and labor) can be aggregated into one input factor and the four outputs
(consumer loans, business loans, real estate loans, and securities held) can be aggregated
into a single output factor with minimal loss of information.9 After the dimension-reduction,
we have a sample of n = 303 banks with one input and one output factor and with two
environmental factors Z1, Z2 which include a measure of the size of the banks (log of total
assets) and a measure of diversity of the services offered by the banks (see Simar andWilson
(2007) for a detailed discussionof the variables).Hereweagain focus on the gain in computing
time afforded by our new methods.

Since we want to use robust measures of efficiencies, we have to select values of the
order m and the order α. As recommended in the literature (e.g., see Daraio and Simar 2014;
Daouia and Gijbels 2011a, b; Simar 2003), the efficiency measures have to be computed
for a number of values of m and α to determine sensible values. Simar (2003) proposes
computing the order-m efficiency estimates for a grid of values ofm, and reporting in a graph
the corresponding percentage of points lying outside the corresponding frontiers in order
to detect outliers.10 This may involve substantial computational burden when Monte Carlos
approximations are used to compute the order-m estimates.

9 See also Wilson (2018) for detailed discussion of dimension reduction techniques for efficiency analysis.
10 The idea is that in the absence of any outliers, this graph should show a steadily decreasing number of
points outside the order-m partial frontier with increasing m (recall that as m → ∞ the order-m estimates
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Fig. 1 Selection of m for order-m estimator

Figure 1 shows the percentage of observations lying above the order-m frontier for m =
10, 30, 50, . . . , 390. Producing the estimates needed for this graph requires only 0.91 seconds
using the new computational methods and theMacBook Pro described above. Using the older
Monte Carlo approximations, and only MC = 100 Monte Carlo trials, consumes 444.0
seconds, an increase by a factor of about 488.

Figure 1 indicates that m = 150 may be reasonable value for the order m since the
graph becomes nearly horizontal for larger values of m. To select α one could use the same
approach, but for purposes of comparison, we select α = 0.995 which results in the same
proportion of observations lying outside the order-α quantile frontier as does m = 150 in
the case of the order-m frontier. Note that this is close to the same value obtained by setting
α = 0.51/m = 0.9954 as discussed by Daouia and Gijbels (2011a, b), where the two partial
frontiers coincide if the expectation operator E is replaced by the median operator in the
definition of the order-m frontier.

Table 4 shows the various directional distance estimates for the first 20 units in the sample
of n = 303 banks. The last four columns on the right allow comparison of the exact results
for order-m and their counterparts obtained byMonte-Carlo approximation with MC = 200.
Producing the full table for all observations required 0.44 s with the new method and 104 s
with the Monte-Carlo approximations (again, a difference involving a factor of about 200,
with roughly only 2 decimal digits of precision).11

Footnote 10 continued
converge to the corresponding FDH estimates). But if the graph exhibits a kink or “elbow” effect, then this is
evidence that the remaining points outside the order-m frontier for the corresponding value of m are potential
outliers.
11 For the conditional-on-Z estimates with bivariate Z , the optimal vector of bandwidths was obtained by
least-squares cross validation yielding hz = (0.0240, 0.2134).
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7 Conclusions

This paper provides a new method for computing directional distance functions. The paper
develops simple and easy-to-program expressions for computing full frontier, partial frontier
(order-α and order-m cases) with their corresponding conditional-on-Z versions. The inputs,
the outputs and the environmental factor can in principle be of any dimension, but we know
that the curse of the dimensionalitymay in some cases jeopardize the quality of the estimators.
In such cases, it is often possible to exploit multicollinearity in economic data using the
dimension-reduction techniques analyzed by Wilson (2018). The direction vector d ≥ 0 can
have an arbitrary number of zero elements in either dx or dy (provided at least one element
remains positive to preserve meaningfulness of the directional distance).

The new method for computing directional distances is much faster than the older Monte
Carlo approximations that have been used to date as illustrated the examples in the preceding
section. For the order-m cases (conditional and unconditional) to the best of our knowledge
this is the first time an exact expression is provided. We have shown in the numerical illustra-
tions, that even if low precision of the estimates is acceptable, the computing time is increased
by a factor of 200–400 when the older Monte Carlo approximations are used in place of our
new methods. As illustrated in the example using bank data, the new method is particularly
useful when several order-m measures have to be evaluated, e.g., as in the outlier detection
exercise discussed by Simar (2003) or when an appropriate value ofm is chosen as discussed
by Daraio and Simar (2014).

Appendix: Matlab codes

In the functions below, the reference data set when calling the functions is (X , Y ) which are
the matrices of inputs and outputs, with dimensions (n × p) and (n × q) respectively. When
conditional measures are used, we add the matrix Z which is (n × d). All the vectors in
the calling arguments must be column vectors. The point under evaluation is denoted by the
vectors (xk, yk) with zk when conditioning on Z . Some elements of the direction vectors
gx and gy may be zeros, but at least one element of the full vector (gx ′, gy′) of dimension
((p + q) × 1) must be strictly positive.
function [eff,Nx2y2] = FDH_dirdist_new(xk,yk,gx,gy,X,Y)
% FDH Directional distance of (xk,yk) direction (gx,gy)
[n,p] = size(X); q = size(Y,2);
% Identify non-zeros in gx and gy
flagx = gx>zeros(p,1); flagy = gy>zeros(q,1);
Xw=X; xw=xk’;
Yw=Y; yw=yk’;
% Changing coordinates only for elements with positive g
Xw(:,flagx’) = X(:,flagx’)/diag(gx(flagx)); Yw(:,flagy’) = Y(:,flagy’)/diag(gy(flagy));
xw(flagx’) = xw(flagx’)./(gx(flagx))’; yw(flagy’) = yw(flagy’)./(gy(flagy))’;
Xw(:,˜flagx’) = X(:,˜flagx’); Yw(:,˜flagy’) = Y(:,˜flagy’);
xw(˜flagx’) = xw(˜flagx’); yw(˜flagy’) = yw(˜flagy’);
Ytilde=[-Xw Yw]; yktilde=[-xw yw];
yi = repmat(yktilde,n,1);
% Flag the ACTIVE columns of Ytilde
flagtilde=[flagx;flagy];
% Flagging the Dominating observations for the NON active variables
flagyw =Ytilde(:,˜flagtilde’) >=yi(:,˜flagtilde’);
flagw = all(flagyw,2);
ndi=sum(flagw);

if ndi == 0.00
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fprintf(’ WARNING: no units with dominating inactive (x2k,y2k) \n’)
eff=-Inf; Nx2y2=0; return

end
% Computing the DIFF only for the ACTIVE columns of Ytilde with positive g
diffyi=Ytilde(:,flagtilde’) - yi(:,flagtilde’);
Ydiff=min(diffyi,[],2); % n x 1 col vector with min over columns flagtilde
effi=max(Ydiff(flagw));% sort the W_i such that X2<=x2 and Y2>=y2 (flagw)
eff = effi;
Nx2y2=ndi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Zeff,ZNxy] = ZFDH_dirdist_new(hz,xk,yk,zk,gx,gy,X,Y,Z)
% CONDITIONAL to Z = zk, FDH Directional distance of (xk,yk) direction (gx,gy)
% hz is the vector of bandwidths and Z is (n x d)
n = size(X,1);
flagzk = all(abs( Z - repmat(zk’,n,1)) <= repmat(hz’,n,1),2);
Xzk = X(flagzk,:); Yzk = Y(flagzk,:);
[Zeff,ZNxy]= FDH_dirdist_new(xk,yk,gx,gy,Xzk,Yzk);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [effm,Nx2y2] = Orderm_dirdist_new(xk,yk,gx,gy,X,Y,m)
% ORDER-m FDH Directional distance of (xk,yk) direction (gx,gy)
[n,p] = size(X); q = size(Y,2);
% Identify non-zeros in gx and gy
flagx = gx>zeros(p,1); flagy = gy>zeros(q,1);
Xw=X; xw=xk’;
Yw=Y; yw=yk’;
% Changing coordinates only for elements with positive g
Xw(:,flagx’) = X(:,flagx’)/diag(gx(flagx)); Yw(:,flagy’) = Y(:,flagy’)/diag(gy(flagy));
xw(flagx’) = xw(flagx’)./(gx(flagx))’; yw(flagy’) = yw(flagy’)./(gy(flagy))’;
Xw(:,˜flagx’) = X(:,˜flagx’); Yw(:,˜flagy’) = Y(:,˜flagy’);
xw(˜flagx’) = xw(˜flagx’); yw(˜flagy’) = yw(˜flagy’);
Ytilde=[-Xw Yw]; yktilde=[-xw yw];
yi = repmat(yktilde,n,1);
% Flag the ACTIVE columns of Ytilde
flagtilde=[flagx;flagy];
% Flaging the Dominating observations for the NON active variables
flagyw =Ytilde(:,˜flagtilde’) >=yi(:,˜flagtilde’);
flagw = all(flagyw,2);
ndi=sum(flagw);
if ndi == 0.00

fprintf(’ WARNING: no units with dominating inactive (x2k,y2k) \n’)
effm= -Inf; Nx2y2=0; return

end
% Computing the DIFF only for the ACTIVE columns of Ytilde with positive g
diffyi=Ytilde(:,flagtilde’) - yi(:,flagtilde’);
Ydiff=min(diffyi,[],2);% n x 1 col vector with min over columns flagtilde
Wsort =sort(Ydiff(flagw));% sort the W_i such that X2<=x2 and Y2>=y2
indx=(1:ndi)’;
p1=(indx/ndi).ˆm;
p2=((indx-1)/ndi).ˆm;
effm= sum(Wsort.*(p1-p2));
Nx2y2=ndi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Zeffm,ZNx2y2] = Zorderm_dirdist_new(kernelz,hz,xk,yk,zk,gx,gy,X,Y,Z,m)
% CONDITIONAL to Z = zk, ORDER-m Directional distance of (xk,yk) direction (gx,gy)
% kernelz is the kernel function chosen for Z (’epan’, ’quart’, ’unif’ or ’gauss’)
% hz is the vector bandwidths
Kepan = @(u) (abs(u) <=1).*(1 - u.ˆ2)*3/4; % |u| <= 1
Kgaus = @(u) exp(-u.ˆ2/2)/sqrt(2*pi); % u\in R, cannot be used for ZFDH
Kquar = @(u) (abs(u) <=1).*(1 - u.ˆ2).ˆ2 *15/16; % |u| <= 1
Kunif = @(u) 0.5*(abs(u) <=1); % |u| <= 1
[n,p] = size(X); q = size(Y,2); d = size(Z,2);
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% Kernel for Z
Dhz=diag(ones(d,1)./hz); % this is diag matrix d x d
tempz=(Z-repmat(zk’,n,1)); % this is a (n x d) matrix
tempzh=tempz*Dhz;
switch lower(kernelz)
case (’gauss’)

kerzd= Kgaus(tempzh)*Dhz;
case (’quart’)

kerzd= Kquar(tempzh)*Dhz;
case (’epan’)

kerzd= Kepan(tempzh)*Dhz;
case (’unif’)

kerzd= Kunif(tempzh)*Dhz;
otherwise

disp(’Specify correct Kernel method for Z ’’Epan’’, ’’Unif’’ or ’’Quart’’’); return
end
kerz=prod(kerzd,2); % Product kernel: (n x 1) vector
% Identify non-zeros in gx and gy
flagx = gx>zeros(p,1); flagy = gy>zeros(q,1);
Xw=X; xw=xk’;
Yw=Y; yw=yk’;
% Changing coordinates only for elements with positive g
Xw(:,flagx’) = X(:,flagx’)/diag(gx(flagx)); Yw(:,flagy’) = Y(:,flagy’)/diag(gy(flagy));
xw(flagx’) = xw(flagx’)./(gx(flagx))’; yw(flagy’) = yw(flagy’)./(gy(flagy))’;
Xw(:,˜flagx’) = X(:,˜flagx’); Yw(:,˜flagy’) = Y(:,˜flagy’);
xw(˜flagx’) = xw(˜flagx’); yw(˜flagy’) = yw(˜flagy’);
Ytilde=[-Xw Yw]; yktilde=[-xw yw];
yi = repmat(yktilde,n,1);
% Flag the ACTIVE columns of Ytilde
flagtilde=[flagx;flagy];
% Flaging the Dominating observations for the NON active variables
flagyw =Ytilde(:,˜flagtilde’) >=yi(:,˜flagtilde’);
flagw = all(flagyw,2);
ndi=sum(flagw);
if ndi == 0.00

fprintf(’ WARNING: no units with dominating inactive (x2k,y2k) \n’)
Zeffm= -Inf; ZNx2y2=0; return

end
% Computing the DIFF only for the ACTIVE columns of Ytilde with positive g
diffyi=Ytilde(:,flagtilde’) - yi(:,flagtilde’);
% computation of L_k
Ydiff = min(diffyi,[],2);% n x 1 col vector with min over columns flagtilde
Wj = Ydiff(flagw);% keep only the W_i such that X2<=x2 and Y2>=y2 (flagw)
kerzj = kerz(flagw);
[Wsort,Is] =sort(Wj);% sort the W_j
kerzJ=kerzj(Is);
label=(ndi:-1:1);
kerzJrev=kerzJ(label);% reverse the order of the element of kerz to use cumsum below
Denom = sum(kerzj);
Lvec=cumsum(kerzJrev)/Denom;
Lvec=Lvec(label); % reorder to get the L_k
Lvec(ndi+1)=0;
indx=(2:ndi+1)’;
p1=(ones(ndi,1)-Lvec(indx)).ˆm;
p2=(ones(ndi,1)-Lvec(indx-1)).ˆm;
Zeffm= sum(Wsort.*(p1-p2));
ZNx2y2=ndi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [effa,Nx2y2] = OrderAlpha_dirdist_new(xk,yk,gx,gy,X,Y,alpha)
% ORDER-alpha Directional distance of (xk,yk) direction (gx,gy)
[n,p] = size(X); q = size(Y,2);
% Identify non-zeros in gx and gy
flagx = gx>zeros(p,1); flagy = gy>zeros(q,1);
Xw=X; xw=xk’;
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Yw=Y; yw=yk’;
% Changing coordinates only for elements with positive g
Xw(:,flagx’) = X(:,flagx’)/diag(gx(flagx)); Yw(:,flagy’) = Y(:,flagy’)/diag(gy(flagy));
xw(flagx’) = xw(flagx’)./(gx(flagx))’; yw(flagy’) = yw(flagy’)./(gy(flagy))’;
Xw(:,˜flagx’) = X(:,˜flagx’); Yw(:,˜flagy’) = Y(:,˜flagy’);
xw(˜flagx’) = xw(˜flagx’); yw(˜flagy’) = yw(˜flagy’);
Ytilde=[-Xw Yw]; yktilde=[-xw yw];
yi = repmat(yktilde,n,1);
% Flag the ACTIVE columns of Ytilde
flagtilde=[flagx;flagy];
% Flaging the Dominating observations for the NON active variables
flagyw =Ytilde(:,˜flagtilde’) >=yi(:,˜flagtilde’);
flagw = all(flagyw,2);
ndi=sum(flagw);
if ndi == 0.00

fprintf(’ WARNING: no units with dominating inactive (x2k,y2k) \n’)
effa=-Inf; Nx2y2=0; return

end
% Computing the DIFF only for the ACTIVE columns of Ytilde with positive g
diffyi=Ytilde(:,flagtilde’) - yi(:,flagtilde’);
Ydiff=min(diffyi,[],2); % n x 1 col vector with min over columns flagtilde
Wsort=sort(Ydiff(flagw));
order=alpha*ndi;
if mod(order,floor(order))˜=0

order=floor(order)+1;
end
effai=Wsort(order);% sort the W_i such that X2<=x2 and Y2>=y2 (flagw)
effa = effai;
Nx2y2=ndi;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Zeffa,ZNx2y2] = ZorderAlpha_dirdist_new(kernelz,hz,xk,yk,zk,gx,gy,X,Y,Z,alpha)
% CONDITIONAL to Z = zk, ORDER-alpha Directional distance of (xk,yk) direction (gx,gy)
% kernelz is the kernel function chosen for Z (’epan’, ’quart’, ’unif’ or ’gauss’)
% hz is the vector bandwidths
Kepan = @(u) (abs(u) <=1).*(1 - u.ˆ2)*3/4; % |u| <= 1
Kgaus = @(u) exp(-u.ˆ2/2)/sqrt(2*pi); % u\in R, cannot be used for ZFDH
Kquar = @(u) (abs(u) <=1).*(1 - u.ˆ2).ˆ2 *15/16; % |u| <= 1
Kunif = @(u) 0.5*(abs(u) <=1); % |u| <= 1
[n,p] = size(X);
q = size(Y,2);
d = size(Z,2);
% Kernel for Z
Dhz=diag(ones(d,1)./hz); % this is diag matrix d x d
tempz=(Z-repmat(zk’,n,1)); % this is a (n x d) matrix
tempzh=tempz*Dhz;
switch lower(kernelz)
case (’gauss’)

kerzd= Kgaus(tempzh)*Dhz;
case (’quart’)

kerzd= Kquar(tempzh)*Dhz;
case (’epan’)

kerzd= Kepan(tempzh)*Dhz;
case (’unif’)

kerzd= Kunif(tempzh)*Dhz;
otherwise

disp(’Specify corect Kernel method for Z ’’Epan’’, ’’Unif’’ or ’’Quart’’’); return
end
kerz=prod(kerzd,2); % Product kernel: (n x 1) vector
% Identify non-zeros in gx and gy
flagx = gx>zeros(p,1); flagy = gy>zeros(q,1);
Xw=X; xw=xk’;
Yw=Y; yw=yk’;
% Changing coordinates only for elements with positive g
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Xw(:,flagx’) = X(:,flagx’)/diag(gx(flagx)); Yw(:,flagy’) = Y(:,flagy’)/diag(gy(flagy));
xw(flagx’) = xw(flagx’)./(gx(flagx))’; yw(flagy’) = yw(flagy’)./(gy(flagy))’;
Xw(:,˜flagx’) = X(:,˜flagx’); Yw(:,˜flagy’) = Y(:,˜flagy’);
xw(˜flagx’) = xw(˜flagx’); yw(˜flagy’) = yw(˜flagy’);
Ytilde=[-Xw Yw]; yktilde=[-xw yw];
yi = repmat(yktilde,n,1);
% Flag the ACTIVE columns of Ytilde
flagtilde=[flagx;flagy];
% Flaging the Dominating observations for the NON active variables
flagyw =Ytilde(:,˜flagtilde’) >=yi(:,˜flagtilde’);
flagw = all(flagyw,2);
ndi=sum(flagw);
if ndi == 0.00

fprintf(’ WARNING: no units with dominating inactive (x2k,y2k) \n’)
Zeffa= -Inf; ZNx2y2=0; return

end
% Computing the DIFF only for the ACTIVE columns of Ytilde with positive g
diffyi=Ytilde(:,flagtilde’) - yi(:,flagtilde’);
% computation of L_k
Ydiff = min(diffyi,[],2);% n x 1 col vector with min over columns flagtilde
Wj = Ydiff(flagw);% keep only the W_i such that X2<=x2 and Y2>=y2 (flagw)
kerzj = kerz(flagw);
[Wsort,Is] =sort(Wj);% sort the W_j
kerzJ=kerzj(Is);
label=(ndi:-1:1);
kerzJrev=kerzJ(label);% reverse the order of the element of kerz to use cumsum below
Denom = sum(kerzj);
Lvec=cumsum(kerzJrev)/Denom;
Lvec=Lvec(label); % reorder to get the L_k
% computation of the order k
beta=ones(ndi,1)*(1-alpha);
order=sum(beta < Lvec);
Zeffa= Wsort(order);
ZNx2y2=ndi;
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