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1. Introduction

Nonparametric Malmquist indices are widely used to assess
changes in productivity across firms in various industries. In
addition, Malmquist indices are often decomposed into various
measures of sources of productivity change, including changes
in efficiency, changes in technology, and other factors. Exam-
ples include Aly, Grabowski, Pasurka, and Rangan (1990), Fdre,
Grosskopf, Lindgren, and Roos (1992, 1994a), Fare, Grosskopf, and
Norris (1997), Gilbert and Wilson (1998), Simar and Wilson (1998),
Wheelock and Wilson (1999), Alam (2001), Armagan, Ozden, and
Bekcioglu (2010), Liu (2010), de Castro Lobo, Ozcan, da Silva, Lins,
and Fiszman (2010), Andries (2011), Chang, Hsiao, Huang, and
Chang (2011), Chowdhury, Wodchis, and Laporte (2011), Ng (2011),
Egilmez and McAvoy (2013), Ahn and Min (2014), Bassem (2014),
Wu, Cao, and Liu (2014) and Woo, Chung, Chun, Seo, and Hong
(2015).! Estimates of both Malmquist indices and their component
indices are typically reported for individual firms or units, and
often results are summarized by reporting geometric means of
estimated Malmquist indices and their corresponding component

* Corresponding author.
E-mail addresses: leopold.simar@uclouvain.be (L. Simar), pww@clemson.edu (P.
W. Wilson).
! See also Fire, Grosskopf, and Margaritis (2011) for a recent survey on the use
of Malmquist indices.
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indices. Geometric means, as opposed to arithmetic means, are
used to preserve the multiplicative nature of the indices.

Most applied papers that estimate productivity change and its
component sources make no attempt at inference. The few that
attempt inference either rely on standard Central Limit Theorem
(CLT) results or the bootstrap method proposed by Simar and Wil-
son (1999). As demonstrated below, however, inferences based on
standard CLT results is invalid for cases with more than one input
and one output for reasons similar to those discussed by Kneip,
Simar, and Wilson (2015) in the context of mean efficiency in
cross-sectional settings. Moreover, Simar and Wilson (1999) pro-
vide only heuristic arguments to develop their bootstrap method
and do not provide any theoretical results. Although the simula-
tion evidence provided by Simar and Wilson (1999) suggests that
their smooth bootstrap method works well, the approach cannot
be justified theoretically in view of the results obtained below.

Until recently, no theoretical results have been available to per-
mit inference about productivity change estimated by Malmquist
indices. Kneip, Simar, and Wilson (2018) establish the convergence
rate and the existence of a non-degenerate limiting distribution for
data envelopment analysis (DEA) estimators of Malmquist indices
for individual producers. These results enable use of the subsam-
pling methods of Simar and Wilson (2011) to make inference about
the productivity change from one period to another by an indi-
vidual producer. In addition, Kneip et al. (2018) provide new cen-
tral limit theorem (CLT) results for geometric means of Malmquist
indices as well as arithmetic means of logarithms of Malmquist
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indices over samples of producers.? This paper extends the results
of Kneip et al. (2018) to component indices obtained by various
decompositions of Malmquist indices into sources of productivity
change. Theoretical results developed below provide convergence
rates and existence of non-degenerate limiting distributions for in-
dices measuring change in efficiency, change in technology, etc. for
individual producers, enabling use of the subsampling methods
presented by Simar and Wilson (2011) to make inference about
individual units. In addition, new CLT results are provided to en-
able inference about geometric means of the component indices as
well as arithmetic means of their logarithms. These new CLT re-
sults can be used to make inference about average (geometric or
arithmetic) changes in components of productivity change. In addi-
tion, the new CLT results can be used for hypothesis testing about
differences in changes in efficiency, technology or other features
between groups of firms along the lines of Kneip, Simar, and Wil-
son (2016).

The next section develops a nonparametric, statistical model
of production in a dynamic context. Various decompositions of
Malmquist indices are considered. The Malmquist index and its
component indices are defined in terms of hyperbolic distances (as
opposed to distances in the input or output directions) in order to
ensure that the component indices are well-defined. In Section 3,
hyperbolic DEA estimators and their asymptotic properties are dis-
cussed. Near the end of Section 3, new results for these estima-
tors needed for components of Malmquist indices are developed.
Results for making inference about components of productivity
change are presented in Section 4. In Section 4.1, results for in-
ference about change in technology are developed. These results
are then extended to other components of productivity change in
Section 4.2. An empirical illustration using data from Fire et al.
(1992), is presented in Section 5, and conclusions are discussed in
Section 6. Additional technical details, as well as proofs of the the-
orems presented in Sections 3 and 4 appear in Appendix A.

2. A dynamic, nonparametric production process

In order to establish notation, let x € RY and y e R1 be vectors
of fixed input and output quantities. Throughout, vectors are as-
sumed to be column-vectors, as opposed to row-vectors. At time ¢,
the set of feasible combinations of inputs and outputs is given by

Wt :={(x,y) | x can produce y at time t}. (2.1)
The technology, or efficient frontier of W!, is given by
U= {xy) [ (xy) e ¥ (yxy ) WV y € (0.1},

(2.2)

Various economic assumptions regarding W! can be made; the
assumptions of Shephard (1970) and Fire (1988) are typical in mi-
croeconomic theory of the firm and are used here.

Assumption 2.1. W is closed and strictly convex.

Assumption 2.2. (x,y) ¢ V! if x=0, y>0,y+£0; ie., all production
requires use of some inputs.

Assumption 2.3. For X > x, y <y, if (x, y)e W! then (X, y) € ¥! and
(x,¥) € W'; ie, both inputs and outputs are strongly disposable.

Here and throughout, inequalities
defined on an element-by-element

involving vectors are
basis, as is standard.

2 The results obtained by Kneip et al. (2018) make clear that standard CLT results
such as the Lindeberg-Feller CLT cannot be used to make inference about means of
logs of Malmquist indices.

Assumption 2.2 rules out free lunches, while Assumption 2.3 im-
poses weak monotonicity on the frontier.

The Farrell (1957) output efficiency measure at time t gives the
feasible proportionate expansion of output quantities and is de-
fined by

Axy | W) i=sup{r| (x.1y) e ¥'}. (2.3)

This gives a radial measure of efficiency since all output quantities
are scaled by the same factor A. The Farrell (1957) input efficiency
measure at time t is given by

O(x.y | W) :=inf{0 | (Ox.y) e ¥'} (2.4)

and measures efficiency in terms of the amount by which input
levels can be scaled downward by the same factor without reduc-
ing output levels. Clearly, A(x, y|¥f)>1 and 6(x, y|¥!) <1 for all
(x, y)e ¥t

An alternative measure of efficiency is the hyperbolic graph
measure of efficiency at time t introduced by Fire, Grosskopf, and
Lovell (1985), i.e.,

yxy | W =inf{y > 0] (yx,y~'y) e ¥'}.

By construction, y(x, y|¥!) <1 for (x, y)e W' Just as the measures
O(x, y|¥') and A(x, y|¥!) provide measures of the technical effi-
ciency of a firm operating at a point (x, y) e W¢, so does y(x, y|¥?!),
but along a hyperbolic path to the frontier of W!. The measure in
(2.5) gives the amount by which input levels can be feasibly, pro-
portionately scaled downward while simultaneously scaling output
levels upward by the same proportion.
Next, define the operator C(-) so that

C(U) i ={(xy) | x=0x,

y = ay for some (X,y) € V' and any a € R} }

(2.5)

(2.6)

is the convex cone of the set W!. Note that this is a pointed cone
(i.e., ¢(¥?) includes {(0, 0)}). Analogous to (2.2), the frontier of this
set is given by

COUh) = {(xy) | (xy) eC(¥),
(rx,y ly) ¢ C(U) Vy e (0,1)}. (2.7)

If (W) = Wt then the frontier W at time t exhibits globally
constant returns to scale (CRS), although this is ruled out by strict
convexity of W! in Assumption 2.1. Otherwise, ¥t c ¢(¥!) and Wt
is said to exhibit variable returns to scale (VRS), with returns to
scale either increasing, constant, or decreasing depending on the
particular region of the frontier.

Now consider a sample X, = {(X!.Y!). (X2, Y2)}I, of input-
output combinations for n firms observed in periods t =1 and 2.
To simplify notation, define Zf := (X{.Y/) for te{1,2). Then the
sample X; is represented by X, = {Z!, Z?}!" ,. Firm i's change in
productivity between periods 1 and 2 is measured by the hyper-
bolic Malmquist index

1/2
M y(Z2 | c(uh) . v(Z2 1 c(w?))
o \r@lewn) y(ziewy) )

This is the geometric mean of two ratios, each providing a mea-
sure of productivity change, in the first case using the boundary of
C(¥1) as a benchmark, and in the second case using the boundary
of ¢(W?) as a benchmark. For firm i, M; > (= or <) 1 if produc-
tivity increases (remains unchanged or decreases) between periods
1 and 2. As in Kneip et al. (2018), the Malmquist index here is
defined in terms of hyperbolic measures as opposed to input- or
output-oriented measures to avoid numerical difficulties. Zofio and
Lovell (2001), Johnson and McGinnis (2009) and Russell (2018) dis-
cuss the advantages of defining Malmquist indices in terms of hy-
perbolic distances. In particular, use of hyperbolic measures helps

(2.8)
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ensure that all of the components of productivity change defined
below are well-defined.

Various decompositions of Malmquist indices have been pro-
posed in attempts to identify the sources of any changes in pro-
ductivity. Fére et al. (1992) propose the input-oriented analog of

Ty @ ey
—_—
=6 (Z] 22|01, W2)
. [)/(Z,-2 | c(wh))
y (22| c(¥?))

12
y (@ IC(\Iﬂ))} 2.9)

y (@[ c(¥?)

=T1 (20,22 W1, W2)

The authors remark (p. 90) that “the quotient outside the bracket
measures the change in technical inefficiency and the ratios inside
the bracket measure the shift in the frontier between periods” 1
and 2. However, this is true if and only if the technology is one of
globally constant returns to scale. Recognizing this, Fire, Grosskopf,
Norris, and Zhang (1994b) decompose the output-oriented analog
of £&(Z}.Z? | W, W?) to obtain the output-oriented analog of

Mo [y(Z,? | \112)} § [V(Zf | c(¥2)/y @ | w2>]‘/2
s Ly@en T Ly @ ey @l vh

=5(2), 22w, W2)

=52} 22| W1 W2)
x 1 (ZV, 22 | W1, w?).

i Z (2.10)
Here, Ez(Zl.l,Zi2 | W1, W2) gives a measure of technical efficiency
change under either variable or constant returns to scale since ef-
ficiency is measured in terms of ¥! and W2 as opposed to the
conical hulls of W1 and W2 as in & (Z].ZZ | ¢!, ¥?) in (2.9). The
term Sy (Z!.Z? | W, W?) provides a measure of any change in the
scale efficiency of firm i. The ratio in the denominator of S; mea-
sures the distance between the projection of (ZI.‘) onto W19 and
the projection of (Z,]) onto ¢? (W), providing a measure of the
scale efficiency of firm i in period 1.3 The ratio in the numerator of
S1(z!.z? | W', w2) provides the corresponding measure in period
2. It is easy to see that both the numerator and the denominator of
S; must be less than 1, and that S; > (=, <) 1 iff scale efficiency
for firm i increases (remains unchanged, decreases) from period 1
to period 2.

Both decompositions in (2.9) and (2.10) use the term 7; to mea-
sure change in technology, but this term is based on the conical
hulls of W' and W2. Under variable returns to scale, it is possi-
ble for the conical hulls to remain unchanged while the technol-
ogy shifts upward or downward in regions where the technology
Wi s not coincident with ¢? (W!). This problem is addressed by
Ray and Desli (1997) who propose the output-oriented analog of
the decomposition

M =&Z],Z2 | !, w?) x [

y@ v v | \Iﬂ)}‘”
y@ w2 "y v?)

=T (2} 22w W2)

y (@2 C(w2))/y (22| \M]‘”

A AR D)

=85, (Z] 2|1, W?)

_ |:V(Z,»2 |y (@ |9
y (@ c(¥2)/y (! | v?)

(2.11)

The term 75(Z!,Z? | W', W2) provides a measure of the change in
technology between periods 1 and 2 regardless of whether returns

3 Note that firm i would be scale-efficient in period 1 if y(Z} |c(¥1)) =y (Z} |
W), Otherwise, the firm is scale-inefficient. See Wheelock and Wilson (1999) for
discussion.

to scale are constant or variable. This term consists of a geometric
mean of two ratios. The first ratio gives a measure of any shift in
the technology W9 relative to firm i’s position in period 2. Simi-
larly, the second ratio gives a measure of any shift in the technol-
ogy relative to firm i’s position in period 1. Either of these ratios
is greater than (equal to, less than) 1 iff the technology shifts out-
ward (remains unchanged, shifts inward).

Ray and Desli (1997) remark (p. 1036) that S,(Z], z2 | W1, w2)
“is a geometric mean of the ratios of scale efficiencies of the two
bundles using in turn the VRS technologies from the two periods
as the benchmark. In that sense, it is more in the spirit of a Fisher
index.” Fdre et al. (1997, p. 1042) criticize the measure S,, and in
particular note that the term “may incorrectly identify the scale
properties of the underlying technology.” while providing an illus-
trative example in their footnote 7.

Indeed, the term S,(Z},Z? | W', W2) defined by (2.11) can be
written as

S (2,72 | W, w?)

_ [V(Z? WD)y (Z2 | ¥
v (@ 1ew)/y @l | v?)

1/2

x 81(Z1, 72 | w1, w?)
(2.12)

The meaning of S;(Z!,Z? | W', W?) is clear and intuitive, but the
first ratio inside the parentheses in (2.12) is less so. The numer-
ator of this ratio measures scale efficiency in period 1, but from
the viewpoint of the firm’s location in period 2. Similarly, the de-
nominator measures scale efficiency in period 2, but relative to
the firm’s location in period 1. Lovell (2003, p. 442) describes
Sp(Z}. 72 | W', W2) and notes that “the qualifier ‘change’ refers to
the quantity vectors but not to the technologies.”

Gilbert and Wilson (1998), Simar and Wilson (1998) and
Wheelock and Wilson (1999) use the output-oriented analog of

M =522 | WL W) x 120, 722 | Wi, w?)
x 81 (2}, 72 | w1, w?)

[V(Z} [c(wh))/y @ | wh

vy (@ | c(¥?))/y ! | ¥?)

=85(Z) 22| W1, W?)

Y@ c(wh))/y (22| \Iﬂ)]“z
Y (@ [C(W2))/y (22 | ¥2)

(213)
after decomposing S,(Z!.Z? | W1, W2) in (211) into S;(Z].Z? |

1
Wl w?2) and S3(z].z2 | W', W?). This measure consists of a ge-
ometric mean of two ratios, each resembling the ratio that de-
fines 8y (z}.zZ | w1, w?) in (2.10), but with some important dif-
ferences. Note that S;(Z!.Z? | W! W2) measures the change in
scale efficiency of the firm. This could improve if the firm moves
closer to the most efficient scale size in period 2, or it could im-
prove if the firm does not move between periods 1 and 2, but the
technology changes so that W29 is closer to ¢?(W¥2) than W'? is
to ¢?(¥'). But now consider the first ratio in the definition of
S3(Z}.Z2 | W', W2) in (2.13). Here, the firm's position is fixed at
its location in period 1; the ratio can differ from 1 iff the distance
between the projection of (Z}) onto W!? and ¢? (W) is different
from the projection of (Z!) onto W27 and ¢?(¥?) along the hy-
perbolic path through (Z}). The second ratio in S3(Z},Z? | W1, W?)
provides a similar measure relative to the firm’s position in pe-
riod 2, and S3(Z}. 2 | W1, W2) is the geometric mean of these two
measures.*Gilbert and Wilson (1998), Simar and Wilson (1998) and
Wheelock and Wilson (1999) label their corresponding measures
“AScaleTech,” and both Simar and Wilson (1998) and Wheelock

4 Balk (2001, p. 173) remarks that the decomposition in (2.13) is confusing, but
its meaning seems clear.



L. Simar and P. W. Wilson/European Journal of Operational Research 277 (2019) 756-769 759

and Wilson (1999) refer to the term as a measure of “the scale
of the technology” as opposed to the change in the scale efficiency
of a firm as measured by S;. See Simar and Wilson (1998) and
Wheelock and Wilson (1999) for further discussion and illustra-
tions.

All of the quantities and model features defined so far are un-
observable, and hence must be estimated. In addition, inference
is needed in order to know what might be learned from data.
Some additional assumptions are needed to complete the statis-
tical model. The following assumptions are analogous to Assump-
tions 3.1-3.4 of Kneip et al. (2015). In order to draw upon previ-
ous results, we state the assumptions below in terms of the input-
oriented measure of efficiency. The assumptions can also be stated
in terms of the output, hyperbolic and directional measures of effi-
ciency, and the results of Kneip et al. (2015) extend to those mea-
sures after trivial (but tedious) changes in notation in Kneip et al.
(2015).

Assumption 2.4. (i) The random variables (X, Y) possess a joint
density f¢ with support D' c W!; and (ii) f' is continuously dif-
ferentiable on DI.

Assumption 2.5. (i) D" :={0(x.y | ¥)x, y) | (x.y) € D'} c D';
(ii) D™ is compact; and (iii) f(0(x, y)x, y)> 0 for all (x,y) € Dt.

The next two assumptions are needed when DEA estimators
are used. Assumption 2.6 imposes some smoothness on the fron-
tier. Kneip, Simar, and Wilson (2008) require only two-times differ-
entiability to establish the existence of a limiting distribution for
VRS-DEA estimators, but the stronger assumption that follows is
needed to establish results on moments of the DEA estimators.

Assumption 2.6. 0(x, y|W") is three times continuously differen-
tiable on Dt.

Recalling that the strong (i.e., free) disposability assumed in
Assumption 2.3 implies that the frontier is weakly monotone, the
next assumption strengthens this by requiring the frontier to be
strictly monotone with no constant segments. This is also needed
to establish properties of moments of the DEA estimators.

Assumption 2.7. D' is almost strictly convex; ie., for any
*.y), X.y) eD" with (fr.y) # (Fp.9). the set {(x*.y") |
x*,y*) = (x,¥) +a((X,¥) — (x,y)) for some 0 <« < 1} is a subset
of the interior of D.

Assumptions 2.1-2.7 comprise a statistical model similar to the
one defined in Kneip et al. (2015) and where DEA estimators have
desirable properties. However, two additional, important assump-
tions are needed to obtain asymptotic properties of DEA estima-
tors derived by Kneip et al. (2018) of the Malmquist index defined
in (2.8) as well as of DEA estimators of the various components
of Malmquist indices presented above. These assumptions appear
as Assumptions 3.1 and 3.2 in Kneip et al. (2018). Since these as-
sumptions involve considerable technical detail and require addi-
tional notation, the assumptions are presented with some discus-
sion in Section A.1 of Appendix A. Assumption A.1 is needed to en-
sure well-defined estimators of 6 (x,y | C(¥!)) and y (x,y | C(¥!)).
Part (iii) of the assumption is needed to bound the logarithms
of these as well as of 6(x, y|W!) and y(x, y|¥!) away from zero.

5 Other decompositions are possible, and it is not feasible to give an exhaustive
treatment here. See Lovell (2003) and Zofio (2007) for summaries and discussion.
Note that Lovell (2003) refers to S,(Z}, Z? | W', W2) as “the activity effect” and de-
composes (p. 446) the term into 3 components. Estimation of each of these new
components requires nesting one estimator inside another, resulting in consider-
able complication for statistical inference requiring new theoretical results that are
beyond the scope of this paper.

Assumption A.2 is required to ensure well-defined estimators of
cross-period efficiencies.

3. Hyperbolic DEA estimators and their asymptotic properties

The VRS-DEA estimator of W! proposed by Farrell (1957) and
Banker, Charnes, and Cooper (1984) is the convex hull of the free-
disposal hull of observed input-output pairs in period t. The esti-
mator is given by

@,ﬁ = {(x,y) eRM |y <Yw, x>Xw, i,w=1, weRi},
(3.1)

where X' = —PLX pmatrix — (X]f . ,X,ﬁ) — PLXpmatrix— and Y =
—PLXpmatrix — (Y{,....Y}) — PLXpmatrix— are (pxn) and (qx n)
matrices of input and output vectors in period t, respectively; iy
is an (n x 1) vector of ones, and @ is a (nx 1) vector of weights.
Replacing W! in (2.4) with W} yields the linear program

O(x.y| W) = rgi}n{@ ly <Y, 0x> X0, iiwo=1, @ eRi}.
(32)

Alternatively, replacing W¢ in (2.5) with W yields the nonlinear
program

y(x.y| )
. . ]
=r}91£1{y lyly<Yo, yx>Xo iiw=1 weRl}] (33)

Wilson (2011) provides a simple numerical algorithm for comput-
ing y (x,y | W.) that avoids the computational difficulty of solving
the nonlinear program directly. _

Alternatively, the conical DEA (CDEA) estimator C(W!) of C(W?!)
is obtained by dropping the constraint iy@ =1 in (3.1). This leads
to the CDEA estimator y (x,y | C(W!)) of y(x,y | C(¥")) obtained
by dropping the constraint i, = 1 in (3.3).

Kneip et al. (2018) establish asymptotic properties of the CDEA
estimator y (x,y | C(\T/‘)) of y(x,y | C(¥")) under appropriate as-
sumptions. In particular, Kneip et al. (2018) establish consistency
and existence of a non-degenerate limiting distribution with rate
of convergence n* under Assumptions 2.1-2.7 where

2
Ki=—.
p+q+1

In addition, Kneip et al. (2018) establish properties of the first two
moments of y (x,y | C(¥)) as well as of logy (x,y | C(¥!)).

Kneip et al. (2018) then consider a firm operating at observed,
fixed points (x!, y') and (x2, y2) in periods 1 and 2. From (2.8) the
Malmquist index for this firm is

(@ lcwh) ey ew)]”
M= X . (3.5)
y(xLytlcun) oy (xhyt | c(w?))

and X% = {(X2,Y?}iy

(3.4)

..... 1 el

M can be estimated by

_ [veearie@®l) viey @)’
M= = X = . (3.6)
y(xLytlcwl)) v (L ytlcwd))

Under Assumptions 2.1-2.7, A1 and A.2, Theorem 3.3 of Kneip
et al. (2018) establishes the existence of a non-degenerate limiting
distribution as well as the convergence rate for the estimator in
(3.6) of the Malmquist index for a given firm observed in periods
1 and 2. These results permit inference about the unobserved, true
Malmquist index M using the subsampling methods described by
Simar and Wilson (2011). In addition, Theorems 4.2 and 4.3 of
Kneip et al. (2018) provide CLTs for making inference about 1=




760 L. Simar and P. W. Wilson / European Journal of Operational Research 277 (2019) 756-769

E(log M;) where the expectation is over (Xi, Y;, X3, Y»). In ad-
dition, Theorems 4.5 and 4.6 of Kneip et al. (2018) provide CLTs
permitting inference about exp(u,¢) estimated by the geometric
mean

/Z/; _ n y(Xi27yi2 | C(\?;])) .
y (Y] [C(®),))

i=1

Wilson (2011) establishes consistency of the hyperbolic es-
timator in (3.3) of y(x, y|W!) under Assumptions weaker than
Assumptions 2.1-2.7 listed above, and proves that the rate of con-
vergence is n“. However, some additional results are needed in or-
der to make inference about the Malmquist index components de-
fined by the various decompositions discussed above in Section 2.
Proofs are given in Appendix A.

The first result establishes the existence of non-degenerate lim-
iting distributions for the hyperbolic efficiency estimator and its
logarithm.

y(x2.v2 1 c@2)) ]
~ . 37)
y (X1 [C(T2))

Theorem 3.1. Let I'(-) denote either (i) the identity function or (ii)
the log function. Under Assumptions 2.1-2.7 and A.1 part (iii),

Dy ey | 99) - Ty ey | W) -5

as n— oo, where ij is a non-degenerate distribution with finite vari-
ance.

(3.8)

The next result establishes properties of the first two moments
of the hyperbolic efficiency estimator under VRS, analogous to
Kneip et al. (2015, Theorem 3.1).

Theorem 3.2. Let T'(-) denote either (i) the identity function or

(ii) the log function. Let vi =3/(p+q+1), v, =(p+q+4)/(p+

q+1) and v3 =(p+q+2)/(p+q~+1). Under Assumptions 2.1-2.7

and A.1 part (iii), 3 a constant C]F € (0,00) such that for all i,j e

{1,....n},

E(D(y (XL YE T WE) = T (y (X, Y | ¥9)))
=Cn* +0(n" (logn)"), (3.9)

VAR(T (y (X!, Yf | WE)) = D(y (X, Y{ | W) = O(n (logn)™ )
(3.10)

and

oV (T (XEL ¥ 1 8)) = Dy (LY 1 W), Ty (XL | 85)

DY w))|
=0(n~"(logn)"*) = o(n1). (3.11)

The value of the constant Cf depends on the density f, I'(-) and on
the structure of the set Dt c Wt,

The next result provides properties of moments of the log-
hyperbolic estimator in dynamic, two-period settings.

Theorem 3.3. Let Let v{,v, and v3 be defined as in Theorem 3.2.
Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, for all t,s{1,2}3 a
constant C5¥ € (0, oo) such that for all i, j e {1,..., n},
E(logy X\, Y! | U3) —logy (X!, Yf | w9))

=Cn™* +0(n" (logn)™2), (3.12)

VAR(log y (X{. Y | U3) —logy (X!, Y/ | W) = 0(n™" (logn)*)
(3.13)

and for t*,s* €{1,2}, j #1,
[£([tog (Xt %7 | B5) — Edlogy (1. ¥¢ | wo)]

[tog (5", Y5 | ¥¢) — Edogy 0¥ | w))])|
=0(n""(logn)"™)

= o(n*1)
(3.14)

as n <min {ny, ny} — co. The value of the constant C5* depends on the
density f and on the structure of the sets D5 ¢ W and D' c W!.

4. Inference about Malmquist index components
4.1. Inference about change in technology

This section focuses on the technology change measure
Ty(Z}.Z% | W', W?) defined in (2.11) and appearing in (2.13). The
measure 73 (Z},Z? | W', W?) defined in (2.9) is seldom used in the
literature, but nonetheless is considered in Section 4.2 as are the
other components of productivity change defined in (2.9), (2.10),
(2.11) and (2.13).

As discussed above, the sample &; = {Zl.l, Zl.2 :?_] contains the

set of input-output pairs from periods 1 and 2 for firms ob-
served in both periods. However, there may be n; >n firms ob-
served in period 1, and n; >n firms observed in period 2 so that
n<min(ny,ny). The ny observations in X, = {z!}!!, can be used
to construct an estimate @,}1 of W1, while the n, observations
in X2 ={Z?}{2, can be used to construct an estimate \Tlﬁz of
W2, For a firm observed at z! = (x!,y!) ¢ W! in period 1 and at
72 = (x*,y*) e W2 in period 2, T5(z'.22 | W1, W?) is estimated by
T2, 22| W) R ).

Theorem 4.1. Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, for
each z! € D and 72 € D?, as ny,ny — oo

ST c

(T2 | Wy W) -T2 | W W) 5 Qpa e (41)

where Q, 1 » is a non-degenerate distribution with finite variance.
Theorem 4.1 establishes the existence of a limiting distribution

as well as consistency and rate of convergence n* for the estima-
tor T,(z',2% | W , W2 ). These results are sufficient to enable valid

inference about 7;(z!,z% | W1, W2) for a single firm using the sub-
sampling methods described by Simar and Wilson (2011).
Given the sample X;, one may obtain n estimates 7;(Z].Z? |
\TJ,‘,] , \flﬁz). Define
pr, :=E(logT2(2], 22 | W', W?))
=E(logy (Z7 | ¥'") —logy (Z} | W*) +logy (Z] | ¥")
—logy (Z! | ¥?)), (4.2)

where expectations are with respect to Z} and Ziz. Then consider
the sample mean

n
B i=n""! 2:10g7’2(Zi‘,Zi2 | Wy W2 ). (4.3)
i=1
To simplify notation, let 0%2 =VAR(log 75(Z} . Z? | W1, ¥?)) < 0
where expectations are over (Z!, Z2). The next result provides a CLT
for pr,.

Theorem 4.2. Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, 3 a
constant Dr, such that

W2 (0= =D ) = N(0.02) (44
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where &, =0(m "1 (logn)"1) =o(n*) and v,
Theorem 3.2. In addition,

is defined in

n
62, =n"Y (log 2@ 22| B}, 92) — fina)’ 2> 02 (45)
i=1
Although fir, , is a consistent estimator of (7, the estimator
has bias Dy,n™*. If k¥ >1/2, then the bias as well as the remain-
der term &p, are dominated by the n'/2 scaling factor and hence
can be ignored. Consequently, whenever « >1/2, a (1 — o) x 100-
percent confidence interval for fir, n is estimated by

~ o7,
[um 71« jﬁ"}

where z;_¢ is the corresponding (1 — &) quantile of the standard
normal distribution function. Under the conditions of Theorem 4.2,
this interval has asymptotically correct coverage provided k > 1/2
(ie, p+q<2).

By contrast, if kK = 1/2, the bias in (4.4) is constant. If k <1/2,
the bias tends to infinity as n— oo. In cases where x <1/2, re-
placing the scaling factor n'/2 with n¢ where ¢ (0, x) would
drive the bias to 0 as n— oo, but would also drive the variance
to 0, resulting in a degenerate limiting distribution and prevent-
ing inference from begin made. The usefulness of Theorem 4.2 for
practical applications is quite limited since « > 1/2 if and only if
(p + q) < 2. Fortunately, an approach similar to the one of Kneip
et al. (2015) can be used to solve this problem.

Let n, = min(|[n?¥ |, n), where |a] denotes the largest integer
less than or equal to a. Then for x <1/2, n, <n. Assume that the
observations in &; are randomly sorted (the algorithm described
by Daraio, Simar, and Wilson (2018), Appendix D can be used to
randomly sort the observations while allowing results to be repli-
cated by other researchers using the same data and the same sort-
ing algorithm). Define

(4.6)

ny
Arm, =n" Yy log (T2(Z. Z2 | Wy, . W2)).
i=1

(4.7)

Note that the estimates 7;(Z}, Z? | \TJ,}l, @ﬁz) are computed using
all of the available observations, but that the summation is over
only the first n, observations in Xj,. The next result establishes the
properties of this estimator.

Theorem 4.3. Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, for
cases where k <1/2,

(A, — M7 —Dpn™ —&ni) o N(0.07) (4.8)

as n— oo, where &, = O(n~"1(logn)"1) = o(n~%) and v, is defined
in Theorem 3.2.

The bias term Dzn™* remains in (4.8), but the both the bias
and the variance remain constant as n — oo. Consequently, the bias
term can be replaced with a generalized jackknife estimate 1/3\72,”,,(
similar to the bias estimate developed in Kneip et al. (2015). The
bias estimate presented in Kneip et al. (2015) assumes ny = n, =n,
while the presentation below explicitly allows n; >n or n, >n.

Recall that n firms are observed in both periods 1 and 2; these
observations comprise the sample X, = {(Z},Zf)}. In addition, as
discussed above, there are nj =n; —n >0 firms observed in pe-
riod 1 but not in period 2; let these observations comprise the set

W,}q = {Wil}?:‘] c A, . Similarly, there are ny = ny —n > 0 firms ob-

served in period 2 but not in period 1; let W2, = {V\/,.2}1-1_21 cxd
5 =

denote the set of such observations. Of course, either Wg* or Wﬁ*

1 2

will be the empty set if n; =n or n, =n. Now split &; randomly
into two sub-samples X,g]) and X;1(122) of sizes m; = |n/2| and m, =

n—|n/2| (respectively). Note that if n is even, my = my, but if

n is odd then m; = my — 1. Asymptotically, this makes no differ-

ence since my/my; — 1 as n— oo. In addition, split W,}* randomly
1

into two sub-samples W,ln(ﬁ) and W;(lzz) of sizes my; = [n}/2] and
myy =nj — [n5/2] (respectively). If n} is even, my; = myy, but if
nj is odd then my; =myy — 1, but this also makes no difference
asymptotically. Similarly, split Wﬁ* randomly into two sub-samples
2
Wﬁf;) and W,i(zzz) of sizes my; = [n%/2] and my, = n§ — |n}/2] (re-
spectively). If n3 is even, my; = my,, but if nj is odd then my =
my, — 1, but again this also makes no difference asymptotically.
Now let X,ﬁ.,(jj) denote the set of observations on Z{ for pe-
riod te{1,2} and subsample je{1,2}. Let my; = mj+ my;. Define
t(j) ._ () t(j) N7,
Vm?j = ij Uerj' Let W

frff) denote the estimator of W!, analo-
tj

gous to (3.1), but obtained using the observations in V;(*j) instead
tj
of X} . Let y(x,y| \y;%)) denote the corresponding estimator of
y(x, y|W) obtained by substituting @;1(3) for W in (2.5).
tj

Now define

AL =mt Y logBW W2 | B0 B) (49)
i@ z)exs)

for je{1,2} and set

% 1 -~ ~(2

Wrno = 5 (W, + Aim,)- (4.10)

Using reasoning similar to that in Kneip et al. (2015, Section 4), it
is easy to show that

Brne=(2°-1)" (5, 02 — Bmn) = Dpn ™ + &5 + 0y (n7172),
(411)

provides an estimator of the bias Dr,n*. The remainder term & ,
in (4.11) is of the same order as &, appearing in (4.4).

Note that there are (n'/12) possible splits of the original n ob-
servations. To reduce the variance of the bias estimate in (4.11),
the sample can be split K << (n72) times while randomly shuffling

the observations before each split, and computing By, , , , using
(411) for k=1, ...,K. Then

K
~ 3 ~
BTz.n,K =K ZBTZ,n,K,k
k=1

(4.12)

gives a generalized jackknife estimate of the bias Dpn=* (Gray
& Schucany, 1972, Definition 2.1). Averaging in (4.12) reduces the
variance by a factor of K- relative to the bias in (4.11).

Substituting the bias estimate in (4.12) for the bias terms Dz, in
Theorems 4.2 and 4.3 leads to the following CLT result.

Theorem 4.4. Under the conditions of Theorem 4.2, as n— oo

Py = d
n'?(Apn —Brnx — b, — &n) — N(0,02) (4.13)
whenever k >2/5. In addition, for cases where k <1/2,
Py = d
n* (Arn, — Brnx — p, —&nw) — N(0,02) (4.14)

as n— oQ.

Note that in all cases (i.e., for all values of k), &, = o(n™%)
and hence n¥& , = o(1). Therefore the remainder term can be ne-
glected.

In cases where « >2/5 and hence (p +q) < 4, Theorem 4.4 to-
gether with (4.5) from Theorem 4.2 ensures that the interval

~ ~ On
I:PLTz,n —Brnk iz]-% N i|7

(4.15)
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where as in (4.6) z; g represents the (1 - %) quantile of the stan-

dard normal distribution function provides an asymptotically cor-
rect (1 —a) confidence interval for wr,. For cases where x <1/2
and hence (p+q) >4, Theorem 4.4 permits construction of the
asymptotically correct (1 — o) confidence interval

(4.16)

I e
I:I‘L'Ti,ﬂ,( — Bk 2z ¢ oy

for .

The interval in (4.16) is centered on fi,.n, — §E,n_K, and i, n,
is computed from a random subset of n, estimates 7’2(Zi1 Zl.2|
‘T/,}l , \TJ,%Z). As discussed by Kneip et al. (2015), while this may seem
arbitrary, any confidence interval for w7, is arbitrary since any
asymmetric confidence interval for 7, can be constructed simply
by using different quantiles of the N(0, 1) distribution to establish
the bounds. The goal is always to achieve a high level of coverage
without making the confidence interval too wide to be informative.

Alternatively, in cases where k < 1/2, the randomness of the in-
terval in (4.16) due to centering on a mean over a subsample of
size n, <n can be eliminated by replacing fir, n, With fiz; » to ob-
tain

(4.17)

I:ﬁTz,n —Braxtzi ¢ G:ﬁ(’n ]
Both intervals (4.16) and (4.17) have the same length and hence
are equally informative. However, the interval in (4.17) should have
higher coverage in finite samples because the estimator fi7, » uses
more information than the estimator fir, .. Hence for « <1/2,
ne <n and hence the interval in (4.17) contains the true value
T, with probability greater than (1 — ). Due to the results given
above, it is clear that the coverage of the interval in (4.17) con-
verges to 1 as n— oo.

Note that when (p+ q) =4, either result (4.13) or (4.14) can
be used to construct intervals with asymptotically correct coverage.
For reasons given by Kneip et al. (2015, Section 4.1), one should
expect the interval in (4.16) to provide a better approximation in
finite samples than (4.15) when (p+q) = 4.

As with estimates of the Malmquist index defined in (2.8), re-
searchers typically report geometric means

1/n
n
Ton=exp(ina) =[] 27 | ¥, \Dﬁz)) : (4.18)
i=1
Clearly, 9}” can be seen as an estimator of %, =exp(ur,). The
properties of this estimator are given the next result.

Theorem 4.5. Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, as
n<min{ny,ny}— co

(70 — exp(iir,) + exp(ir ) DN ™ + £, nic)

L N(0. exp(2pir;)02) (4.19)

where &z, n, =0(n~"1(logn)"1) =o(n™*) and vy is defined in
Theorem 3.2.

Provided « >1/2, both the bias and the remainder terms in
(4.19) are asymptotically negligible, and

exp (J475,n)07,.n ]
ni/z
provides a (1 —a) x 100-percent confidence interval for exp(u7;)
with asymptotically correct coverage. But if x <1/2, the bias must
be dealt with.

Suppose k <1/2. Assume the observations in A; are randomly
ordered and define

[ﬁz,n 171, (4.20)

1/n,

Ny
Fom, =eXp (Apm,) = | [[ 22} 22| 9, . W2)
i=1

(4.21)

Note that the estimates under the product sign are computed us-
ing all of the available data, but the product is over only the first
n, observations in A;. The properties of the estimator '—é\Z,nK are
established in the next theorem.

Theorem 4.6. Under Assumptions 2.1-2.7, A.1 part (iii) and A.2, for
cases where k <12,

n*(Ja.n, — exp(up,) + exp(Up)Dpn ™ + &, ni)

d
— N(0, exp(217,)07,) (4.22)

as n— oQ.

As in Theorem 4.3, the bias is stabilized in Theorem 4.6, but
it does not disappear as n— oo and therefore must be estimated.
A generalized jackknife estimate B 7,.nc analogous to the estimate
§Tz’n,,( discussed above can be obtained by following the steps to
compute BATZ_M but replacing the sample arithmetic means with
their corresponding sample geometric means. This leads to the fol-
lowing result.

Theorem 4.7. Under the conditions of Theorem 4.2,

= ~ d
n1/2 (72n - Bﬂz,n,K - EXP(MTZ) + gﬂz,n,i() - N(O, eXP(ZMTz )6725)
(4.23)

as n— oo whenever k >2/5. In addition, for cases where k <1/2,

~ = d
(720, = Bzyni — eXp(up) — Ez,ni) — N(0, exp(2ur;)o3)
(4.24)

as n— oc.

For cases where « >2/5, Theorem 4.7 permits construction of
an asymptotically correct (1 — ) confidence interval for exp(ur,)
given by

exp (ﬁ?’z,n)a\Tz,n]. (425)

[%.n _Bgz.n,/c izlf% n1/2

Alternatively, whenever x <1/2, Theorem 4.7 can be used to con-
struct the asymptotically correct (1 — «) confidence interval

exp (ﬁﬁ.n)gﬁn]

= (4.26)

|:=§2,n,( - Bﬂz.n,fc + Z]—%
Analogous to the discussion above, one could also replace (@nk
with .9, in (4.26), with the coverage of the resulting interval con-
verging to 1 as n— oo.

Also as discussed above, one can use either of the intervals in
(4.25) and (4.26) when (p + q) = 4. The interval in (4.25) uses the
scaling factor +/n and hence neglects the term +/nn,, = 0(n~1/10)
in result (4.23) of Theorem 4.7, while the interval in (4.26) uses the
scaling factor n* and hence neglects the term n“n,, = 0(n~1/) in
result (4.24) of Theorem 4.7. Therefore one should expect (4.26) to
provide a better approximation in finite samples than (4.25) when
(p+ q) = 4. For testing purposes, however, one cannot escape the
tradeoff between size and power.

The null hypothesis of no technology change corresponds to
exp(ur,) =1, while the alternative hypothesis of change in tech-
nology between periods 1 and 2 corresponds to exp(ur,) # 1.
Hence the null is rejected whenever the relevant estimated confi-
dence interval in (4.25) or (4.26) does not include unity. The results
of such tests are expected to be similar to the results of similar
tests based on log values, but small differences may arise due to
the different asymptotic approximations involved. Asymptotically,
any differences are negligible.

4.2. Inference about other components of productivity change

From an applications perspective, the most important re-
sults in Section 4.1 are Theorems 4.1, 44 and 4.7. The results
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in Theorems 4.2 and 4.3 are intermediate results needed to
establish Theorem 4.1 and make clear the role of estimation
bias. Theorems 4.5 and 4.6 similarly lead to Theorem 4.7. Just
as Tp(Z],Z2 | W', W?) is estimated by Tp(Z',Z7 |V, ¥2)
in Section 4.1, each of the components & (Z].ZZ| W w?),
52(21.1,21.2 | Wl w2), Tl(Zl.l,Zl.2 [l w2, s (Z},Zi2 | w1, w2),
Sz}, 72 | W, w?) and S3(Z],Z2 | W', W?) defined in (2.9), (2.10),
(2.11) and (2.13) can be estlmated by replacing ! and W? in the
definitions of the measures by the estimators W, a, and \1122

A careful reading of the proofs of Theorems 4.4-4.7 in
Appendix A reveals that arguments similar to those used to ob-
tain the results for change in technology in Section 4.1 can be
used to establish analogous results for an estimator of the change-
in-efficiency measure &,(Z], Z2 | W1, ¥2), which like the estimator
of T,(Z}.Z? | W', W?) involves a ratio of measures y (Z | ¥*). The
other components of productivity change listed above involve ra-
tios of both y (Z | ¥*) and y(Z} | C(¥Y)), s, te{1,2}. Arguments
similar to those used in the proofs of the results in Section 4.1,
combined with results from Kneip et al. (2018) on the CDEA es-
timator of distances to boundaries of conical hulls Cc(W¥!), can
be used to derive results for estimators of & (zZ!,z? | w! w2),
T 22| W W), §(Z. 22 | Wl v, Szl z2 | vl w?) and
S3(Z}.Z2 | w1, W2) analogous to those obtained in Section 4.1 for
the estimator of 7;(Z!,Z? | W', W2). Consequently, to avoid repeti-
tion, the results in this section are stated without formal proofs.

To simplify notation, let E be a place-holder denoting either &7,
&, Ti, 81, S or S3 or some other index defined in terms of ra-
tios of the measures y (Z5, Zf | W, W') or y(Z,Z} | C(¥9),C(¥Y)),
s, te{1,2}. The results that follow hold when E is replaced with
any of the components listed above. The next result is immediate.

Theorem 4.8. Under Assumptions 2.1-2.7, A.1 and A.2, for each z' €
D' and z2 € D?, as ny,ny — o0

n“(E@'. 2% | ¥, ¥z, -

where Qg ,

B2 | W) 5 Qe (427)
22 Is a non-degenerate distribution with finite variance.

Remark 4.1. Note that in the theorems of Section 4.1, parts (i)—(ii)
of Assumption A.l are not needed since the measure 75(Z},Z? |
Wl W2) does not involve the conical hull of either W' or W,.
Similarly, &(Z}.Z? | W', w?) also does not involve the conical
hull of either W! or W2, Hence when &, replaces E in (4.27),
Theorem 4.8 does not require parts (i)—(ii) of Assumption A.l.
But for the other measures listed above, all three parts of
Assumption A.1 are needed. The same remark applies to the re-
maining theorems that follow in this section.

Theorem 4.8 establishes the existence of limiting distributions
as well as consistency and rate of convergence n* for the esti-
mators of the components & (Z!,Z? | W1, W?), & (z]. 22 | v1, ¥?),
T 22 | W W), 5z}, 22 | W1, W2), §(Z],22 | W', ¥?) and
S3(Z}.Z2 | W1, W?) of productivity change. These results are suf-
ficient to enable valid inference about each component for a single
firm using the subsampling methods described by Simar and Wil-
son (2011).

Analogous to (4.2), define

ne =E(logE(Z],Z} | W', ¥?)) (4.28)
and consider the sample mean
fgni=n 1Zlog B(Z. 22| W), 02). (4.29)
Similar to (4.7), define

fzn, i=ng! Zlog .22 | V), W2), (4.30)

noting that the estimates log E(Z;,Z? | \llnl, ,%2) are computed
using all of the available observatlons but that the summation
is over only the first n, observatlons in X, where again n, =
min(|n2¢ |, n). Finally, let B:M denote the generalized jackknife
estimate of bias Dz n- ¥ analogous to BTZ nk in (4.12) obtained by
replacing 7; with E in (4.9)-(4.12). The next result enables infer-
ence about uz.

Theorem 4.9. Under the conditions of Theorem 4.2, as n— oo

1/2( Z.n _B:nlc = _EE,VLK) _d> N(O, Oé) (431)
whenever k > 2/5. Alternatively, for cases where k <1/2,
~ = d
n*(Azn, —Bzni — e —Ezni) — N(0,03) (4.32)
as n— oo. In addition,
G2, =n" Z (log €z}, 22| 9}, 92) — fiz,)’ L 02. (433)

In all cases (i.e., for all values of «), £z, = 0(n™*) and hence
n“&g n, = 0(1). Therefore the remainder term can be neglected.
Theorem 4.9 ensures that the interval

—~ o 8En
Hzn—Bzn iz1,,f

provides a confidence interval for wz with asymptotically correct
coverage of (1 —o«) in cases where k >2/5. Alternatively, when
k <1/2, Theorem 4.9 ensures that the interval

(4.34)

(4.35)

o 6:E.n
- E,n,Kizl—% n«

[ﬁE,nK
has asymptotic coverage of (1 — ).
In order to consider geometric means of the various compo-
nents of productivity change while avoiding repetitive notation, let
&, S, P, S, S or ¥ denote geometric means of estima-
tors of &1, &, Ti, T2, S1, S» or Sz, respectively. In other words,
write

1
n /m

Yo = exp (fLz) = (H E@.Z 19,97

i=1

(4.36)

and replace E with one of {&, &, T1, T2, S1. Sy, S3} while
replacing Y with the corresponding element of the set
(&1, &, S, B, S, S, #3} (for example, replacing E and
T in (4.36) with 7, and %, respectively, yields the expression
in (4.18)). Then let By, , denote a generalized jackknife estimate
of bias analogous to Br, n, obtained by replacing 7, with Y in
(4.9)-(4.12). Similar to (4.18), Y, can be viewed as an estimator
of T =exp(ug). The results in the remainder of this sections are
stated in terms of £ and Y, with the understanding that these
are place-holders as described above. The next result permits
inference about Y = exp(ug).

Theorem 4.10. Under the conditions of Theorem 4.2, as n— oo
S o= d
n'/2 (Tn — By ni —exp(uz) + s’Y‘,n,K) — N(07 EXD(ZME)Ué)
(4.37)
as n— oo whenever k >2/5. In addition, for cases where k <1/2,
o = d
(Y, — Br.nx —eXp(ptz) — Ev.ni) — N(0,exp(2uz)od)
(4.38)

as n— oo, where &y, . =0(m V1 (logn)"1) =o(n™) and vy is de-

fined in Theorem 3.2.

For cases where x >2/5, Theorem 4.10 permits construction of
an asymptotically correct (1 — o) confidence interval for exp(uz)
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Table 1

Productivity Change and Its Components for Swedish Pharmacies, 1980-1989 (p = q = 4).
Period -/ZZ; g].n é;2.n =:7\1.n %.n «5;;" «5;;." j;,n
1980-1981 0.99553 1.01093 1.00411 0.98476*** 0.99945 1.00339*** 0.97980** 0.96640
1981-1982  1.03636 0.96712% 0.97440%* 1.07159*** 1.07646**  0.99626**  0.98252 0.97683
1982-1983 1.01220 1.02702%** 1.02041" 0.98557**  0.98172** 1.00324** 0.99727 0.96616
1983-1984  0.97079 0.99373 0.99808 0.97692** 0.97535 0.99782 0.99065**  0.97401***
1984-1985  1.02153* 1.00194 1.00112* 1.01955** 1.01712** 1.00041 0.99224** 0.97827
1985-1986  1.00942* 0.99339 0.99289 1.01614** 1.01308** 1.00025 0.99335*** 0.97811
1986-1987  1.03270 1.00074*** 1.00522* 1.03194 1.02593 0.99777 0.99173*** 0.97971
1987-1988  1.02152** 1.00663*** 1.00455** 1.01479 1.00935 1.00103* 0.99331* 0.97124**
1988-1989  1.02532* 1.00278** 0.99984** 1.02248** 1.02876*** 1.00147 0.98484 0.97381
1980-1989  1.09186** 1.00326** 1.00003*** 1.08832** 110708+ 1.00161* 0.97410"* 0.93949

Note: Significant differences from 1 at levels .1, .05 or. 01 are indicated by one, two or three asterisks, respectively.

given by

(4.39)

I:’?n _ E“f,n,/( + Z],% exp (ME,n)UE,n ]

n1/2
Alternatively, whenever x < 1/2, Theorem 4.10 can be used to con-
struct the asymptotically correct (1 — «) confidence interval

[?m Bractzs w] (4.40)

nK
Analogous to the discussion above, one could also replace ?nK with
Y, in (4.40), with the coverage of the resulting interval converging
to 1 as n— oo.

5. An empirical illustration

Fdare et al. (1992) examine productivity change among n = 42
Swedish pharmacies over 1980-1989. Their model specifies p =
4 inputs and q =4 outputs.5 As noted in Section 2, Fire et al.
(1992) estimate a Malmquist index based on input-oriented dis-
tance measures, and decompose their index analogously to the
decomposition in (2.9). For each pair of years 1980-1981, 1981~
1982, ..., 1988-1989 Fire et al. (1992) report geometric means of
their estimated Malmquist indices as well as for their estimates
of input-oriented analogues of the components & (Z!,Z? | W1, W?)
and 77(Z}. 2 | W1, W?) defined in (2.9).

Table 1 shows geometric means of estimated hyperbolic
Malmquist indices as well as of the various components de-
fined in (2.9), (2.10), (2.11) and (2.13) obtained using the Fire
et al. (1992) data on Swedish pharmacies. Since Fire et al.
(1992) work in the input orientation, the geometric means re-
ported in columns labeled & ,. 7 , and .#, in Table 1 are equal
to square roots of the corresponding geometric means reported by
Fdre et al. (1992) in their Tables 1-3. One, two or three asterisks
in Table 1 indicate statistical significance of differences from 1 at
levels .1, .05 and .01 (respectively). In discussing their results, Fire
et al. (1992, p. 96) remark that “According to our results, we have
had on average productivity gains in seven periods and productiv-
ity losses in two periods.” In Table 1, geometric means of estimated
Malmaquist indices for year-to-year periods range from 0.9708 to
1.0364, but are significantly different (at the.05 level) from 1 only
for 1984-1985 and 1985-1986 (at.1) and 1987-1988 and 1988-
1989 (at.01). However, looking at 1980-1989, there is evidence of
considerable (about 9 percent, significant at.05) change in produc-
tivity.

In the periods where geometric means of estimated Malmquist
indices are not significantly different from 1, some of the com-
ponents of productivity change are significantly different from 1

6 The inputs are (i) labor input for pharmacists; (ii) labor input for technical staff;
(iii) building services; and (iv) equipment services. The outputs are (i) drug deliver-
ies to hospitals; (ii) prescription drugs for outpatient care; (iii) medical appliances
for the handicapped; and (iv) over the counter goods. See Fire et al. (1992) for fur-
ther details. We are grateful to the authors for making the data available.

although they work to offset each other resulting in no signifi-
cant change in productivity. For example, the geometric mean of
estimated Malmquist indices among the year-to-year periods is
largest—1.03636—for 1981-1982. Both of the geometric means for
efficiency change estimates are significant and less than 1, while
both of the geometric means for change in technology are signifi-
cant and greater than 1. Combined, these results suggest that while
the technology shifted upward between 1981 and 1982, the phar-
macies did not become more productive, and consequently became
less technically efficient. In other words, the technology shifted,
but the pharmacies did not. Instead, they were left behind. The
value of 0.99626 for V’in during 1981-1982 indicates a significant
decrease in scale efficiency, but the value is perhaps not economi-
cally significant since it is numerically close to 1.

For 1980-1989, the estimated value (?’2_" for (geometric) mean
efficiency change is numerically very close to 1, but significantly
different from 1 at the.01 level. This is due in part to the fact that
the estimated variance 652.,1 is rather small (0.00198). Although the
estimate is significantly different from 1, it is perhaps not econom-
ically meaningful. By contrast, the value of the technology-change
estimate 7A2n is equal to 1.10708, and significant at the.01 level. To-
gether, these two estimates imply that the technology shifted up-
ward between 1980 and 1989, and the pharmacies also shifted up-
ward, keeping pace with the technology. The product of the scale
estimates an and %_n is less than 1 (the estimate %,n is also
less than 1). Thus while the results in Table 1 suggest that tech-
nology improved by about 10.7 percent, and efficiency was largely
unchanged, the scale effects offset a small part of the improvement
in technology resulting in an increase in average productivity of
about 9.2 percent.

It is important to note that much more is known about the sta-
tistical properties of DEA estimators today than was known when
Fdre et al. (1992) published their paper. Today, we know the con-
vergence rate of the VRS-DEA estimator and its conical hull (un-
der VRS) is n%/(P+a+1)_ Moreover, with only n = 42 observations in
each year and p + q = 8 dimensions, the well-known curse of di-
mensionality is problematic. The “effective parametric sample size”
defined by Wilson (2018) is only 5. Moreover, the hyperbolic free-
disposal hull efficiency estimator yields 40-42 observations with
efficiency estimates equal to 1 in each year, providing another indi-
cation that the number of dimensions is too large for the available
number of observations to obtain meaningful estimates.

Performing an eigensystem decomposition of the moment ma-
trix X’X of the 4 inputs as discussed by Wilson (2018) indicates
the ratio of the largest eigenvalue to the sum of the eigenvalues
is 95.4. The similar ratio for the 4 outputs is 91.3, and for the 3
outputs excluding deliveries to hospitals the corresponding ratio is
96.5. With only 42 observations in each year, the simulation results
of Wilson (2018) strongly suggest that mean-square error of the
estimates will be reduced using the dimension-reduction method
described by Daraio and Simar (2007) and Wilson (2018).
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Table 2

Productivity Change and Its Components for Swedish Pharmacies, 1980-1989 (p=1, q = 2).
Period -/ZZ; égl‘n é;Z.n -ﬁ.n %.n j;,n j;,n 5;;‘"
1980-1981  1.04115** 0.95615** 096654  1.08889** 1.07917+* 0.99461 0.97483* 0.96916**
1981-1982  1.03009** 0.84746"* 0.91362"* 1.21550"* 1.13658** 0.96311** 095838  0.96331
1982-1983  1.01365 1.17883* 1.08312*** 0.85988**  0.93245**  1.04325**  0.89944**  0.89269"*
1983-1984  0.98084* 0.94881**  1.00099* 1.03376* 0.98498 0.97359*+  0.97029**  0.97443**
1984-1985  1.02794* 1.06846%* 1.03847+ 0.96208**  0.98618** 1.01434** 0.92795**  0.92367**
1985-1986  1.01819*** 0.97724*  0.98190** 1.04190*** 1.03259**  0.99763 0.95523**  0.94924**
1986-1987  1.04266**  1.01199* 1.02699*** 1.03031** 1.01493* 0.99267**  0.94699**  0.94580**
1987-1988  1.04217** 0.98086**  0.99191** 1.06250** 1.04111% 0.99441**  0.94142*** 0.93119"*
1988-1989  1.03364**  1.05425** 1.01015** 0.98044*+  1.03202** 1.02160*** 0.91462** 0.91926**
1980-1989  1.24841**  0.99030 1.00457 1.26064"* 1.25113* 0.99287**  0.97006"*  0.96290

Note: Significant differences from 1 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively.

Table 3

Tests for Differences Between “Small” and “Large” Pharmacies, 1980-1989 (p=1, g =2).
Period n &1 & Fin Fan Fin Fan Fan
1980-1981 —2.330"™ 5.118" 7.260%** —20.902%*  —8.109** —2.690%* 1150 1.055
1981-1982  —2.140** 15.485% 14.521% —18.404*** —15.095**  2.064** —-0.040 -1.399
1982-1983  -0.872 10.758*** 11.472% —19.794** —14.631%** 0.788 —2.978**  —3,033**
1983-1984  —3.868"* 10.131% 10.820*** —50.138** —16.404**  —2.267* 8.202** 1.309
1984-1985  —0.341 —5.104+ -1.329 11.833#* 0.135 —5.804* 10177+ 10.340***
1985-1986  —2.330* 9.300"* 9.199*+* —16.606** —19.068**  —6.044*** 8.891"* 10.258***
1986-1987  —1.874* —4.168"* 12.903* 7457 —16.214*** —18.736**  9.561*** 11.004+
1987-1988  —0.367 5.506"** 8.139%* —8.917+ -16.266"*  —6.563"** 8.767+* 8.908"**
1988-1989  0.393 —9.836™*  —3.398**  31.042" 0.321 —2.841% 6.211%* 6.623**
1980-1989  —3.340**  3.258" 0.557 —8.948+ —5.250%* 3.402%* 4.561*** —5.463%*

Note: Significant differences from 0 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively.

Table 2 show results analogous to those in Table 1 but obtained
working in the reduced space with only the first principle com-
ponent of the 4 inputs (based on the moment matrix of the in-
puts) and the first output (i.e., hospital deliveries) and the first
principle component of the remaining 3 outputs so that p =1 and
q = 2. Comparing the results in Table 2 with those in Table 1, it
is evident that more estimates are significantly different from 1
when dimensionality is reduced than when working in the full-
dimensional space. This is due to the fact that dimension reduction
allows more precise (i.e., reduced mean-square error) estimates.
Moreover, the results for productivity change and for technology
change over 1980-1989 are considerably larger when dimension
reduction is used. This again is to be expected, since with dimen-
sion reduction fewer individual distance estimates are equal to 1
than in the full-dimensional space. The overall conclusions drawn
by Fdre et al. (1992), i.e., that productivity change among the phar-
macies is driven mainly by technology change, remain valid in
view of the results in Table 2. In fact, the results are stronger and
more dramatic than those originally reported by Fare et al. (1992).

It is straightforward to extend the results obtained above in
Section 4 can be used to make test of differences between groups
of producers, similar to the test for differences in mean effi-
ciency developed by Kneip et al. (2016, Section 3.1.1). Suppose
there are two independent groups (labeled “a” and “b”, with
ng and n, observations in each of two time periods with ng +
n, =n. For je{a,b} let n;, = min(|n2« |, n;). Let «7A2,nj and ,@,n”
and denote the geometric means for technical change defined in
(4.18) and (4.21) for group je{a,b}. Similarly, let Egz,nj,,( denote
the generalized jackknife estimate of bias for group je{a,b}. Let
I 7, j be the expectation corresponding to (4.2) for group j<{a,b}.
Theorem 4.7 can be used to establish the following result.

Theorem 5.1. Under the conditions of Theorem 4.2,

(t@,na - @,nb) - (§92.na./< - E%,n,,x) - (EXD(M%VH) - eXp(M%,b))

XPCR 7,000 Ty 0y | KPR 7,0 )T 7ym | /2
Ng + My

4, N0, 1) (5.41)

as n— oo whenever k >2/5. In addition, for cases where k <1/2,

(z,n” - %,nb_,() - (§92.nu.K - Eﬂz.nb.K)(eXp(M%.u) - eXp(M%b))

- ~ - = 12
eXP2LL 7, ng, )0 F, g 4 PR 7,0y, )T 7y, \
Ng,k Mp e

4 N, 1) (5.42)

as n— oo.

Under the null hypothesis that technical change is the same in
both groups, (exp(it ,,a) — €Xp(i &, 5)) = 0, and Theorem 5.1 can
be used to test this hypothesis. Using similar reasoning, the results
in Theorem 4.10 can be used to establish results for the other com-
ponents of productivity change analogous to those in Theorem 5.1.
In addition, Theorems 4.5 and 4.6 of Kneip et al. (2018) can be
used to construct similar results for the Malmquist index itself.

Working in the reduced space with the pharmacy data, we have
p+q=3 and hence « = 1/2. For each pair of years a and b, we
sort the pharmacies according to the value of the single input in
year a, and then compare productivity change and its components
for the smallest 21 pharmacies versus the largest 21 pharmacies.
Table 3 gives results of these tests.

Among the 80 test statistics reported in Table 3, all but 13 are
significantly different from 0. All of the significant statistics for
productivity change are negative, indicating that the larger phar-
macies had greater productivity improvement (or smaller decrease
in 1983-1984) than the smaller pharmacies. The results for techni-
cal change are similar, indicating that the larger pharmacies drove
innovation more than the smaller pharmacies. On the other hand,
statistics for the efficiency change measures as well as the scale
measures are positive and significant in many cases, suggesting
that the smaller pharmacies became relatively more efficiency than
their larger counterparts in many cases.

6. Summary and conclusions

Indices arising from various decompositions of Malmquist
indices are widely used to measure changes in technology effi-
ciency, technology, scale efficiency and other factors and are often
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estimated by nonparametric DEA estimators. Until now, no theo-
retical results justifying inference about the sources of productivity
change measured by these indices have been available, nor have
theoretical results permitting valid inference using geometric
means of these indices been available. These deficiencies are
remedied by the present paper. Results enabling inference via the
subsampling methods of Simar and Wilson (2011) for individual
producers are provided. In addition, new CLT results are estab-
lished to enable inference about overall or average changes in
terms of geometric means. Moreover, as shown in Section 5, it
is easy to use these new CLT results to test hypotheses regard-
ing differences in changes in efficiency, changes in technology,
etc. between groups of firms along the lines of Kneip et al. (2016).

We focus in this paper on hyperbolic measures to avoid issues
of existence and numerical difficulties. Simar, Vanhems, and Wil-
son (2012) extend results on hyperbolic VRS-DEA estimators to di-
rectional VRS-DEA estimators, and the similar arguments can be
used to extend the results obtained above to directional measures
and estimates. Of course, input and output-oriented measures are
special cases of the directional measure, and so the results ob-
tained above also extend trivially to the input and output orien-
tations. Note also that Luenberger indices are simply additive ver-
sions of the multiplicative Malmquist indices. Hicks-Moorsteen in-
dices involve ratios of both input-oriented and output-oriented dis-
tance measures.” Consequently, the results obtained here extend
easily to make inference about these indices, too.

Appendix A. Technical details
Al. Additional assumptions

The two additional assumptions that appear in this section ap-
pear as Assumptions 3.1 and 3.2 in Kneip et al. (2018). The first
assumption is needed to ensure that estimators of O(x, y|¥!) and
y(x, y|¥!) are well-defined. The second assumption ensures that
the cross-efficiency estimators 6(Z? | W1) and 6(Z] | ¥?) as well
as y(Z2 | W) and y(Z] | ¥?) are well-defined. Before stating the
assumptions, some discussion is presented to establish notation
used in the first assumption. See Kneip et al. (2018) for additional
discussion.

Note that for a point (x,y) € D' the input-oriented efficiency
O(x,y | C(¥)) can be written as®

Ox.y|c(vh))

6(x,ay | W)
a

= min
a>0

| (O(x,ay | ¥H)x, ay) € \I/f}. (A1)

In addition, let ¥ € R, denote the smallest a> 0 such that

O(x.y|c(¥h))
_ O(x.ary| W)
L
O(x,ay | W)
a

= min
a>0

| (0(x,ay | W)x, ay) e \I"}. (A2)

Necessarily, a7 e R, is uniquely defined if W' is strictly convex.
Recall that due to Assumptions 2.4-2.7, the support of any ob-
servable data in each period t is some subset D' c Wt In other

7 See Fire, Grosskopf, and Margaritis (2008) for discussions of the Luenberger
and Hicks-Moorsteen indices.

8 For any efficiency estimator 8(x, y|W¥!) considered in this section we will use
the following conventions: if (x,y) ¢ W' with (bx, y)e\II‘Afor some b>1 we set
O(x,y | W) =bO(bx,y | W). Otherwise, O(x, y|W'):=1 (or O(x,y | ¥) := 1) when-
ever the set of all possible values satisfying the defining inequalities is the empty
set. Asymptotically, this has negligible effect.

words, D' is the “observable part” of W!. The difference between
D! and W' does not play an important role in Kneip et al. (2008,
2015, 2016) since Assumption 2.5 requires (i) (O(x,y | ¥)x,y) €
Dt for (B(x,y | ¥Hx,y) e D' and (ii) fiB(x, y|¥')x, y)>0. Here,
however, the difference between D! and W! is problematic for
dealing with 9 (x,y | C(¥!)). Furthermore, in order to ensure that
Malmquist indices are well-defined, D' and D must “fit together”
for different periods t, s. Therefore, some additional conceptual
work is necessary.
Let

e (g 1) 59 47

If p+q=2 then trivially D.,.,, = {(1,1)}. But when p+gq> 2,
Dtorm Will quantify the set of all possible “directions” of vectors
x and y where it is possible to define a frontier. Note that for any
(%,y) with ||X]] =1 and ||y|| =1 and (X,¥) ¢ Dlym» We necessarily
have {ax, by | a,b > 0} N D' = @. This means that “in the direction”
of (X,y) it is not possible to define any type of identifiable effi-
ciency measure, since there is no information about an efficient
frontier in such directions.”

Introduction of D, is of particular importance in a dynamic
context where efficiencies in two different time periods t and s are
to be compared. Frontiers may change and we may have differ-
ent supports D' and D* in the two periods. However, it is neces-
sary that DY, = Diorm- Otherwise, there will be observations in
one period for which distance to the other-period frontier cannot
be defined. In this case Malmquist indices will be undefined with
non-zero, non-negligible probability.

On the other hand, for any (H§T’ ﬁ) € DLy there exists a
unique ray defining the corresponding part of the conical hull fron-
tier ¢? (W!). This can easily be seen by letting (i ﬁ) € Dlorm- In
addition, for a > 0, define

(o) =min o | o) < ¥}
a— ) :=min{b— | (b—,a-— ) € W'}.
gx( Iyl b>0 | [|x]] 1 Nyl

Then there exists some a? > 0 such that

B ) Zaty) Yy x
2 MW _ min { W7 e e B K
o7 min == (e () e )

min (A‘5)

(A3)

(A4)

where oY € Ry is necessarily uniquely defined if W' is strictly
convex.'?

Assuming that only values a leading to well-defined frontier
points are taken into account, for any (x,y) € D' we now have

o a2 I a2
min 9()(, ay) _ n gx(”y” vl ) _ M gx(||)’|| v )
a0 a a0 lx||a [Ix]] “a>0 llylla
Iy & @min )
= B, (A.6)
X Frnin

X.y
X,y : : XYy _ %min
and a7 defined in (A.2) satisfies a = = i

Obviously, all we can hope to estimate is the version of
(A.5) where W' is replaced by the observable part D! c Wt,
Xy ; Xy y Xy y ¢ i
If ap? €Ry is such that (gx(ammm)“i—“,ammm) ¢ D!, then it
is impossible to estimate 6(x,y|C(¥!)) consistently. Minimiz-

ing (A.5) with respect to D! instead of W! will then lead to a

9 Under the strong disposability assumed in Assumption 2.3, the DEA and CDEA
estimators of 6(x, y|W!) and 0 (x,y | C(W!)) described above are well-defined and
can be computed, but they do not estimate anything that does not depend entirely
upon Assumption 2.3 or that can be identified from data when (x,y) & Di,.,.

10 Note that Ex(aui—u) corresponds to the function gX(O,alg—”) defined in Kneip
et al. (2008). The coordinate system introduced in Kneip et al. (2008) is not needed
here, but is required in the proofs that follow in Appendix A.
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“boundary solution” a* € D' which is “as close as possible” to
oz;’;.vn € Ry. This can only be avoided by assuming that D! is large
enough such that (when minimizing (A.5) over D! instead of W!)
the solution a » € Ry is in the interior of Dt in the sense that
(ex (Y — S)IIyII)IIXH () — S)Hyu) e D' as well as (g((a)? +
8)IIyII)HXH’ (ozmm+8)”y”) e DL, Since D! is almost strictly con-
vex by Assumption 2.7, a¥ € R, is necessarily unique, and
Ze(dry —8) Hy\l) Ex(af,;,-ynﬁ) ey +8) ”y“) gx(af,;{nuif”)
@r= " (i +8) i
Convexity of W' then necessarily implies that this value o € R
also corresponds to the solution of the original minimization prob-
lem with respect to W', In this sense the following assumption en-
sures well-defined estimators of 6 (x,y | C(¥!)).

as well as

Assumption A.l. (i) The support D' c W! of f is such that

y
for any (piq. yy) € Dhorm W have @x(eiufy i) - i Ty ©
D; (ii) there exists a §>0 such that for any (”X“,ﬁ)e
Dhorm We also have (gx([er) — Slpp) Hill’[arﬁm 8lpyp) € D' and

min

stant 0 < M < oo such that ||x|| <M for all (x,y) e Dt.

Xy Xy t. (i .
Ex([ayy + 8] o )2 IR [ + 6] ||y”) € Dt; (iii) There exists a con

Now turn to the dynamic case. Suppose that for two different
time periods te {1, 2} we have the set &; = {(Z]). (Z})}, defined
earlier in Section 2 of independent, identically distributed (iid)
pairs (of pairs) of input and output quantities for the two differ-
ent periods. In each period there may exist additional observations
which do not possess a counterpart in the other period. More pre-
cisely, there are n; >n observations in period 1 which are used to
estimate the hyperbolic distance y1(x,y) := y (x,y | C(¥1)), while
there are n, >n observations in period 2 which are used to esti-
mate the hyperbolic distance y2(x,y) := ¥ (x,y | C(¥2)).

Assumption A.2. (i) For te{1, 2} there are iid observations
(Xf. YD), i=1,...,n, such that Assumptions 2.1-2.7 and Al are
satisfied with respect to the underlying densities f¢ with supports
DY (ii) Dhorm = D2orms (iii) for some n<min{ny, n,} the observa-
tions ((Z]). (z)). i=1,..., n are iid and their joint distribution
possesses a continuous density fj; with support D! x D?; (iv) for

anyi=1,...,n, (Z]) is independent of (XJ.Z,YJ.Z) forall j=1,...,n,
with ij; (v) for any i=1,....n, (Z?) is independent of (XJ.],YJ])
forall j=1,...,ny with i#j.

Note that condition (i) of this assumption only guarantees that
all estimators 6 (x, y | ‘J/,ﬁ[)) and y (x,y | \D,ﬂ[) follow the asymptotic
distributions derived in Theorems 3.1 and 3.2 of Kneip et al. (2018).
Condition (ii) together with Eq. (3.9) of Kneip et al. (2018) ensures
that the cross-efficiency estimators 6 (Z? | @,1,1) and 6(Z! | \Tlﬁz)
as well as y (22 | \T/,}l) and y (Z} |\TJ,%2) are asymptotically well-
defined and possess the same rates of convergence as the con-
temporaneous efficiency estimators. Conditions (iv)-(v) permit de-
pendence of a given firm’s input-output quantities across periods 1
and 2, but require independence of the firm’s input-output quanti-
ties from those of other firms in other periods.

A2. Proof of Theorem 3.1

For case (i) where I'(-) denotes the identity function, the result
follows immediately from Wilson (2011, Theorems 6.3.1 and 6.3.2).
Given the result for case (i), the result for case (ii) where I'(-) de-
notes the log function follows via the delta method given the fact
that the log function is monotone and differentiable with non-zero
derivatives on R;. O

A3. Proof of Theorem 3.2

For case (i) where I'(-) denotes the identity function, consider
the mapping ¢ from RY x R1 to R? x RI such that ¢ : (x,y) —
(x,y~1) where y~! is the vector whose elements are the inverses
of the corresponding elements of y. Denote w = ¢ (x,y). Clearly, ¢
is a continuous, one-to-one transformation; hence (x,y) = ¢~ ().
From the proof of Theorem 6.3.1 in Wilson (2011), it is clear that
in w-space, y(X;, Y;|W!) is an input-oriented efficiency measure
along the lines of (2.4). Moreover, by Theorem 6.3.1 and Lemma
6.3.1 of Wilson (2011), y (X;,Y; | @,ﬁ) is an ordinary input-oriented
(VRS) DEA estimator along the lines of (3.2) with (p+q) “inputs”
and no outputs. Hence the results in (3.9)-(3.11) follow from Kneip
et al. (2015, Theorem 3.1).

For case (ii) where I'(-) denotes the log function, by A.1 part
(iii), y(X;, Y;| W) as well as the derivatives y’'(X;, Y;|Wt) and y"(X;,
Y;|W!) are uniformly bounded for all (X;,Y;) € Dt. Then the results
in (3.9)-(3.11) follow from arguments parallel to those used in the
proof of Theorem 3.2 of Kneip et al. (2018). O

A4. Proof of Theorem 3.3

For t =s the results in (3.12)-(3.14) follow trivially from case
(ii) of Theorem 3.2.

For t+#s, note that due to Assumption A.2, D}orm = D2 The
results follow from arguments parallel to those used in the proof
of Theorem 3.4 in Kneip et al. (2018). O

A5. Proof of Theorem 4.1
By definition, taking logs yields
log (T2(z". 2% | W', w?))
=log(y(Z | Wh) —log (v (z* | ¥?))

+log (y (@' | W) —log (y(z' | ¥?)) (A7)
and
log (T2(z'. 22 | W} . ¥2))
=log (v (22| ¥})) —log (v (2% | ¥2))
+log (y (@' | BL)) —log (v (2" | ¥2)). (A.8)

Note that Theorem 3.1 holds for both z! and 72 due to

Assumption A.2. Then

n“(log (T2(z". 2 | \T’,?,l W2)) —log(T2(2'. 22 | W', ¥?)))
L

= Q% . (A.9)

follows trivially from Theorem 3.1. The exponential function is
monotonic and differentiable with nonzero derivatives on R..
Therefore the result follows from (A.9) via the delta method. O

A6. Proof of Theorem 4.2

First, let

Rn =E(pn — U7)
= DTZTI_K — SH.K'

(A10)
To simplify notation, let 75 = 75(Z!.Z? | !, W?) and let Toi =
Rz | W w2

2). Then (4.4) can be rewritten as

n'2(fpn — oy, — Ra)

nl/2 n -
=0 (log Tai — log Toi —
i=1

E(log T3:) + i)



768 L. Simar and P. W. Wilson/European Journal of Operational Research 277 (2019) 756-769

nl2
+ TZ(IOgTzi—MTJ (A11)
i=1
Results (3.9)-(3.10) in Theorem 3.2 imply
nt2 2 N N )
— 2_(logT5; —log To; — E(log Tai) + pu73) — 0. (A12)
i=1

Hence result (4.4) follows from the Lindeberg-Levy CLT.
Second, the results in (4.5) follows directly from (A.9) in the
proof of Theorem 4.1. In particular, E%Z,nzn‘l St (log(Ty) —

Arn)? > El(10g 7)) - 13, , = VAR(Iog Ty)) + [E(log To) | -
13, =02 since [E(log To) > — 3, =0. O

A7. Proof of Theorem 4.3

The result follows immediately from Theorem 4.2 since the re-
mainder term is of order o(n™*) and hence n“&r, =n“o(n™*) =
o(1). Since [i7,n in (4.4) has been replaced with fiy, 5, in (4.8),
the scale factor needed to stabilize the variance is n*. O

A8. Proof of Theorem 4.4

The results follow trivially after substituting the jackknife bias
estimator into (4.4) and (4.8). When (p+q) =4 then k =2/5,
and the remainder term in (4.4) is O(n=3</2) ignoring the (logn)
term which does not affect the rate. Moreover, n'/20(n=3¢/2) =
0(n=1/10) while in (4.8) n&p, = 0(n~17%). O

A9. Proof of Theorem 4.5

The result follows using the delta method. Define

Rn=E(rn— p) =Dpn™ +&n (A13)

where « is the remainder term defined in (4.4) in Theorem 4.2. A
Taylor expansion yields

n'/2(exp(fiz,n) — eXp(7, + Rn))
=exp(us + Rn)nl/z (ﬁTzn - —Ra) + Op(n_1/2)~ (A14)

Since Ry = O(n™*), the result follows from a further Taylor expan-
sion of exp(iu7, + Rn) and result (4.4) in Theorem 4.2. O

A10. Proof of Theorem 4.6

The exponential function is monotonic and differentiable with
nonzero derivatives on R,. Therefore the result follows from
Theorem 4.3 via the delta method. O

Al1. Proof of Theorem 4.7

The results follow trivially after substituting the jackknife bias
estimator into (4.19) and (4.22). O
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