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a b s t r a c t 
Malmquist indices are often used to measure productivity changes in dynamic settings and have been 
widely applied. The indices are typically estimated using data envelopment analysis (DEA) estimators. 
Malmquist indices are often decomposed into sub-indices that measure the sources of productivity 
change (e.g., changes in efficiency, technology or other factors). Recently, Kneip et al. (2018) provide new 
theoretical results enabling inference about productivity change for individual firms as well as average 
productivity changed measured in terms of geometric means. This paper extends those results to com- 
ponents of productivity change arising from various decompositions of Malmquist indices. New central 
limit theorems are developed to allow inference about arithmetic means of logarithms of the sub-indices 
as well as geometric means of (untransformed) sub-indices. The results are quite general and extend to 
other sub-indices not explicitly considered in this paper. 

© 2019 Elsevier B.V. All rights reserved. 
1. Introduction 

Nonparametric Malmquist indices are widely used to assess 
changes in productivity across firms in various industries. In 
addition, Malmquist indices are often decomposed into various 
measures of sources of productivity change, including changes 
in efficiency, changes in technology, and other factors. Exam- 
ples include Aly, Grabowski, Pasurka, and Rangan (1990) , Färe, 
Grosskopf, Lindgren, and Roos (1992, 1994a) , Färe, Grosskopf, and 
Norris (1997) , Gilbert and Wilson (1998) , Simar and Wilson (1998) , 
Wheelock and Wilson (1999) , Alam (2001) , Armagan, Ozden, and 
Bekcioglu (2010) , Liu (2010) , de Castro Lobo, Ozcan, da Silva, Lins, 
and Fiszman (2010) , Andries (2011) , Chang, Hsiao, Huang, and 
Chang (2011) , Chowdhury, Wodchis, and Laporte (2011) , Ng (2011) , 
Egilmez and McAvoy (2013) , Ahn and Min (2014) , Bassem (2014) , 
Wu, Cao, and Liu (2014) and Woo, Chung, Chun, Seo, and Hong 
(2015) . 1 Estimates of both Malmquist indices and their component 
indices are typically reported for individual firms or units, and 
often results are summarized by reporting geometric means of 
estimated Malmquist indices and their corresponding component 

∗ Corresponding author. 
E-mail addresses: leopold.simar@uclouvain.be (L. Simar), pww@clemson.edu (P. 

W. Wilson). 
1 See also Färe, Grosskopf, and Margaritis (2011) for a recent survey on the use 

of Malmquist indices. 

indices. Geometric means, as opposed to arithmetic means, are 
used to preserve the multiplicative nature of the indices. 

Most applied papers that estimate productivity change and its 
component sources make no attempt at inference. The few that 
attempt inference either rely on standard Central Limit Theorem 
(CLT) results or the bootstrap method proposed by Simar and Wil- 
son (1999) . As demonstrated below, however, inferences based on 
standard CLT results is invalid for cases with more than one input 
and one output for reasons similar to those discussed by Kneip, 
Simar, and Wilson (2015) in the context of mean efficiency in 
cross-sectional settings. Moreover, Simar and Wilson (1999) pro- 
vide only heuristic arguments to develop their bootstrap method 
and do not provide any theoretical results. Although the simula- 
tion evidence provided by Simar and Wilson (1999) suggests that 
their smooth bootstrap method works well, the approach cannot 
be justified theoretically in view of the results obtained below. 

Until recently, no theoretical results have been available to per- 
mit inference about productivity change estimated by Malmquist 
indices. Kneip, Simar, and Wilson (2018) establish the convergence 
rate and the existence of a non-degenerate limiting distribution for 
data envelopment analysis (DEA) estimators of Malmquist indices 
for individual producers. These results enable use of the subsam- 
pling methods of Simar and Wilson (2011) to make inference about 
the productivity change from one period to another by an indi- 
vidual producer. In addition, Kneip et al. (2018) provide new cen- 
tral limit theorem (CLT) results for geometric means of Malmquist 
indices as well as arithmetic means of logarithms of Malmquist 
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indices over samples of producers. 2 This paper extends the results 
of Kneip et al. (2018) to component indices obtained by various 
decompositions of Malmquist indices into sources of productivity 
change. Theoretical results developed below provide convergence 
rates and existence of non-degenerate limiting distributions for in- 
dices measuring change in efficiency, change in technology, etc. for 
individual producers, enabling use of the subsampling methods 
presented by Simar and Wilson (2011) to make inference about 
individual units. In addition, new CLT results are provided to en- 
able inference about geometric means of the component indices as 
well as arithmetic means of their logarithms. These new CLT re- 
sults can be used to make inference about average (geometric or 
arithmetic) changes in components of productivity change. In addi- 
tion, the new CLT results can be used for hypothesis testing about 
differences in changes in efficiency, technology or other features 
between groups of firms along the lines of Kneip, Simar, and Wil- 
son (2016) . 

The next section develops a nonparametric, statistical model 
of production in a dynamic context. Various decompositions of 
Malmquist indices are considered. The Malmquist index and its 
component indices are defined in terms of hyperbolic distances (as 
opposed to distances in the input or output directions) in order to 
ensure that the component indices are well-defined. In Section 3 , 
hyperbolic DEA estimators and their asymptotic properties are dis- 
cussed. Near the end of Section 3 , new results for these estima- 
tors needed for components of Malmquist indices are developed. 
Results for making inference about components of productivity 
change are presented in Section 4 . In Section 4.1 , results for in- 
ference about change in technology are developed. These results 
are then extended to other components of productivity change in 
Section 4.2 . An empirical illustration using data from Färe et al. 
(1992) , is presented in Section 5 , and conclusions are discussed in 
Section 6 . Additional technical details, as well as proofs of the the- 
orems presented in Sections 3 and 4 appear in Appendix A . 
2. A dynamic, nonparametric production process 

In order to establish notation, let x ∈ R p + and y ∈ R q + be vectors 
of fixed input and output quantities. Throughout, vectors are as- 
sumed to be column-vectors, as opposed to row-vectors. At time t , 
the set of feasible combinations of inputs and outputs is given by 
!t := { (x, y ) | x can produce y at time t } . (2.1) 
The technology , or efficient frontier of ! t , is given by 
!t∂ := {(x, y ) | (x, y ) ∈ !t , (γ x, γ −1 y ) ̸∈ !t ∀ γ ∈ (0 , 1) }. 

(2.2) 
Various economic assumptions regarding ! t can be made; the 

assumptions of Shephard (1970) and Färe (1988) are typical in mi- 
croeconomic theory of the firm and are used here. 
Assumption 2.1. ! t is closed and strictly convex. 
Assumption 2.2. (x, y ) ̸∈ !t if x = 0 , y ≥0, y ̸ = 0; i.e., all production 
requires use of some inputs. 
Assumption 2.3. For ̃  x ≥ x, ̃  y ≤ y, if ( x , y ) ∈ ! t then ( ̃  x , y ) ∈ !t and 
(x, ̃  y ) ∈ !t ; i.e., both inputs and outputs are strongly disposable. 

Here and throughout, inequalities involving vectors are 
defined on an element-by-element basis, as is standard. 

2 The results obtained by Kneip et al. (2018) make clear that standard CLT results 
such as the Lindeberg–Feller CLT cannot be used to make inference about means of 
logs of Malmquist indices. 

Assumption 2.2 rules out free lunches, while Assumption 2.3 im- 
poses weak monotonicity on the frontier. 

The Farrell (1957) output efficiency measure at time t gives the 
feasible proportionate expansion of output quantities and is de- 
fined by 
λ(x, y | !t ) := sup {λ | (x, λy ) ∈ !t }. (2.3) 
This gives a radial measure of efficiency since all output quantities 
are scaled by the same factor λ. The Farrell (1957) input efficiency 
measure at time t is given by 
θ (x, y | !t ) := inf {θ | (θx, y ) ∈ !t } (2.4) 
and measures efficiency in terms of the amount by which input 
levels can be scaled downward by the same factor without reduc- 
ing output levels. Clearly, λ( x , y | ! t ) ≥1 and θ ( x , y | ! t ) ≤1 for all 
( x , y ) ∈ ! t . 

An alternative measure of efficiency is the hyperbolic graph 
measure of efficiency at time t introduced by Färe, Grosskopf, and 
Lovell (1985) , i.e., 
γ (x, y | !t ) := inf {γ > 0 | (γ x, γ −1 y ) ∈ !t }. (2.5) 
By construction, γ ( x , y | ! t ) ≤1 for ( x , y ) ∈ ! t . Just as the measures 
θ ( x , y | ! t ) and λ( x , y | ! t ) provide measures of the technical effi- 
ciency of a firm operating at a point ( x , y ) ∈ ! t , so does γ ( x , y | ! t ), 
but along a hyperbolic path to the frontier of ! t . The measure in 
(2.5) gives the amount by which input levels can be feasibly, pro- 
portionately scaled downward while simultaneously scaling output 
levels upward by the same proportion. 

Next, define the operator C(·) so that 
C(!t ) : = { (x, y ) | x = a ̃  x , 

y = a ̃  y for some ( ̃  x , ̃  y ) ∈ !t and any a ∈ R 1 + } (2.6) 
is the convex cone of the set ! t . Note that this is a pointed cone 
(i.e., C(!t ) includes {(0, 0)}). Analogous to (2.2) , the frontier of this 
set is given by 
C ∂ (!t ) : = { (x, y ) | (x, y ) ∈ C(!t ) , 

(γ x, γ −1 y ) / ∈ C(!t ) ∀ γ ∈ (0 , 1) } . (2.7) 
If C(!t ) = !t , then the frontier ! t ∂ at time t exhibits globally 
constant returns to scale (CRS), although this is ruled out by strict 
convexity of ! t in Assumption 2.1 . Otherwise, !t ⊂ C(!t ) and ! t ∂ 
is said to exhibit variable returns to scale (VRS), with returns to 
scale either increasing, constant, or decreasing depending on the 
particular region of the frontier. 

Now consider a sample X n = { (X 1 
i , Y 1 i ) , (X 2 i , Y 2 i ) } n i =1 of input- 

output combinations for n firms observed in periods t = 1 and 2. 
To simplify notation, define Z t 

i := (X t 
i , Y t i ) for t ∈ {1, 2}. Then the 

sample X n is represented by X n = { Z 1 
i , Z 2 i } n i =1 . Firm i ’s change in 

productivity between periods 1 and 2 is measured by the hyper- 
bolic Malmquist index 
M i := 

( 
γ
(
Z 2 i | C(!1 ) )

γ
(
Z 1 
i | C(!1 ) ) ×

γ
(
Z 2 i | C(!2 ) )

γ
(
Z 1 
i | C(!2 ) )

) 1 / 2 
. (2.8) 

This is the geometric mean of two ratios, each providing a mea- 
sure of productivity change, in the first case using the boundary of 
C(!1 ) as a benchmark, and in the second case using the boundary 
of C(!2 ) as a benchmark. For firm i , M i > (= or < ) 1 if produc- 
tivity increases (remains unchanged or decreases) between periods 
1 and 2. As in Kneip et al. (2018) , the Malmquist index here is 
defined in terms of hyperbolic measures as opposed to input- or 
output-oriented measures to avoid numerical difficulties. Zofio and 
Lovell (2001) , Johnson and McGinnis (2009) and Russell (2018) dis- 
cuss the advantages of defining Malmquist indices in terms of hy- 
perbolic distances. In particular, use of hyperbolic measures helps 
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ensure that all of the components of productivity change defined 
below are well-defined. 

Various decompositions of Malmquist indices have been pro- 
posed in attempts to identify the sources of any changes in pro- 
ductivity. Färe et al. (1992) propose the input-oriented analog of 
M i = [γ (Z 2 i | C(!2 )) 

γ (Z 1 
i | C(!1 )) 

]

︸ ︷︷ ︸ 
:= E 1 (Z 1 i ,Z 2 i | !1 , !2 ) 

×
[
γ (Z 2 i | C(!1 )) 
γ (Z 2 

i | C(!2 )) × γ (Z 1 i | C(!1 )) 
γ (Z 1 

i | C(!2 )) 
]1 / 2 

︸ ︷︷ ︸ 
:= T 1 (Z 1 i ,Z 2 i | !1 , !2 ) 

. (2.9) 
The authors remark (p. 90) that “the quotient outside the bracket 
measures the change in technical inefficiency and the ratios inside 
the bracket measure the shift in the frontier between periods” 1 
and 2. However, this is true if and only if the technology is one of 
globally constant returns to scale. Recognizing this, Färe, Grosskopf, 
Norris, and Zhang (1994b) decompose the output-oriented analog 
of E 1 (Z 1 i , Z 2 i | !1 , !2 ) to obtain the output-oriented analog of 
M i = [γ (Z 2 i | !2 ) 

γ (Z 1 
i | !1 ) 

]

︸ ︷︷ ︸ 
:= E 2 (Z 1 i ,Z 2 i | !1 , !2 ) 

×
[
γ (Z 2 i | C(!2 )) /γ (Z 2 i | !2 ) 
γ (Z 1 

i | C(!1 )) /γ (Z 1 
i | !1 ) 

]1 / 2 
︸ ︷︷ ︸ 

:= S 1 (Z 1 i ,Z 2 i | !1 , !2 ) 
× T 1 (Z 1 i , Z 2 i | !1 , !2 ) . (2.10) 

Here, E 2 (Z 1 i , Z 2 i | !1 , !2 ) gives a measure of technical efficiency 
change under either variable or constant returns to scale since ef- 
ficiency is measured in terms of !1 and !2 as opposed to the 
conical hulls of !1 and !2 as in E 1 (Z 1 i , Z 2 i | !1 , !2 ) in (2.9) . The 
term S 1 (Z 1 i , Z 2 i | !1 , !2 ) provides a measure of any change in the 
scale efficiency of firm i . The ratio in the denominator of S 1 mea- 
sures the distance between the projection of (Z 1 

i ) onto !1 ∂ and 
the projection of (Z 1 

i ) onto C ∂ (!1 ) , providing a measure of the 
scale efficiency of firm i in period 1. 3 The ratio in the numerator of 
S 1 (Z 1 i , Z 2 i | !1 , !2 ) provides the corresponding measure in period 
2. It is easy to see that both the numerator and the denominator of 
S 1 must be less than 1, and that S 1 > (= , < ) 1 iff scale efficiency 
for firm i increases (remains unchanged, decreases) from period 1 
to period 2. 

Both decompositions in (2.9) and (2.10) use the term T 1 to mea- 
sure change in technology, but this term is based on the conical 
hulls of !1 and !2 . Under variable returns to scale, it is possi- 
ble for the conical hulls to remain unchanged while the technol- 
ogy shifts upward or downward in regions where the technology 
! t ∂ is not coincident with C ∂ (!t ) . This problem is addressed by 
Ray and Desli (1997) who propose the output-oriented analog of 
the decomposition 
M i = E 2 (Z 1 i , Z 2 i | !1 , !2 ) × [

γ (Z 2 i | !1 ) 
γ (Z 2 

i | !2 ) × γ (Z 1 i | !1 ) 
γ (Z 1 

i | !2 ) 
]1 / 2 

︸ ︷︷ ︸ 
:= T 2 (Z 1 i ,Z 2 i | !1 , !2 ) 

= [γ (Z 2 i | C(!1 )) /γ (Z 2 i | !1 ) 
γ (Z 1 

i | C(!2 )) /γ (Z 1 
i | !2 ) × γ (Z 2 i | C(!2 )) /γ (Z 2 i | !2 ) 

γ (Z 1 
i | C(!1 )) /γ (Z 1 

i | !1 ) 
]1 / 2 

︸ ︷︷ ︸ 
:= S 2 (Z 1 i ,Z 2 i | !1 , !2 ) 

(2.11) 
The term T 2 (Z 1 i , Z 2 i | !1 , !2 ) provides a measure of the change in 
technology between periods 1 and 2 regardless of whether returns 

3 Note that firm i would be scale-efficient in period 1 if γ (Z 1 i | C(!1 )) = γ (Z 1 i | 
!1 ) . Otherwise, the firm is scale-inefficient. See Wheelock and Wilson (1999) for 
discussion. 

to scale are constant or variable. This term consists of a geometric 
mean of two ratios. The first ratio gives a measure of any shift in 
the technology !∂ relative to firm i ’s position in period 2. Simi- 
larly, the second ratio gives a measure of any shift in the technol- 
ogy relative to firm i ’s position in period 1. Either of these ratios 
is greater than (equal to, less than) 1 iff the technology shifts out- 
ward (remains unchanged, shifts inward). 

Ray and Desli (1997) remark (p. 1036) that S 2 (Z 1 i , Z 2 i | !1 , !2 ) 
“is a geometric mean of the ratios of scale efficiencies of the two 
bundles using in turn the VRS technologies from the two periods 
as the benchmark. In that sense, it is more in the spirit of a Fisher 
index.” Färe et al. ( 1997 , p. 1042) criticize the measure S 2 , and in 
particular note that the term “may incorrectly identify the scale 
properties of the underlying technology.” while providing an illus- 
trative example in their footnote 7. 

Indeed, the term S 2 (Z 1 i , Z 2 i | !1 , !2 ) defined by (2.11) can be 
written as 
S 2 (Z 1 i , Z 2 i | !1 , !2 ) 

= [γ (Z 2 i | C(!1 )) /γ (Z 2 i | !1 ) 
γ (Z 1 

i | C(!2 )) /γ (Z 1 
i | !2 ) × S 1 (Z 1 i , Z 2 i | !1 , !2 ) ]1 / 2 

. 
(2.12) 

The meaning of S 1 (Z 1 i , Z 2 i | !1 , !2 ) is clear and intuitive, but the 
first ratio inside the parentheses in (2.12) is less so. The numer- 
ator of this ratio measures scale efficiency in period 1, but from 
the viewpoint of the firm’s location in period 2. Similarly, the de- 
nominator measures scale efficiency in period 2, but relative to 
the firm’s location in period 1. Lovell ( 2003 , p. 442) describes 
S 2 (Z 1 i , Z 2 i | !1 , !2 ) and notes that “the qualifier ‘change’ refers to 
the quantity vectors but not to the technologies.”

Gilbert and Wilson (1998) , Simar and Wilson (1998) and 
Wheelock and Wilson (1999) use the output-oriented analog of 
M i = E 2 (Z 1 i , Z 2 i | !1 , !2 ) × T 2 (Z 1 i , Z 2 i | !1 , !2 ) 

× S 1 (Z 1 i , Z 2 i | !1 , !2 ) 
×

[
γ (Z 1 i | C(!1 )) /γ (Z 1 i | !1 ) 
γ (Z 1 

i | C(!2 )) /γ (Z 1 
i | !2 ) × γ (Z 2 i | C(!1 )) /γ (Z 2 i | !1 ) 

γ (Z 2 
i | C(!2 )) /γ (Z 2 

i | !2 ) 
]1 / 2 

︸ ︷︷ ︸ 
:= S 3 (Z 1 i ,Z 2 i | !1 , !2 ) 

(2.13) 
after decomposing S 2 (Z 1 i , Z 2 i | !1 , !2 ) in (2.11) into S 1 (Z 1 i , Z 2 i | 
!1 , !2 ) and S 3 (Z 1 i , Z 2 i | !1 , !2 ) . This measure consists of a ge- 
ometric mean of two ratios, each resembling the ratio that de- 
fines S 1 (Z 1 i , Z 2 i | !1 , !2 ) in (2.10) , but with some important dif- 
ferences. Note that S 1 (Z 1 i , Z 2 i | !1 , !2 ) measures the change in 
scale efficiency of the firm. This could improve if the firm moves 
closer to the most efficient scale size in period 2, or it could im- 
prove if the firm does not move between periods 1 and 2, but the 
technology changes so that !2 ∂ is closer to C ∂ (!2 ) than !1 ∂ is 
to C ∂ (!1 ) . But now consider the first ratio in the definition of 
S 3 (Z 1 i , Z 2 i | !1 , !2 ) in (2.13) . Here, the firm’s position is fixed at 
its location in period 1; the ratio can differ from 1 iff the distance 
between the projection of (Z 1 

i ) onto !1 ∂ and C ∂ (!1 ) is different 
from the projection of (Z 1 i ) onto !2 ∂ and C ∂ (!2 ) along the hy- 
perbolic path through (Z 1 

i ) . The second ratio in S 3 (Z 1 i , Z 2 i | !1 , !2 ) 
provides a similar measure relative to the firm’s position in pe- 
riod 2, and S 3 (Z 1 i , Z 2 i | !1 , !2 ) is the geometric mean of these two 
measures. 4 Gilbert and Wilson (1998) , Simar and Wilson (1998) and 
Wheelock and Wilson (1999) label their corresponding measures 
“&ScaleTech,” and both Simar and Wilson (1998) and Wheelock 

4 Balk ( 2001 , p. 173) remarks that the decomposition in (2.13) is confusing, but 
its meaning seems clear. 



L. Simar and P. W. Wilson / European Journal of Operational Research 277 (2019) 756–769 759 
and Wilson (1999) refer to the term as a measure of “the scale 
of the technology” as opposed to the change in the scale efficiency 
of a firm as measured by S 1 . See Simar and Wilson (1998) and 
Wheelock and Wilson (1999) for further discussion and illustra- 
tions. 5 

All of the quantities and model features defined so far are un- 
observable, and hence must be estimated. In addition, inference 
is needed in order to know what might be learned from data. 
Some additional assumptions are needed to complete the statis- 
tical model. The following assumptions are analogous to Assump- 
tions 3.1–3.4 of Kneip et al. (2015) . In order to draw upon previ- 
ous results, we state the assumptions below in terms of the input- 
oriented measure of efficiency. The assumptions can also be stated 
in terms of the output, hyperbolic and directional measures of effi- 
ciency, and the results of Kneip et al. (2015) extend to those mea- 
sures after trivial (but tedious) changes in notation in Kneip et al. 
(2015) . 
Assumption 2.4. (i) The random variables ( X , Y ) possess a joint 
density f t with support D t ⊂ !t ; and (ii) f t is continuously dif- 
ferentiable on D t . 
Assumption 2.5. (i) D t∗ := { θ (x, y | !t ) x, y ) | (x, y ) ∈ D t } ⊂ D t ; 
(ii) D t∗ is compact; and (iii) f t ( θ ( x , y ) x , y ) > 0 for all (x, y ) ∈ D t . 

The next two assumptions are needed when DEA estimators 
are used. Assumption 2.6 imposes some smoothness on the fron- 
tier. Kneip, Simar, and Wilson (2008) require only two-times differ- 
entiability to establish the existence of a limiting distribution for 
VRS-DEA estimators, but the stronger assumption that follows is 
needed to establish results on moments of the DEA estimators. 
Assumption 2.6. θ ( x , y | ! t ) is three times continuously differen- 
tiable on D t . 

Recalling that the strong (i.e., free) disposability assumed in 
Assumption 2.3 implies that the frontier is weakly monotone, the 
next assumption strengthens this by requiring the frontier to be 
strictly monotone with no constant segments. This is also needed 
to establish properties of moments of the DEA estimators. 
Assumption 2.7. D t is almost strictly convex ; i.e., for any 
(x, y ) , ( ̃  x , ̃  y ) ∈ D t with ( x 

∥ x ∥ , y ) ̸ = ( ˜ x 
∥ ̃  x ∥ , ̃  y ) , the set { (x ∗, y ∗) | 

(x ∗, y ∗) = (x, y ) + α(( ̃  x , ̃  y ) − (x, y )) for some 0 < α < 1 } is a subset 
of the interior of D t . 

Assumptions 2.1 –2.7 comprise a statistical model similar to the 
one defined in Kneip et al. (2015) and where DEA estimators have 
desirable properties. However, two additional, important assump- 
tions are needed to obtain asymptotic properties of DEA estima- 
tors derived by Kneip et al. (2018) of the Malmquist index defined 
in (2.8) as well as of DEA estimators of the various components 
of Malmquist indices presented above. These assumptions appear 
as Assumptions 3.1 and 3.2 in Kneip et al. (2018) . Since these as- 
sumptions involve considerable technical detail and require addi- 
tional notation, the assumptions are presented with some discus- 
sion in Section A.1 of Appendix A . Assumption A.1 is needed to en- 
sure well-defined estimators of θ (x, y | C(!t )) and γ (x, y | C(!t )) . 
Part (iii) of the assumption is needed to bound the logarithms 
of these as well as of θ ( x , y | ! t ) and γ ( x , y | ! t ) away from zero. 

5 Other decompositions are possible, and it is not feasible to give an exhaustive 
treatment here. See Lovell (20 03) and Zofio (20 07) for summaries and discussion. 
Note that Lovell (2003) refers to S 2 (Z 1 i , Z 2 i | !1 , !2 ) as “the activity effect” and de- 
composes (p. 446) the term into 3 components. Estimation of each of these new 
components requires nesting one estimator inside another, resulting in consider- 
able complication for statistical inference requiring new theoretical results that are 
beyond the scope of this paper. 

Assumption A.2 is required to ensure well-defined estimators of 
cross-period efficiencies. 
3. Hyperbolic DEA estimators and their asymptotic properties 

The VRS-DEA estimator of ! t proposed by Farrell (1957) and 
Banker, Charnes, and Cooper (1984) is the convex hull of the free- 
disposal hull of observed input-output pairs in period t . The esti- 
mator is given by 
̂ !t 

n := {(x, y ) ∈ R p+ q | y ≤ Y t ω , x ≥ X t ω , i ′ n ω = 1 , ω ∈ R n + }, 
(3.1) 

where X t = −P LX pmatrix − (
X t 1 , . . . , X t n ) − P LX pmatrix − and Y t = 

−P LX pmatrix − (
Y t 1 , . . . , Y t n ) − P LX pmatrix − are ( p ×n ) and ( q ×n ) 

matrices of input and output vectors in period t , respectively; i n 
is an ( n ×1) vector of ones, and ω is a ( n ×1) vector of weights. 
Replacing ! t in (2.4) with ̂ !t 

n yields the linear program 
θ (x, y | ̂ !t 

n ) = min 
θ , ω {θ | y ≤ Y t ω , θx ≥ X t ω , i ′ n ω = 1 , ω ∈ R n + }. 

(3.2) 
Alternatively, replacing ! t in (2.5) with ̂ !t 

n yields the nonlinear 
program 
γ (x, y | ̂ !t 

n ) 
= min 

γ , ω {γ | γ −1 y ≤ Y t ω , γ x ≥ X t ω , i ′ n ω = 1 , ω ∈ R n + }. (3.3) 
Wilson (2011) provides a simple numerical algorithm for comput- 
ing γ (x, y | ̂ !t 

n ) that avoids the computational difficulty of solving 
the nonlinear program directly. 

Alternatively, the conical DEA (CDEA) estimator C ( ̂  !t ) of C (!t ) 
is obtained by dropping the constraint i ′ n ω = 1 in (3.1) . This leads 
to the CDEA estimator γ (x, y | C( ̂  !t )) of γ (x, y | C(!t )) obtained 
by dropping the constraint i ′ n ω = 1 in (3.3) . 

Kneip et al. (2018) establish asymptotic properties of the CDEA 
estimator γ (x, y | C( ̂  !t )) of γ (x, y | C(!t )) under appropriate as- 
sumptions. In particular, Kneip et al. (2018) establish consistency 
and existence of a non-degenerate limiting distribution with rate 
of convergence n κ under Assumptions 2.1 –2.7 where 
κ := 2 

p + q + 1 . (3.4) 
In addition, Kneip et al. (2018) establish properties of the first two 
moments of γ (x, y | C( ̂  !t )) as well as of log γ (x, y | C( ̂  !t )) . 

Kneip et al. (2018) then consider a firm operating at observed, 
fixed points ( x 1 , y 1 ) and ( x 2 , y 2 ) in periods 1 and 2. From (2.8) the 
Malmquist index for this firm is 
M = 

[ 
γ
(
x 2 , y 2 | C(!1 ) )

γ
(
x 1 , y 1 | C(!1 ) ) ×

γ
(
x 2 , y 2 | C(!2 ) )

γ
(
x 1 , y 1 | C(!2 ) )

] 1 / 2 
. (3.5) 

Using the data X 1 n 1 := { (X 1 
i , Y 1 i } i =1 , ... ,n 1 and X 2 n 2 := { (X 2 

i , Y 2 i } i =1 , ... ,n 2 , 
M can be estimated by 
̂ M = 

[ 
γ
(
x 2 , y 2 | C( ̂  !1 

n 1 ) )
γ
(
x 1 , y 1 | C( ̂  !1 

n 1 ) ) ×
γ
(
x 2 , y 2 | C( ̂  !2 

n 2 ) )
γ
(
x 1 , y 1 | C( ̂  !2 

n 2 ) )
] 1 / 2 

. (3.6) 
Under Assumptions 2.1 –2.7, A.1 and A.2, Theorem 3.3 of Kneip 
et al. (2018) establishes the existence of a non-degenerate limiting 
distribution as well as the convergence rate for the estimator in 
(3.6) of the Malmquist index for a given firm observed in periods 
1 and 2. These results permit inference about the unobserved, true 
Malmquist index M using the subsampling methods described by 
Simar and Wilson (2011) . In addition, Theorems 4.2 and 4.3 of 
Kneip et al. (2018) provide CLTs for making inference about µM := 
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E( log M i ) where the expectation is over ( X 1 , Y 1 , X 2 , Y 2 ). In ad- 
dition, Theorems 4.5 and 4.6 of Kneip et al. (2018) provide CLTs 
permitting inference about exp (µM ) estimated by the geometric 
mean 
̂ M n := n ∏ 

i =1 
[ 

γ
(
X 2 i , Y 2 i | C( ̂  !1 

n 1 ) )
γ
(
X 1 
i , Y 1 i | C( ̂  !1 

n 1 ) ) ×
γ
(
X 2 i , Y 2 i | C( ̂  !2 

n 2 ) )
γ
(
X 1 
i , Y 1 i | C( ̂  !2 

n 2 ) )
] 1 / 2 

. (3.7) 
Wilson (2011) establishes consistency of the hyperbolic es- 

timator in (3.3) of γ ( x , y | ! t ) under Assumptions weaker than 
Assumptions 2.1 –2.7 listed above, and proves that the rate of con- 
vergence is n κ . However, some additional results are needed in or- 
der to make inference about the Malmquist index components de- 
fined by the various decompositions discussed above in Section 2 . 
Proofs are given in Appendix A . 

The first result establishes the existence of non-degenerate lim- 
iting distributions for the hyperbolic efficiency estimator and its 
logarithm. 
Theorem 3.1. Let )( ·) denote either (i) the identity function or (ii) 
the log function. Under Assumptions 2.1 –2.7 and A.1 part (iii), 
n κ()(γ (x, y | ̂ !t 

n )) − )(γ (x, y | !t )) ) L −→ Q )γ (3.8) 
as n → ∞ , where Q )γ is a non-degenerate distribution with finite vari- 
ance. 

The next result establishes properties of the first two moments 
of the hyperbolic efficiency estimator under VRS, analogous to 
Kneip et al. ( 2015, Theorem 3.1 ). 
Theorem 3.2. Let )( ·) denote either (i) the identity function or 
(ii) the log function. Let ν1 = 3 / (p + q + 1) , ν2 = (p + q + 4) / (p + 
q + 1) and ν3 = (p + q + 2) / (p + q + 1) . Under Assumptions 2.1 –2.7 
and A.1 part (iii), ∃ a constant C )1 ∈ (0 , ∞ ) such that for all i, j ∈ 
{ 1 , . . . , n } , 
E()(γ (X t i , Y t i | ̂ !t 

n )) − )(γ (X t i , Y t i | !t ))) 
= C )1 n −κ + O (n −ν1 ( log n ) ν2 ), (3.9) 

VAR ()(γ (X t i , Y t i | ̂ !t 
n )) − )(γ (X t i , Y t i | !t )) ) = O (n −ν1 ( log n ) ν1 )

(3.10) 
and 
∣∣∣COV ()(γ (X t i , Y t i | ̂ !t 

n )) − )(γ (X t i , Y t i | !t )) , )(γ (X t j , Y t j | ̂ !t 
n )) 

− )(γ (X t j , Y t j | !t )) )∣∣∣

= O (n −ν3 ( log n ) ν3 ) = o(n −1 ) . (3.11) 
The value of the constant C )1 depends on the density f , )( ·) and on 
the structure of the set D t ⊂ !t . 

The next result provides properties of moments of the log- 
hyperbolic estimator in dynamic, two-period settings. 
Theorem 3.3. Let Let ν1 , ν2 and ν3 be defined as in Theorem 3.2 . 
Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for all t , s ∈ {1, 2} ∃ a 
constant C ts 2 ∈ (0 , ∞ ) such that for all i, j ∈ { 1 , . . . , n } , 
E (log γ (X t i , Y t i | ̂ !s 

n ) − log γ (X t i , Y t i | !s ) )
= C ts 2 n −κ + O (n −ν1 ( log n ) ν2 ), (3.12) 

VAR (log γ (X t i , Y t i | ̂ !s 
n ) − log γ (X t i , Y t i | !s ) ) = O (n −ν1 ( log n ) ν1 )

(3.13) 

and for t ∗, s ∗ ∈ {1, 2}, j ̸ = i , 
∣∣∣E ([

log γ (X t i , Y t i | ̂ !s 
n ) − E( log γ (X t i , Y t i | !s )) ]

[
log γ (X s ∗j , Y s ∗j | ̂ !t ∗

n ) − E( log γ (X s ∗j , Y s ∗j | !t ∗ )) ])∣∣∣

= O (n −ν3 ( log n ) ν3 )
= o (n −1 )

(3.14) 
as n ≤min { n 1 , n 2 } → ∞ . The value of the constant C ts 2 depends on the 
density f and on the structure of the sets D s ⊂ !s and D t ⊂ !t . 
4. Inference about Malmquist index components 
4.1. Inference about change in technology 

This section focuses on the technology change measure 
T 2 (Z 1 i , Z 2 i | !1 , !2 ) defined in (2.11) and appearing in (2.13) . The 
measure T 1 (Z 1 i , Z 2 i | !1 , !2 ) defined in (2.9) is seldom used in the 
literature, but nonetheless is considered in Section 4.2 as are the 
other components of productivity change defined in (2.9), (2.10), 
(2.11) and (2.13) . 

As discussed above, the sample X n = { Z 1 
i , Z 2 i } n i =1 contains the 

set of input-output pairs from periods 1 and 2 for firms ob- 
served in both periods. However, there may be n 1 > n firms ob- 
served in period 1, and n 2 > n firms observed in period 2 so that 
n ≤min ( n 1 , n 2 ). The n 1 observations in X 1 n 1 = { Z 1 

i } n 1 i =1 can be used 
to construct an estimate ̂ !1 

n 1 of !1 , while the n 2 observations 
in X 2 n 2 = { Z 2 i } n 2 i =1 can be used to construct an estimate ̂ !2 

n 2 of 
!2 . For a firm observed at z 1 = (x 1 , y 1 ) ∈ !1 in period 1 and at 
z 2 = (x 2 , y 2 ) ∈ !2 in period 2, T 2 (z 1 , z 2 | !1 , !2 ) is estimated by 
T 2 (z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) . 

Theorem 4.1. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for 
each z 1 ∈ D 1 and z 2 ∈ D 2 , as n 1 , n 2 → ∞ 
n κ(T 2 (z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) − T 2 (z 1 , z 2 | !1 , !2 ) ) L −→ Q T 2 ,z 1 ,z 2 (4.1) 

where Q T 2 ,z 1 ,z 2 is a non-degenerate distribution with finite variance. 
Theorem 4.1 establishes the existence of a limiting distribution 

as well as consistency and rate of convergence n κ for the estima- 
tor T 2 (z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) . These results are sufficient to enable valid 

inference about T 2 (z 1 , z 2 | !1 , !2 ) for a single firm using the sub- 
sampling methods described by Simar and Wilson (2011) . 

Given the sample X n , one may obtain n estimates T 2 (Z 1 i , Z 2 i | 
̂ !1 

n 1 , ̂  !2 
n 2 ) . Define 

µT 2 : = E (log T 2 (Z 1 i , Z 2 i | !1 , !2 ) )
= E( log γ (Z 2 i | !1 ) − log γ (Z 2 i | !2 ) + log γ (Z 1 i | !1 ) 

− log γ (Z 1 i | !2 )) , (4.2) 
where expectations are with respect to Z 1 

i and Z 2 
i . Then consider 

the sample mean 
̂ µT 2 ,n := n −1 n ∑ 

i =1 log T 2 (Z 1 i , Z 2 i | ̂ !1 
n 1 , ̂  !2 

n 2 ) . (4.3) 
To simplify notation, let σ 2 

T 2 = VAR ( log T 2 (Z 1 i , Z 2 i | !1 , !2 )) < ∞ 
where expectations are over ( Z 1 , Z 2 ). The next result provides a CLT 
for µT 2 . 
Theorem 4.2. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , ∃ a 
constant D T 2 such that 
n 1 / 2 (̂ µT 2 ,n −µT 2 − D T 2 n −κ − ξn,κ

) d −→ N (0 , σ 2 
T 2 ) (4.4) 
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where ξn,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined in 
Theorem 3.2 . In addition, 
̂ σ 2 
T 2 ,n = n −1 n ∑ 

i =1 
(
log T 2 (Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) − ̂ µT 2 ,n )2 p −→ σ 2 

T 2 . (4.5) 
Although ̂ µT 2 ,n is a consistent estimator of µT 2 , the estimator 

has bias D T 2 n −κ . If κ > 1/2, then the bias as well as the remain- 
der term ξ n , κ are dominated by the n 1/2 scaling factor and hence 
can be ignored. Consequently, whenever κ > 1/2, a (1 − α) × 100 - 
percent confidence interval for ̂ µT 2 ,n is estimated by 
[

̂ µT 2 ,n ± z 1 − α
2 ̂ σT 2 ,n √ 

n 
]
, (4.6) 

where z 1 − α
2 is the corresponding (1 − α

2 ) quantile of the standard 
normal distribution function. Under the conditions of Theorem 4.2 , 
this interval has asymptotically correct coverage provided κ > 1/2 
(i.e., p + q ≤ 2 ). 

By contrast, if κ = 1 / 2 , the bias in (4.4) is constant. If κ < 1/2, 
the bias tends to infinity as n → ∞ . In cases where κ ≤1/2, re- 
placing the scaling factor n 1/2 with n ζ where ζ ∈ (0, κ) would 
drive the bias to 0 as n → ∞ , but would also drive the variance 
to 0, resulting in a degenerate limiting distribution and prevent- 
ing inference from begin made. The usefulness of Theorem 4.2 for 
practical applications is quite limited since κ > 1/2 if and only if 
(p + q ) ≤ 2 . Fortunately, an approach similar to the one of Kneip 
et al. (2015) can be used to solve this problem. 

Let n κ = min (⌊ n 2 κ⌋ , n ) , where ⌊ a ⌋ denotes the largest integer 
less than or equal to a . Then for κ < 1/2, n κ < n . Assume that the 
observations in X n are randomly sorted (the algorithm described 
by Daraio, Simar, and Wilson (2018) , Appendix D can be used to 
randomly sort the observations while allowing results to be repli- 
cated by other researchers using the same data and the same sort- 
ing algorithm). Define 
̂ µT 2 ,n κ := n −1 

κ

n κ∑ 
i =1 log 

(
T 2 (Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) ). (4.7) 

Note that the estimates T 2 (Z 1 i , Z 2 i | ̂ !1 
n 1 , ̂  !2 

n 2 ) are computed using 
all of the available observations, but that the summation is over 
only the first n κ observations in X n . The next result establishes the 
properties of this estimator. 
Theorem 4.3. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for 
cases where κ ≤1/2, 
n κ(̂ µT 2 ,n κ −µT 2 − D T 2 n −κ − ξn,κ

) d −→ N (0 , σ 2 
T 2 ) (4.8) 

as n → ∞ , where ξn,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined 
in Theorem 3.2 . 

The bias term D T 2 n −κ remains in (4.8) , but the both the bias 
and the variance remain constant as n → ∞ . Consequently, the bias 
term can be replaced with a generalized jackknife estimate ̂ B T 2 ,n,κ
similar to the bias estimate developed in Kneip et al. (2015) . The 
bias estimate presented in Kneip et al. (2015) assumes n 1 = n 2 = n, 
while the presentation below explicitly allows n 1 ≥n or n 2 ≥n . 

Recall that n firms are observed in both periods 1 and 2; these 
observations comprise the sample X n = { (Z 1 i , Z 2 i ) } . In addition, as 
discussed above, there are n ∗1 = n 1 − n ≥ 0 firms observed in pe- 
riod 1 but not in period 2; let these observations comprise the set 
W 1 n ∗

1 = { W 1 
i } n ∗1 i =1 ⊂ X 1 n 1 . Similarly, there are n ∗2 = n 2 − n ≥ 0 firms ob- 

served in period 2 but not in period 1; let W 2 n ∗
2 = { W 2 

i } n ∗2 i =1 ⊂ X 2 n 2 
denote the set of such observations. Of course, either W 1 n ∗

1 or W 2 n ∗
2 

will be the empty set if n 1 = n or n 2 = n . Now split X n randomly 
into two sub-samples X (1) m 1 and X (2) m 2 of sizes m 1 = ⌊ n/ 2 ⌋ and m 2 = 

n − ⌊ n/ 2 ⌋ (respectively). Note that if n is even, m 1 = m 2 , but if 
n is odd then m 1 = m 2 − 1 . Asymptotically, this makes no differ- 
ence since m 1 / m 2 → 1 as n → ∞ . In addition, split W 1 n ∗

1 randomly 
into two sub-samples W 1(1) m 11 and W 1(2) m 12 of sizes m 11 = ⌊ n ∗1 / 2 ⌋ and 
m 12 = n ∗1 − ⌊ n ∗1 / 2 ⌋ (respectively). If n ∗1 is even, m 11 = m 12 , but if 
n ∗1 is odd then m 11 = m 12 − 1 , but this also makes no difference 
asymptotically. Similarly, split W 2 n ∗

2 randomly into two sub-samples 
W 2(2) m 21 and W 2(2) m 22 of sizes m 21 = ⌊ n ∗2 / 2 ⌋ and m 22 = n ∗1 − ⌊ n ∗2 / 2 ⌋ (re- 
spectively). If n ∗2 is even, m 21 = m 22 , but if n ∗2 is odd then m 21 = 
m 22 − 1 , but again this also makes no difference asymptotically. 

Now let X t( j) m j denote the set of observations on Z t 
i for pe- 

riod t ∈ {1, 2} and subsample j ∈ {1, 2}. Let m ∗
t j = m j + m t j . Define 

V t( j) m ∗
t j := X (t) m j ∪ W t( j) m t j . Let ̂ !t( j) 

m ∗
t j denote the estimator of ! t , analo- 

gous to (3.1) , but obtained using the observations in V t( j) m ∗
t j instead 

of X t n 1 . Let γ (x, y | ̂ !t( j) 
m ∗

t j ) denote the corresponding estimator of 
γ ( x , y | !) obtained by substituting ̂ !t( j) 

m ∗
t j for ! in (2.5) . 

Now define 
̂ µ( j) 

T 2 ,m j := m −1 
j ∑ 

i | (Z 1 
i ,Z 2 i ) ∈X ( j) m j log ̂

 T 2 (W 1 i , W 2 i | ̂ !1( j) 
m ∗

1 j , ̂  !2( j) 
m ∗

2 j ) (4.9) 
for j ∈ {1, 2} and set 
̂ µ∗

T 2 ,n/ 2 = 1 
2 (̂ µ(1) 

T 2 ,m 1 + ̂  µ(2) 
T 2 ,m 2 ). (4.10) 

Using reasoning similar to that in Kneip et al. ( 2015 , Section 4), it 
is easy to show that 
˜ B T 2 ,n,κ = ( 2 κ − 1 ) −1 (̂ µ∗

T 2 ,n/ 2 − ̂ µM ,n ) = D T 2 n −κ + ξ ∗
n,κ + o p (n −1 / 2 ), 

(4.11) 
provides an estimator of the bias D T 2 n −κ . The remainder term ξ ∗

n,κ
in (4.11) is of the same order as ξ n , κ appearing in (4.4) . 

Note that there are ( n 
n/ 2 ) possible splits of the original n ob- 

servations. To reduce the variance of the bias estimate in (4.11) , 
the sample can be split K << ( n 

n/ 2 ) times while randomly shuffling 
the observations before each split, and computing ˜ B T 2 ,n,κ,k using 
(4.11) for k = 1 , . . . , K. Then 
̂ B T 2 ,n,κ = K −1 K ∑ 

k =1 ˜ B T 2 ,n,κ,k (4.12) 
gives a generalized jackknife estimate of the bias D T 2 n −κ ( Gray 
& Schucany, 1972 , Definition 2.1). Averaging in (4.12) reduces the 
variance by a factor of K −1 relative to the bias in (4.11) . 

Substituting the bias estimate in (4.12) for the bias terms D T 2 in 
Theorems 4.2 and 4.3 leads to the following CLT result. 
Theorem 4.4. Under the conditions of Theorem 4.2 , as n → ∞ 
n 1 / 2 (̂ µT 2 ,n − ̂ B T 2 ,n,κ −µT 2 − ξn,κ

) d −→ N (0 , σ 2 
T 2 ) (4.13) 

whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 
n κ(̂ µT 2 ,n κ − ̂ B T 2 ,n,κ −µT 2 − ξn,κ

) d −→ N (0 , σ 2 
T 2 ) (4.14) 

as n → ∞ . 
Note that in all cases (i.e., for all values of κ), ξn,κ = o(n −κ ) 

and hence n κξn,κ = o(1) . Therefore the remainder term can be ne- 
glected. 

In cases where κ ≥2/5 and hence (p + q ) ≤ 4 , Theorem 4.4 to- 
gether with (4.5) from Theorem 4.2 ensures that the interval 
[

̂ µT 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α
2 ̂ σT 2 ,n √ 

n 
]
, (4.15) 



762 L. Simar and P. W. Wilson / European Journal of Operational Research 277 (2019) 756–769 
where as in (4.6) z 1 − α

2 represents the (1 − α
2 ) quantile of the stan- 

dard normal distribution function provides an asymptotically cor- 
rect (1 − α) confidence interval for µT 2 . For cases where κ < 1/2 
and hence (p + q ) ≥ 4 , Theorem 4.4 permits construction of the 
asymptotically correct (1 − α) confidence interval 
[ ̂  µT 2 ,n κ − ̂ B T 2 ,n,κ ± z 1 − α

2 ̂ σT 2 ,n 
n κ

] 
(4.16) 

for µT 2 . 
The interval in (4.16) is centered on ̂ µT 2 ,n κ − ̂ B T 2 ,n,κ , and ̂ µT 2 ,n κ

is computed from a random subset of n κ estimates T 2 (Z 1 i , Z 2 i | 
̂ !1 

n 1 , ̂  !2 
n 2 ) . As discussed by Kneip et al. (2015) , while this may seem 

arbitrary, any confidence interval for µT 2 is arbitrary since any 
asymmetric confidence interval for µT 2 can be constructed simply 
by using different quantiles of the N (0, 1) distribution to establish 
the bounds. The goal is always to achieve a high level of coverage 
without making the confidence interval too wide to be informative. 

Alternatively, in cases where κ < 1/2, the randomness of the in- 
terval in (4.16) due to centering on a mean over a subsample of 
size n κ < n can be eliminated by replacing ̂ µT 2 ,n κ with ̂ µT 2 ,n to ob- 
tain [ ̂  µT 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α

2 ̂ σT 2 ,n 
n κ

] 
. (4.17) 

Both intervals (4.16) and (4.17) have the same length and hence 
are equally informative. However, the interval in (4.17) should have 
higher coverage in finite samples because the estimator ̂ µT 2 ,n uses 
more information than the estimator ̂ µT 2 ,n κ . Hence for κ < 1/2, 
n κ < n and hence the interval in (4.17) contains the true value 
µT 2 with probability greater than (1 − α) . Due to the results given 
above, it is clear that the coverage of the interval in (4.17) con- 
verges to 1 as n → ∞ . 

Note that when (p + q ) = 4 , either result (4.13) or (4.14) can 
be used to construct intervals with asymptotically correct coverage. 
For reasons given by Kneip et al. ( 2015 , Section 4.1), one should 
expect the interval in (4.16) to provide a better approximation in 
finite samples than (4.15) when (p + q ) = 4 . 

As with estimates of the Malmquist index defined in (2.8) , re- 
searchers typically report geometric means 
̂ T 2 ,n = exp ( ̂  µT 2 ,n ) = 

( 
n ∏ 

i =1 ̂ T 2 (Z 1 i , Z 2 i | ̂ !1 
n 1 , ̂  !2 

n 2 ) 
) 1 /n 

. (4.18) 
Clearly, ̂ T 2 ,n can be seen as an estimator of T 2 = exp (µT 2 ) . The 
properties of this estimator are given the next result. 
Theorem 4.5. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , as 
n ≤min { n 1 , n 2 } → ∞ 
n 1 / 2 ( ̂ T 2 ,n − exp (µT 2 ) + exp (µT 2 ) D T 2 n −κ + ξT 2 ,n,κ)

d −→ N (0 , exp (2 µT 2 ) σ 2 
T 2 ) (4.19) 

where ξT 2 ,n,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is defined in 
Theorem 3.2 . 

Provided κ > 1/2, both the bias and the remainder terms in 
(4.19) are asymptotically negligible, and 
[ ̂  T 2 ,n ± z 1 − α

2 exp ( ̂  µT 2 ,n ) ̂  σT 2 ,n 
n 1 / 2 

] 
(4.20) 

provides a (1 − α) × 100 -percent confidence interval for exp (µT 2 ) 
with asymptotically correct coverage. But if κ ≤1/2, the bias must 
be dealt with. 

Suppose κ ≤1/2. Assume the observations in X n are randomly 
ordered and define 
̂ T 2 ,n κ = exp ( ̂  µT 2 ,n κ ) = 

( 
n κ∏ 
i =1 ̂ T 2 (Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) 

) 1 /n κ
. (4.21) 

Note that the estimates under the product sign are computed us- 
ing all of the available data, but the product is over only the first 
n κ observations in X n . The properties of the estimator ̂ T 2 ,n κ are 
established in the next theorem. 
Theorem 4.6. Under Assumptions 2.1 –2.7 , A.1 part (iii) and A.2 , for 
cases where κ ≤1/2, 
n κ( ̂ T 2 ,n κ − exp (µT 2 ) + exp (µT 2 ) D T 2 n −κ + ξT 2 ,n,κ)

d −→ N (0 , exp (2 µT 2 ) σ 2 
T 2 ) (4.22) 

as n → ∞ . 
As in Theorem 4.3 , the bias is stabilized in Theorem 4.6 , but 

it does not disappear as n → ∞ and therefore must be estimated. 
A generalized jackknife estimate ̂ B T 2 ,n,κ analogous to the estimate 
̂ B T 2 ,n,κ discussed above can be obtained by following the steps to 
compute ̂ B T 2 ,n,κ but replacing the sample arithmetic means with 
their corresponding sample geometric means. This leads to the fol- 
lowing result. 
Theorem 4.7. Under the conditions of Theorem 4.2 , 
n 1 / 2 ( ̂ T 2 ,n − ̂ B T 2 ,n,κ − exp (µT 2 ) + ξT 2 ,n,κ) d −→ N (0 , exp (2 µT 2 ) σ 2 

T 2 )
(4.23) 

as n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 
n κ( ̂ T 2 ,n κ − ̂ B T 2 ,n,κ − exp (µT 2 ) − ξT 2 ,n,κ) d −→ N (0 , exp (2 µT 2 ) σ 2 

T 2 )
(4.24) 

as n → ∞ . 
For cases where κ ≥2/5, Theorem 4.7 permits construction of 

an asymptotically correct (1 − α) confidence interval for exp (µT 2 ) 
given by 
[ ̂  T 2 ,n − ̂ B T 2 ,n,κ ± z 1 − α

2 exp ( ̂  µT 2 ,n ) ̂  σT 2 ,n 
n 1 / 2 

] 
. (4.25) 

Alternatively, whenever κ < 1/2, Theorem 4.7 can be used to con- 
struct the asymptotically correct (1 − α) confidence interval 
[ ̂  T 2 ,n κ − ̂ B T 2 ,n,κ ± z 1 − α

2 exp ( ̂  µT 2 ,n ) ̂  σT 2 ,n 
n κ

] 
. (4.26) 

Analogous to the discussion above, one could also replace ̂ T 2 ,n κ
with ̂ T n in (4.26) , with the coverage of the resulting interval con- 
verging to 1 as n → ∞ . 

Also as discussed above, one can use either of the intervals in 
(4.25) and (4.26) when (p + q ) = 4 . The interval in (4.25) uses the 
scaling factor √ 

n and hence neglects the term √ 
n ηn,κ = O (n −1 / 10 ) 

in result (4.23) of Theorem 4.7 , while the interval in (4.26) uses the 
scaling factor n κ and hence neglects the term n κηn,κ = O (n −1 / 5 ) in 
result (4.24) of Theorem 4.7 . Therefore one should expect (4.26) to 
provide a better approximation in finite samples than (4.25) when 
(p + q ) = 4 . For testing purposes, however, one cannot escape the 
tradeoff between size and power. 

The null hypothesis of no technology change corresponds to 
exp (µT 2 ) = 1 , while the alternative hypothesis of change in tech- 
nology between periods 1 and 2 corresponds to exp (µT 2 ) ̸ = 1 . 
Hence the null is rejected whenever the relevant estimated confi- 
dence interval in (4.25) or (4.26) does not include unity. The results 
of such tests are expected to be similar to the results of similar 
tests based on log values, but small differences may arise due to 
the different asymptotic approximations involved. Asymptotically, 
any differences are negligible. 
4.2. Inference about other components of productivity change 

From an applications perspective, the most important re- 
sults in Section 4.1 are Theorems 4.1, 4.4 and 4.7 . The results 
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in Theorems 4.2 and 4.3 are intermediate results needed to 
establish Theorem 4.1 and make clear the role of estimation 
bias. Theorems 4.5 and 4.6 similarly lead to Theorem 4.7 . Just 
as T 2 (Z 1 i , Z 2 i | !1 , !2 ) is estimated by T 2 (Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) 

in Section 4.1 , each of the components E 1 (Z 1 i , Z 2 i | !1 , !2 ) , 
E 2 (Z 1 i , Z 2 i | !1 , !2 ) , T 1 (Z 1 i , Z 2 i | !1 , !2 ) , S 1 (Z 1 i , Z 2 i | !1 , !2 ) , 
S 2 (Z 1 i , Z 2 i | !1 , !2 ) and S 3 (Z 1 i , Z 2 i | !1 , !2 ) defined in (2.9), (2.10), 
(2.11) and (2.13) can be estimated by replacing !1 and !2 in the 
definitions of the measures by the estimators ̂ !1 

n 1 and ̂ !2 
n 2 . 

A careful reading of the proofs of Theorems 4.4 –4.7 in 
Appendix A reveals that arguments similar to those used to ob- 
tain the results for change in technology in Section 4.1 can be 
used to establish analogous results for an estimator of the change- 
in-efficiency measure E 2 (Z 1 i , Z 2 i | !1 , !2 ) , which like the estimator 
of T 2 (Z 1 i , Z 2 i | !1 , !2 ) involves a ratio of measures γ (Z s 

i | !t ) . The 
other components of productivity change listed above involve ra- 
tios of both γ (Z s 

i | !t ) and γ (Z s 
i | C(!t )) , s , t ∈ {1, 2}. Arguments 

similar to those used in the proofs of the results in Section 4.1 , 
combined with results from Kneip et al. (2018) on the CDEA es- 
timator of distances to boundaries of conical hulls C(!t ) , can 
be used to derive results for estimators of E 1 (Z 1 i , Z 2 i | !1 , !2 ) , 
T 1 (Z 1 i , Z 2 i | !1 , !2 ) , S 1 (Z 1 i , Z 2 i | !1 , !2 ) , S 2 (Z 1 i , Z 2 i | !1 , !2 ) and 
S 3 (Z 1 i , Z 2 i | !1 , !2 ) analogous to those obtained in Section 4.1 for 
the estimator of T 2 (Z 1 i , Z 2 i | !1 , !2 ) . Consequently, to avoid repeti- 
tion, the results in this section are stated without formal proofs. 

To simplify notation, let / be a place-holder denoting either E 1 , 
E 2 , T 1 , S 1 , S 2 or S 3 or some other index defined in terms of ra- 
tios of the measures γ (Z s 

i , Z t i | !s , !t ) or γ (Z s 
i , Z t i | C(!s ) , C(!t )) , 

s , t ∈ {1, 2}. The results that follow hold when / is replaced with 
any of the components listed above. The next result is immediate. 
Theorem 4.8. Under Assumptions 2.1 –2.7 , A.1 and A.2 , for each z 1 ∈ 
D 1 and z 2 ∈ D 2 , as n 1 , n 2 → ∞ 
n κ(/(z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) − /(z 1 , z 2 | !1 , !2 ) ) L −→ Q /,z 1 ,z 2 (4.27) 

where Q /,z 1 ,z 2 is a non-degenerate distribution with finite variance. 
Remark 4.1. Note that in the theorems of Section 4.1 , parts (i)–(ii) 
of Assumption A.1 are not needed since the measure T 2 (Z 1 i , Z 2 i | 
!1 , !2 ) does not involve the conical hull of either !1 or !2 . 
Similarly, E 2 (Z 1 i , Z 2 i | !1 , !2 ) also does not involve the conical 
hull of either !1 or !2 . Hence when E 2 replaces / in (4.27) , 
Theorem 4.8 does not require parts (i)–(ii) of Assumption A.1 . 
But for the other measures listed above, all three parts of 
Assumption A.1 are needed. The same remark applies to the re- 
maining theorems that follow in this section. 

Theorem 4.8 establishes the existence of limiting distributions 
as well as consistency and rate of convergence n κ for the esti- 
mators of the components E 1 (Z 1 i , Z 2 i | !1 , !2 ) , E 2 (Z 1 i , Z 2 i | !1 , !2 ) , 
T 1 (Z 1 i , Z 2 i | !1 , !2 ) , S 1 (Z 1 i , Z 2 i | !1 , !2 ) , S 2 (Z 1 i , Z 2 i | !1 , !2 ) and 
S 3 (Z 1 i , Z 2 i | !1 , !2 ) of productivity change. These results are suf- 
ficient to enable valid inference about each component for a single 
firm using the subsampling methods described by Simar and Wil- 
son (2011) . 

Analogous to (4.2) , define 
µ/ := E (log /(Z 1 i , Z 2 i | !1 , !2 ) ) (4.28) 
and consider the sample mean 
̂ µ/,n := n −1 n ∑ 

i =1 log /(Z 1 i , Z 2 i | ̂ !1 
n 1 , ̂  !2 

n 2 ) . (4.29) 
Similar to (4.7) , define 
̂ µ/,n κ := n −1 

κ

n κ∑ 
i =1 log /(Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) , (4.30) 

noting that the estimates log /(Z 1 
i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) are computed 

using all of the available observations, but that the summation 
is over only the first n κ observations in X n where again n κ = 
min (⌊ n 2 κ⌋ , n ) . Finally, let ̂ B /,n,κ denote the generalized jackknife 
estimate of bias D /n −κ analogous to ̂ B T 2 ,n,κ in (4.12) obtained by 
replacing T 2 with / in (4.9) –(4.12) . The next result enables infer- 
ence about µ/. 
Theorem 4.9. Under the conditions of Theorem 4.2 , as n → ∞ 
n 1 / 2 (̂ µ/,n − ̂ B /,n,κ −µ/ − ξ/,n,κ

) d −→ N (0 , σ 2 
/

)
(4.31) 

whenever κ ≥2/5 . Alternatively, for cases where κ < 1/2, 
n κ(̂ µ/,n κ − ̂ B /,n,κ −µ/ − ξ/,n,κ

) d −→ N (0 , σ 2 
/

)
(4.32) 

as n → ∞ . In addition, 
̂ σ 2 

/,n = n −1 n ∑ 
i =1 

(
log /(Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) − ̂ µ/,n )2 p −→ σ 2 

/. (4.33) 
In all cases (i.e., for all values of κ), ξ/,n,κ = o(n −κ ) and hence 

n κξ/,n,κ = o(1) . Therefore the remainder term can be neglected. 
Theorem 4.9 ensures that the interval 
[

̂ µ/,n − ̂ B /,n,κ ± z 1 − α
2 ̂ σ/,n √ 

n 
]

(4.34) 
provides a confidence interval for µ/ with asymptotically correct 
coverage of (1 − α) in cases where κ ≥2/5. Alternatively, when 
κ < 1/2, Theorem 4.9 ensures that the interval 
[ ̂  µ/,n κ − ̂ B /,n,κ ± z 1 − α

2 ̂ σ/,n 
n κ

] 
(4.35) 

has asymptotic coverage of (1 − α) . 
In order to consider geometric means of the various compo- 

nents of productivity change while avoiding repetitive notation, let 
E 1 , E 2 , T 1 , T 2 , S 1 , S 2 or S 3 denote geometric means of estima- 
tors of E 1 , E 2 , T 1 , T 2 , S 1 , S 2 or S 3 , respectively. In other words, 
write 
̂ ϒn = exp ( ̂  µ/,n ) = 

( 
n ∏ 

i =1 ̂ /(Z 1 i , Z 2 i | ̂ !1 
n 1 , ̂  !2 

n 2 ) 
) 1 /n 

(4.36) 
and replace / with one of {E 1 , E 2 , T 1 , T 2 , S 1 , S 2 , S 3 } while 
replacing ϒ with the corresponding element of the set 
{ E 1 , E 2 , T 1 , T 2 , S 1 , S 2 , S 3 } (for example, replacing / and 
ϒ in (4.36) with T 2 and T 2 , respectively, yields the expression 
in (4.18) ). Then let ̂ B ϒ ,n,κ denote a generalized jackknife estimate 
of bias analogous to ̂ B T 2 ,n,κ obtained by replacing T 2 with ϒ in 
(4.9) –(4.12) . Similar to (4.18) , ̂ ϒn can be viewed as an estimator 
of ϒ = exp (µ/) . The results in the remainder of this sections are 
stated in terms of / and ϒ , with the understanding that these 
are place-holders as described above. The next result permits 
inference about ϒ = exp (µ/) . 
Theorem 4.10. Under the conditions of Theorem 4.2 , as n → ∞ 
n 1 / 2 (̂ ϒn − ̂ B ϒ ,n,κ − exp (µ/) + ξϒ ,n,κ

) d −→ N (0 , exp (2 µ/) σ 2 
/

)

(4.37) 
as n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 
n κ(̂ ϒn κ − ̂ B ϒ ,n,κ − exp (µ/) − ξϒ ,n,κ

) d −→ N (0 , exp (2 µ/) σ 2 
/

)

(4.38) 
as n → ∞ , where ξϒ ,n,κ = O ( n −ν1 ( log n ) ν1 ) = o ( n −κ ) and ν1 is de- 
fined in Theorem 3.2 . 

For cases where κ ≥2/5, Theorem 4.10 permits construction of 
an asymptotically correct (1 − α) confidence interval for exp ( µ/) 
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Table 1 
Productivity Change and Its Components for Swedish Pharmacies, 1980–1989 ( p = q = 4 ). 
Period ̂ M n ̂ E 1 ,n ̂ E 2 ,n ̂ T 1 ,n ̂ T 2 ,n ̂ S 1 ,n ̂ S 2 ,n ̂ S 3 ,n 
1980–1981 0.99553 1.01093 1.00411 0.98476 ∗∗∗ 0.99945 1.00339 ∗∗∗ 0.97980 ∗∗ 0.96640 
1981–1982 1.03636 0.96712 ∗∗∗ 0.97440 ∗∗∗ 1.07159 ∗∗∗ 1.07646 ∗∗∗ 0.99626 ∗∗∗ 0.98252 0.97683 
1982–1983 1.01220 1.02702 ∗∗∗ 1.02041 ∗∗∗ 0.98557 ∗∗∗ 0.98172 ∗∗ 1.00324 ∗∗ 0.99727 0.96616 
1983–1984 0.97079 0.99373 0.99808 0.97692 ∗∗ 0.97535 0.99782 0.99065 ∗∗∗ 0.97401 ∗∗∗

1984–1985 1.02153 ∗ 1.00194 1.00112 ∗ 1.01955 ∗∗∗ 1.01712 ∗∗ 1.0 0 041 0.99224 ∗∗ 0.97827 
1985–1986 1.00942 ∗ 0.99339 0.99289 1.01614 ∗∗∗ 1.01308 ∗∗∗ 1.0 0 025 0.99335 ∗∗∗ 0.97811 
1986–1987 1.03270 1.0 0 074 ∗∗∗ 1.00522 ∗∗∗ 1.03194 1.02593 0.99777 0.99173 ∗∗∗ 0.97971 
1987–1988 1.02152 ∗∗∗ 1.00663 ∗∗∗ 1.00455 ∗∗∗ 1.01479 1.00935 1.00103 ∗ 0.99331 ∗∗ 0.97124 ∗∗

1988–1989 1.02532 ∗∗∗ 1.00278 ∗∗ 0.99984 ∗∗ 1.02248 ∗∗∗ 1.02876 ∗∗∗ 1.00147 0.98484 0.97381 
1980–1989 1.09186 ∗∗ 1.00326 ∗∗∗ 1.0 0 0 03 ∗∗∗ 1.08832 ∗∗ 1.10708 ∗∗∗ 1.00161 ∗∗ 0.97410 ∗∗∗ 0.93949 

Note: Significant differences from 1 at levels .1, .05 or. 01 are indicated by one, two or three asterisks, respectively. 
given by 
[ ̂  ϒn − ̂ B ϒ ,n,κ ± z 1 − α

2 exp ( ̂  µ/,n ) ̂  σ/,n 
n 1 / 2 

] 
. (4.39) 

Alternatively, whenever κ < 1/2, Theorem 4.10 can be used to con- 
struct the asymptotically correct (1 − α) confidence interval 
[ ̂  ϒn κ − ̂ B ϒ ,n,κ ± z 1 − α

2 exp ( ̂  µ/,n ) ̂  σ/,n 
n κ

] 
. (4.40) 

Analogous to the discussion above, one could also replace ̂ ϒn κ with 
̂ ϒn in (4.40) , with the coverage of the resulting interval converging 
to 1 as n → ∞ . 
5. An empirical illustration 

Färe et al. (1992) examine productivity change among n = 42 
Swedish pharmacies over 1980–1989. Their model specifies p = 
4 inputs and q = 4 outputs. 6 As noted in Section 2 , Färe et al. 
(1992) estimate a Malmquist index based on input-oriented dis- 
tance measures, and decompose their index analogously to the 
decomposition in (2.9) . For each pair of years 1980–1981, 1981–
1982, . . . , 1 988–1 989 Färe et al. (1992) report geometric means of 
their estimated Malmquist indices as well as for their estimates 
of input-oriented analogues of the components E 1 (Z 1 i , Z 2 i | !1 , !2 ) 
and T 1 (Z 1 i , Z 2 i | !1 , !2 ) defined in (2.9) . 

Table 1 shows geometric means of estimated hyperbolic 
Malmquist indices as well as of the various components de- 
fined in (2.9), (2.10), (2.11) and (2.13) obtained using the Färe 
et al. (1992) data on Swedish pharmacies. Since Färe et al. 
(1992) work in the input orientation, the geometric means re- 
ported in columns labeled ̂ E 1 ,n , ̂ T 1 ,n and ̂ M n in Table 1 are equal 
to square roots of the corresponding geometric means reported by 
Färe et al. (1992) in their Tables 1–3. One, two or three asterisks 
in Table 1 indicate statistical significance of differences from 1 at 
levels .1, .05 and .01 (respectively). In discussing their results, Färe 
et al. ( 1992 , p. 96) remark that “According to our results, we have 
had on average productivity gains in seven periods and productiv- 
ity losses in two periods.” In Table 1 , geometric means of estimated 
Malmquist indices for year-to-year periods range from 0.9708 to 
1.0364, but are significantly different (at the.05 level) from 1 only 
for 1984–1985 and 1985–1986 (at.1) and 1987–1988 and 1988–
1989 (at.01). However, looking at 1980–1989, there is evidence of 
considerable (about 9 percent, significant at.05) change in produc- 
tivity. 

In the periods where geometric means of estimated Malmquist 
indices are not significantly different from 1, some of the com- 
ponents of productivity change are significantly different from 1 

6 The inputs are (i) labor input for pharmacists; (ii) labor input for technical staff; 
(iii) building services; and (iv) equipment services. The outputs are (i) drug deliver- 
ies to hospitals; (ii) prescription drugs for outpatient care; (iii) medical appliances 
for the handicapped; and (iv) over the counter goods. See Färe et al. (1992) for fur- 
ther details. We are grateful to the authors for making the data available. 

although they work to offset each other resulting in no signifi- 
cant change in productivity. For example, the geometric mean of 
estimated Malmquist indices among the year-to-year periods is 
largest—1.03636—for 1981–1982. Both of the geometric means for 
efficiency change estimates are significant and less than 1, while 
both of the geometric means for change in technology are signifi- 
cant and greater than 1. Combined, these results suggest that while 
the technology shifted upward between 1981 and 1982, the phar- 
macies did not become more productive, and consequently became 
less technically efficient. In other words, the technology shifted, 
but the pharmacies did not. Instead, they were left behind. The 
value of 0.99626 for ̂ S 1 ,n during 1981–1982 indicates a significant 
decrease in scale efficiency, but the value is perhaps not economi- 
cally significant since it is numerically close to 1. 

For 1980–1989, the estimated value ̂ E 2 ,n for (geometric) mean 
efficiency change is numerically very close to 1, but significantly 
different from 1 at the.01 level. This is due in part to the fact that 
the estimated variance ̂  σE 2 ,n is rather small (0.00198). Although the 
estimate is significantly different from 1, it is perhaps not econom- 
ically meaningful. By contrast, the value of the technology-change 
estimate ̂ T 2 ,n is equal to 1.10708, and significant at the.01 level. To- 
gether, these two estimates imply that the technology shifted up- 
ward between 1980 and 1989, and the pharmacies also shifted up- 
ward, keeping pace with the technology. The product of the scale 
estimates ̂ S 1 ,n and ̂ S 2 ,n is less than 1 (the estimate ̂ S 3 ,n is also 
less than 1). Thus while the results in Table 1 suggest that tech- 
nology improved by about 10.7 percent, and efficiency was largely 
unchanged, the scale effects offset a small part of the improvement 
in technology resulting in an increase in average productivity of 
about 9.2 percent. 

It is important to note that much more is known about the sta- 
tistical properties of DEA estimators today than was known when 
Färe et al. (1992) published their paper. Today, we know the con- 
vergence rate of the VRS-DEA estimator and its conical hull (un- 
der VRS) is n 2 / (p+ q +1) . Moreover, with only n = 42 observations in 
each year and p + q = 8 dimensions, the well-known curse of di- 
mensionality is problematic. The “effective parametric sample size”
defined by Wilson (2018) is only 5. Moreover, the hyperbolic free- 
disposal hull efficiency estimator yields 40–42 observations with 
efficiency estimates equal to 1 in each year, providing another indi- 
cation that the number of dimensions is too large for the available 
number of observations to obtain meaningful estimates. 

Performing an eigensystem decomposition of the moment ma- 
trix X ′ X of the 4 inputs as discussed by Wilson (2018) indicates 
the ratio of the largest eigenvalue to the sum of the eigenvalues 
is 95.4. The similar ratio for the 4 outputs is 91.3, and for the 3 
outputs excluding deliveries to hospitals the corresponding ratio is 
96.5. With only 42 observations in each year, the simulation results 
of Wilson (2018) strongly suggest that mean-square error of the 
estimates will be reduced using the dimension-reduction method 
described by Daraio and Simar (2007) and Wilson (2018) . 
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Table 2 
Productivity Change and Its Components for Swedish Pharmacies, 1980–1989 ( p = 1 , q = 2 ). 
Period ̂ M n ̂ E 1 ,n ̂ E 2 ,n ̂ T 1 ,n ̂ T 2 ,n ̂ S 1 ,n ̂ S 2 ,n ̂ S 3 ,n 
1980–1981 1.04115 ∗∗∗ 0.95615 ∗∗∗ 0.96654 ∗∗∗ 1.08889 ∗∗∗ 1.07917 ∗∗∗ 0.99461 0.97483 ∗ 0.96916 ∗∗

1981–1982 1.03009 ∗∗ 0.84746 ∗∗∗ 0.91362 ∗∗∗ 1.21550 ∗∗∗ 1.13658 ∗∗∗ 0.96311 ∗∗∗ 0.95838 ∗∗∗ 0.96331 
1982–1983 1.01365 1.17883 ∗∗∗ 1.08312 ∗∗∗ 0.85988 ∗∗∗ 0.93245 ∗∗∗ 1.04325 ∗∗∗ 0.89944 ∗∗∗ 0.89269 ∗∗∗

1983–1984 0.98084 ∗ 0.94881 ∗∗∗ 1.0 0 099 ∗ 1.03376 ∗∗∗ 0.98498 0.97359 ∗∗∗ 0.97029 ∗∗∗ 0.97443 ∗∗∗

1984–1985 1.02794 ∗∗∗ 1.06846 ∗∗∗ 1.03847 ∗∗∗ 0.96208 ∗∗∗ 0.98618 ∗∗∗ 1.01434 ∗∗∗ 0.92795 ∗∗∗ 0.92367 ∗∗∗

1985–1986 1.01819 ∗∗∗ 0.97724 ∗∗∗ 0.98190 ∗∗∗ 1.04190 ∗∗∗ 1.03259 ∗∗∗ 0.99763 0.95523 ∗∗∗ 0.94924 ∗∗∗

1986–1987 1.04266 ∗∗∗ 1.01199 ∗∗ 1.02699 ∗∗∗ 1.03031 ∗∗∗ 1.01493 ∗∗∗ 0.99267 ∗∗∗ 0.94699 ∗∗∗ 0.94580 ∗∗∗

1987–1988 1.04217 ∗∗∗ 0.98086 ∗∗∗ 0.99191 ∗∗∗ 1.06250 ∗∗∗ 1.04111 ∗∗∗ 0.99441 ∗∗∗ 0.94142 ∗∗∗ 0.93119 ∗∗∗

1988–1989 1.03364 ∗∗∗ 1.05425 ∗∗∗ 1.01015 ∗∗∗ 0.98044 ∗∗∗ 1.03202 ∗∗∗ 1.02160 ∗∗∗ 0.91462 ∗∗∗ 0.91926 ∗∗∗

1980–1989 1.24841 ∗∗∗ 0.99030 1.00457 1.26064 ∗∗∗ 1.25113 ∗∗∗ 0.99287 ∗∗∗ 0.97006 ∗∗∗ 0.96290 
Note: Significant differences from 1 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively. 
Table 3 
Tests for Differences Between “Small” and “Large” Pharmacies, 1980–1989 ( p = 1 , q = 2 ). 
Period ̂ M n ̂ E 1 ,n ̂ E 2 ,n ̂ T 1 ,n ̂ T 2 ,n ̂ S 1 ,n ̂ S 2 ,n ̂ S 3 ,n 
1980–1981 −2.330 ∗∗ 5.118 ∗∗∗ 7.260 ∗∗∗ −20.902 ∗∗∗ −8.109 ∗∗∗ −2.690 ∗∗∗ 1.150 1.055 
1981–1982 −2.140 ∗∗ 15.485 ∗∗∗ 14.521 ∗∗∗ −18.404 ∗∗∗ −15.095 ∗∗∗ 2.064 ∗∗ −0.040 −1.399 
1982–1983 −0.872 10.758 ∗∗∗ 11.472 ∗∗∗ −19.794 ∗∗∗ −14.631 ∗∗∗ 0.788 −2.978 ∗∗∗ −3.033 ∗∗∗

1983–1984 −3.868 ∗∗∗ 10.131 ∗∗∗ 10.820 ∗∗∗ −50.138 ∗∗∗ −16.404 ∗∗∗ −2.267 ∗∗ 8.202 ∗∗∗ 1.309 
1984–1985 −0.341 −5.104 ∗∗∗ −1.329 11.833 ∗∗∗ 0.135 −5.804 ∗∗∗ 10.177 ∗∗∗ 10.340 ∗∗∗

1985–1986 −2.330 ∗∗ 9.300 ∗∗∗ 9.199 ∗∗∗ −16.606 ∗∗∗ −19.068 ∗∗∗ −6.044 ∗∗∗ 8.891 ∗∗∗ 10.258 ∗∗∗

1986–1987 −1.874 ∗ −4.168 ∗∗∗ 12.903 ∗∗∗ 7.457 ∗∗∗ −16.214 ∗∗∗ −18.736 ∗∗∗ 9.561 ∗∗∗ 11.004 ∗∗∗

1987–1988 −0.367 5.506 ∗∗∗ 8.139 ∗∗∗ −8.917 ∗∗∗ −16.266 ∗∗∗ −6.563 ∗∗∗ 8.767 ∗∗∗ 8.908 ∗∗∗

1988–1989 0.393 −9.836 ∗∗∗ −3.398 ∗∗∗ 31.042 ∗∗∗ 0.321 −2.841 ∗∗∗ 6.211 ∗∗∗ 6.623 ∗∗∗

1980–1989 −3.340 ∗∗∗ 3.258 ∗∗∗ 0.557 −8.948 ∗∗∗ −5.250 ∗∗∗ 3.402 ∗∗∗ 4.561 ∗∗∗ −5.463 ∗∗∗

Note: Significant differences from 0 at levels .1, .05 or .01 are indicated by one, two or three asterisks, respectively. 
Table 2 show results analogous to those in Table 1 but obtained 

working in the reduced space with only the first principle com- 
ponent of the 4 inputs (based on the moment matrix of the in- 
puts) and the first output (i.e., hospital deliveries) and the first 
principle component of the remaining 3 outputs so that p = 1 and 
q = 2 . Comparing the results in Table 2 with those in Table 1 , it 
is evident that more estimates are significantly different from 1 
when dimensionality is reduced than when working in the full- 
dimensional space. This is due to the fact that dimension reduction 
allows more precise (i.e., reduced mean-square error) estimates. 
Moreover, the results for productivity change and for technology 
change over 1980–1989 are considerably larger when dimension 
reduction is used. This again is to be expected, since with dimen- 
sion reduction fewer individual distance estimates are equal to 1 
than in the full-dimensional space. The overall conclusions drawn 
by Färe et al. (1992) , i.e., that productivity change among the phar- 
macies is driven mainly by technology change, remain valid in 
view of the results in Table 2 . In fact, the results are stronger and 
more dramatic than those originally reported by Färe et al. (1992) . 

It is straightforward to extend the results obtained above in 
Section 4 can be used to make test of differences between groups 
of producers, similar to the test for differences in mean effi- 
ciency developed by Kneip et al. ( 2016 , Section 3.1.1). Suppose 
there are two independent groups (labeled “a ” and “b ”, with 
n a and n b observations in each of two time periods with n a + 
n b = n . For j ∈ { a , b } let n j,κ = min (⌊ n 2 κa ⌋ , n j ) . Let ̂ T 2 ,n j and ̂ T 2 ,n j,κ
and denote the geometric means for technical change defined in 
(4.18) and (4.21) for group j ∈ { a , b }. Similarly, let ̂ B T 2 ,n j ,κ denote 
the generalized jackknife estimate of bias for group j ∈ { a , b }. Let 
µT 2 , j be the expectation corresponding to (4.2) for group j ∈ { a , b }. 
Theorem 4.7 can be used to establish the following result. 
Theorem 5.1. Under the conditions of Theorem 4.2 , 
( ̂ T 2 ,n a − ̂ T 2 ,n b ) −

(̂ B T 2 ,n a ,κ − ̂ B T 2 ,n b ,κ) −
(
exp (µT 2 ,a ) − exp (µT 2 ,b ) )(

exp (2 ̂  µT 2 ,n a ) ̂  σT 2 ,n a 
n a + exp (2 ̂  µT 2 ,n b ) ̂  σT 2 ,n b 

n b )1 / 2 
d −→ N(0 , 1) (5.41) 

as n → ∞ whenever κ ≥2/5 . In addition, for cases where κ < 1/2, 
( ̂ T 2 ,n a,κ − ̂ T 2 ,n b,κ ) −

(̂ B T 2 ,n a ,κ − ̂ B T 2 ,n b ,κ)(exp (µT 2 ,a ) − exp (µT 2 ,b ) )(
exp (2 ̂  µT 2 ,n a,κ ) ̂  σT 2 ,n a 

n a,κ + exp (2 ̂  µT 2 ,n b,κ ) ̂  σT 2 ,n b 
n b,κ )1 / 2 

d −→ N(0 , 1) (5.42) 
as n → ∞ . 

Under the null hypothesis that technical change is the same in 
both groups, ( exp (µT 2 ,a ) − exp (µT 2 ,b )) = 0 , and Theorem 5.1 can 
be used to test this hypothesis. Using similar reasoning, the results 
in Theorem 4.10 can be used to establish results for the other com- 
ponents of productivity change analogous to those in Theorem 5.1 . 
In addition, Theorems 4.5 and 4.6 of Kneip et al. (2018) can be 
used to construct similar results for the Malmquist index itself. 

Working in the reduced space with the pharmacy data, we have 
p + q = 3 and hence κ = 1 / 2 . For each pair of years a and b , we 
sort the pharmacies according to the value of the single input in 
year a , and then compare productivity change and its components 
for the smallest 21 pharmacies versus the largest 21 pharmacies. 
Table 3 gives results of these tests. 

Among the 80 test statistics reported in Table 3 , all but 13 are 
significantly different from 0. All of the significant statistics for 
productivity change are negative, indicating that the larger phar- 
macies had greater productivity improvement (or smaller decrease 
in 1983–1984) than the smaller pharmacies. The results for techni- 
cal change are similar, indicating that the larger pharmacies drove 
innovation more than the smaller pharmacies. On the other hand, 
statistics for the efficiency change measures as well as the scale 
measures are positive and significant in many cases, suggesting 
that the smaller pharmacies became relatively more efficiency than 
their larger counterparts in many cases. 
6. Summary and conclusions 

Indices arising from various decompositions of Malmquist 
indices are widely used to measure changes in technology effi- 
ciency, technology, scale efficiency and other factors and are often 



766 L. Simar and P. W. Wilson / European Journal of Operational Research 277 (2019) 756–769 
estimated by nonparametric DEA estimators. Until now, no theo- 
retical results justifying inference about the sources of productivity 
change measured by these indices have been available, nor have 
theoretical results permitting valid inference using geometric 
means of these indices been available. These deficiencies are 
remedied by the present paper. Results enabling inference via the 
subsampling methods of Simar and Wilson (2011) for individual 
producers are provided. In addition, new CLT results are estab- 
lished to enable inference about overall or average changes in 
terms of geometric means. Moreover, as shown in Section 5 , it 
is easy to use these new CLT results to test hypotheses regard- 
ing differences in changes in efficiency, changes in technology, 
etc. between groups of firms along the lines of Kneip et al. (2016) . 

We focus in this paper on hyperbolic measures to avoid issues 
of existence and numerical difficulties. Simar, Vanhems, and Wil- 
son (2012) extend results on hyperbolic VRS-DEA estimators to di- 
rectional VRS-DEA estimators, and the similar arguments can be 
used to extend the results obtained above to directional measures 
and estimates. Of course, input and output-oriented measures are 
special cases of the directional measure, and so the results ob- 
tained above also extend trivially to the input and output orien- 
tations. Note also that Luenberger indices are simply additive ver- 
sions of the multiplicative Malmquist indices. Hicks–Moorsteen in- 
dices involve ratios of both input-oriented and output-oriented dis- 
tance measures. 7 Consequently, the results obtained here extend 
easily to make inference about these indices, too. 
Appendix A. Technical details 
A1. Additional assumptions 

The two additional assumptions that appear in this section ap- 
pear as Assumptions 3.1 and 3.2 in Kneip et al. (2018) . The first 
assumption is needed to ensure that estimators of θ ( x , y | ! t ) and 
γ ( x , y | ! t ) are well-defined. The second assumption ensures that 
the cross-efficiency estimators θ (Z 2 

i | !1 ) and θ (Z 1 
i | !2 ) as well 

as γ (Z 2 
i | !1 ) and γ (Z 1 

i | !2 ) are well-defined. Before stating the 
assumptions, some discussion is presented to establish notation 
used in the first assumption. See Kneip et al. (2018) for additional 
discussion. 

Note that for a point (x, y ) ∈ D t the input-oriented efficiency 
θ (x, y | C(!t )) can be written as 8 
θ (x, y | C(!t )) 

= min 
a> 0 

{
θ (x, ay | !t ) 

a | (θ (x, ay | !t ) x, ay ) ∈ !t }. (A.1) 
In addition, let a x,y 

min ∈ R + denote the smallest a > 0 such that 
θ (x, y | C(!t )) 

= θ (x, a x,y min y | !t ) 
a x,y 
min 

= min 
a> 0 

{
θ (x, ay | !t ) 

a | (θ (x, ay | !t ) x, ay ) ∈ !t }. (A.2) 
Necessarily, a x,y 

min ∈ R + is uniquely defined if ! t is strictly convex. 
Recall that due to Assumptions 2.4 –2.7 , the support of any ob- 

servable data in each period t is some subset D t ⊂ !t . In other 
7 See Färe, Grosskopf, and Margaritis (2008) for discussions of the Luenberger 

and Hicks–Moorsteen indices. 
8 For any efficiency estimator θ ( x , y | ! t ) considered in this section we will use 

the following conventions: if (x, y ) ̸∈ !t with ( bx , y ) ∈ ! t for some b > 1 we set 
θ (x, y | !t ) = bθ (bx, y | !t ) . Otherwise, θ ( x , y | ! t ) := 1 (or ̂ θ (x, y | !t ) := 1 ) when- 
ever the set of all possible values satisfying the defining inequalities is the empty 
set. Asymptotically, this has negligible effect. 

words, D t is the “observable part” of ! t . The difference between 
D t and ! t does not play an important role in Kneip et al. (2008, 
2015, 2016) since Assumption 2.5 requires (i) (θ (x, y | !t ) x, y ) ∈ 
D t for (θ (x, y | !t ) x, y ) ∈ D t and (ii) f ( θ ( x , y | ! t ) x , y ) > 0. Here, 
however, the difference between D t and ! t is problematic for 
dealing with θ (x, y | C(!t )) . Furthermore, in order to ensure that 
Malmquist indices are well-defined, D t and D s must “fit together”
for different periods t , s . Therefore, some additional conceptual 
work is necessary. 

Let 
D t norm := { (

x 
∥ x ∥ , y 

∥ y ∥ 
)
| (x, y ) ∈ D t } 

. (A.3) 
If p + q = 2 then trivially D t norm = { (1 , 1) } . But when p + q > 2 , 
D t norm will quantify the set of all possible “directions” of vectors 
x and y where it is possible to define a frontier. Note that for any 
( ̃  x , ̃  y ) with ∥ ̃  x ∥ = 1 and ∥ ̃  y ∥ = 1 and ( ̃  x , ̃  y ) / ∈ D t norm , we necessarily 
have { a ̃  x , b ̃  y | a, b > 0 } ∩ D t = ∅ . This means that “in the direction”
of ( ̃  x , ̃  y ) it is not possible to define any type of identifiable effi- 
ciency measure, since there is no information about an efficient 
frontier in such directions. 9 

Introduction of D t norm is of particular importance in a dynamic 
context where efficiencies in two different time periods t and s are 
to be compared. Frontiers may change and we may have differ- 
ent supports D t and D s in the two periods. However, it is neces- 
sary that D t norm = D s norm . Otherwise, there will be observations in 
one period for which distance to the other-period frontier cannot 
be defined. In this case Malmquist indices will be undefined with 
non-zero, non-negligible probability. 

On the other hand, for any ( x 
∥ x ∥ , y 

∥ y ∥ ) ∈ D t norm there exists a 
unique ray defining the corresponding part of the conical hull fron- 
tier C ∂ (!t ) . This can easily be seen by letting ( x 

∥ x ∥ , y 
∥ y ∥ ) ∈ D t norm . In 

addition, for a > 0, define 
˜ g x (a y 

∥ y ∥ 
)
:= min 

b> 0 
{ 
b x ∥ x ∥ | 

(
b x ∥ x ∥ , a y 

∥ y ∥ 
)

∈ !t } 
. (A.4) 

Then there exists some αx,y 
min > 0 such that 

˜ g x (αx,y 
min y 

∥ y ∥ ) 
αx,y 
min = min 

a> 0 
{˜ g x (a y 

∥ y ∥ ) 
a | (g x (a y 

∥ y ∥ 
)

x 
∥ x ∥ , a y 

∥ y ∥ 
)

∈ !t }
(A.5) 

where αx,y 
min ∈ R + is necessarily uniquely defined if ! t is strictly 

convex. 10 
Assuming that only values a leading to well-defined frontier 

points are taken into account, for any (x, y ) ∈ D t we now have 
min 
a> 0 θ (x, ay ) a = min 

a> 0 ˜ g x (∥ y ∥ a y 
∥ y ∥ ) 

∥ x ∥ a = ∥ y ∥ 
∥ x ∥ min 

a> 0 ˜ g x (∥ y ∥ a y 
∥ y ∥ ) 

∥ y ∥ a 
= ∥ y ∥ 

∥ x ∥ ˜ g x (αx,y 
min y 

∥ y ∥ ) 
αx,y 
min , (A.6) 

and a x,y 
min defined in (A.2) satisfies a x,y min = αx,y 

min 
∥ y ∥ . 

Obviously, all we can hope to estimate is the version of 
(A.5) where ! t is replaced by the observable part D t ⊂ !t . 
If αx,y 

min ∈ R + is such that (g x (αx,y 
min y 

∥ y ∥ ) x 
∥ x ∥ , αx,y 

min y 
∥ y ∥ ) / ∈ D t , then it 

is impossible to estimate θ (x, y | C(!t )) consistently. Minimiz- 
ing (A.5) with respect to D t instead of ! t will then lead to a 

9 Under the strong disposability assumed in Assumption 2.3 , the DEA and CDEA 
estimators of θ ( x , y | ! t ) and θ (x, y | C(!t )) described above are well-defined and 
can be computed, but they do not estimate anything that does not depend entirely 
upon Assumption 2.3 or that can be identified from data when (x, y ) ̸∈ D t norm . 
10 Note that ˜ g x (a y 

∥ y ∥ ) corresponds to the function g x (0 , a y 
∥ y ∥ ) defined in Kneip 

et al. (2008) . The coordinate system introduced in Kneip et al. (2008) is not needed 
here, but is required in the proofs that follow in Appendix A . 
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“boundary solution” α∗ ∈ D t which is “as close as possible” to 
αx,y 
min ∈ R + . This can only be avoided by assuming that D t is large 

enough such that (when minimizing (A.5) over D t instead of ! t ) 
the solution a x,y 

min ∈ R + is in the interior of D t in the sense that 
(g x ((αx,y 

min − δ) y 
∥ y ∥ ) x 

∥ x ∥ , (αx,y 
min − δ) y 

∥ y ∥ ) ∈ D t as well as (g x ((αx,y 
min + 

δ) y 
∥ y ∥ ) x 

∥ x ∥ , (αx,y 
min + δ) y 

∥ y ∥ ) ∈ D t . Since D t is almost strictly con- 
vex by Assumption 2.7 , αx,y 

min ∈ R + is necessarily unique, and 
˜ g x ((a x,y min −δ) y 

∥ y ∥ ) 
(a x,y 

min −δ) > ˜ g x (αx,y 
min y 

∥ y ∥ ) 
αx,y 
min as well as

˜ g x ((αx,y 
min + δ) y 

∥ y ∥ ) 
(αx,y 

min + δ) > ˜ g x (αx,y 
min y 

∥ y ∥ ) 
αx,y 
min . 

Convexity of ! t then necessarily implies that this value αx,y 
min ∈ R + 

also corresponds to the solution of the original minimization prob- 
lem with respect to ! t . In this sense the following assumption en- 
sures well-defined estimators of θ (x, y | C(!t )) . 
Assumption A.1. (i) The support D t ⊂ !t of f is such that 
for any ( x 

∥ x ∥ , y 
∥ y ∥ ) ∈ D t norm we have ( ̃  g x (αx,y 

min y 
∥ y ∥ ) x 

∥ x ∥ , αx,y 
min y 

∥ y ∥ ) ∈ 
D t ; (ii) there exists a δ> 0 such that for any ( x 

∥ x ∥ , y 
∥ y ∥ ) ∈ 

D t norm we also have ( ̃  g x ([ αx,y 
min − δ] y 

∥ y ∥ ) x 
∥ x ∥ , [ αx,y 

min − δ] y 
∥ y ∥ ) ∈ D t and 

( ̃  g x ([ αx,y 
min + δ] y 

∥ y ∥ ) x 
∥ x ∥ , [ αx,y 

min + δ] y 
∥ y ∥ ) ∈ D t ; (iii) There exists a con- 

stant 0 < M < ∞ such that ∥ x ∥ ≤M for all (x, y ) ∈ D t . 
Now turn to the dynamic case. Suppose that for two different 

time periods t ∈ {1, 2} we have the set X n = { (Z 1 
i ) , (Z 2 i ) } n i =1 defined 

earlier in Section 2 of independent, identically distributed (iid) 
pairs (of pairs) of input and output quantities for the two differ- 
ent periods. In each period there may exist additional observations 
which do not possess a counterpart in the other period. More pre- 
cisely, there are n 1 ≥n observations in period 1 which are used to 
estimate the hyperbolic distance γ 1 (x, y ) := γ (x, y | C(!1 )) , while 
there are n 2 ≥n observations in period 2 which are used to esti- 
mate the hyperbolic distance γ 2 (x, y ) := γ (x, y | C(!2 )) . 
Assumption A.2. (i) For t ∈ {1, 2} there are iid observations 
(X t 

i , Y t i ) , i = 1 , . . . , n t , such that Assumptions 2.1 –2.7 and A.1 are 
satisfied with respect to the underlying densities f t with supports 
D t ; (ii) D 1 norm = D 2 norm ; (iii) for some n ≤min { n 1 , n 2 } the observa- 
tions ((Z 1 

i ) , (Z 2 i ) ), i = 1 , . . . , n are iid and their joint distribution 
possesses a continuous density f 12 with support D 1 × D 2 ; (iv) for 
any i = 1 , . . . , n, (Z 1 

i ) is independent of (X 2 j , Y 2 j ) for all j = 1 , . . . , n 2 
with i ̸ = j ; (v) for any i = 1 , . . . , n, (Z 2 

i ) is independent of (X 1 j , Y 1 j ) 
for all j = 1 , . . . , n 1 with i ̸ = j . 

Note that condition (i) of this assumption only guarantees that 
all estimators θ (x, y | ̂ !t 

n t )) and γ (x, y | ̂ !t 
n t ) follow the asymptotic 

distributions derived in Theorems 3.1 and 3.2 of Kneip et al. (2018) . 
Condition (ii) together with Eq. (3.9) of Kneip et al. (2018) ensures 
that the cross-efficiency estimators θ (Z 2 

i | ̂ !1 
n 1 ) and θ (Z 1 

i | ̂ !2 
n 2 ) 

as well as γ (Z 2 
i | ̂ !1 

n 1 ) and γ (Z 1 
i | ̂ !2 

n 2 ) are asymptotically well- 
defined and possess the same rates of convergence as the con- 
temporaneous efficiency estimators. Conditions (iv)–(v) permit de- 
pendence of a given firm’s input-output quantities across periods 1 
and 2, but require independence of the firm’s input-output quanti- 
ties from those of other firms in other periods. 
A2. Proof of Theorem 3.1 

For case (i) where )( ·) denotes the identity function, the result 
follows immediately from Wilson ( 2011 , Theorems 6.3.1 and 6.3.2). 
Given the result for case (i), the result for case (ii) where )( ·) de- 
notes the log function follows via the delta method given the fact 
that the log function is monotone and differentiable with non-zero 
derivatives on R + . !

A3. Proof of Theorem 3.2 
For case (i) where )( ·) denotes the identity function, consider 

the mapping φ from R p + × R q + to R p + × R q + such that φ : (x, y ) 5→ 
(x, y −1 ) where y −1 is the vector whose elements are the inverses 
of the corresponding elements of y . Denote ω = φ(x, y ) . Clearly, φ
is a continuous, one-to-one transformation; hence (x, y ) = φ−1 (ω) . 
From the proof of Theorem 6.3.1 in Wilson (2011) , it is clear that 
in ω-space, γ ( X i , Y i | ! t ) is an input-oriented efficiency measure 
along the lines of (2.4) . Moreover, by Theorem 6.3.1 and Lemma 
6.3.1 of Wilson (2011) , γ (X i , Y i | ̂ !t 

n ) is an ordinary input-oriented 
(VRS) DEA estimator along the lines of (3.2) with (p + q ) “inputs”
and no outputs. Hence the results in (3.9) –(3.11) follow from Kneip 
et al. ( 2015, Theorem 3.1 ). 

For case (ii) where )( ·) denotes the log function, by A.1 part 
(iii), γ ( X i , Y i | ! t ) as well as the derivatives γ ′ ( X i , Y i | ! t ) and γ ′′ ( X i , 
Y i | ! t ) are uniformly bounded for all (X i , Y i ) ∈ D t . Then the results 
in (3.9) –(3.11) follow from arguments parallel to those used in the 
proof of Theorem 3.2 of Kneip et al. (2018) . !

A4. Proof of Theorem 3.3 
For t = s the results in (3.12) –(3.14) follow trivially from case 

(ii) of Theorem 3.2 . 
For t ̸ = s , note that due to Assumption A.2 , D 1 norm = D 2 norm . The 

results follow from arguments parallel to those used in the proof 
of Theorem 3.4 in Kneip et al. (2018) . !

A5. Proof of Theorem 4.1 
By definition, taking logs yields 

log (T 2 (z 1 , z 2 | !1 , !2 ) )
= log (γ (z 2 | !1 ) ) − log (γ (z 2 | !2 ) )
+ log (γ (z 1 | !1 ) ) − log (γ (z 1 | !2 ) ) (A.7) 

and 
log (T 2 (z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) )

= log (γ (z 2 | ̂ !1 
n 1 ) ) − log (γ (z 2 | ̂ !2 

n 2 ) )
+ log (γ (z 1 | ̂ !1 

n 1 ) ) − log (γ (z 1 | ̂ !2 
n 2 ) ). (A.8) 

Note that Theorem 3.1 holds for both z 1 and z 2 due to 
Assumption A.2 . Then 
n κ(log (T 2 (z 1 , z 2 | ̂ !1 

n 1 , ̂  !2 
n 2 ) ) − log (T 2 (z 1 , z 2 | !1 , !2 ) ))

L −→ Q log T 2 ,z 1 ,z 2 (A.9) 
follows trivially from Theorem 3.1 . The exponential function is 
monotonic and differentiable with nonzero derivatives on R + . 
Therefore the result follows from (A.9) via the delta method. !

A6. Proof of Theorem 4.2 
First, let 

R n = E ( ̂  µT 2 ,n −µT 2 ) 
= D T 2 n −κ − ξn,κ . (A.10) 

To simplify notation, let T 2 i = T 2 (Z 1 i , Z 2 i | !1 , !2 ) and let ̂ T 2 i = 
T 2 (Z 1 i , Z 2 i | ̂ !1 

n 1 , ̂  !2 
n 2 ) . Then (4.4) can be rewritten as 

n 1 / 2 ( ̂  µT 2 ,n −µT 2 − R n ) 
= n 1 / 2 

n 
n ∑ 

i =1 
(
log ̂  T 2 i − log T 2 i − E (log ̂  T 2 i )+µT 2 )
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+ n 1 / 2 

n 
n ∑ 

i =1 ( log T 2 i −µT 2 ) . (A.11) 
Results (3.9) –(3.10) in Theorem 3.2 imply 
n 1 / 2 
n 

n ∑ 
i =1 ( log ̂  T 2 i − log T 2 i − E( log ̂  T 2 i ) + µT 2 ) p −→ 0 . (A.12) 

Hence result (4.4) follows from the Lindeberg-Levy CLT. 
Second, the results in (4.5) follows directly from (A.9) in the 

proof of Theorem 4.1 . In particular, ̂ σ 2 
T 2 ,n = n −1 ∑ n 

i =1 ( log ( ̂  T 2 i ) −
̂ µT 2 ,n ) 2 p −→ E[( log ̂  T 2 i ) 2 ] −µ2 

T 2 ,n = VAR ( log T 2 i ) + [ E( log T 2 i )] 2 −
µ2 

T 2 = σ 2 
T 2 since [ E( log T 2 i )] 2 −µ2 

T 2 = 0 . !

A7. Proof of Theorem 4.3 
The result follows immediately from Theorem 4.2 since the re- 

mainder term is of order o ( n −κ ) and hence n κξT 2 = n κo ( n −κ ) = 
o(1) . Since ̂ µT 2 ,n in (4.4) has been replaced with ̂ µT 2 ,n κ in (4.8) , 
the scale factor needed to stabilize the variance is n κ . !

A8. Proof of Theorem 4.4 
The results follow trivially after substituting the jackknife bias 

estimator into (4.4) and (4.8) . When (p + q ) = 4 then κ = 2 / 5 , 
and the remainder term in (4.4) is O (n −3 κ/ 2 ) ignoring the (log n ) 
term which does not affect the rate. Moreover, n 1 / 2 O (n −3 κ/ 2 ) = 
O (n −1 / 10 ) , while in (4.8) n κξn,κ = O (n −1 / 5 ) . !

A9. Proof of Theorem 4.5 
The result follows using the delta method. Define 

R n = E ( ̂  µT 2 ,n −µT 2 ) = D T 2 n −κ + ξn,κ (A.13) 
where κ is the remainder term defined in (4.4) in Theorem 4.2 . A 
Taylor expansion yields 
n 1 / 2 ( exp ( ̂  µT 2 ,n ) − exp (µT 2 + R n ) ) 

= exp (µT 2 + R n ) n 1 / 2 ( ̂  µT 2 ,n −µT 2 − R n ) + O p (n −1 / 2 ) . (A.14) 
Since R n = O ( n −κ ) , the result follows from a further Taylor expan- 
sion of exp (µT 2 + R n ) and result (4.4) in Theorem 4.2 . !

A10. Proof of Theorem 4.6 
The exponential function is monotonic and differentiable with 

nonzero derivatives on R + . Therefore the result follows from 
Theorem 4.3 via the delta method. !

A11. Proof of Theorem 4.7 
The results follow trivially after substituting the jackknife bias 

estimator into (4.19) and (4.22) . !
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