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Nonparametric data envelopment analysis and free-disposal hull estimators are frequently used to esti- 

mate cost, revenue and profit efficiency as well as the corresponding allocative efficiencies. Papers in the 

literature often report sample means of such estimates along with sample standard deviations, inviting 

readers to make inference about means of these efficiencies using classical methods based on the stan- 

dard Lindeberg–Feller central limit theorem (CLT). A number of papers explicitly make inference using the 

classical methods. However, the statistical properties of these estimators are (until now) unknown. This 

paper establishes rates of convergence and existence of limiting distributions for the various estimators. 

These properties are needed in order to make inference about individual producers using subsampling 

methods. In addition, properties of the first two moments of the estimators are derived, and these re- 

sults are subsequently used to establish new CLTs for the estimators, providing formal justification for 

inference-making. The results reveal that the classical CLTs and methods do not provide valid inference 

when FDH estimators are used, and provide valid inference when DEA estimators only in a few restrictive, 

special cases. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Nonparametric envelopment estimators such as the data en-

velopment analysis (DEA) estimators due to Farrell (1957) and

Charnes, Cooper, and Rhodes (1978) as well as the free-disposal

hull (FDH) estimator introduced by Deprins, Simar, and Tulkens

(1984) are widely used to estimate technical efficiency of firms

and other organizations. The statistical properties of these estima-

tors of technical efficiency are by now well-developed (see Simar

and Wilson, 2013; 2015 for recent surveys), and methods exist for

making inference about the technical efficiency of a single firm as

well as mean technical efficiency for a group (or population) of

firms (e.g., see Kneip, Simar, & Wilson, 2015 ). In addition, results

enabling tests of convexity versus non-convexity of the production

set or constant versus variable returns to scale have been devel-

oped (see Kneip, Simar, and Wilson (2016) for details). 

When data on prices of inputs are available, one can estimate

cost efficiency (also called input overall efficiency) or input alloca-

tive efficiency as proposed by Färe, Grosskopf, and Lovell (1985) .

Alternatively, when data on prices of outputs are available, one can

estimate revenue efficiency (also called output overall efficiency) or
∗ Corresponding author. 

E-mail addresses: leopold.simar@uclouvain.be (L. Simar), pww@clemson.edu 
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utput allocative efficiency as also proposed by Färe et al. (1985) .

hen both input and output prices are available, one can esti-

ate profit efficiency or profit allocative efficiency as discussed by

hambers, Chung, and Färe (1998) , Färe and Grosskopf (2006) and

äre, Grosskopf, and Margaritis (2008) . Unfortunately, no statisti-

al results exist for these estimators; to date, neither convergence

ates nor existence of limiting distributions have been derived,

or has consistency been proved for any of these estimators. Con-

equently, inference—either for individual firms or for mean, ex-

ected values—has until now been impossible. Many empirical pa-

ers have estimated cost, revenue, or profit efficiency or the cor-

esponding allocative efficiencies using either FDH or DEA estima-

ors. 1 All of these papers have either ignored statistical inference,

r have used classical methods that fail to provide valid inference

xcept in a few vary specific, restrictive settings due to the results

resented below. 

The results obtained in this paper address this deficiency. DEA

nd FDH estimators of cost efficiency are examined and shown to

ave a non-degenerate limiting distribution, as well as a conver-

ence rate that is faster than the rate of the corresponding techni-
1 A Google Scholar search on 22 February 2015 finds approximately 17,500 pa- 

ers using the keywords “DEA” and “cost efficiency”. Replacing “cost” by “alloca- 

tive,” “revenue” or “profit” results in approximately 28,200, 1440, or 5130 papers, 

respectively. Repeating these four searches substituting “FDH” for “DEA” results in 

,160, 1,290, 246 and 702 papers, respectively. 

https://doi.org/10.1016/j.ejor.2019.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.10.011&domain=pdf
mailto:leopold.simar@uclouvain.be
mailto:pww@clemson.edu
https://doi.org/10.1016/j.ejor.2019.10.011
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al efficiency estimator when there is more than one input. 2 Sim-

lar to Kneip et al. (2015) , it is shown that standard central limit

heorem (CLT) results (e.g., the Lindeberg–Feller CLT) do not pro-

ide valid inference if there is more than one output when the DEA

stimator is used, and never hold when the FDH is used. New CLT

esults are provided, enabling inference about mean cost efficiency.

imilar results are developed for an estimator of input allocative

fficiency. This estimator does not achieve the faster convergence

ate of the cost efficiency estimator, and instead has the same

onvergence rate as the corresponding technical efficiency estima-

or. Standard CLT results are shown to provide invalid inference

bout input allocative efficiency whenever there is more than one

nput and one output, and new CLT results are provided to enable

nference in settings with arbitrary numbers of inputs and outputs.

These results are next extended to estimators of revenue effi-

iency and output allocative efficiency. Similar to the estimator of

ost efficiency, the estimator of revenue efficiency is shown to con-

erge at a faster rate than the corresponding technical efficiency

stimator. Standard CLT results are shown not to hold for mean

evenue efficiency whenever there is more than one input, nor for

ean output allocative efficiency whenever there is more than one

nput or one output. New CLT results are provided to enable infer-

nce in general settings. 

Similar results are developed for an estimator of profit effi-

iency and of profit allocative efficiency. For sample size n , it is

hown that profit efficiency can be estimated with rate n as n → ∞
egardless of the number of inputs and outputs. Consequently, ex-

sting methods can be used for inference about mean profit effi-

iency. However, the estimator of profit allocative efficiency con-

erges at the same rate as the corresponding estimator of techni-

al efficiency. Consequently, standard CLT results cannot be used if

here is more than one input or one output. Again, a new CLT is

rovided to enable inference in general settings. 

The next section establishes notation and provides a statistical

odel. Precise definitions of the various measures discussed above

re also given. Section 3.1 briefly reviews estimation of technical

fficiency and mentions the results available for inference about

echnical efficiency. Sections 3.3 –3.4 develop results for cost ef-

ciency and input allocative efficiency, and these results are ex-

ended to revenue efficiency and output overall efficiency in Ap-

endices B and C after a brief mention in Section 3.5 . 3 Sections 3.6 –

.7 deal with profit efficiency and profit allocative efficiency. An

mpirical illustration using data from Aly, Grabowski, Pasurka, and

angan (1990) is presented in Section 4 . Section 5 concludes.

roofs are given in Appendix A . 

. The statistical model 

Let X ∈ R 

p 
+ and Y ∈ R 

q 
+ denote (random) vectors of input and

utput quantities, respectively. Similarly, let x ∈ R 

p 
+ and y ∈ R 

q 
+ de-

ote fixed, nonstochastic vectors of input and output quantities.

he production set 

:= { (x, y ) | x can produce y } (2.1)

ives the set of feasible combinations of inputs and outputs. Sev-

ral assumptions on � are common in the literature. The assump-

ions of Shephard (1970) and Färe (1988) are typical and are used

ere. 
2 We consider only the variable returns to scale (VRS) version of the DEA esti- 

ator, as the constant return to scale (CRS) version is seldom used. In addition, the 

RS version of the DEA estimator remains consistent and attains the faster rate of 

he (CRS) DEA estimator under CRS (see Kneip et al., 2016 for details and a proof). 

oreover, with globally constant returns to scale, profit is maximized at infinity. 
3 Appendices B and C are available separately as supplementary online material. 

lternatively, Appendices B and C are available from the authors on request. 

t  

η

a

d

(

M

ssumption 2.1. � is closed. 

ssumption 2.2. (x, y ) �∈ � if x = 0 , y ≥0, y � = 0; i.e., all production

equires use of some inputs. 

ssumption 2.3. Both inputs and outputs are strongly disposable,

.e., ∀ ( x , y ) ∈ � , (i) ̃  x ≥ x ⇒ ( ̃  x , y ) ∈ � and (ii) ̃  y ≤ y ⇒ (x, ̃  y ) ∈ � . 

Here and throughout, inequalities involving vectors are

efined on an element-by-element basis, as is standard.

ssumption 2.1 permits definition of the the technology or ef-

cient frontier �∂ of � as the set of extreme points of � , i.e.,

∂ := 

{
(x, y ) | (x, y ) ∈ �, (γ −1 x, γ y ) / ∈ � for any γ ∈ (1 , ∞ ) 

}
. 

(2.2) 

ssumption 2.2 rules out free lunches; i.e., production of any

utput quantities greater than 0 requires use of some inputs.

ssumption 2.3 imposes weak monotonicity on the frontier, and

s standard in microeconomic theory of the firm. 

Farrell (1957) input efficiency measure 

(x, y | �) := inf { θ | (θx, y ) ∈ �} (2.3)

ndicates the amount by which input levels can be proportionately

caled downward by the same factor without reducing output lev-

ls. Farrell (1957) output efficiency measure gives the feasible, pro-

ortionate expansion of output quantities and is defined by 

(x, y | �) := sup { λ | (x, λy ) ∈ �} . (2.4)

his gives a radial measure of efficiency since all output quan-

ities are scaled by the same factor λ. Clearly, λ( x , y | �) ≥1 and

( x , y | �) ≤1 for all ( x , y ) ∈ � . 

Chambers et al. (1998) proposed the directional measure 

(x, y | d x , d y , �) = sup { δ | (x − δd x , y + δd y ) ∈ �} , (2.5)

hich measures the distance from a point ( x , y ) to the frontier

n the given direction d = (−d x , d y ) , where d x ∈ R 

p 
+ and d y ∈ R 

q 
+ .

his measure is flexible in the sense that some values of the di-

ection vector can be set to zero. A value δ(x, y | d x , d y , �) = 0 in-

icates an efficient point lying on the boundary of � . Note that

s a special case, the Farrell–Debreu radial distances can be recov-

red; e.g.,if d = (−x, 0) then δ(x, y | d x , d y , �) = 1 − θ (x, y | �) −1 

r if d = (0 , y ) then δ(x, y | d x , d y , �) = λ(x, y | �) − 1 . Another in-

eresting feature is that directional distances are additive measures,

ence they permit negative values of x and y (e.g., in finance, an

utput y may be the return of a fund, which can be, and often is,

egative). 4 Many choices of the direction vector are possible (e.g., a

ommon one for all firms, or a specific direction for each firm; see

äre et al. (2008) for discussion), although care should be taken to

nsure that the chosen direction vector maintains invariance with

espect to units of measurement for input and output quantities. 

Given a vector w x ∈ R 

p 
+ of input prices, the minimum cost of

roducing a specific vector y 0 of output quantities from a given

ector x 0 of input quantities is 

 min (x 0 , y 0 | �, w x ) = min 
x 

{ w 
′ 
x x | (x, y 0 ) ∈ �, x ∈ R 

p 
+ , w x ∈ R 

p 
++ } . 
(2.6) 

Cost efficiency (sometimes called input overall efficiency) for

he firm operating at ( x , y ) ∈ � and facing input prices w x is then
0 0 

4 The measure in (2.5) differs from the “additive” measure η(x, y | �) = sup { η | 
= i ′ p s x + i ′ q s y , (x − s x , y + s y ) ∈ �} estimated by Charnes, Cooper, Golany, Seiford, 

nd Stutz (1985) , where i p , i q denote ( p ×1) and ( q ×1) vectors of ones and s x , s y 
enote ( p ×1) and ( q ×1) vectors of weights to be optimized. Charnes et al. 

1985) present only an estimator, and do not define the object that is estimated. 

oreover, the additive measure is not in general invariant to units of measurement. 



1166 L. Simar and P.W. Wilson / European Journal of Operational Research 282 (2020) 1164–1176 

 

 

 

 

 

 

 

 

 

 

 

 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A
 

 

u  

e  

d  

s  

A  

p  

i  

b  

e  

m  

e  

b

A  

d  

t

A  

D

 

u  

K  

e  

D  

t

A  

t

 

A  

n  

s  

t

A  

 

 

o

 

o  

d  

A  

t

A  

D  

s

 

a  

m  

b  

t  

p  

f  

A  

p  

5 Assumption 2.8 is slightly stronger, but much simpler than assumptions AII–AIII 

in Park, Simar, and Weiner (20 0 0) . 
defined by 

C(x 0 , y 0 | �, w x ) := 

C min (x 0 , y 0 | �, w x ) 

w 
′ 
x x 0 

= 

w 
′ 
x x ∗

w 
′ 
x x 0 

(2.7)

where x ∗ is the argmin of the expression on the right-hand side

(RHS) of (2.6) . The cost efficiency measure in (2.7) gives the frac-

tion by which cost of producing output quantities y 0 could be re-

duced when facing input prices w x ; achieving this reduction might

require altering the mix of inputs used to produce y 0 . 

Färe et al. (1985) define input allocative efficiency as 

A x (x 0 , y 0 | �, w x ) := 

C(x 0 , y 0 | �, w x ) 

θ (x 0 , y 0 | �) 
. (2.8)

Clearly, for any ( x 0 , y 0 ) ∈ � we have A x (x 0 , y 0 | �, w x ) ≤ 1 . The

input allocative efficiency measure gives the part of cost ineffi-

ciency that would remain if input quantities x 0 were reduced to

the technically-efficient level θ ( x 0 , y 0 | �) x 0 . 

Alternatively, given a vector w y ∈ R 

q 
+ of output prices, the max-

imum revenue from producing a specific vector y 0 of output quan-

tities using a given vector x 0 of input quantities is 

R max (x 0 , y 0 | �, w y ) = max 
y 

{ w 
′ 
y y | (x 0 , y ) ∈ �, y ∈ R 

q 
+ , w y ∈ R 

q 
++ }

(2.9)

Revenue efficiency (sometimes called overall output efficiency) for

the firm operating at ( x 0 , y 0 ) ∈ � and facing output prices w y then

R (x 0 , y 0 | �, w y ) := 

R max (x 0 , y 0 | �, w y ) 

w 
′ 
y y 0 

= 

w 
′ 
y y ∗

w 
′ 
y y 0 

(2.10)

where y ∗ is the argmin of the expression on the RHS of (2.9) . 

Analogous to the input allocative efficiency measure, Färe et al.

(1985) define output allocative efficiency as 

A y (x 0 , y 0 | �, w y ) := 

R (x 0 , y 0 | �, w y ) 

λ(x 0 , y 0 | �) 
. (2.11)

By construction, A y (x 0 , y 0 | �, w y ) ≥ 1 for ( x 0 , y 0 ) ∈ � . Output al-

locative efficiency corresponds to the amount of revenue ineffi-

ciency that would remain after increasing output levels y 0 to the

technically efficient levels λ( x 0 , y 0 | �) y 0 . 

Maximum profit for a firm operating at ( x 0 , y 0 ) ∈ � and facing

prices w x , w y is given by 

P max (x 0 , y 0 | �, w x , w y ) = max 
x,y 

{ 

w 
′ 
y y − w 

′ 
x x | (x, y ) ∈ �, x ∈ R 

p 
+ , 

y ∈ R 

q 
+ , w x ∈ R 

p 
++ , w y ∈ R 

q 
++ 

} 

. (2.12)

However, defining profit efficiency as the ratio of maximum to

observed profit, analogous to cost or revenue efficiency, is prob-

lematic because profit can be negative, particularly during peri-

ods of economic distress. Chambers et al. (1998) propose a Nerlo-

vian profit efficiency measure for the firm operating at ( x 0 , y 0 ) ∈ �

given by 

P(x 0 , y 0 | �, d x , d y , w x , w y ) 

:= 

P max (x 0 , y 0 | �, w x , w y ) − (w y y 0 − w x x 0 ) 

w y d y + w x d x 
(2.13)

where d x , d y are the direction vectors used in (2.5) to measure

technical efficiency. Profit efficiency amounts to the difference

between maximum and observed profit (thereby accommodating

negative observed profits), normalized by the “value” of the direc-

tion ( d x , d y ). Because the directional measure is additive, the corre-

sponding measure of profit allocative efficiency is given by the dif-

ference 
 π (x 0 , y 0 | �, d x , d y , w x , w y ) 

:= P(x 0 , y 0 | �, d x , d y , w x , w y ) − δ(x, y | d x , d y , �) . (2.14)

All of the quantities and model features defined so far are

nobservable, and hence must be estimated. In addition, infer-

nce is needed in order to know what might be learned from

ata. Some additional assumptions are needed to complete the

tatistical model. The following assumptions are analogous to

ssumptions 3.1–3.4 of Kneip et al. (2015) . In order to draw upon

revious results, we state the assumptions below in terms of the

nput-oriented measure of efficiency. The assumptions can also

e stated in terms of the output and directional measures of

fficiency, and the results of Kneip et al. (2015) extend to those

easures after trivial (but tedious) changes in notation in Kneip

t al. (2015) . The first two assumptions that follow are needed for

oth DEA and FDH estimators. 

ssumption 2.4. (i) The random variables ( X , Y ) possess a joint

ensity f with support D ⊂ �; and (ii) f is continuously differen-

iable on D. 

ssumption 2.5. (i) D 
∗ := { θ (x, y | �) x, y ) | (x, y ) ∈ D } ⊂ D; (ii)

 
∗ is compact; and (iii) f ( θ ( x , y ) x , y ) > 0 for all (x, y ) ∈ D. 

The next two assumptions are needed when DEA estimators are

sed. Assumption 2.6 imposes some smoothness on the frontier.

neip, Simar, and Wilson (2008) required only two-times differ-

ntiability to establish the existence of a limiting distribution for

EA estimators, by the stronger assumption that follows is needed

o establish results on moments of the DEA estimators. 

ssumption 2.6. θ ( x , y | �) is three times continuously differen-

iable on D. 

Recalling that the strong (i.e., free) disposability assumed in

ssumption 2.3 implies that the frontier is weakly monotone, the

ext assumption strengthens this by requiring the frontier to be

trictly monotone with no constant segments. This is also needed

o establish properties of moments of the DEA estimators. 

ssumption 2.7. D is almost strictly convex ; i.e., for any

(x, y ) , ( ̃  x , ̃  y ) ∈ D with 

(
x 

‖ x ‖ , y 
)

� = 

( ˜ x 
‖ ̃  x ‖ , ̃  y 

)
, the set { (x ∗, y ∗) |

(x ∗, y ∗) = (x, y ) + α(( ̃  x , ̃  y ) − (x, y )) for some 0 < α < 1 } is a subset
f the interior of D. 

Assumptions 2.1 –2.7 comprise a statistical model similar to the

ne defined in Kneip et al. (2015) and where DEA estimators have

esirable properties. Alternatively, when FDH estimators are used,

ssumptions 2.6 and 2.7 can be replaced by the following assump-

ion. 

ssumption 2.8. (i) θ ( x , y ) is twice continuously differentiable on

; and (ii) all the first-order partial derivatives of θ ( x , y ) with re-

pect to x and y are nonzero at any point (x, y ) ∈ D. 

Assumption 2.8 strengthens the assumption of strong dispos-

bility in Assumption 2.3 by requiring that the frontier is strictly

onotone and does not possess constant segments (which would

e the case, for example, if outputs are discrete as opposed to con-

inuous, as in the case of ships produced by shipyards). Finally,

art (i) of Assumption 2.8 is weaker than Assumption 2.6 ; here the

rontier is required to be smooth, but not as smooth as required by

ssumption 2.6 . 5 Assumptions 2.1 –2.5 and Assumption 2.8 com-

rise a statistical model appropriate for use of FDH estimators of



L. Simar and P.W. Wilson / European Journal of Operational Research 282 (2020) 1164–1176 1167 

t  

c  

c

 

t  

t  

o

A  

d  

T  

p  

e

 

k  

m  

s  

i  

t  

f  

a  

m  

w  

a  

i  

w  

n  

fi  

c

 

h  

f  

a  

i  

p  

d  

s  

m  

a

3

3

c  

v

�

p  

m  

s

�

w  

(  

(  

i  

B  

y  

t  

s

θ

λ

a

δ

S  

t  

(

 

d  

c  

e  

D  

v  

e  

t  

l  

s  

d  

t  

(  

(  

(  

o  

r  

e  

r

(  

f  

b  

b  

m  

s  

a  

(  

v

3

 

d  

w  

t

w

A

0  

a  

t  

b

�  

C  

b  

a

echnical efficiency, while Assumption 2.1 –2.7 comprise a statisti-

al model appropriate for use of DEA estimators of technical effi-

iency. 

In applications where cost, revenue or profit efficiency are es-

imated, firms are often observed to face different prices. In order

o consider properties of moments of estimators of cost, revenue

r profit efficiency, an additional assumption is needed. 

ssumption 2.9. (i) The random variables ( W x , W y ) possess a joint

ensity f W x ,W y 
with compact support D W 

⊂ R 

p 
++ × R 

q 
++ , and (ii)

he random variables ( X , Y , W x , W y ) are defined on an appropriate

robability space such that the joint density f X,Y,W x ,W y 
(x, y, w x , w y )

xists and is well-defined with support D × D W 
. 

Of course, prices of inputs and outputs are determined in mar-

ets. One might expect that the price of financial capital, which is

obile, might be constant, but this requires that markets reach a

patial equilibrium. Moreover, the price of physical capital, which

s immobile, should be expected to vary across space. In addition,

he prices of labor as well as banks’ outputs may vary due to dif-

erences in local market conditions. Treating prices of both inputs

nd outputs as random variables in Assumption 2.9 provides some

athematical structure needed to define a statistical model. As

ill be seen below, estimates of cost, revenue and profit efficiency

re in each case conditioned on observed prices. When consider-

ng mean efficiencies, expectations are over inputs and outputs as

ell as prices. Assumption 2.9 provides the mathematical structure

eeded to make inference about mean cost, revenue and profit ef-

ciencies as well as the corresponding measures of allocative effi-

iencies. 

Assumption 2.9 ensures that all prices are strictly positive and

ave finite upper bounds. Of course, in some situations firms may

ace the same prices, in which case f W x ,W y 
is degenerate with mass

t a single point. In other situations, it may be the case that only

nput prices or output prices are observed. In such cases, the in-

ut or output prices can be viewed as being drawn from marginal

istributions f W x 
or f W y 

corresponding to f W x ,W y 
. The joint den-

ity f X,Y,W x ,W y 
(x, y, w x , w y ) implies existence of the corresponding

arginal distributions f X,Y,W x 
of inputs, outputs and input prices

nd f X,Y,W y 
of inputs, outputs and output prices. 

. Estimation and inference 

.1. Technical efficiency 

Given a random sample S n = { (X i , Y i ) } , the production set �
an by estimated by the free disposal hull of the sample obser-

ations in S, 

̂ 

FDH ,n := 

⋃ 

(X i ,Y i ) ∈S n 

{
(x, y ) ∈ R 

p+ q 
+ | x ≥ X i , y ≤ Y i 

}
, (3.1) 

roposed by Deprins et al. (1984) . Alternatively, � can be esti-

ated by the convex hull of ̂ �FDH ,n of the free-disposal hull of the

ample observations in S, i.e., by 

̂ 

DEA ,n := 

{
(x, y ) ∈ R 

p+ q | y ≤ Y υ, x ≥ X υ, i 
′ 
n υ = 1 , υ ∈ R 

n 
+ 
}
, 

(3.2) 

here X = 

(
X 1 , . . . , X n 

)
and Y = 

(
Y 1 , . . . , Y n 

)
are ( p ×n ) and

 q ×n ) matrices of input and output vectors, respectively; i n is an

 n ×1) vector of ones, and υ is a ( n ×1) vector of weights. This

s the (VRS) DEA estimator of � , proposed by Farrell (1957) and

anker, Charnes, and Cooper (1984) . FDH or DEA estimators of θ ( x ,
 | �), λ( x , y | �) and δ( x , y | d x , d y , �) defined in Section 2 are ob-

ained by substituting ̂ �FDH ,n or 
̂ �DEA ,n for � in (2.3) –(2.5) (re-

pectively). In the case of DEA estimators, this results in 
(x, y | ̂ �DEA ,n ) = min 
θ, υ

{
θ | y ≤ Y υ, θx ≥ X υ, i 

′ 
n υ = 1 , υ ∈ R 

n 
+ 
}
, 

(3.3) 

(x, y | ̂ �DEA ,n ) = max 
λ, υ

{
λ | λy ≤ Y υ, x ≥ X υ, i 

′ 
n υ = 1 , υ ∈ R 

n 
+ 
}

(3.4) 

nd 

(x, y | d x , d y , ̂  �DEA ,n ) = max 
δ, υ

{
δ | (y + δd y ) ≤ Y υ, (x − δd x ) 

≥ X υ, i 
′ 
n υ = 1 , υ ∈ R 

n 
+ 
}
. (3.5) 

ubstituting ̂ �FDH ,n leads to integer programming problems, but

he estimators can be computed using simple numerical methods

e.g., see Simar and Wilson, 2013; 2015 for details). 

The statistical properties of these estimators are well-

eveloped. Kneip, Park, and Simar (1998) derive the rate of

onvergence of the input-oriented DEA estimator, while Kneip

t al. (2008) derive its limiting distribution. Park et al. (20 0 0) and

aouia, Simar, and Wilson (2017) derive both the rate of con-

ergence and limiting distribution of the input-oriented FDH

stimator. Kneip et al. (2015) derive moment properties of both

he input-oriented FDH and DEA estimators and establish central

imit theorem (CLT) results for mean input-oriented efficiency after

howing that the usual CLT results (e.g., the Lindeberg–Feller CLT)

o not hold unless (p + q ) < 3 . All of these results extend trivially

o the output-oriented estimator λ(x, y | ̂ �n ) after straightforward

but tedious) changes in notation. Simar, Vanhems, and Wilson

2012) extend the results of Kneip et al. (1998) and Kneip et al.

2008) to the DEA directional efficiency estimator using the results

f Wilson (2011) , while Simar and Vanhems (2012) extend the

esults of Park et al. (20 0 0) to the FDH directional efficiency

stimator. Using similar ideas it can be shown that the moment

esults of Kneip et al. (2015) also extend to the directional case. 

In all cases, the estimators are consistent, converge at rate n κ

where κ = 2 / (p + q + 1) for the DEA estimators and κ = 1 / (p + q )

or the FDH estimators) and possess non-degenerate limiting distri-

utions under the appropriate set of assumptions. In addition, the

ias of each of the three estimators is of order O ( n −κ ) . Bootstrap

ethods proposed by Kneip et al. ( 2008, 2011 ) and Simar and Wil-

on (2011a) provide consistent inference about θ ( x , y | �), λ( x , y | �)

nd δ( x , y | d x , d y , �) for a fixed point ( x , y ) ∈ � , and Kneip et al.

2015) provide CLT results enabling inference about the expected

alues of these measures over the random variables ( X , Y ). 

.2. Some preliminary results 

The preliminary results developed here are used below in the

iscussion of estimation of cost, revenue and profit efficiency as

ell as input, output and profit allocative efficiency. First, consider

he function h w x : R 

p+ q 
+ �→ R 

1+ q 
+ such that h w x (x, y ) = A w x 

[
x ′ y ′ 

]′ 
here 

 w x = 

[
w 

′ 
x 0 ′ q 

0 ′ p×q I q 

]
, (3.6) 

 q is a ( q ×1) vector of zeros, 0 p × q is a ( p × q ) matrix of zeros,

nd I q is a ( q × q ) identity matrix. Then h w x is an affine function in

he sense of Williamson and Trotter (1974) and Boyd and Vanden-

erghe (2004) , and the image of � under h w x is 

w x := h w x (�) = { (c, y ) | (c, y ) = h w x (x, y ) ∀ (x, y ) ∈ �} . (3.7)

learly, �w x ⊂ R 

1+ q 
+ . It is well-known (e.g., see Boyd and Vanden-

erghe (2004) , pp. 36–38) that since h w x is affine, �w x is convex if

nd only if � is convex. 
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6 See Simar and Wilson (2007) for further discussion on this point. 
Next, consider the function h w y : R 

p+ q 
+ �→ R 

p+1 
+ such that

h w y (x, y ) = A w y 
[
x ′ y ′ 

]′ 
where 

A w y = 

[
I p 0 p×q 

0 ′ p w 
′ 
y 

]
(3.8)

is a (p + 1) × (p + q ) matrix. Similar to h w x defined above, h w y is

an affine function, and the image of � under h w y is 

�w y := h w y (�) = 

{
(x, r) | (x, r) = h w y (x, y ) ∀ (x, y ) ∈ �

}
. (3.9)

Clearly �w y ⊂ R 

p+1 
+ . Again, due to the properties of affine func-

tions, �w y is convex if and only if � is convex. 

Finally, define the function h w x ,w y : R 

p+ q 
+ �→ R such that

h w x ,w y (x, y ) = A w x ,w y 
[
x ′ y ′ 

]′ 
where 

A w x ,w y = 

[
−w 

′ 
x w 

′ 
y 

]
(3.10)

is a 1 × (p + q ) matrix. Similar to h w x and h w y defined above,

h w x ,w y is an affine function, and the image of � under h w x ,w y is

�w x ,w y := h w x ,w y (�) = 

{
π | π := h w x ,w y (x, y ) ∀ (x, y ) ∈ �

}
. 

(3.11)

Clearly, �w x ,w y ⊂ R , and �w x ,w y is trivially convex. In addition, the

affine transformations of � described above also preserve strong

disposability as confirmed by the following result. 

Lemma 3.1. Assume � is closed but not necessarily convex, and

Assumption 2.3 holds. Then (i) �w x satisfies strong disposability

of cost and outputs, i.e., ∀ (c, y ) ∈ �w x , ˜ c ≥ c ⇒ ( ̃  c , y ) ∈ �w x and
 y ≤ y ⇒ (c, ̃  y ) ∈ �w x ; (ii) �w y satisfies strong disposability of inputs

and revenue, i.e., ∀ (x, r) ∈ �w y , ˜ x ≥ x ⇒ ( ̃  x , r) ∈ �w y and ˜ r ≤ r ⇒
(x, ̃  r ) ∈ �w y ; and (iii) �w x ,w y satisfies strong disposability of profit,

i.e., ∀ (π ) ∈ �w x ,w y , ˜ π ≤ π ⇒ ( ̃  π) ∈ �w x ,w y . 

It is obvious that Assumption 2.1 ensures that �w x is

closed. Hence, since strong disposability is preserved, under

Assumptions 2.2 –2.5 and Assumption 2.8 , �w x can be estimated

by 

̂ �FDH ,w x ,n := 

⋃ 

(C i ,Y i ) ∈S w x ,n 
{ (c, y ) | c ≥ C i , y ≤ Y i } (3.12)

where S w x ,n = { (C i , Y i ) } n i =1 
results from applying the transformation

h w x to each (X i , Y i ) ∈ S n . Similar reasoning leads to the conclu-

sion that �w y and �w x ,w y can be estimated by the FDH estimatorŝ �FDH ,w y ,n and 
̂ �FDH ,w x ,w y ,n , respectively, after applying the trans-

formations h w y and h w x ,w y to the observations in S n . 
The fact that the affine transformations of � described above

preserve convexity (when it exists) as well as strong disposabil-

ity means that under Assumptions 2.1 –2.7 , DEA estimators can be

used to estimate the transformed sets �w x , �w y and �w x ,w y . In

particular, let ̂ �DEA ,w x ,n = h w x ( ̂
 �DEA ,n ) ; i.e, 

̂ �DEA ,w x ,n is the image

of ̂ �DEA ,n under h w x . This leads to the DEA estimator of �w x in

cost-output space, i.e., the convex hull of the free disposal hull of

the observations in S w x ,n given by 

̂ �DEA ,w x ,n = 

{
(c, y ) ∈ R 

1+ q | y ≤ Y υ, c ≥ C υ, i 
′ 
n υ = 1 , υ ∈ R 

n 
+ 
}
, 

(3.13)

where C is the (1 ×n ) vector of costs with (1, i )th element C i =
w 

′ 
x X i . Similar reasoning leads to DEA estimators ̂ �DEA ,w y ,n and̂ �DEA ,w x ,w y ,n of �w y and �w x ,w y . 
.3. Cost efficiency 

The usual approach to estimating cost efficiency given by

2.7) is to first estimate the vector of input levels that minimize

ost by employing an empirical analog of (2.6) . DEA estimators are

ypically used. In practice, given the vector w x of input prices, this

mounts to replacing � in (2.6) with ̂ �DEA ,n to obtain 

 min (x 0 , y 0 | ̂ �DEA ,n , w x ) 

= min 
x, υ

{
w 

′ 
x x | Y υ ≥ y 0 , X υ ≤ x, 1 ′ n υ = 1 , υ ∈ R 

n 
+ 
}

= w 
′ 
x ̂

 x min (3.14)

here ̂  x min is the solution to the optimization problem in the first

ine of (3.14) . Then cost efficiency is estimated by 

(x 0 , y 0 | ̂ �DEA ,n , w x ) := 

C min (x 0 , y 0 | ̂ �n , w x ) 

w 
′ 
x x 0 

= 

w 
′ 
x ̂

 x min 

w 
′ 
x x 0 

. (3.15)

his is the suggested approach of Coelli, Rao, and Battese (1997) ;

äre and Grosskopf (1995) ; Färe et al. (1985) ; Farrell (1957) and

ay (2004) , and has been used in empirical settings by Aly et al.

1990) , Byrnes and Valdmanis (1994) , Cummins, Tennyson, and

eiss (1999) , Sharmaa, Leunga, and Zaleski (1999) , Kohersa, hsiang

uang, and Kohers (20 0 0) , Worthington (20 0 0) , Björkgren, Häkki-

en, and Linna (2001) , Hartman, Storbeck, and Byrnes (2001) ,

oelli, Rahman, and Thirtle (2002) , Isik and Hassan (2002) , Wadud

2003) , Barros and Sampaio (2004) , Barros and Mascarenhas

2005) , Camanho and Dyson (2005, 2008) , Chen, Skully, and Brown

2005) , Cinemre, Ceyhan, Bozo ̆glu, Demiryürek, and Kiliç (2006) ,

avrylchyk (2006) , Asmild, Paradi, Reese, and Tam (2007) , Ariff

and Can (2008) , Hansson and Öhlmér (2008) , Hu, Shieh, Huang,

nd Chiu (2009) , Cummins, Weiss, Xie, and Zi (2010) , Hsu and

etchsakulwong (2010) , Kader, Adams, and Hardwick (2010) , Kaur

nd Kaur (2010) , Kwadjo Ansah-Adu (2011) , Lozano (2011) , Al-

hasawneh, Bassedat, Aktan, and Thapa (2012) , Haelermans and

uggiero (2013) , Nedelea and Fannin (2013) , Ko ̌cišová (2014) ,

guyen, Nghiem, Roca, and Sharma (2016) , Ghiyasi (2017) and

any others. Unfortunately, the statistical properties of both the

stimator of minimum cost given in (3.14) as well as the estima-

or of cost efficiency given in (3.15) are unknown. Consequently,

esearchers often either (i) report only point estimates and per-

aps sample means of the estimates in applications without mak-

ng inference, or (ii) report sample means of estimate as well as

ample standard deviations of cost efficiency estimates, implic-

tly inviting readers to use standard CLT results to assess statis-

ical significance. Some (e.g., Kohersa et al., 20 0 0 ) explicitly use

tandard CLT results to test whether means are different across

roups of producers. Hartman et al. (2001) use the Kruskal–Wallis

est to test for whether cost efficiency has the same distribu-

ion across groups, but the true cost efficiencies, as well as their

anks, are unobserved, casting doubt on the properties of their

est. Several papers, including Cummins et al. (2010) , Coelli et al.

2002) and Nedelea and Fannin (2013) , make conventional infer-

nce in second-stage Tobit regressions where cost efficiency esti-

ates are regressed on some explanatory variables. As will be seen

hortly, this results in invalid inference. Moreover, these papers do

ot specify a coherent model where Tobit regression in a second-

tage regression would be sensible. 6 

The next result establishes a distance-function characterization

f the cost efficiency measure introduced in (2.7) . 

emma 3.2. Let c 0 = w 
′ 
x x 0 . Then for ( x 0 , y 0 ) ∈ � , 

(x 0 , y 0 | �, w x ) = θ (c 0 , y 0 | �w ) . (3.16)
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8 Linna, Häkkinen, and Magnussen (2006) use cost data state in their Section 

4.6 that they use year-end accounting data on costs, and thus apparently do not 

account for different input prices faced by different producers, thereby failing to 

condition their estimates on input prices of each unit. Banker and Natarajan ( 2011 , 

pp. 279–281) propose estimation of technical, cost, and input allocative efficiencies 

when only the costs of inputs, but neither their prices nor their quantities are ob- 

served. If input prices vary across firms, as is likely due to differing local market 

conditions, then their approach will result in failure to condition on input prices. 
Since it is apparent from (3.14) that � is estimated by the

onvex hull of the sample observations in S n , one might imag-

ne that the convergence rate of the estimator of cost efficiency is

 
2 / (p+ q +1) as established by Kneip et al. (1998) for the DEA estima-

or of θ ( x , y | �), or n 1 / (p+ q ) as established by Park et al. (20 0 0) for
he FDH estimator. But in fact, due to Lemma 3.2 , cost efficiency

an be estimated at the rate n 2 / (q +2) using the DEA estimator,

r n 1 / (q +1) using the FDH estimator. The result in Lemma 3.2 is

ot new—it is suggested by duality theory in the microeconomics

iterature—but it is important for purposes of statistical inference. 

To simplify notation, from this point the “FDH” or “DEA” is

mitted from subscripts, noting that ̂ �n and ̂ �w x ,n may refer to ei-

her the FDH or DEA estimators of � and �w x (respectively). Then

onsider the estimator θ (c 0 , y 0 | ̂ �w x ,n ) of cost efficiency wherê 
w x ,n denotes either the FDH or DEA estimator of �w x defined in

3.12) or (3.13) and where c 0 and 
̂ �w x ,n replace x 0 and 

̂ � (respec-

ively) in (3.3) as discussed in Section 3.2 . 

The result in Lemma 3.2 may seem obvious to some. Färe and

rosskopf (1985) , Färe, Grosskopf, and Lovell (1988) and Staub,

a Silva e Souza, and Tabak (2010) estimate cost efficiency using

(c 0 , y 0 | ̂ �w x ,n ) where ̂ �w x ,n denotes the DEA estimator in (3.13) ,

hile De Borger and Kerstens (1996) estimate cost efficiency us-

ng θ (c 0 , y 0 | ̂ �w x ,n ) where ̂ �w x ,n denotes the FDH estimator in

3.12) . Staub et al. (2010) estimate cost efficiency in (q + 1) di-

ensions with p = q = 3 , but then regress their (DEA) cost effi-

iency estimates on some explanatory variables in a second-stage

anel regression after citing (and then ignoring) Simar and Wil-

on (2007) which cautions against their approach. In their panel

egression, Staub et al. (2010) rely upon conventional inference,

hich is invalid due to reasons given below. None of these au-

hors specify a statistical model, nor do they mention the statis-

ical properties of their estimators. Moreover, the far more typi-

al approach in the literature is to estimate cost efficiency using

3.14) and (3.15) as described above. 

Lemma 3.2 establishes that estimation of cost efficiency is a

(q + 1) -dimensional problem, and that the usual FDH and DEA

nput-oriented efficiency estimators can be used to estimate cost

fficiency, where univariate cost replaces p input variables. 7 Con-

equently, cost efficiency is consistently estimated with rates n κx ,

here κx = 2 / (q + 2) when the DEA estimator is used and κx =
 / (q + 1) when the FDH estimator is used due to the results of

neip et al. (1998) (for the DEA case) and Park et al. (20 0 0) and

aouia et al. (2017) (for the FDH case). Moreover, a limiting dis-

ribution exists in both cases, and hence the sub-sampling ideas

f Simar and Wilson (2011a) can be used to make asymptotically

alid inference about the cost efficiency of individual producers.

imar and Wilson (2011a) also discuss a method for choosing the

ub-sample size, which is critical to the finite-sample performance

f the sub-sampling method. Implementation of the sub-sampling

ethod also depends critically on knowledge of the convergence

ate with which cost efficiency is estimated, which is established

bove due to Lemma 3.2 . 

To be clear, different firms may face different input prices

s noted earlier in Section 2 . Suppose a random sample

 (X i , Y i , W x,i } n i =1 
of input, output and input-price triplets is ob-

erved. When estimating cost efficiency for each firm, each firm’s

bserved input-price vector is used to construct a transformed at-

ainable cost-output set. Firm i has observed cost C i = W 
′ 
x,i 
X i while

rm j has observed cost C j = W 
′ 
x, j 

X j , but to estimate the cost ef-

ciency of firm i , its cost C i is compared not to C j but instead to

 
i 
j 
= W 

′ 
x,i 
X j for j = 1 . . . , n, thereby conditioning on the observed

rices W x , i of firm i . Of course, this similar to the case in regression
7 Tone (2002) makes the obvious note that in the case of p = 1 , technical and 

ost efficiencies are identical. 

l

v

s

ettings where cost is regressed on output quantities and input

rices, and cost efficiency for firm i is estimated conditionally on

rm i ’s observed input prices. Formally, the sample { (X i , Y i , W x,i } n i =1 

s used to construct n samples S W x,i ,n 
= 

{
C i � , Y � 

}n 
� =1 

obtained by ap-

lying the function h W x,i 
to the observations in { (X i , Y i , W x,i } n i =1 

for

ach i = 1 , . . . , n . In other words, for firm i , W x , i replaces w x in

3.6) leading to the image �W x,i 
of � under h W x,i 

, analogous to

3.7) where h W x,i 
is defined by replacing w x in (3.6) with W x , i . Sim-

larly, for firm j , W x , j replaces w x in (3.6) leading to the image �W x, j 

f � under h W x, j 
, again analogous to (3.7) . Finally, for i = 1 , . . . , n,

stimators (either FDH or DEA) of �W x ,i are constructed from the

amples S W x,i ,n 
and these are used to obtain cost efficiency esti-

ates θ (C i , Y i | ̂ �W x ,i ) . 
8 

The result in Lemma 3.2 also means that properties of the first

wo moments of either FDH or DEA estimators of cost efficiency

re established by Kneip et al. (2015) , where in the notation of

neip et al. (2015) , p = 1 . This means that standard CLTs (e.g., the

indeberg-Feller CLT) can be used for inference about mean cost

fficiency if and only if q = 1 when DEA estimators are used. 9 

hen FDH estimators are used, standard CLTs never hold. Unless

 = 1 and DEA estimators are used, the bias of the cost efficiency

stimates becomes critical and must be dealt with as described by

neip et al. (2015) . 

In order see how to make valid inference about mean cost effi-

iency, let μW x 
= E 

[
θ (C, Y | �W x 

) 
]
and σ 2 

W x 
= VAR 

[
θ (C, Y | �W x 

) 
]

<

 denote the mean and variance of cost efficiency, where expec-

ations are with respect to ( C , Y , W x ). Let 

̂ W x ,n := n −1 
n ∑ 

i =1 

θ
(
C i , Y i | ̂ �W x,i ,n 

)
. (3.17) 

et κx = 1 / (q + 1) for the FDH case or κx = 2 / (q + 2) for the DEA

ase, and define n κx := min (� n 2 κx � , n ) ≤ n where � a � denotes the
argest integer less than or equal to a ∈ R . Assume the observations

n S n and the corresponding samples S W x,i ,n 
are randomly sorted.

efine 

̂ W x ,n κx 
:= n −1 

κx 

n κx ∑ 

i =1 

θ
(
C i , Y i | ̂ �W x,i ,n 

)
. (3.18) 

ote that the efficiency estimates under the summation sign are

omputed using the full sample of n observations, but the summa-

ion is over only the first n κx estimates. 

Next, let ˜ B W x ,n,κx denote the generalized jackknife estimate of

he O ( n −κx ) bias of θ
(
C i , Y i | ̂ �W x,i ,n 

)
, with ˜ B W x ,n,κx computed from

sing S W x,i ,n 
as described by Kneip et al. ( 2015 , Section 4). Com-

utation of this bias estimate requires splitting the sample, and as

oted by Kneip et al. (2016) , there are 
(

n 
n/ 2 

)
possible splits. To re-

uce the bias estimate, randomly split the sample K �
(

n 
n/ 2 

)
times

nd compute a bias estimate ˜ B W x ,n,κx ,k after each split. Then com-

ute the average 

 
 W x ,n,κx 

= K −1 
K ∑ 

k =1 

˜ B W x ,n,κx ,k . (3.19) 
9 Kohersa et al. (20 0 0) , cited above, specify q = 5 outputs, and hence their re- 

iance on the Lindeberg–Feller CLT for inference means that their inference is in- 

alid. Similarly, for reasons given by Kneip et al. ( 2015, Section 5 ), inference in the 

econd-stage regression of Staub et al. (2010) is also invalid. 
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The next result permits inference about mean cost efficiency for

any number q of outputs. 

Theorem 4.1 of Kneip et al. (2015) establishes that σ 2 
W x 

is esti-

mated consistently by the sample variance 

̂ σ 2 
W x 

:= n −1 
n ∑ 

i =1 

(
θ (C i , Y i | ̂ �W x,i ,n ) − ̂ μW x ,n 

)2 
(3.20)

of the cost efficiency estimates. Then Theorem 4.3 of Kneip et al.

(2015) ensures that the confidence interval [̂ μW x ,n − ̂ B W x ,n,κx 
± ̂ σW x √ 

n 
z (1 − α

2 ) 

]
, (3.21)

where z (1 − α
2 

) is the (1 − α
2 ) quantile of the standard normal distri-

bution function, has asymptotic coverage of (1 − α) × 100 -percent

whenever q ≤2 in the FDH case or q ≤3 in the DEA case. Alter-

natively, for q ≥3 in the FDH case or q ≥4 in the DEA case, the

asymptotically valid (1 − α) confidence interval [ ̂ μW x ,n κx 
− ̂ B W x ,n,κx 

± ̂ σW x 

n κx 
z (1 − α

2 ) 

] 
(3.22)

can be used. 

As discussed by Kneip et al. (2015) , when κx < 1/2 the random-

ness due to the subsample mean ̂ μW x ,n κx 
appearing in (3.22) can

be eliminated by replacing ̂ μW x ,n κx 
with the full mean ̂ μW x ,n ,

which has the effect of averaging over all the possible subsamples

of size n κx . The resulting interval has the same width as the one in

(3.22) , but has coverage tending to 1 as n → ∞ due to the results

obtained above. 10 

3.4. Input allocative efficiency 

Estimators of input allocative efficiency defined in (2.8) can be

obtained by substituting either FDH or DEA estimators of cost and

technical efficiency for the true values appearing on the right-

hand side of (2.8) . 11 This is the approach of Cummins et al. (1999) ,

Sharmaa et al. (1999) , Hartman et al. (2001) , Coelli et al. (2002) ,

Isik and Hassan (20 02) , Wadud (20 03) , Barros and Sampaio (2004) ,

Barros and Mascarenhas (20 05) , Chen et al. (20 05) , Havrylchyk

(2006) , Hsu and Petchsakulwong (2010) and Merkert and Hen-

sher (2011) , all of whom estimate cost efficiency in (p + q ) di-

mensions. Staub et al. (2010) similarly estimate input allocative ef-

ficiency, but estimate cost efficiency in only (q + 1) dimensions.

However, the properties of these estimators are unknown until

now. Nonetheless, a number of papers use estimates of input al-

locative efficiency in statistical exercises. Among these, Cummins

et al. (1999) , Sharmaa et al. (1999) , Isik and Hassan (2002) , Wadud

(2003) and Hsu and Petchsakulwong (2010) report both sample

means and sample standard deviations. Sharmaa et al. (1999) and

Wadud (2003) report t -tests of significance, and Wadud (2003) also

employs F tests. Isik and Hassan (2002) use their input allocative
10 Simar and Zelenyuk (2018) develop CLTs for estimates of aggregate efficiencies 

onsisting of ratios of weighted sample means. Their main focus is on output- 

oriented technical efficiency, but they remark (p. 140) that their results can be 

adapted to aggregate revenue efficiency, aggregate output allocative efficiency, ag- 

gregate cost efficiency, aggregate input-oriented technical efficiency and aggregate 

input allocative efficiency. However, they do not provide the peculiarities of the 

asymptotic theory. Clearly, by using our results in Theorem 3.2 for the cost efficien- 

cies and in Theorem B.2 for revenue efficiencies, the asymptotic theory in Simar 

and Zelenyuk for aggregate technical efficiency could be adapted to aggregate rev- 

enue efficiency and aggregate cost efficiency, but the rates will be governed by κy 

and κx respectively, and not by κ as given in Theorems 1, 2 and 3 of Simar and 

Zelenyuk (2018) . 
11 Of course, due to the result in Lemma 3.1 showing that free disposability of �

is preserved in �w x , and that also convexity of � (when it exists) is preserved in 

�w x means that estimators of the same type should be used, rather than mixing 

FDH and DEA estimators. 

a∣∣∣

 

w
 

d

a

 

t

fficiency estimates in a Kolmogorov–Smirnov test, and Cummins

t al. (1999) , Isik and Hassan (2002) and Wadud (2003) report re-

ults based on conventional inference from second-stage regres-

ions of input allocative efficiency estimates on some explanatory

ariables. Banker and Natarajan ( 2011 , Section 11.2.4) propose two

ests of whether allocative efficiency is present (which amounts to

esting whether technical efficiency and cost efficiency are equiv-

lent) based on restrictive distributional assumptions regarding

echnical and cost efficiency, as well as a Kolmogorov–Smirnov test

o compare the distributions of technical and cost efficiencies. No

tatistical results exist that would justify these exercises, and none

f these statistical procedures or results are valid due to fact that

i) the true efficiencies are unobserved, and (ii) the observed es-

imates are biased, which prevents use of standard CLT results on

hich the aforementioned papers rely. This will become clear be-

ow. 

In order to develop properties of estimators of input allocative

fficiency, an additional assumption is needed. 

ssumption 3.1. There exists a constant 0 < M x < ∞ such that

 x ‖ ≤M x for all (x, y ) ∈ D. 

Assumption 3.1 is necessary to guarantee existence of moments

f log (θ (X, Y | ̂ �n ) . Although moments necessarily exist for θ ( X i ,
 i ) ∈ (0, 1], |log θ ( X i , Y i )| is potentially unbounded. Moreover, up

o this point we have only assumed compactness of D 
∗ and not

ecessarily of D. As noted by Kneip, Simar, and Wilson (2018) ,

ssumption 3.1 could in principle be replaced by a weaker version

equiring only existence of all relevant moments, but boundedness

f ‖ x ‖ greatly simplifies asymptotic arguments used below. 

The next result establishes the existence of a limiting distribu-

ion, the rate of convergence, and the properties of the first two

oments for FDH and DEA estimators of input allocative efficiency.

heorem 3.1. Let κ = 1 / (p + q ) for the FDH case and κ = 2 / (p +
 + 1) for the DEA case. Then under Assumptions 2.1 –2.5 , 2.8 –2.9 and

.1 for the FDH case, and under Assumptions 2.1 –2.7 , 2.9 and 3.1 for

he DEA case, for each (x, y ) ∈ D, 

 
κ
(
A x (x, y | ̂ �n , w x ) − A x (x, y | �, w x ) 

) L −→ Q A x ,x,y (3.23)

here Q A x ,x,y is a non-degenerate distribution with finite variance.

n addition, let (ζ1 , ζ2 , ζ3 ) = 

(
2 

p+ q , 
p+ q +2 
p+ q , 

p+ q +1 
p+ q 

)
for the FDH case,

nd (ζ1 , ζ2 , ζ3 ) = 

(
3 

p+ q +1 , 
p+ q +4 
p+ q +1 , 

p+ q +2 
p+ q +1 

)
for the DEA case. Then ∃

 constant D 1 ∈ (0, ∞ ) such that for all i, j ∈ { 1 , . . . , n } , i � = j , 

 

[
A x (X i , Y i | ̂ �n , W x,i ) − A x (X i , Y i | �, W x,i ) 

]
= D 1 n 

−κ + O 

(
n −ζ1 ( log n ) ζ2 

)
, (3.24)

AR 
[
A x (X i , Y i | ̂ �n , W x,i ) − A x (X i , Y i | �, W x,i ) 

]
= O 

(
n −ζ1 ( log n ) ζ1 

)
(3.25)

nd 

COV 

[ 
A x (X i , Y i | ̂ �n , W x,i ) − A x (X i , Y i | �, W x,i ) , 

A x (X j , Y j | ̂ �n , W x, j ) − A x (X j , Y j | �, W x, j ) 
] ∣∣∣ = O 

(
n −ζ3 ( log n ) ζ3 

)
= o 

(
n −1 

)
. 

(3.26)

here expectations are with respect to ( X , Y , W x ) and the constant D 1

epends on the particular estimator (FDH or DEA), the density f X,Y,W x 

nd the sets D ∈ � and D W 
⊂ R 

p 
++ × R 

q 
++ . 

For purposes of making inference about mean input alloca-

ive efficiency, more work is needed due to the bias term D n −κ

1 
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n (3.24) . Let μA x = E[ A x (X, Y | �, W x )] and σ 2 
A x = VAR [ A x (X, Y |

, W x )] < ∞ denote the mean and variance of input allocative effi-

iency, where again expectations are with respect to ( X , Y , W x ). Let

̂ A x ,n := n −1 
n ∑ 

i =1 

A x (X i , Y i | ̂ �n , W x,i ) . (3.27)

et κ = 1 / (p + q ) for the FDH case and κ = 2 / (p + q + 1) for the

EA case, and define n κ := min ( � n 2 κ� , n ) ≤n . Assume the observa-

ions in S n are randomly sorted. Define 

̂ A x ,n κ := n −1 
κ

n κ∑ 

i =1 

A x (X i , Y i | ̂ �n , W x,i ) . (3.28)

nalogous to (3.18) , the estimates of input allocative efficiency un-

er the summation sign in (3.28) are computed using the full sam-

le of n observations, but the summation is over only the first n κ
stimates. 

Finally, let ˜ B A x ,n,κ denote the generalized jackknife estimate of

he bias term D 1 n 
−κ in (3.24) computed as described by Kneip

t al. ( 2015, Section 4 ). Analogous to (3.19) , compute the average

 
 A x ,n,κ = K −1 

K ∑ 

k =1 

˜ B A x ,n,κ,k (3.29) 

ver K << 

(
n 

n/ 2 

)
random splits of the sample to reduce the variance

f the bias estimate. The next result gives a CLT for mean input

llocative efficiency. 

heorem 3.2. Let κ , ζ 1 and ζ 2 be defined for the FDH and DEA

ases as in Theorem 3.1 . Then under Assumptions 2.1 –2.5 , 2.8 –2.9 and

.1 for the FDH case, and under Assumptions 2.1 –2.7 , 2.9 and 3.1 for

he DEA case, for (p + q ) ≤ 3 in the FDH case or (p + q ) ≤ 4 in the

EA case, 

 

n 
(̂ μA x ,n − ̂ B A x ,n,κ − μA x + ξA x ,n,κ

) L −→ N 

(
0 , σ 2 

A x 

)
(3.30) 

here ξA x ,n,κ = O 

(
n −ζ1 ( log n ) ζ2 

)
= o ( n −κ ) . In addition, for (p + q ) >

 in the FDH case or (p + q ) > 3 in the DEA case, as n → ∞ 

 
κ
(̂ μA x ,n κ − ̂ B A x ,n,κ − μA x + ξA x ,n,κ

) L −→ N 

(
0 , σ 2 

A x 

)
(3.31) 

s n → ∞ . In addition, as n → ∞ , 

̂ 
2 
A x := 

n ∑ 

i =1 

[
A x (X i , Y i | ̂ �n , w x,i ) − ̂ μA x ,n 

]2 p −→ σ 2 
A x . (3.32) 

The CLT results in Theorem 3.2 can be used to construct con-

dence intervals for mean input allocative efficiency or to test

ypotheses about mean input allocative efficiency. Note that ei-

her (3.30) or (3.31) can be used when (p + q ) = 3 in the FDH

ase or (p + q ) = 4 in the DEA case. In the DEA case, intervals

ased on (3.30) neglect 
√ 

n ξA x ,n κ = O 

(
n −1 / 10 

)
, while those based

n (3.31) neglect n κξA x ,n κ = O 

(
n −1 / 5 

)
. Hence (3.31) is expected to

rovide more accurate intervals than (3.30) when (p + q ) = 4 in

he DEA case. Similar reasoning applies in the FDH case when

(p + q ) = 3 . 

.5. Revenue efficiency and output allocative efficiency 

Extending the results from Sections 3.3 to 3.4 to revenue effi-

iency and output allocative efficiency is straightforward, but there

re some subtleties. Explicit details are given in the separate Ap-

endices B and C. One should carefully note that revenue efficiency

an be estimated with convergence rates n 1 / (p+1) and n 2 / (p+2) for

he FDH and DEA cases, respectively. Output allocative efficiency

s estimated with rates n 1 / (p+ q ) and n 2 / (p+ q +1) for the FDH and

EA cases. Consequently, conventional CLTs do not hold for mean
evenue efficiency nor for mean output allocative efficiency when

DH estimators are used, and in the DEA case hold for revenue ef-

ciency only when p = 1 and for output allocative efficiency only

hen p = 1 = q . 

Examples of applications where revenue efficiency is estimated

nclude Sharma, Leung, Chen, and Peterson (1999) , Bojnec and

atruffe (2008) , Cummins et al. (2010) , Hsu and Petchsakulwong

2010) , Eller, Hartley, and Medlock III (2011) and Al-Khasawneh

t al. (2012) . Sharma et al. ( 1999, Table 1) report sample means

f revenue and output allocative efficiencies for groups of produc-

rs, and rely on conventional CLTs to determine significance of dif-

erences from 1 and to test whether means are the same across

roups. Cummins et al. (2010) and Eller et al. (2011) regress their

stimates of revenue efficiency on some explanatory variables in

econd-stage regressions, and use conventional inference to deter-

ine significance or non-significance of their results. Due to the

esults obtained in the separate Appendices B and C none of these

nferences are valid. 

.6. Profit efficiency 

The usual approach to estimating profit efficiency defined

y (2.13) involves first estimating maximum profit P max (x 0 , y 0 |
, w x , w y ) by replacing the unknown � with ̂ �n in (2.12) to ob-

ain 

 max (x 0 , y 0 | ̂ �n , w x , w y ) 

= max 
x,y, υ

{
w 

′ 
y y − w 

′ 
x x | Y υ ≥ y, X υ ≤ x, 1 ′ n υ = 1 , υ ∈ R 

n 
+ 
}

= w 
′ 
y ̂

 y w x ,w y − w 
′ 
x ̂

 x w x ,w y (3.33) 

here ̂  y w x ,w y and ̂  x w x ,w y are solutions to the optimization problem

n the first line of (3.33) . Then profit efficiency is estimated by 

(x 0 , y 0 | ̂ �n , d x , d y , w x , w y ) 

:= 

P max (x 0 , y 0 | ̂ �n , w x , w y ) − (w 
′ 
y y 0 − w 

′ 
x x 0 ) 

w 
′ 
y d y + w 

′ 
x d x 

= 

(w 
′ 
y ̂

 y w x ,w y − w 
′ 
x ̂

 x w x ,w y ) − (w 
′ 
y y 0 − w 

′ 
x x 0 ) 

w 
′ 
y d y + w 

′ 
x d x 

(3.34) 

his is the approach of Chambers et al. (1998) , Färe and Grosskopf

20 06) , Färe et al. (20 08) and others. Unfortunately, as with the

stimators of cost and revenue efficiency, the properties of the

stimators of maximum profit in (3.33) and profit efficiency in

3.34) are unknown. 

The next result establishes that the profit maximization prob-

em in (2.12) can be characterized as a one-dimensional problem. 

emma 3.3. Under Assumption 2.1 , 

 max (x 0 , y 0 | �, w x , w y ) = max 
{
π | π ∈ �w x ,w y 

}
. (3.35)

The proof is obvious and is left to the reader. 

Now apply the function h w x ,w y to each observation (X i , Y i ) ∈ S n 
o transform S n to a set of iid observations S w x ,w y ,n = { πi } n i =1 

. Due

o Lemma 3.3 it is obvious that P max (x 0 , y 0 | �, w x , w y ) can be es-

imated by 

 max (x 0 , y 0 | S w x ,w y ,n , w x , w y ) := max 
{
π | π ∈ S w x ,w y ,n 

}
. (3.36)

his amounts to a one-dimensional version of an FDH or

EA estimator, and the two are equivalent in one dimen-

ion. From the properties of both FDH and DEA estima-

ors, it is clear that this estimator is consistent, converges at

ate n 1 and has a non-degenerate limiting distribution. Conse-

uently, substituting P max (x 0 , y 0 | S w x ,w y ,n , w x , w y ) for P max (x 0 , y 0 |
, w x , w y ) for in (2.13) yields a consistent estimator P(x 0 , y 0 |
 w x ,w y ,n , d x , d y , w x , w y ) of the Nerlovian profit efficiency measure

(x 0 , y 0 | �, d x , d y , w x , w y ) for given direction vectors d x and d y 
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c  
and given price vectors w x and w y . Moreover, the resulting es-

timator converges at rate n 1 and has a non-degenerate limiting

distribution due to the properties of P max (x 0 , y 0 | S w x ,w y ,n , w x , w y ) .

Knowledge of the convergence rate and existence of a non-

degenerate limiting distribution permit use of the subsampling

methods described by Simar and Wilson (2011a) for inference

about the profit efficiency P(x 0 , y 0 | �, d x , d y , w x , w y ) of a par-

ticular firm operating at ( x 0 , y 0 ) ∈ � . In addition, the classical

Lindeberg–Feller CLT can be used to make inference about mean

profit efficiency due to the n 1 convergence rate. 

3.7. Profit allocative efficiency 

As noted in Section 2 , the results of Kneip et al. (2015) for the

input-oriented efficiency estimator θ (x, y | ̂ �n ) in (3.3) extend to

the directional efficiency estimator δ(x, y | d x , d y , ̂  �n ) in (3.5) us-

ing arguments similar to those of Simar and Vanhems (2012) and

Simar et al. (2012) . Substituting P(x 0 , y 0 | S w x ,w y ,n , w x , w y ) and

δ(x, y | d x , d y , ̂  �n ) for P(x 0 , y 0 | �, d x , d y , w x , w y ) and δ( x , y | d x , d y ,
�) in (2.14) leads to the estimator 

A π (x 0 , y 0 | S n , d x , d y , w x , w y ) := P(x 0 , y 0 | S w x ,w y ,n , d x , d y , w x , w y )

− δ(x, y | d x , d y , ̂  �n ) . (3.37)

The following pair of results are straightforward extensions of

Simar and Vanhems ( 2012 , Theorem 4.1), Simar et al. ( 2012 , The-

orem 3.1) and Kneip et al. ( 2015 , Theorems 3.1 and 3.3). Conse-

quently, proofs are left to the reader. Assumption C.1 required by

both Theorems 3.3 and 3.4 appears in Appendix C. 

Theorem 3.3. Let κ = 1 / (p + q ) and for the FDH case and κ =
2 / (p + q + 1) for the DEA case. Under Assumptions 2.1 –2.5 , 2.8 ,

3.1 and C.1 for the FDH case and under Assumptions 2.1 –2.7 , 3.1 and

C.1 for the DEA case, for each (x, y ) ∈ D, 

n κ ( A π (x, y | S n , d x , d y , w x , w y ) 

−A π (x, y | �, d x , d y , w x , w y ) ) 
L −→ Q A π ,x,y (3.38)

where Q A π ,x,y is a non-degenerate distribution with finite variance de-

pending on the particular estimator (i.e., FDH or DEA). 

Theorem 3.3 confirms that A π (x, y | S n , d x , d y , w x ) is a con-

sistent estimator of A π (x, y | �, d x , d y , w x ) with estimation er-

ror of order O p ( n −κ ) . The n 1 convergence rate of P(x 0 , y 0 |
S w x ,w y ,n , d x , d y , w x , w y ) is dominated by the n κ rate of δ(x, y |
d x , d y , ̂  �n ) , and hence A π (x 0 , y 0 | S n , d x , d y , w x , w y ) inherits the

slower convergence rate. The existence of a limiting distribution

and knowledge of the convergence rate permits use of the subsam-

pling methods of Simar and Wilson (2011a) for making inference

about profit allocative efficiency. 

The next result establishes properties of moments of the profit

allocative efficiency estimator. 

Theorem 3.4. Let κ , ζ 1 , ζ 2 and ζ 3 be defined as in Theorem 3.1 for

the FDH and DEA cases. Under Assumptions 2.1 –2.5 , 2.8 , 2.9 , 3.1 and

C.1 for the FDH case and under Assumptions 2.1 –2.7 , 2.9 , 3.1 and

C.1 for the DEA case, ∃ a constant D 2 ∈ (0, ∞ ) such that for all

i, j ∈ { 1 , . . . , n } , i � = j , 

E 

[ 
A π (X i , Y i | S n , d x , d y , W x,i , W y,i ) −A π (X i , Y i | �, d x , d y , W x,i , W y i ) 

]
= D 2 n 

−κ + O 

(
n −ζ1 ( log n ) ζ2 

)
, (3.39)

VAR 

[ 
A π (X i , Y i | S n , d x , d y , W x,i , W y,i ) 

−A π (X i , Y i | �, d x , d y , W x,i , W y,i ) 
] 
= O 

(
n −ζ1 ( log n ) ζ1 

)
(3.40)

nd 

COV 

[ 
A π (X i , Y i | S n , d x , d y , W x,i , W y,i ) 

−A π (X i , Y i | �, d x , d y , W x,i , W y,i ) ,A π (X j , Y j | S n , d x , d y , W x, j , W y, j )

−A π (X j , Y j | �, d x , d y , W x, j , W y, j ) 
] ∣∣∣

= O 

(
n −ζ3 ( log n ) ζ3 

)
= o 

(
n −1 

)
. (3.41)

he constant D 2 depends on the density f X,Y,W x ,W y 
, the particular

stimator (FDH or DEA) and the structure of the sets D ⊂ � and

 W 
⊂ R 

p 
++ × R 

q 
++ . 

In order to make inference about mean profit allocative

fficiency, let μA π = E[ A π (X, Y | �, d x , d y , W x , W y )] and σ 2 
A π =

AR [ A π (X, Y | �, d x , d y , W x , W y )] < ∞ denote the mean and vari-

nce of profit allocative efficiency, where again expectations are

ith respect to ( X , Y , W x , W y ). In studies where profit overall (i.e.,

ost) efficiency and profit allocative efficiency are estimated, both

nput and output prices typically vary across firms. Let 

̂ A π ,n := n −1 
n ∑ 

i =1 

A π (X i , Y i | S n , d x , d y , W x,i , W y i ) . (3.42)

et κ = 1 / (p + q ) for the FDH case and κ = 2 / (p + q + 1) for the

EA case, and define n κ := min ( � n 2 κ� , n ) ≤n . Assume the observa-

ions in S n are randomly sorted. Define 

̂ A π ,n κ := n −1 
κ

n κ∑ 

i =1 

A π (X i , Y i | S n , d x , d y , W x,i , W y,i ) . (3.43)

nalogous to (3.18) , the estimates of profit allocative efficiency un-

er the summation sign in (3.43) are computed using the full sam-

le of n observations, but the summation is over only the first n κ
stimates. 

Finally, let ˜ B A π ,n,κ denote the generalized jackknife estimate of

he bias term D 2 n 
−κ in (3.39) computed as described by Kneip

t al. ( 2015, Section 4 ). Analogous to (3.19) , compute the average

̂ 
 A π ,n,κ = K −1 

K ∑ 

k =1 

˜ B A π ,n,κ,k (3.44)

ver K << 

(
n 

n/ 2 

)
random splits of the sample to reduce the variance

f the bias estimate. The next result gives a CLT for mean profit

llocative efficiency. 

heorem 3.5. Assume the conditions of Theorem 3.4 hold for either

he FDH or DEA case. For (p + q ) ≤ 3 in the FDH case or (p + q ) ≤ 4

n the DEA case, as n → ∞ , 

 

n 
(̂ μA π ,n − ̂ B A π ,n,κ − μA π + ξA π ,n,κ

) L −→ N 

(
0 , σ 2 

A π

)
(3.45)

here ξA π ,n,κ = O 

(
n 

− 3 
p+ q +1 ( log n ) 

p+ q +4 
p+ q +1 

)
= o ( n −κ ) . In addition, for

(p + q ) ≥ 2 in the FDH case or (p + q ) > 3 in the DEA case, as n → ∞

 
κ
(̂ μA π ,n κ − ̂ B A π ,n,κ − μA π + ξA π ,n,κ

) L −→ N 

(
0 , σ 2 

A π

)
. (3.46)

oreover, as n → ∞ , 

̂ 
2 
A π := 

n ∑ 

i =1 

[
A π (X i , Y i | ̂ S n , d x , d y , w x,i , w y,i ) − ̂ μA π ,n 

]2 p −→ σ 2 
A π . 

(3.47)

The CLT results in Theorem 3.5 can be used to construct

onfidence intervals for mean input allocative efficiency or to
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Table 1 

Efficiency Estimates for Aly et al. (1990) Data. 

̂ μ•,n ̂ μ•,n κ — 95% CI — ̂ σ• ̂ B •,n,κ

Full Sample , n = 322 

Tech. Eff. 0.8021 0.7760 0.4573 0.6514 0.1785 0.2477 

Cost Eff. 0.7078 0.6790 0.4542 0.5980 0.1906 0.1816 

Alloc. Eff. 0.8819 0.8979 0.7995 0.9294 0.1195 0.0175 

Subsample with no branches , n = 110 

Tech. Eff. 0.8690 0.8866 0.5122 0.7237 0.1526 0.2511 

Cost Eff. 0.7802 0.7465 0.5094 0.7124 0.1938 0.1693 

Alloc. Eff. 0.8928 0.7891 0.8031 0.9795 0.1273 0.0015 

Subsample with branches , n = 212 

Tech. Eff. 0.8462 0.8858 0.5326 0.7450 0.1714 0.2074 

Cost Eff. 0.7726 0.8135 0.5509 0.7057 0.1809 0.1443 

Alloc. Eff. 0.9133 0.9564 0.8617 0.9831 0.0979 −0 . 0091 

i  
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13 Aly et al. (1990) assume constant returns to scale (CRS) when estimating cost 

efficiency and input allocative efficiency, and report separate estimates of techni- 

cal efficiency assuming either constant or variable returns to scale. Using the FEAR 

software library ( Wilson (2008) ) we obtain a mean of 0.7489 for the CRS-DEA esti- 

mates on the full sample, with a variance of standard deviation of 0.1801, consistent 
est hypotheses about mean input allocative efficiency. Similar to

heorem 3.2 , either (3.45) or (3.46) can be used when (p + q ) =
 . Intervals based on (3.45) neglect 

√ 

n ξA π ,n κ = O 

(
n −1 / 10 

)
, while

hose based on (3.46) neglect n κξA π ,n κ = O 

(
n −1 / 5 

)
. Hence (3.46) is

xpected to provide more accurate intervals than (3.45) when

(p + q ) = 4 and DEA estimators are used. Similar reasoning applies

hen (p + q ) = 3 and FDH estimators are used. 

. Empirical illustration 

To illustrate the methods developed above, we revisit Aly et al.

1990) who examine 322 U.S. Banks operating in 1986. The authors

pecify p = 3 inputs and q = 5 outputs and report means of input-

riented DEA estimates of technical efficiency, cost efficiency and

nput allocative efficiency. Means are reported for estimates from

he full sample, as well as estimates from the subsample of 212

anks allowed to operate branches and corresponding subsample

f 110 banks prohibited from operating branches. In addition to

eans, Aly et al. (1990) also report standard deviations of the var-

ous efficiency estimates obtained with the full sample (but not for

he efficiency estimates obtained from the two subsamples). The

uthors also report results of five tests—analysis of variance, me-

ian test, Wilcoxon test, Van der Waerden test, and Savage scores

est—to examine whether the distributions of efficiency distribu-

ions differ across the two subsamples. They state (p. 216) that, “As

an be seen from Table 4, for all of the efficiency measures, except

llocative, the test statistics indicate that the null hypothesis can-

ot be rejected. As a result, it may be concluded that the differ-

nces in the distributions of the efficiency measures between the

wo separate samples are not significant and that they are drawn

rom the same population, i.e., face similar environments.”

Of course, it is now known, due to the results obtained

n Sections 3.3 and 3.4 as well as the results of Kneip et al.

2015) that the tests used by Aly et al. (1990) are invalid due to

he tests’ failure to properly account for the bias of the efficiency

stimators. Using the Aly et al. (1990) data, we estimate techni-

al efficiency using θ (x, y | ̂ �n ) , cost efficiency using θ (c, y | ̂ �C,n )

nd input allocative efficiency using A x (x, y, ̂  �n , w x ) . 
12 Estimates of

echnical efficiency are computed by solving the linear program in

3.3) n times for each observed input-output pair in the sample.

ost efficiency for the i th observation is computed by first comput-

ng costs W 
′ 
xi 
X j for j = 1 , . . . , n and then computing θ (W 

′ 
xi 
X i , Y i |

DEA ,W xi ,n 
) as described in Sections 3.2 and 3.3 , noting that the set

f reference costs must be computed separately for each observa-

ion. Input allocative efficiency is then estimated by dividing the

nput cost estimate by the input technical efficiency estimate for

bservation i . 

Table 1 gives sample means ̂ μ•,n and ̂ μ•,n κ for each of the

hree types of efficiencies, where “•” represents either θ , C or A x .

stimated 95-percent confidence intervals for the true means are

lso reported, as well as sample standard deviations and the cor-

esponding bias estimates. The confidence interval estimates are

ased on the re-centering idea discussed at the end of Section 3.3 .

ll estimates in Table 1 are computed using R and the Wilson

2008) FEAR library. Computational details are given in the sepa-

ate Appendix D. 

Note that the estimated confidence intervals for mean technical

fficiency and mean cost efficiency in Table 1 lie to the left of and

o not cover either of the point estimates of the means. This is

ue to the biases—note also that the estimated biases for technical

nd cost efficiency are large, ranging from about 0.14 to about 0.25.

he bias estimates for cost efficiency are smaller than the bias esti-

ates for technical efficiency, reflecting the fact that cost efficiency
12 We are grateful to Richard Grabowski for making the data available. 

w

t

d

s estimated in a 6-dimensional space whereas technical efficiency

s estimated in an 8-dimensional space. By contrast, the estimated

onfidence intervals for mean input allocative efficiency cover the

orresponding sample means. In all three cases, the correspond-

ng bias estimates are close to 0. The bias estimate correspond-

ng to mean input allocative efficiency in the sample of banks with

ranches is negative, but close to 0. Apparently, the biases in tech-

ical and cost efficiency tend to cancel each other when allocative

fficiency is computed. 13 

Aly et al. (1990) did not report estimated confidence inter-

als, but implicitly invite the reader to do so using the classi-

al, Lindeberg–Feller CLT since they report both sample means and

tandard deviations. The classical confidence interval estimates can

e obtained by adding the bias estimates reported in Table 1 to

he corresponding estimated confidence bounds. For the full sam-

le, doing so yields estimated bounds (0.7051, 0.8991) for technical

fficiency, (0.6358, 0.7797) for cost efficiency and (0.8170, 0.9469)

or input allocative efficiency. The classically-estimated bounds for

echnical and cost efficiency are quite different from the ones re-

orted in Table 1 due to the large biases associated with the esti-

ates of mean technical and cost efficiency. Moreover, due to the

esults obtained in Sections 3.3 and 3.4 , it is clear that the classi-

al confidence intervals have (even for input allocative efficiency)

overage tending to 0 as n → ∞ . 

. Conclusions 

This paper provides results on rates of convergence and ex-

stence of limiting distributions for nonparametric FDH and DEA

stimators of cost, revenue and profit efficiency as well as the

orresponding allocative efficiencies. The nonparametric estima- 

ors of cost, revenue and profit efficiency are shown to have

aster rates of convergence than their corresponding estimators of

echnical or allocative efficiency. Combined with the subsampling

ethods of Simar and Wilson (2011b) , these results enable re-

earchers to make inference about these efficiencies for individual

rms or producers. In addition, results on moments of the vari-

us estimators are provided. These results indicate that standard

LT results (e.g., the Lindeberg–Feller CLT) cannot be used to make

nference about mean the mean efficiencies except in very lim-

ted cases. New CLTs are developed, enabling inference about mean

ost, revenue and profit efficiency as well as the corresponding al-
ith what Aly et al. (1990) report in the third row of their Table 1 . But when using 

he VRS version of the DEA estimators, we obtain a mean of 0.8021 with standard 

eviation 0.1785, whereas Aly et al. (1990) report 0.77 and 0.19 (respectively). 
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locative efficiencies for all dimensions (p + q ) . These results enable

applied researchers for the first time to estimate confidence inter-

vals and to test hypotheses about model features in general set-

tings. 

Appendix A. Technical details 

A.1. Proof of Lemma 3.1 

To prove (i), recall that (c, y ) = h w x (x, y ) = (w 
′ 
x x, y ) and ( ̃  c , y ) =

h w x ( ̃  x , y ) = (w 
′ 
x ̃

 x , y ) . Now consider ( x , y ) ∈ � . Given y , we have 

 c ≥ c ⇒ w 
′ 
x ̃

 x ≥ w 
′ 
x x 

⇒ ̃  x ≥ x since w x > 0 

⇒ ( ̃  x , y ) ∈ � by Assumption 2.3 

⇒ h w x ( ̃  x , y ) ∈ h w x (�) by (3.7) 

⇒ ( ̃  c , y ) ∈ �w x . (A.1)

Alternatively, given x we have c = w 
′ 
x x and 

 y ≤ y ⇒ (x, ̃  y ) ∈ � by Assumption 2.3 

⇒ h w x (x, ̃  y ) ∈ h w x (�) 

⇒ (w 
′ 
x x, ̃  y ) ∈ �w x 

⇒ (c, ̃  y ) ∈ �w x , (A.2)

establishing (i). Results (ii) and (iii) follow from similar

reasoning. �

A.2. Proof of Lemma 3.2 

Define the level set 

X (y ) := { x | (x, y ) ∈ �} . (A.3)

Let x ∗ = argmin x { w 
′ 
x x | (x, y ) ∈ �, w x , x ∈ R 

p 
+ } = argmin x { w 

′ 
x x | x ∈

X (y 0 ) , w x , x ∈ R 

p 
+ } . The point x ∗ ∈ X (y 0 ) is minimal in the sense

that it results in cost lower than any other point in X (y 0 ) . By the

Supporting Hyperplane Theorem there exists x ∗∗ such that w 
′ 
x x ∗∗ =

w 
′ 
x x ∗ = C min (x 0 , y 0 | �, w x ) and 

x 0 = kx ∗∗ (A.4)

for some k ∈ [1, ∞ ). 

By definition in (2.7) , C(x 0 , y 0 | �, w x ) = 

w ′ x x ∗
w ′ x x 0 

, and by

(A.4) 
w ′ x x ∗
w ′ x x 0 

= 

w ′ x x ∗∗
w ′ x x 0 

= 

w ′ x (k −1 x 0 ) 

w ′ x x 0 
= k −1 . Moreover, from (A.4) it is

clear that || x ∗∗|| 2 = || k −1 x 0 || 2 = k −1 || x 0 || 2 and hence k −1 = 

|| x ∗∗|| 2 || x 0 || 2 .
Therefore cost efficiency is given by the ratio of lengths between

three collinear points (i.e., the origin, x ∗∗ and x 0 ). It is well-known

(e.g., see Byer, Lazebnik, and Smeltzer (2010) , Theorem 12.7)

that affine transformations such as h w x that maps � to �w x 

preserve such ratios. Moreover, the affine transformation h w x maps

extreme points of � to extreme points of �w x . In addition, the

half-space H 
+ := { x | w 

′ 
x x ≥ w 

′ 
x x ∗} ⊂ R 

p 
+ is mapped by h w x to the

half-space H 
++ := { c | c ≥ c ∗} ⊂ R 

1 + where c ∗ = w 
′ 
x x ∗. Hence h w x 

maps both x ∗∗ and the minimal point x ∗ ∈ X (y 0 ) to the minimal

point (c ∗, y 0 ) ∈ �w x , establishing the result. �

A.3. Proof of Theorem 3.1 

Before beginning the proof of Theorem 3.1 , some additional, in-

termediate results are needed. 

Lemma A.1. Let κ , ζ 1 , ζ 2 and ζ 3 be defined as in Theorem 3.1 for the

FDH and DEA cases. Under Assumptions 2.1 –2.5 , 2.8 and 3.1 for the

FDH case and under Assumptions 2.1 –2.7 and 3.1 for the DEA case,

for each (x, y ) ∈ D, 

n κ
(
log 

(
θ (x, y | ̂ �n ) 

)
− log ( θ (x, y | �) ) 

) L −→ Q 

log 

θ,x,y 
(A.5)
here Q 

log 

θ,x,y 
is a non-degenerate distribution with finite variance. In

ddition, ∃ a constant D 3 ∈ (0, ∞ ) such that for all i, j ∈ { 1 , . . . , n } ,
 � = j , 

 

[
log 

(
θ (X i , Y i | ̂ �n 

)
− log ( θ (X i , Y i | �) 

]
= D 3 n 

−κ + O 

(
n −ζ1 ( log n ) ζ2 

)
, (A.6)

AR 
[
log 

(
θ (X i , Y i | ̂ �n ) 

)
− log ( θ (X i , Y i | �) ) 

]
= O 

(
n −ζ1 ( log n ) ζ1 

)
, 

(A.7)

nd 

COV 

[ 
log 

(
θ (X i , Y i | ̂ �n ) 

)
− log ( θ (X i , Y i | �) ) , 

log 
(
θ (X j , Y j | ̂ �n ) 

)
− log 

(
θ (X j , Y j | �) 

)] ∣∣∣ = O 

(
n −ζ3 ( log n ) ζ3 

)
= o 

(
n −1 

)
. (A.8)

he value of the constant D 3 depends on the particular estimator, the

ensity f and the structure of the set D ⊂ � . 

roof. From Kneip et al. ( 2008 , Theorem 2) we have 

 

2 
p+ q +1 

(
θ (x, y | ̂ �n ) − θ (x, y | �) 

) L −→ Q θ,x,y (A.9)

or the DEA case, and a similar result (with scaling factor n 1 / (p+ q ) )
or the FDH case from Daouia et al. ( 2017 , Proposition 2) after

ransforming to the input-oriented case. In addition, the log func-

ion is monotonic and differentiable with nonzero derivatives on

 + . Hence (A.5) follows by the delta method for both the FDH and

EA cases. 

The results in (A .6) –(A .8) follow from arguments similar to

hose in the proof of Theorem 3.2 in Kneip et al. (2018) and the

roof of Theorems 3.1 and 3.3 in Kneip et al. (2015) . In particu-

ar, the convergence rate here is n 2 / (p+ q +1) for the DEA case (and

 
1 / (p+ q ) for the FDH case) as is the case in Theorem 3.2 of Kneip

t al. (2018) where distance is measured to boundary of the conical

ull of ̂ P . The arguments rely again on the fact that the log func-

ion is monotonic and differentiable, permitting Taylor expansions

nd the delta method. �
Now recall the definition of input-allocative efficiency in (2.8) .

ubstituting θ (c 0 , y 0 | �w x ) for C(x 0 , y 0 | �, w x ) in (2.8) and then

aking logs yields 

og ( A x (x 0 , y 0 | �, w x ) ) = log ( θ (c 0 , y 0 | �w x ) ) 

− log ( θ (x 0 , y 0 | ]�) ) . (A.10)

 natural estimator of log ( A x (x 0 , y 0 | �, w x ) ) is obtained by re-

lacing θ (c 0 , y 0 | �w x ) and θ ( x 0 , y 0 | �) on the right-hand side

f (A.10) with the corresponding estimators θ (c 0 , y 0 | ̂ �w x ,n ) dis-

ussed in Section 3.3 and θ (x 0 , y 0 | ̂ �n ) given by (3.3) . The next

esult establishes the properties of the resulting estimator 

og 
(
A x (x 0 , y 0 | ̂ �n , w x ) 

)
= log 

(
θ (c 0 , y 0 | ̂ �w x ,n ) 

)
− log 

(
θ (x 0 , y 0 | ̂ �n ) 

)
. (A.11)

�

Theorem A.1. Let κ be defined for the FDH and DEA cases as in

emma A.1 . Under Assumptions 2.1 –2.5 , 2.8 and 3.1 for the FDH case

nd under Assumptions 2.1 –2.7 and 3.1 for the DEA case, for each

(x, y ) ∈ D, 

 
κ
(
log 

(
A x (x, y | ̂ �n , w x ) 

)
− log ( A x (x, y | �, w x ) ) 

) L −→ Q 

log 
A x ,x,y 

(A.12)

s n → ∞ where Q 

log 
A x ,x,y is a non-degenerate distribution with finite

ariance. 
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roof. Recall that C(x 0 , y 0 | ̂ �n , w x ) = θ (c 0 , y 0 | ̂ �w x ,n ) wherê 
w x ,n is the DEA estimator of the image of � under

he affine transformation h w x . Then the properties of

og 
(
C(x 0 , y 0 | ̂ �n , w x ) 

)
= log 

(
θ (c 0 , y 0 | ̂ �w x ,n ) 

)
are given by 

emma A.1 where the number of “inputs” p is 1. The results

A .12) –(A .15) for the DEA case follow trivially after recognizing

hat the rate of log 
(
θ (c 0 , y 0 | ̂ �w x ,n ) 

)
is dominated by the slower

ate of log 
(
θ (c 0 , y 0 | ̂ �n ) 

)
. 

Similar reasoning establishes the result for the FDH case. �
Theorem A.1 establishes the existence of a non-degenerate lim-

ting distribution and the rate of convergence for FDH and DEA es-

imators of the log of input allocative efficiency. Consequently, con-

dence intervals with asymptotically correct coverage for the log

f input allocative efficiency of individual firms can be estimated

sing the sub-sampling methods described by Simar and Wil-

on (2011a) while noting that the rate of convergence is n 1 / (p+ q ) 

or the FDH case or n 2 / (p+ q +1) for the DEA case as established

y Theorem A.1 . Since the resulting intervals are transformation-

especting, one can take exponentials of the endpoints to obtain

n asymptotically valid confidence interval for A x (x 0 , y 0 | �, w x ) . 

The next result establishes moment properties for FDH and DEA

stimators of log input allocative efficiency. �

heorem A.2. Let κ , ζ 1 , ζ 2 and ζ 3 be defined for the FDH and DEA

ases as in Theorem 3.1 . Under Assumptions 2.1 –2.5 , 2.8 and 3.1 for

he FDH case and under Assumptions 2.1 –2.7 and 3.1 for the DEA case,

 a constant D 4 ∈ (0, ∞ ) such that for all i, j ∈ { 1 , . . . , n } , i � = j , 

 

[
log 

(
A x (X i , Y i | ̂ �n , W x,i ) 

)
− log ( A x (X i , Y i | �, W x,i ) ) 

]
= D 4 n 

−κ + O 

(
n −ζ1 ( log n ) ζ2 

)
, (A.13) 

AR 
[
log 

(
A x (X i , Y i | ̂ �n , W x,i ) 

)
− log ( A x (X i , Y i | �, W x,i ) ) 

]
= O 

(
n −ζ1 ( log n ) ζ1 

)
(A.14) 

nd 

COV 

[ 
log 

(
A x (X i , Y i | ̂ �n , W x,i ) 

)
− log ( A x (X i , Y i | �, W x,i ) ) , 

log 
(
A x (X j , Y j | ̂ �n , W x, j ) 

)
− log 

(
A x (X j , Y j | �, W x, j ) 

)] ∣∣∣
= O 

(
n −ζ3 ( log n ) ζ3 

)
= o 

(
n −1 

)
(A.15) 

s n → ∞ . The constant D 4 depends on the particular estimator (FDH

r DEA), the density f X,Y,W x 
and the structure of the sets D ⊂ � and

 W 
⊂ R 

p 
++ × R 

q 
++ . 

roof. The results follow due to (A .6) –(A .8) , noting that the slower

onvergence rate in the denominator of log (A x (X i , Y i ) | ̂ �n , W x,i )

ominates the faster rate of the cost efficiency estimator in the

umerator. �

Due to Theorem A.1 , log 
(
A x (x, y | ̂ �n , w x ) 

)
is a consistent es-

imator of log ( A x (x, y | �, w x ) ) with estimation err or of order

 ( n −κ ) . In addition, Theorem A.2 makes clear that standard CLT

esults can be used to make inference about mean input allocative

fficiency only if (p + q ) < 3 in the DEA case and not at all in the

DH case. 

Theorem 3.1 can now be proved. The exponential function

s monotonic and differentiable with nonzero derivatives on

 + . Hence the result in (3.23) follows from Theorem A.1 via

he delta method. Now let �( · ) denote the log function. Due
o Assumption 3.1 , �(θ(X i , Y i | ̂ �n )) as well as its derivatives
′ (θ (X i , Y i | ̂ �n )) and �′′ (θ (X i , Y i | ̂ �n )) are uniformly bounded for

ll (X i , Y i ) ∈ D. Then the results in (3.24), (3.25) and (3.26) follow

fter applying Taylor expansions and arguments analogous to those
sed to prove results (3.17)–(3.19) in Theorem 3.2 of Kneip et al.

2018) . �

.4. Proof of Theorem 3.2 

The results in (3.30) and (3.31) follow immediately using argu-

ents analogous to those of Kneip et al. (2015) leading to their

heorems 4.3 and 4.4. The result in (3.32) follows from (3.23) in

heorem 3.1 using arguments analogous to those used to prove

4.5) appearing in Theorem 4.2 of Simar and Wilson (2019) . �

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2019.10.011 
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