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ABSTRACT

Nonparametric data envelopment analysis and free-disposal hull estimators are frequently used to esti-
mate cost, revenue and profit efficiency as well as the corresponding allocative efficiencies. Papers in the
literature often report sample means of such estimates along with sample standard deviations, inviting
readers to make inference about means of these efficiencies using classical methods based on the stan-
dard Lindeberg-Feller central limit theorem (CLT). A number of papers explicitly make inference using the
classical methods. However, the statistical properties of these estimators are (until now) unknown. This
paper establishes rates of convergence and existence of limiting distributions for the various estimators.
These properties are needed in order to make inference about individual producers using subsampling
methods. In addition, properties of the first two moments of the estimators are derived, and these re-
sults are subsequently used to establish new CLTs for the estimators, providing formal justification for
inference-making. The results reveal that the classical CLTs and methods do not provide valid inference
when FDH estimators are used, and provide valid inference when DEA estimators only in a few restrictive,

special cases.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric envelopment estimators such as the data en-
velopment analysis (DEA) estimators due to Farrell (1957) and
Charnes, Cooper, and Rhodes (1978) as well as the free-disposal
hull (FDH) estimator introduced by Deprins, Simar, and Tulkens
(1984) are widely used to estimate technical efficiency of firms
and other organizations. The statistical properties of these estima-
tors of technical efficiency are by now well-developed (see Simar
and Wilson, 2013; 2015 for recent surveys), and methods exist for
making inference about the technical efficiency of a single firm as
well as mean technical efficiency for a group (or population) of
firms (e.g., see Kneip, Simar, & Wilson, 2015). In addition, results
enabling tests of convexity versus non-convexity of the production
set or constant versus variable returns to scale have been devel-
oped (see Kneip, Simar, and Wilson (2016) for details).

When data on prices of inputs are available, one can estimate
cost efficiency (also called input overall efficiency) or input alloca-
tive efficiency as proposed by Fire, Grosskopf, and Lovell (1985).
Alternatively, when data on prices of outputs are available, one can
estimate revenue efficiency (also called output overall efficiency) or
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output allocative efficiency as also proposed by Fare et al. (1985).
When both input and output prices are available, one can esti-
mate profit efficiency or profit allocative efficiency as discussed by
Chambers, Chung, and Fare (1998), Fire and Grosskopf (2006) and
Fdre, Grosskopf, and Margaritis (2008). Unfortunately, no statisti-
cal results exist for these estimators; to date, neither convergence
rates nor existence of limiting distributions have been derived,
nor has consistency been proved for any of these estimators. Con-
sequently, inference—either for individual firms or for mean, ex-
pected values—has until now been impossible. Many empirical pa-
pers have estimated cost, revenue, or profit efficiency or the cor-
responding allocative efficiencies using either FDH or DEA estima-
tors.! All of these papers have either ignored statistical inference,
or have used classical methods that fail to provide valid inference
except in a few vary specific, restrictive settings due to the results
presented below.

The results obtained in this paper address this deficiency. DEA
and FDH estimators of cost efficiency are examined and shown to
have a non-degenerate limiting distribution, as well as a conver-
gence rate that is faster than the rate of the corresponding techni-

T A Google Scholar search on 22 February 2015 finds approximately 17,500 pa-
pers using the keywords “DEA” and “cost efficiency”. Replacing “cost” by “alloca-
tive,” “revenue” or “profit” results in approximately 28,200, 1440, or 5130 papers,
respectively. Repeating these four searches substituting “FDH” for “DEA” results in
2,160, 1,290, 246 and 702 papers, respectively.
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cal efficiency estimator when there is more than one input.? Sim-
ilar to Kneip et al. (2015), it is shown that standard central limit
theorem (CLT) results (e.g., the Lindeberg-Feller CLT) do not pro-
vide valid inference if there is more than one output when the DEA
estimator is used, and never hold when the FDH is used. New CLT
results are provided, enabling inference about mean cost efficiency.
Similar results are developed for an estimator of input allocative
efficiency. This estimator does not achieve the faster convergence
rate of the cost efficiency estimator, and instead has the same
convergence rate as the corresponding technical efficiency estima-
tor. Standard CLT results are shown to provide invalid inference
about input allocative efficiency whenever there is more than one
input and one output, and new CLT results are provided to enable
inference in settings with arbitrary numbers of inputs and outputs.

These results are next extended to estimators of revenue effi-
ciency and output allocative efficiency. Similar to the estimator of
cost efficiency, the estimator of revenue efficiency is shown to con-
verge at a faster rate than the corresponding technical efficiency
estimator. Standard CLT results are shown not to hold for mean
revenue efficiency whenever there is more than one input, nor for
mean output allocative efficiency whenever there is more than one
input or one output. New CLT results are provided to enable infer-
ence in general settings.

Similar results are developed for an estimator of profit effi-
ciency and of profit allocative efficiency. For sample size n, it is
shown that profit efficiency can be estimated with rate n as n— oo
regardless of the number of inputs and outputs. Consequently, ex-
isting methods can be used for inference about mean profit effi-
ciency. However, the estimator of profit allocative efficiency con-
verges at the same rate as the corresponding estimator of techni-
cal efficiency. Consequently, standard CLT results cannot be used if
there is more than one input or one output. Again, a new CLT is
provided to enable inference in general settings.

The next section establishes notation and provides a statistical
model. Precise definitions of the various measures discussed above
are also given. Section 3.1 briefly reviews estimation of technical
efficiency and mentions the results available for inference about
technical efficiency. Sections 3.3-3.4 develop results for cost ef-
ficiency and input allocative efficiency, and these results are ex-
tended to revenue efficiency and output overall efficiency in Ap-
pendices B and C after a brief mention in Section 3.5.3Sections 3.6-
3.7 deal with profit efficiency and profit allocative efficiency. An
empirical illustration using data from Aly, Grabowski, Pasurka, and
Rangan (1990) is presented in Section 4. Section 5 concludes.
Proofs are given in Appendix A.

2. The statistical model

Let X e R? and Y € R denote (random) vectors of input and
output quantities, respectively. Similarly, let x e RY and y € RY de-
note fixed, nonstochastic vectors of input and output quantities.
The production set

W := {(x,¥) | x can produce y} (21)

gives the set of feasible combinations of inputs and outputs. Sev-
eral assumptions on W are common in the literature. The assump-
tions of Shephard (1970) and Fére (1988) are typical and are used
here.

2 We consider only the variable returns to scale (VRS) version of the DEA esti-
mator, as the constant return to scale (CRS) version is seldom used. In addition, the
VRS version of the DEA estimator remains consistent and attains the faster rate of
the (CRS) DEA estimator under CRS (see Kneip et al., 2016 for details and a proof).
Moreover, with globally constant returns to scale, profit is maximized at infinity.

3 Appendices B and C are available separately as supplementary online material.
Alternatively, Appendices B and C are available from the authors on request.

Assumption 2.1. V is closed.

Assumption 2.2. (x,y) ¢ ¥ if x=0, y>0,y#0; i.e., all production
requires use of some inputs.

Assumption 2.3. Both inputs and outputs are strongly disposable,
e, Vix, y)eW, (i) x>x= X y)eWVand (i) y<y= (x,y) € V.

Here and throughout, inequalities involving vectors are
defined on an element-by-element basis, as is standard.
Assumption 2.1 permits definition of the the technology or ef-
ficient frontier W9 of W as the set of extreme points of ¥, ie.,

W= {(xy) | (xy) e W, (y 'x,yy) ¢ W for any y € (1,00)}.
(2.2)

Assumption 2.2 rules out free lunches; i.e. production of any
output quantities greater than 0 requires use of some inputs.
Assumption 2.3 imposes weak monotonicity on the frontier, and
is standard in microeconomic theory of the firm.

Farrell (1957) input efficiency measure

0,y | V) :=inf{0 | (Ox,y) € W} (2.3)

indicates the amount by which input levels can be proportionately
scaled downward by the same factor without reducing output lev-
els. Farrell (1957) output efficiency measure gives the feasible, pro-
portionate expansion of output quantities and is defined by

A,y | W) :=sup{A | (x,Ay) € V}. (2.4)

This gives a radial measure of efficiency since all output quan-
tities are scaled by the same factor A. Clearly, A(x, y|¥)>1 and
0(x, y|¥)<1 for all (x, y)e V.

Chambers et al. (1998) proposed the directional measure

5(x,y | dy,dy, V) =sup{§ | (x— 8dy,y + 8dy) € U}, (2.5)

which measures the distance from a point (x, y) to the frontier
in the given direction d = (—dx, dy), where dy e RY and dy e R%.
This measure is flexible in the sense that some values of the di-
rection vector can be set to zero. A value §(x,y | dx.dy, ¥) =0 in-
dicates an efficient point lying on the boundary of W. Note that
as a special case, the Farrell-Debreu radial distances can be recov-
ered; eg.if d=(—x,0) then §(x,y|dy.dy, ¥)=1-0(x,y | ¥)"!
orif d = (0,y) then §(x,y | dx,dy, ¥) = A(x,y | ¥) — 1. Another in-
teresting feature is that directional distances are additive measures,
hence they permit negative values of x and y (e.g., in finance, an
output y may be the return of a fund, which can be, and often is,
negative).* Many choices of the direction vector are possible (e.g., a
common one for all firms, or a specific direction for each firm; see
Fdre et al. (2008) for discussion), although care should be taken to
ensure that the chosen direction vector maintains invariance with
respect to units of measurement for input and output quantities.

Given a vector wy € R} of input prices, the minimum cost of
producing a specific vector y, of output quantities from a given
vector xo of input quantities is

Crnin (X0, Yo | ¥, Wy) = mxin{w;x|(x,yo) eV, xeRY, wyeRY,}
(2.6)

Cost efficiency (sometimes called input overall efficiency) for
the firm operating at (xg, yo) € ¥ and facing input prices wy is then

4 The measure in (2.5) differs from the “additive” measure n(x,y | ¥) = sup{n |
n= i/psx +igSy, (X—sx,y+$y) € W} estimated by Charnes, Cooper, Golany, Seiford,
and Stutz (1985), where ip,i; denote (px 1) and (g x 1) vectors of ones and sy, sy
denote (px1) and (qx1) vectors of weights to be optimized. Charnes et al.
(1985) present only an estimator, and do not define the object that is estimated.
Moreover, the additive measure is not in general invariant to units of measurement.
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defined by

Crin (X0, Yo | W, wx) WX,
W;(XO W;(XO

C(Xo, Yo | W, wy) 1= (2.7)
where x« is the argmin of the expression on the right-hand side
(RHS) of (2.6). The cost efficiency measure in (2.7) gives the frac-
tion by which cost of producing output quantities yy could be re-
duced when facing input prices wy; achieving this reduction might
require altering the mix of inputs used to produce yj.

Fdre et al. (1985) define input allocative efficiency as

C(x0.yo | ¥, wx)
0 (0. Y0 | W) °

Clearly, for any (xg, yo)eW¥ we have Ax(Xg,yo | ¥,wyx) < 1. The
input allocative efficiency measure gives the part of cost ineffi-
ciency that would remain if input quantities xy were reduced to
the technically-efficient level 6(xg, yo|W¥ )xo.

Alternatively, given a vector wy € RY of output prices, the max-
imum revenue from producing a specific vector yg of output quan-
tities using a given vector xy of input quantities is

Ax(Xo, Yo | W, wy) = (2.8)

Rumax (%0, Yo | W, wy) =max{wyy | (xo.y) € ¥, y e RL, wy e R }.

(2.9)

Revenue efficiency (sometimes called overall output efficiency) for
the firm operating at (xo, yo) € ¥ and facing output prices wy then

Rmax(XOsyo | ‘l’sWy) _ W;’y*
A Wy Yo

R(x0,Yo | ¥, wy) := (2.10)

where y- is the argmin of the expression on the RHS of (2.9).
Analogous to the input allocative efficiency measure, Fire et al.
(1985) define output allocative efficiency as

R(xo. Yo | ¥, wy)
Ao, Yo | W)

By construction, Ay(xg,yo | ¥, wy) > 1 for (xq, ¥o) € W. Output al-
locative efficiency corresponds to the amount of revenue ineffi-
ciency that would remain after increasing output levels y, to the
technically efficient levels A(xq, yo|V)yo.

Maximum profit for a firm operating at (xg, ¥o) € ¥ and facing
prices wy, wy is given by

Ay (X0, Yo | W, wy) := (2.11)

Pmax (X0, Yo | ¥, wx, wy) = max {w}y —Wx| (xy) eV, xeRE,
yeRL, wyeRl, wye R‘_Lr}. (2.12)

However, defining profit efficiency as the ratio of maximum to
observed profit, analogous to cost or revenue efficiency, is prob-
lematic because profit can be negative, particularly during peri-
ods of economic distress. Chambers et al. (1998) propose a Nerlo-
vian profit efficiency measure for the firm operating at (xg, yg) € W
given by

P(x0.Yo | W, dx, dy, wx, wy)

. Pmax (X0, Yo | W, wy, Wy) - (Wyyo — WxXo)
’ Wydy + Wydy

(2.13)

where dy,dy are the direction vectors used in (2.5) to measure
technical efficiency. Profit efficiency amounts to the difference
between maximum and observed profit (thereby accommodating
negative observed profits), normalized by the “value” of the direc-
tion (d, dy). Because the directional measure is additive, the corre-
sponding measure of profit allocative efficiency is given by the dif-
ference

Az (X0, Yo | W, dy, dy, wx, wy)
=P (X0, Yo | ¥, dx, dy, wy, wy) —8(x,y | dx, dy, V).

(2.14)

All of the quantities and model features defined so far are
unobservable, and hence must be estimated. In addition, infer-
ence is needed in order to know what might be learned from
data. Some additional assumptions are needed to complete the
statistical model. The following assumptions are analogous to
Assumptions 3.1-3.4 of Kneip et al. (2015). In order to draw upon
previous results, we state the assumptions below in terms of the
input-oriented measure of efficiency. The assumptions can also
be stated in terms of the output and directional measures of
efficiency, and the results of Kneip et al. (2015) extend to those
measures after trivial (but tedious) changes in notation in Kneip
et al. (2015). The first two assumptions that follow are needed for
both DEA and FDH estimators.

Assumption 2.4. (i) The random variables (X, Y) possess a joint
density f with support D c W¥; and (ii) f is continuously differen-
tiable on D.

Assumption 2.5. (i) D*:={0(x,y | ¥)x, y) | (x,y) € D} C D; (ii)
D* is compact; and (iii) f6(x, y)x, y)>0 for all (x,y) € D.

The next two assumptions are needed when DEA estimators are
used. Assumption 2.6 imposes some smoothness on the frontier.
Kneip, Simar, and Wilson (2008) required only two-times differ-
entiability to establish the existence of a limiting distribution for
DEA estimators, by the stronger assumption that follows is needed
to establish results on moments of the DEA estimators.

Assumption 2.6. 6(x, y|W) is three times continuously differen-
tiable on D.

Recalling that the strong (i.e., free) disposability assumed in
Assumption 2.3 implies that the frontier is weakly monotone, the
next assumption strengthens this by requiring the frontier to be
strictly monotone with no constant segments. This is also needed
to establish properties of moments of the DEA estimators.

Assumption 2.7. D is almost strictly convex; ie., for any
®.y).®§) eD with (ﬂy);é(wy) the set {(x*.y") |

x5, y) = (xy) +a((X,y) — (x,y)) for some 0 <« < 1} is a subset
of the interior of D.

Assumptions 2.1-2.7 comprise a statistical model similar to the
one defined in Kneip et al. (2015) and where DEA estimators have
desirable properties. Alternatively, when FDH estimators are used,
Assumptions 2.6 and 2.7 can be replaced by the following assump-
tion.

Assumption 2.8. (i) O(x, y) is twice continuously differentiable on
D; and (ii) all the first-order partial derivatives of 0(x, y) with re-
spect to x and y are nonzero at any point (X,y) € D.

Assumption 2.8 strengthens the assumption of strong dispos-
ability in Assumption 2.3 by requiring that the frontier is strictly
monotone and does not possess constant segments (which would
be the case, for example, if outputs are discrete as opposed to con-
tinuous, as in the case of ships produced by shipyards). Finally,
part (i) of Assumption 2.8 is weaker than Assumption 2.6; here the
frontier is required to be smooth, but not as smooth as required by
Assumption 2.6.> Assumptions 2.1-2.5 and Assumption 2.8 com-
prise a statistical model appropriate for use of FDH estimators of

5 Assumption 2.8 is slightly stronger, but much simpler than assumptions All-AIll
in Park, Simar, and Weiner (2000).
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technical efficiency, while Assumption 2.1-2.7 comprise a statisti-
cal model appropriate for use of DEA estimators of technical effi-
ciency.

In applications where cost, revenue or profit efficiency are es-
timated, firms are often observed to face different prices. In order
to consider properties of moments of estimators of cost, revenue
or profit efficiency, an additional assumption is needed.

Assumption 2.9. (i) The random variables (Wy, W),) possess a joint
density fw,w, with compact support Dy c RY, xR%,, and (ii)
The random variables (X, Y, Wy, Wy ) are defined on an appropriate
probability space such that the joint density fxyw, w, (x,y, wx, wy)
exists and is well-defined with support D x Dy,.

Of course, prices of inputs and outputs are determined in mar-
kets. One might expect that the price of financial capital, which is
mobile, might be constant, but this requires that markets reach a
spatial equilibrium. Moreover, the price of physical capital, which
is immobile, should be expected to vary across space. In addition,
the prices of labor as well as banks’ outputs may vary due to dif-
ferences in local market conditions. Treating prices of both inputs
and outputs as random variables in Assumption 2.9 provides some
mathematical structure needed to define a statistical model. As
will be seen below, estimates of cost, revenue and profit efficiency
are in each case conditioned on observed prices. When consider-
ing mean efficiencies, expectations are over inputs and outputs as
well as prices. Assumption 2.9 provides the mathematical structure
needed to make inference about mean cost, revenue and profit ef-
ficiencies as well as the corresponding measures of allocative effi-
ciencies.

Assumption 2.9 ensures that all prices are strictly positive and
have finite upper bounds. Of course, in some situations firms may
face the same prices, in which case fiy, w, is degenerate with mass
at a single point. In other situations, it may be the case that only
input prices or output prices are observed. In such cases, the in-
put or output prices can be viewed as being drawn from marginal
distributions fw, or fy, corresponding to fwx,wy- The joint den-
sity fx.ywe.w, (X, ¥, wx, wy) implies existence of the corresponding
marginal distributions fxyw, of inputs, outputs and input prices
and fxyw, of inputs, outputs and output prices.

3. Estimation and inference
3.1. Technical efficiency

Given a random sample S; = {(X;,Y;)}, the production set W
can by estimated by the free disposal hull of the sample obser-
vations in S,

Wi n = U {Gyerlx=X, y=<Y} (3.1)
(Xi.Yi)eSn

proposed by Deprins et al. (1984). Alternatively, W can be esti-
mated by the convex hull of Wgpy ,, of the free-disposal hull of the
sample observations in S, i.e., by

Upeap i= {(.y) eRP |y <YV, x> Xv, i,u=1, veRl},
(32)

where X = (X;, ..., X,) and Y= (Y;. .... Y;) are (pxn) and
(g x n) matrices of input and output vectors, respectively; i, is an
(nx 1) vector of ones, and v is a (nx 1) vector of weights. This
is the (VRS) DEA estimator of W, proposed by Farrell (1957) and
Banker, Charnes, and Cooper (1984). FDH or DEA estimators of 0(x,
y|W¥), A(x, y|¥) and 8(x, y|dx, dy, ¥) defined in Section 2 are ob-
tained by substituting Wepy, or Wpga, for W in (2.3)-(2.5) (re-
spectively). In the case of DEA estimators, this results in

0x,y | @DEA,n)zrglivn{G |y <Yv, 6x>Xv, i,v=1, veR}},

(3.3)

Ay | Upean) = n)"LlEII)X{)L | Ay <Yv, x>Xv, ijv=1, v eRi}

(3.4)
and
S(X,y | dX’ dyv \/I}DEA,H)

rglax{S | (v +8dy) <Yv, (x—8dy)
U

v

Xv, i,u=1 veR!} (3.5)

Substituting ‘TJFDH,n leads to integer programming problems, but
the estimators can be computed using simple numerical methods
(e.g., see Simar and Wilson, 2013; 2015 for details).

The statistical properties of these estimators are well-
developed. Kneip, Park, and Simar (1998) derive the rate of
convergence of the input-oriented DEA estimator, while Kneip
et al. (2008) derive its limiting distribution. Park et al. (2000) and
Daouia, Simar, and Wilson (2017) derive both the rate of con-
vergence and limiting distribution of the input-oriented FDH
estimator. Kneip et al. (2015) derive moment properties of both
the input-oriented FDH and DEA estimators and establish central
limit theorem (CLT) results for mean input-oriented efficiency after
showing that the usual CLT results (e.g., the Lindeberg-Feller CLT)
do not hold unless (p + q) < 3. All of these results extend trivially
to the output-oriented estimator A(x,y | \Tln) after straightforward
(but tedious) changes in notation. Simar, Vanhems, and Wilson
(2012) extend the results of Kneip et al. (1998) and Kneip et al.
(2008) to the DEA directional efficiency estimator using the results
of Wilson (2011), while Simar and Vanhems (2012) extend the
results of Park et al. (2000) to the FDH directional efficiency
estimator. Using similar ideas it can be shown that the moment
results of Kneip et al. (2015) also extend to the directional case.

In all cases, the estimators are consistent, converge at rate n®
(where k =2/(p+q+ 1) for the DEA estimators and k = 1/(p+q)
for the FDH estimators) and possess non-degenerate limiting distri-
butions under the appropriate set of assumptions. In addition, the
bias of each of the three estimators is of order O(n~*). Bootstrap
methods proposed by Kneip et al. (2008, 2011) and Simar and Wil-
son (2011a) provide consistent inference about 6(x, y|W¥), A(x, y|V¥)
and §(x, y|dx, dy, W) for a fixed point (x, y)e ¥, and Kneip et al.
(2015) provide CLT results enabling inference about the expected
values of these measures over the random variables (X, Y).

3.2. Some preliminary results

The preliminary results developed here are used below in the
discussion of estimation of cost, revenue and profit efficiency as
well as input, output and profit allocative efficiency. First, consider
the function hy, : R?*9 > R1* such that hy, (x.y) = Aw, [x’ y’]/
where

w, 0’
AWX = * 1 s
0., I

pxq

(3.6)

0q is a (g x 1) vector of zeros, Op.q is a (p x q) matrix of zeros,
and I is a (q x q) identity matrix. Then hy, is an affine function in
the sense of Williamson and Trotter (1974) and Boyd and Vanden-
berghe (2004), and the image of W under hy, is

Wy, = h, (W) ={(c.y) | (c.y) =hy,(x.y) ¥V (x.y) e ¥} (3.7)

Clearly, Wy, C R}fq. It is well-known (e.g., see Boyd and Vanden-
berghe (2004), pp. 36-38) that since hy, is affine, W, is convex if
and only if ¥ is convex.
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Next, consider the function hy, : RZ™9 > RP*! such that
hw, (x.y) = Aw, [x’ y’]/ where
b Opxq
A, = [ o (3.8)
0, w

isa (p+1) x (p+q) matrix. Similar to hy, defined above, hy, is
an affine function, and the image of ¥ under hwy is
Wy, 1= hoy, (W) = { (X, 1) | (%, 1) = hw, (. )V (x,y) e ¥} (3.9)

Clearly Wy, cRﬁ“. Again, due to the properties of affine func-
tions, Wy, is convex if and only if W is convex.

Finally, define the function Ay, w, :RE*— R such that

hawewy (X, ¥) = Awgw, [X y’]/ where

/

A, = [-W, W] (3.10)

is a 1x(p+q) matrix. Similar to hy, and hy, defined above,
hwxqu is an affine function, and the image of ¥ under hwx,wy is

Wiy 2= M, (W) = {70 | T 1= hy, (X, 9) ¥ (%) € W

(3.11)

Clearly, Wy, w, C R, and Wy, w, is trivially convex. In addition, the
affine transformations of W described above also preserve strong
disposability as confirmed by the following result.

Lemma 3.1. Assume W is closed but not necessarily convex, and
Assumption 2.3 holds. Then (i) Wy, satisfies strong disposability
of cost and outputs, ie., V (c,y) € Yy,, C>c= (C,y) € Yy, and
y=y=(c.y) € Yy,; (ii) Wy, satisfies strong disposability of inputs
and revenue, ie, ¥ (x,1) € Uy, X>x= (X,1) € Uy, and T<r=
(x,7) € Wy,; and (iii) Wy, w, satisfies strong disposability of profit,
ie,V () € Yy w,, T <7 = (7T) € Yy w,.

It is obvious that Assumption 2.1 ensures that W, is
closed. Hence, since strong disposability is preserved, under
Assumptions 2.2-2.5 and Assumption 2.8, Wy, can be estimated
by

Yephwen ==
(G.Y) €Swyn

{c.y)lc=C y<Y} (3.12)

where Sy, n = {(G, Y;)}L; results from applying the transformation
hw, to each (X;,Y;) € Sy. Similar reasoning leads to the conclu-
sion that Wy, and Wy, w, can be estimated by the FDH estimators
\IJFDHW n and \IJFDH we.wy.n» Tespectively, after applying the trans-
formatlons hw, and hy, w, to the observations in Sp.

The fact that the affine transformations of W described above
preserve convexity (when it exists) as well as strong disposabil-
ity means that under Assumptions 2.1-2.7, DEA estimators can be
used to estimate the transformed sets \I/WX Wy, and Wy, wy- In
particular, let \IJDEAW n= hwx(\IJDEAn) ie, \IJDEAW n is the image
of \IJDEA,, under hy,. This leads to the DEA estimator of W, in
cost-output space, i.e., the convex hull of the free disposal hull of
the observations in Sw, » given by

Wpeaw,n = {(€.y) eR™M |y <YV, c>Cv. i,u=1 veR"}
(3.13)

where C is the (1 xn) vector of costs with (1, i)th element G; =
w,X;. Similar reasoning leads to DEA estimators Wpeaw,.n and

\I'lDEA,Wx.Wy,H of \I"Wy and "ijx,wy-

3.3. Cost efficiency

The usual approach to estimating cost efficiency given by
(2.7) is to first estimate the vector of input levels that minimize
cost by employing an empirical analog of (2.6). DEA estimators are
typically used. In practice, given the vector wy of input prices, this
amounts to replacing W in (2.6) with Wpga , to obtain

Cmin (XO’YO | (I\"DEA,n, Wx)
= r}g%n{w;x |Yv=>yp, Xv<x, 1,uv=1ve Rﬁ}
WS (314)

where X, is the solution to the optimization problem in the first
line of (3.14). Then cost efficiency is estimated by

PN
Wxxmin
WiXo

~ Cimin (X0, U LW
C(x0.50 | Tpgan. wy) 1= Smind Oyf’| mWe) _
WyXo

(3.15)

This is the suggested approach of Coelli, Rao, and Battese (1997);
Fare and Grosskopf (1995); Fare et al. (1985); Farrell (1957) and
Ray (2004), and has been used in empirical settings by Aly et al.
(1990), Byrnes and Valdmanis (1994), Cummins, Tennyson, and
Weiss (1999), Sharmaa, Leunga, and Zaleski (1999), Kohersa, hsiang
Huang, and Kohers (2000), Worthington (2000), Bjorkgren, Hakki-
nen, and Linna (2001), Hartman, Storbeck, and Byrnes (2001),
Coelli, Rahman, and Thirtle (2002), Isik and Hassan (2002), Wadud
(2003), Barros and Sampaio (2004), Barros and Mascarenhas
(2005), Camanho and Dyson (2005, 2008), Chen, Skully, and Brown
(2005), Cinemre, Ceyhan, Bozoglu, Demiryiirek, and Kili¢ (2006),
Havrylchyk (2006), Asmild, Paradi, Reese, and Tam (2007), Ariff
and Can (2008), Hansson and Ohlmér (2008), Hu, Shieh, Huang,
and Chiu (2009), Cummins, Weiss, Xie, and Zi (2010), Hsu and
Petchsakulwong (2010), Kader, Adams, and Hardwick (2010), Kaur
and Kaur (2010), Kwadjo Ansah-Adu (2011), Lozano (2011), Al-
Khasawneh, Bassedat, Aktan, and Thapa (2012), Haelermans and
Ruggiero (2013), Nedelea and Fannin (2013), KociSova (2014),
Nguyen, Nghiem, Roca, and Sharma (2016), Ghiyasi (2017) and
many others. Unfortunately, the statistical properties of both the
estimator of minimum cost given in (3.14) as well as the estima-
tor of cost efficiency given in (3.15) are unknown. Consequently,
researchers often either (i) report only point estimates and per-
haps sample means of the estimates in applications without mak-
ing inference, or (ii) report sample means of estimate as well as
sample standard deviations of cost efficiency estimates, implic-
itly inviting readers to use standard CLT results to assess statis-
tical significance. Some (e.g., Kohersa et al., 2000) explicitly use
standard CLT results to test whether means are different across
groups of producers. Hartman et al. (2001) use the Kruskal-Wallis
test to test for whether cost efficiency has the same distribu-
tion across groups, but the true cost efficiencies, as well as their
ranks, are unobserved, casting doubt on the properties of their
test. Several papers, including Cummins et al. (2010), Coelli et al.
(2002) and Nedelea and Fannin (2013), make conventional infer-
ence in second-stage Tobit regressions where cost efficiency esti-
mates are regressed on some explanatory variables. As will be seen
shortly, this results in invalid inference. Moreover, these papers do
not specify a coherent model where Tobit regression in a second-
stage regression would be sensible.®

The next result establishes a distance-function characterization
of the cost efficiency measure introduced in (2.7).

Lemma 3.2. Let ¢y = wjxg. Then for (xo, ¥o)e ¥,
0 (o Yo | Ww,).

C(xo, Yo | W, wy) = (3.16)

6 See Simar and Wilson (2007) for further discussion on this point.
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Since it is apparent from (3.14) that W is estimated by the
convex hull of the sample observations in S, one might imag-
ine that the convergence rate of the estimator of cost efficiency is
n2/(P+a+1) 35 established by Kneip et al. (1998) for the DEA estima-
tor of 8(x, y|W), or n!/(P+® as established by Park et al. (2000) for
the FDH estimator. But in fact, due to Lemma 3.2, cost efficiency
can be estimated at the rate n2/(d+2 using the DEA estimator,
or n'/@+D using the FDH estimator. The result in Lemma 3.2 is
not new—it is suggested by duality theory in the microeconomics
literature—but it is important for purposes of statistical inference.

To simplify notation, from this point the “FDH” or “DEA” is
omitted from subscripts, noting that ¥, and Wy, , may refer to ei-
ther the FDH or DEA estimators of W and Wy, (respectively). Then
consider the estimator 6(co, Yo | \Ilwx n) of cost efficiency where
Wy, denotes either the FDH or DEA estimator of Wy, defined in
(3.12) or (3.13) and where ¢y and \IJWX n replace xo and [ (respec-
tively) in (3.3) as discussed in Section 3.2.

The result in Lemma 3.2 may seem obvious to some. Fire and
Grosskopf (1985), Fdre, Grosskopf, and Lovell (1988) and Staub,
da Silva e Souza, and Tabak (2010) estimate cost efficiency using
6(co. Yo | ‘-lex’n) where \lex,n denotes the DEA estimator in (3.13),
while De Borger and Kerstens (1996) estimate cost efficiency us-
ing 0(co,¥o | \lex‘n) where lT/WX,n denotes the FDH estimator in
(3.12). Staub et al. (2010) estimate cost efficiency in (q+ 1) di-
mensions with p=q =3, but then regress their (DEA) cost effi-
ciency estimates on some explanatory variables in a second-stage
panel regression after citing (and then ignoring) Simar and Wil-
son (2007) which cautions against their approach. In their panel
regression, Staub et al. (2010) rely upon conventional inference,
which is invalid due to reasons given below. None of these au-
thors specify a statistical model, nor do they mention the statis-
tical properties of their estimators. Moreover, the far more typi-
cal approach in the literature is to estimate cost efficiency using
(3.14) and (3.15) as described above.

Lemma 3.2 establishes that estimation of cost efficiency is a
(q + 1)-dimensional problem, and that the usual FDH and DEA
input-oriented efficiency estimators can be used to estimate cost
efficiency, where univariate cost replaces p input variables.” Con-
sequently, cost efficiency is consistently estimated with rates n*x,
where kx =2/(q+2) when the DEA estimator is used and kx =
1/(q+1) when the FDH estimator is used due to the results of
Kneip et al. (1998) (for the DEA case) and Park et al. (2000) and
Daouia et al. (2017) (for the FDH case). Moreover, a limiting dis-
tribution exists in both cases, and hence the sub-sampling ideas
of Simar and Wilson (2011a) can be used to make asymptotically
valid inference about the cost efficiency of individual producers.
Simar and Wilson (2011a) also discuss a method for choosing the
sub-sample size, which is critical to the finite-sample performance
of the sub-sampling method. Implementation of the sub-sampling
method also depends critically on knowledge of the convergence
rate with which cost efficiency is estimated, which is established
above due to Lemma 3.2.

To be clear, different firms may face different input prices
as noted earlier in Section 2. Suppose a random sample
{(X;,Y;, W,;}i_, of input, output and input-price triplets is ob-
served. When estimating cost efficiency for each firm, each firm'’s
observed input-price vector is used to construct a transformed at-
tainable cost-output set. Firm i has observed cost C; = WX’J.XI- while
firm j has observed cost C; = WX’_ ij, but to estimate the cost ef-
ficiency of firm i, its cost C; is compared not to C; but instead to
C} = Wx"in for j=1 ..., n, thereby conditioning on the observed
prices W,; of firm i. Of course, this similar to the case in regression

7 Tone (2002) makes the obvious note that in the case of p =1, technical and
cost efficiencies are identical.

settings where cost is regressed on output quantities and input
prices, and cost efficiency for firm i is estimated conditionally on
firm i’s observed input prices. Formally, the sample {(X;, Y;, Wy},

is used to construct n samples Sy, ,.n = {C }e obtained by ap-
plying the function hy, , to the observatlons in {(Xl,Y,, Wil
eachi=1, ..., n. In other words, for firm i, W,; replaces wx in
(3.6) leadmg to the image Wy, . of W under hy, , analogous to
(3.7) where hy, , is defined by replacmg wy in (3. 6) w1th Wy ;. Sim-
ilarly, for firm ], vj replaces wy in (3.6) leading to the image \I—'W
of ¥ under th_j again analogous to (3.7). Finally, for i =1,
estimators (either FDH or DEA) of Wy, ; are constructed from the
samples Sw, in and these are used to obtain cost efficiency esti-
mates 0(G, Y; | Uy, )8

The result in Lemma 3.2 also means that properties of the first
two moments of either FDH or DEA estimators of cost efficiency
are established by Kneip et al. (2015), where in the notation of
Kneip et al. (2015), p = 1. This means that standard CLTs (e.g., the
Lindeberg-Feller CLT) can be used for inference about mean cost
efficiency if and only if =1 when DEA estimators are used.’
When FDH estimators are used, standard CLTs never hold. Unless
q =1 and DEA estimators are used, the bias of the cost efficiency
estimates becomes critical and must be dealt with as described by
Kneip et al. (2015).

In order see how to make valid inference about mean cost effi-
ciency, let sy, =E[0(CY | Wy, )] and om = VAR[O(CY | W] <
oo denote the mean and variance of cost efficiency, where expec-
tations are with respect to (C, Y, Wy). Let

n
Awn i=n"" ZQ(Q, Y; | \IJWX_,-,n)-
i=1
Let kx = 1/(q+ 1) for the FDH case or xx = 2/(q + 2) for the DEA
case, and define ny, := min([n?x], n) <n where |a] denotes the
largest integer less than or equal to a € R. Assume the observations
in Sp and the corresponding samples Sw,;.n are randomly sorted.
Define

(3.17)

Ny

Tl,;x1 Z (% (Ci, Y; | (I}Wx,f,n)‘

i=1

A, = (3.18)

Note that the efficiency estimates under the summation sign are
computed using the full sample of n observations, but the summa-
tion is over only the first n, estimates.

Next, let BW ..k, denote the generalized jackknife estimate of
the O(n=*x) bias of (G Y; | \I/W .n)> With Bw, nx, computed from
using Sw,, n as described by KHEIP et al. (2015, Section 4). Com-
putation of this bias estimate requires splitting the sample, and as
noted by Kneip et al. (2016), there are (},) possible splits. To re-

duce the bias estimate, randomly split the sample K « ( ) times

- n/2
and compute a bias estimate By, , ., , after each split. Then com-

pute the average

K

~ 1 ~
BWX,H,KX =K Z BWX,n,KX.k-
k=1

(3.19)

8 Linna, Hikkinen, and Magnussen (2006) use cost data state in their Section
4.6 that they use year-end accounting data on costs, and thus apparently do not
account for different input prices faced by different producers, thereby failing to
condition their estimates on input prices of each unit. Banker and Natarajan (2011,
pp. 279-281) propose estimation of technical, cost, and input allocative efficiencies
when only the costs of inputs, but neither their prices nor their quantities are ob-
served. If input prices vary across firms, as is likely due to differing local market
conditions, then their approach will result in failure to condition on input prices.

9 Kohersa et al. (2000), cited above, specify q =5 outputs, and hence their re-
liance on the Lindeberg-Feller CLT for inference means that their inference is in-
valid. Similarly, for reasons given by Kneip et al. (2015, Section 5), inference in the
second-stage regression of Staub et al. (2010) is also invalid.
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The next result permits inference about mean cost efficiency for
any number q of outputs.

Theorem 4.1 of Kneip et al. (2015) establishes that oy, is esti-
mated consistently by the sample variance

n
62 =113 (0. Yi | Bwyon) — Awgon)”
i=1

(3.20)

of the cost efficiency estimates. Then Theorem 4.3 of Kneip et al.
(2015) ensures that the confidence interval

. ~ O
[wa,n ~Bwoni, £ —2Z(1-g } (3.21)

N

where Za-g) is the (1 — %) quantile of the standard normal distri-
bution function, has asymptotic coverage of (1 —«) x 100-percent
whenever g <2 in the FDH case or g<3 in the DEA case. Alter-
natively, for ¢>3 in the FDH case or g>4 in the DEA case, the
asymptotically valid (1 — &) confidence interval
I:ﬁWX.nKX —Bw, ni, & %Z(l—% ] (3.22)
can be used.

As discussed by Kneip et al. (2015), when «x < 1/2 the random-
ness due to the subsample mean ﬁWX,nKX appearing in (3.22) can
be eliminated by replacing fiw,n, with the full mean fiy, n,
which has the effect of averaging over all the possible subsamples
of size ny,. The resulting interval has the same width as the one in
(3.22), but has coverage tending to 1 as n— oo due to the results
obtained above.'”

3.4. Input allocative efficiency

Estimators of input allocative efficiency defined in (2.8) can be
obtained by substituting either FDH or DEA estimators of cost and
technical efficiency for the true values appearing on the right-
hand side of (2.8).!" This is the approach of Cummins et al. (1999),
Sharmaa et al. (1999), Hartman et al. (2001), Coelli et al. (2002),
Isik and Hassan (2002), Wadud (2003), Barros and Sampaio (2004),
Barros and Mascarenhas (2005), Chen et al. (2005), Havrylchyk
(2006), Hsu and Petchsakulwong (2010) and Merkert and Hen-
sher (2011), all of whom estimate cost efficiency in (p+q) di-
mensions. Staub et al. (2010) similarly estimate input allocative ef-
ficiency, but estimate cost efficiency in only (q+ 1) dimensions.
However, the properties of these estimators are unknown until
now. Nonetheless, a number of papers use estimates of input al-
locative efficiency in statistical exercises. Among these, Cummins
et al. (1999), Sharmaa et al. (1999), Isik and Hassan (2002), Wadud
(2003) and Hsu and Petchsakulwong (2010) report both sample
means and sample standard deviations. Sharmaa et al. (1999) and
Wadud (2003) report t-tests of significance, and Wadud (2003) also
employs F tests. Isik and Hassan (2002) use their input allocative

10 Simar and Zelenyuk (2018) develop CLTs for estimates of aggregate efficiencies
consisting of ratios of weighted sample means. Their main focus is on output-
oriented technical efficiency, but they remark (p. 140) that their results can be
adapted to aggregate revenue efficiency, aggregate output allocative efficiency, ag-
gregate cost efficiency, aggregate input-oriented technical efficiency and aggregate
input allocative efficiency. However, they do not provide the peculiarities of the
asymptotic theory. Clearly, by using our results in Theorem 3.2 for the cost efficien-
cies and in Theorem B.2 for revenue efficiencies, the asymptotic theory in Simar
and Zelenyuk for aggregate technical efficiency could be adapted to aggregate rev-
enue efficiency and aggregate cost efficiency, but the rates will be governed by k),
and ky respectively, and not by « as given in Theorems 1, 2 and 3 of Simar and
Zelenyuk (2018).

1 Of course, due to the result in Lemma 3.1 showing that free disposability of ¥
is preserved in W,,, and that also convexity of W (when it exists) is preserved in
W, means that estimators of the same type should be used, rather than mixing
FDH and DEA estimators.

efficiency estimates in a Kolmogorov-Smirnov test, and Cummins
et al. (1999), Isik and Hassan (2002) and Wadud (2003) report re-
sults based on conventional inference from second-stage regres-
sions of input allocative efficiency estimates on some explanatory
variables. Banker and Natarajan (2011, Section 11.2.4) propose two
tests of whether allocative efficiency is present (which amounts to
testing whether technical efficiency and cost efficiency are equiv-
alent) based on restrictive distributional assumptions regarding
technical and cost efficiency, as well as a Kolmogorov-Smirnov test
to compare the distributions of technical and cost efficiencies. No
statistical results exist that would justify these exercises, and none
of these statistical procedures or results are valid due to fact that
(i) the true efficiencies are unobserved, and (ii) the observed es-
timates are biased, which prevents use of standard CLT results on
which the aforementioned papers rely. This will become clear be-
low.

In order to develop properties of estimators of input allocative
efficiency, an additional assumption is needed.

Assumption 3.1. There exists a constant 0 <My <oo such that
IX|| <My for all (x,y) e D.

Assumption 3.1 is necessary to guarantee existence of moments
of log(@(X,Y | ¥y). Although moments necessarily exist for 6(X;,
Y;)e(0, 1], |logf(X;, Y;)| is potentially unbounded. Moreover, up
to this point we have only assumed compactness of D* and not
necessarily of D. As noted by Kneip, Simar, and Wilson (2018),
Assumption 3.1 could in principle be replaced by a weaker version
requiring only existence of all relevant moments, but boundedness
of ||x|| greatly simplifies asymptotic arguments used below.

The next result establishes the existence of a limiting distribu-
tion, the rate of convergence, and the properties of the first two
moments for FDH and DEA estimators of input allocative efficiency.

Theorem 3.1. Let k =1/(p+ q) for the FDH case and k =2/(p +
q+ 1) for the DEA case. Then under Assumptions 2.1-2.5, 2.8-2.9 and
3.1 for the FDH case, and under Assumptions 2.1-2.7, 2.9 and 3.1 for
the DEA case, for each (x,y) € D,

N (Ac(x.y | B wy) — Ae(®,y | W W) > Quy (3.23)
where Qu,xy is a non-degenerate distribution with finite variance.

In addition, let (&1, &, &3) = (ﬁ p;ﬂzz, %) for the FDH case,

and (&1, &3, &3) = (p+?1+1’ gigﬁ, gigﬁ) for the DEA case. Then 3
a constant Dy €(0, oo) such that for all i, j € {1, ..., n}, i#],

E[.AX(X,‘,Y,‘ | (I}n,Wx,i) - -Ax(XisYi | \Ij’Wx,i)]
=Dyn™* +0(n~* (logn)®),

(3.24)

VAR[ A (X, Y; | Wn, W) — Ac(X:. Vi | @, W )] = O(n~4 (log n)*)
(3.25)

and

COV[Axoq, Vi | @, W) — A Yi | W, W),
A X Vs | e Wy ) — Ae(X,L Y, | \y,wx,,-)]‘ — 0(n~% (logn)®)
= o(nfl).
(3.26)

where expectations are with respect to (X, Y, Wy) and the constant D,
depends on the particular estimator (FDH or DEA), the density fxy w,
and the sets D e W and Dy c RY, xR%,.

For purposes of making inference about mean input alloca-
tive efficiency, more work is needed due to the bias term Din™%
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in (3.24). Let wa, = E[Ax(X,Y | ¥,Wyx)] and ij = VAR[Ax(X,Y |
W, Wy)] < oo denote the mean and variance of input allocative effi-
ciency, where again expectations are with respect to (X, Y, Wy). Let

n
Bapn i= n-! Z-Ax(xiv Y | Wy, Weh).
i=1

(3.27)

Let x =1/(p+q) for the FDH case and k =2/(p+q+ 1) for the
DEA case, and define n, :=min(|n2~ |,n) <n. Assume the observa-
tions in S, are randomly sorted. Define

Ny
ﬁAx,nK = n;] Z-Ax(xh Y; | Wn, Wx,i)~ (3.28)
i=1
Analogous to (3.18), the estimates of input allocative efficiency un-
der the summation sign in (3.28) are computed using the full sam-
ple of n observations, but the summation is over only the first n,
estimates.
Finally, let B 4,.nc denote the generalized jackknife estimate of
the bias term Din=* in (3.24) computed as described by Kneip
et al. (2015, Section 4). Analogous to (3.19), compute the average

K
~ 1 ~
Bune =K ZBAX,n.K.k
k=1

(3.29)

over K << (n72) random splits of the sample to reduce the variance
of the bias estimate. The next result gives a CLT for mean input
allocative efficiency.

Theorem 3.2. Let «x,¢1 and ¢, be defined for the FDH and DEA
cases as in Theorem 3.1. Then under Assumptions 2.1-2.5, 2.8-2.9 and
3.1 for the FDH case, and under Assumptions 2.1-2.7, 2.9 and 3.1 for
the DEA case, for (p+q) <3 in the FDH case or (p+q) <4 in the
DEA case,

\/ﬁ(ﬁflx,n - §Ax,n.x — Hat+ é-A)pn,K) _E> N(O’ O'Jézlx)

where & 4, nx = O(n‘f1 (log n)52) = o(n=*). In addition, for (p+q) >
2 in the FDH case or (p +q) > 3 in the DEA case, as n— oo

(3.30)

1 (Rn, — Buaunic — 1, + Eaunic) — N(0,03) (3.31)
as n— oo. In addition, as n — oo,
n
_~ o~ —~ 2
6% = > [AXi i | B wyi) — Ban] —> 03 (3.32)

i=1

The CLT results in Theorem 3.2 can be used to construct con-
fidence intervals for mean input allocative efficiency or to test
hypotheses about mean input allocative efficiency. Note that ei-
ther (3.30) or (3.31) can be used when (p+q) =3 in the FDH
case or (p+q) =4 in the DEA case. In the DEA case, intervals
based on (3.30) neglect V&4, n, =0(n~1/1%), while those based
on (3.31) neglect n“& 4, n, = O(n~1/3). Hence (3.31) is expected to
provide more accurate intervals than (3.30) when (p+q) =4 in
the DEA case. Similar reasoning applies in the FDH case when
(p+q) =3.

3.5. Revenue efficiency and output allocative efficiency

Extending the results from Sections 3.3 to 3.4 to revenue effi-
ciency and output allocative efficiency is straightforward, but there
are some subtleties. Explicit details are given in the separate Ap-
pendices B and C. One should carefully note that revenue efficiency
can be estimated with convergence rates n!/(+1) and n2/(P+2) for
the FDH and DEA cases, respectively. Output allocative efficiency
is estimated with rates n!/(P*® and n%/(P+4+1) for the FDH and
DEA cases. Consequently, conventional CLTs do not hold for mean

revenue efficiency nor for mean output allocative efficiency when
FDH estimators are used, and in the DEA case hold for revenue ef-
ficiency only when p =1 and for output allocative efficiency only
when p=1=g¢.

Examples of applications where revenue efficiency is estimated
include Sharma, Leung, Chen, and Peterson (1999), Bojnec and
Latruffe (2008), Cummins et al. (2010), Hsu and Petchsakulwong
(2010), Eller, Hartley, and Medlock III (2011) and Al-Khasawneh
et al. (2012). Sharma et al. (1999,Table 1) report sample means
of revenue and output allocative efficiencies for groups of produc-
ers, and rely on conventional CLTs to determine significance of dif-
ferences from 1 and to test whether means are the same across
groups. Cummins et al. (2010) and Eller et al. (2011) regress their
estimates of revenue efficiency on some explanatory variables in
second-stage regressions, and use conventional inference to deter-
mine significance or non-significance of their results. Due to the
results obtained in the separate Appendices B and C none of these
inferences are valid.

3.6. Profit efficiency

The usual approach to estimating profit efficiency defined
by (2.13) involves first estimating maximum profit Pmax(Xo, Yo |
W, wx, wy) by replacing the unknown W with W, in (2.12) to ob-
tain
Prmax (X0. Yo | Wn Wy, wy)

=%§5({w;y—w;x [Yv>y Xv<x 1v=1, veRi}

(3.33)

where ?WX,Wy and ?wX.Wy are solutions to the optimization problem
in the first line of (3.33). Then profit efficiency is estimated by

/> /<
=Wy Vwewy — WiXw,wy

P(Xo0. Yo | Wn. dy. dy, Wy, wy)
_ Pmax(X0, Yo | W, Wi, Wy) — (W0 — WiXo)
o wdy + widy
_ (W;j/\wx,wy - W;j‘\wx,wy) - (W;YO — WyXo)
wydy + widy

(3.34)

This is the approach of Chambers et al. (1998), Fiare and Grosskopf
(2006), Fére et al. (2008) and others. Unfortunately, as with the
estimators of cost and revenue efficiency, the properties of the
estimators of maximum profit in (3.33) and profit efficiency in
(3.34) are unknown.

The next result establishes that the profit maximization prob-
lem in (2.12) can be characterized as a one-dimensional problem.

Lemma 3.3. Under Assumption 2.1,

Prmax (X0, Yo | W, wx, wy) = max {7 | 7 € Wy, w, }. (3.35)

The proof is obvious and is left to the reader.

Now apply the function hy, w, to each observation (X;,Y;) € Sn
to transform S, to a set of iid observations Sw,.w,.n = {71[};.1=1. Due
to Lemma 3.3 it is obvious that Pmax(xo. Yo | ¥, wx, wy) can be es-
timated by

Prmax (Xo. Yo | Swy.wy.ns Wy, wy) 1= max {77 | e wa.wy,n}- (3.36)

This amounts to a one-dimensional version of an FDH or
DEA estimator, and the two are equivalent in one dimen-
sion. From the properties of both FDH and DEA estima-
tors, it is clear that this estimator is consistent, converges at
rate n' and has a non-degenerate limiting distribution. Conse-
quently, substituting Pmax (X0, Yo | Swy.wy.n, Wx, Wy) for Pmax(Xo, Yo |
W, wy,wy) for in (2.13) yields a consistent estimator P(xg, Yo |
wa.wy,n,dx,dy,wx,wy) of the Nerlovian profit efficiency measure
P(x0.Yo | ¥, dx, dy, wx, wy) for given direction vectors dx and dy
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and given price vectors wy and wy. Moreover, the resulting es-
timator converges at rate n' and has a non-degenerate limiting
distribution due to the properties of Pmax (X0, Yo | Swy.wy.n, Wx, Wy).
Knowledge of the convergence rate and existence of a non-
degenerate limiting distribution permit use of the subsampling
methods described by Simar and Wilson (2011a) for inference
about the profit efficiency P(xo,yo | W, dx, dy, wx, wy) of a par-
ticular firm operating at (xg, yo)e W. In addition, the classical
Lindeberg-Feller CLT can be used to make inference about mean
profit efficiency due to the n' convergence rate.

3.7. Profit allocative efficiency

As noted in Section 2, the results of Kneip et al. (2015) for the
input-oriented efficiency estimator 0 (x,y | U,) in  (3.3) extend to
the directional efficiency estimator §(x,y | dx, dy, W) in (3.5) us-
ing arguments similar to those of Simar and Vanhems (2012) and
Simar et al. (2012). Substituting P(Xg, Yo | Swy.wy.n, Wx, wy) and
8(x,y | dx, dy, \Tln) for P(xo,yo | W, dx, dy, wx, wy) and 8(x, y|dyx, dy,
W) in (2.14) leads to the estimator

Ax (XO7 Yo | Sn, d)u dy, Wy, Wy) = P(Xo,yg | SWX,Wy,n, dx, dy, Wy, Wy)
8.y | dedy, Uy).  (3.37)

The following pair of results are straightforward extensions of
Simar and Vanhems (2012, Theorem 4.1), Simar et al. (2012, The-
orem 3.1) and Kneip et al. (2015, Theorems 3.1 and 3.3). Conse-
quently, proofs are left to the reader. Assumption C.1 required by
both Theorems 3.3 and 3.4 appears in Appendix C.

Theorem 3.3. Let k =1/(p+q) and for the FDH case and k =
2/(p+q+1) for the DEA case. Under Assumptions 2.1-2.5, 2.8,
3.1 and C1 for the FDH case and under Assumptions 2.1-2.7, 3.1 and
C.1 for the DEA case, for each (x,y) € D,

n“(Az (X, | S, dx, dy, Wy, wy)
— A}y | V. dy. dy W W) 5> Qs y

where Q4 .y is a non-degenerate distribution with finite variance de-
pending on the particular estimator (i.e., FDH or DEA).

(3.38)

Theorem 3.3 confirms that Ay (x,y | Sp, dx,dy, wx) is a con-
sistent estimator of Ay (x,y|W,dx, dy, wx) with estimation er-
ror of order O,(n~). The n' convergence rate of P(xg,Y¥p |
Swy.wy.n, dx, dy, Wy, wy) is dominated by the n* rate of §(x,y |
dy, dy, \T/n), and hence Az (Xg,Yo | Sn.dx, dy, wx, wy) inherits the
slower convergence rate. The existence of a limiting distribution
and knowledge of the convergence rate permits use of the subsam-
pling methods of Simar and Wilson (2011a) for making inference
about profit allocative efficiency.

The next result establishes properties of moments of the profit
allocative efficiency estimator.

Theorem 3.4. Let k,(1,{, and {3 be defined as in Theorem 3.1 for
the FDH and DEA cases. Under Assumptions 2.1-2.5, 2.8, 2.9, 3.1 and
C.1 for the FDH case and under Assumptions 2.1-2.7, 2.9, 3.1 and
C1 for the DEA case, 3 a constant D, € (0, oo) such that for all
i,je{l, ..., n}, i#],

E[An (Xi’ Yl | Sn, dx~ dys Wx,is Wy,i)—-An (Xiv Yl | v, dxs dy’ Wx,iv Wyf)]

=Don™* +0(n~% (logn)®), (3.39)

VAR[A,T XY | S dy. dy. Wy, Wy)

A (XY, | W dy, dy,wx,,-,wy.o]

=0(n"% (logn)“")

and

(3.40)

‘COV[A,, (Xi, Y; | Sn,dy, dy, Wy i, Wy, )
—Ax (Xi7 YI | v, dx, dy, WX,i7 Wy,z’)7Ar[ (Xj’ Yj | Sn, dx, dy, Wx,jv Wy.j)
— A (XY | W, dy,wx,,»,wy,,»)]

= 0(n"%(logn)*)
=o(n"). (3.41)

The constant D, depends on the density fxyw,w,, the particular
estimator (FDH or DEA) and the structure of the sets D c W and
Dy cRY, xRY .

In order to make inference about mean profit allocative
efficiency, let wa, =E[Az(X,Y | W, dy, dy, Wy, Wy)] and o3 =
VAR[A; (X,Y | ¥, dy, dy, Wy, Wy)] < oo denote the mean and vari-
ance of profit allocative efficiency, where again expectations are
with respect to (X, Y, Wy, Wy). In studies where profit overall (i.e.,
cost) efficiency and profit allocative efficiency are estimated, both
input and output prices typically vary across firms. Let

n
Pagn =11 Ag (X, Y | Sn. dx. dy. Wy i, Wy,).
i=1

(3.42)

Let x =1/(p+q) for the FDH case and k =2/(p+q+ 1) for the
DEA case, and define n, :=min(|n2~|,n)<n. Assume the observa-
tions in S, are randomly sorted. Define

Ny
Rayn, =1 ZATI (X, Y; | Sn. dy, dy, Wy i, Wy).
i=1

(3.43)

Analogous to (3.18), the estimates of profit allocative efficiency un-
der the summation sign in (3.43) are computed using the full sam-
ple of n observations, but the summation is over only the first n,
estimates.

Finally, let B 4,.n. denote the generalized jackknife estimate of
the bias term D,n~* in (3.39) computed as described by Kneip
et al. (2015, Section 4). Analogous to (3.19), compute the average

K
BA,,,n,K =K ZBA,,.n,K,k (3-44)

k=1

over K << (n'/’z) random splits of the sample to reduce the variance
of the bias estimate. The next result gives a CLT for mean profit
allocative efficiency.

Theorem 3.5. Assume the conditions of Theorem 3.4 hold for either
the FDH or DEA case. For (p +q) <3 in the FDH case or (p+q) <4
in the DEA case, as n — oo,

\/ﬁ(ﬁAﬂ.n - §A”,n.K — MHa, + SA;,,H,K) ‘L> N(Ov 031,,) (3.45)

3 4
where &4, ni = O(n_ p+a+T (logn) 51311) =o(n~%). In addition, for

(p+q) > 2 in the FDH case or (p+ q) > 3 in the DEA case, as n — oo

n“ (ﬁA”,nK - §A,,.n,/( — Ma, + SA:{.H,K) =N N(O, 0—,42\,,)- (3.46)

Moreover, as n — oo,

n
~ 2
=2 . 5 P 2
O, = E [An (X, Y; | S, dx, dyVWx,is Wy,i) - MA,,,n] —> 0 .-
i=1

(3.47)

The CLT results in Theorem 3.5 can be used to construct
confidence intervals for mean input allocative efficiency or to
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test hypotheses about mean input allocative efficiency. Similar to
Theorem 3.2, either (3.45) or (3.46) can be used when (p+q) =
4. Intervals based on (3.45) neglect vnéa, n, = O(n—”w), while

those based on (3.46) neglect n“£ 4, 5, = 0(n~1/°). Hence (3.46) is
expected to provide more accurate intervals than (3.45) when
(p+q) =4 and DEA estimators are used. Similar reasoning applies
when (p +q) =3 and FDH estimators are used.

4. Empirical illustration

To illustrate the methods developed above, we revisit Aly et al.
(1990) who examine 322 U.S. Banks operating in 1986. The authors
specify p =3 inputs and q = 5 outputs and report means of input-
oriented DEA estimates of technical efficiency, cost efficiency and
input allocative efficiency. Means are reported for estimates from
the full sample, as well as estimates from the subsample of 212
banks allowed to operate branches and corresponding subsample
of 110 banks prohibited from operating branches. In addition to
means, Aly et al. (1990) also report standard deviations of the var-
ious efficiency estimates obtained with the full sample (but not for
the efficiency estimates obtained from the two subsamples). The
authors also report results of five tests—analysis of variance, me-
dian test, Wilcoxon test, Van der Waerden test, and Savage scores
test—to examine whether the distributions of efficiency distribu-
tions differ across the two subsamples. They state (p. 216) that, “As
can be seen from Table 4, for all of the efficiency measures, except
allocative, the test statistics indicate that the null hypothesis can-
not be rejected. As a result, it may be concluded that the differ-
ences in the distributions of the efficiency measures between the
two separate samples are not significant and that they are drawn
from the same population, i.e., face similar environments.”

Of course, it is now known, due to the results obtained
in Sections 3.3 and 3.4 as well as the results of Kneip et al.
(2015) that the tests used by Aly et al. (1990) are invalid due to
the tests’ failure to properly account for the bias of the efficiency
estimators. Using the Aly et al. (1990) data, we estimate techni-
cal efficiency using 6 (x,y | W), cost efficiency using 6(c,y | We.n)
and input allocative efficiency using Ax(x, y, Ty, wy).'? Estimates of
technical efficiency are computed by solving the linear program in
(3.3) n times for each observed input-output pair in the sample.
Cost efficiency for the ith observation is computed by first comput-
ing costs W;X; for j=1, ..., n and then computing 0 (W.;X;,Y; |
Wpeaw,;.n) as described in Sections 3.2 and 3.3, noting that the set
of reference costs must be computed separately for each observa-
tion. Input allocative efficiency is then estimated by dividing the
input cost estimate by the input technical efficiency estimate for
observation i.

Table 1 gives sample means [i., and [l.n for each of the
three types of efficiencies, where “o” represents either 6, C or A,.
Estimated 95-percent confidence intervals for the true means are
also reported, as well as sample standard deviations and the cor-
responding bias estimates. The confidence interval estimates are
based on the re-centering idea discussed at the end of Section 3.3.
All estimates in Table 1 are computed using R and the Wilson
(2008) FEAR library. Computational details are given in the sepa-
rate Appendix D.

Note that the estimated confidence intervals for mean technical
efficiency and mean cost efficiency in Table 1 lie to the left of and
do not cover either of the point estimates of the means. This is
due to the biases—note also that the estimated biases for technical
and cost efficiency are large, ranging from about 0.14 to about 0.25.
The bias estimates for cost efficiency are smaller than the bias esti-
mates for technical efficiency, reflecting the fact that cost efficiency

12 We are grateful to Richard Grabowski for making the data available.

Table 1
Efficiency Estimates for Aly et al. (1990) Data.
flon flon, ~ —95%Cl— a. Bunk

Full Sample, n = 322
Tech. Eff. 0.8021 0.7760  0.4573  0.6514 0.1785  0.2477
Cost Eff. 0.7078  0.6790 0.4542 0.5980 0.1906 0.1816
Alloc. Eff.  0.8819  0.8979  0.7995 0.9294 0.1195 0.0175
Subsample with no branches, n = 110
Tech. Eff. 0.8690 0.8866  0.5122  0.7237 0.1526  0.2511
Cost Eff. 0.7802  0.7465 0.5094 0.7124 0.1938  0.1693
Alloc. Eff.  0.8928  0.7891 0.8031 09795 0.1273  0.0015
Subsample with branches, n = 212
Tech. Eff. 0.8462  0.8858  0.5326  0.7450 0.1714  0.2074
Cost Eff. 0.7726  0.8135 0.5509  0.7057 0.1809  0.1443
Alloc. Eff. 09133 09564 0.8617 0.9831 0.0979 -0.0091

is estimated in a 6-dimensional space whereas technical efficiency
is estimated in an 8-dimensional space. By contrast, the estimated
confidence intervals for mean input allocative efficiency cover the
corresponding sample means. In all three cases, the correspond-
ing bias estimates are close to 0. The bias estimate correspond-
ing to mean input allocative efficiency in the sample of banks with
branches is negative, but close to 0. Apparently, the biases in tech-
nical and cost efficiency tend to cancel each other when allocative
efficiency is computed.’

Aly et al. (1990) did not report estimated confidence inter-
vals, but implicitly invite the reader to do so using the classi-
cal, Lindeberg-Feller CLT since they report both sample means and
standard deviations. The classical confidence interval estimates can
be obtained by adding the bias estimates reported in Table 1 to
the corresponding estimated confidence bounds. For the full sam-
ple, doing so yields estimated bounds (0.7051,0.8991) for technical
efficiency, (0.6358,0.7797) for cost efficiency and (0.8170,0.9469)
for input allocative efficiency. The classically-estimated bounds for
technical and cost efficiency are quite different from the ones re-
ported in Table 1 due to the large biases associated with the esti-
mates of mean technical and cost efficiency. Moreover, due to the
results obtained in Sections 3.3 and 3.4, it is clear that the classi-
cal confidence intervals have (even for input allocative efficiency)
coverage tending to 0 as n— oo.

5. Conclusions

This paper provides results on rates of convergence and ex-
istence of limiting distributions for nonparametric FDH and DEA
estimators of cost, revenue and profit efficiency as well as the
corresponding allocative efficiencies. The nonparametric estima-
tors of cost, revenue and profit efficiency are shown to have
faster rates of convergence than their corresponding estimators of
technical or allocative efficiency. Combined with the subsampling
methods of Simar and Wilson (2011b), these results enable re-
searchers to make inference about these efficiencies for individual
firms or producers. In addition, results on moments of the vari-
ous estimators are provided. These results indicate that standard
CLT results (e.g., the Lindeberg-Feller CLT) cannot be used to make
inference about mean the mean efficiencies except in very lim-
ited cases. New CLTs are developed, enabling inference about mean
cost, revenue and profit efficiency as well as the corresponding al-

13 Aly et al. (1990) assume constant returns to scale (CRS) when estimating cost
efficiency and input allocative efficiency, and report separate estimates of techni-
cal efficiency assuming either constant or variable returns to scale. Using the FEAR
software library (Wilson (2008)) we obtain a mean of 0.7489 for the CRS-DEA esti-
mates on the full sample, with a variance of standard deviation of 0.1801, consistent
with what Aly et al. (1990) report in the third row of their Table 1. But when using
the VRS version of the DEA estimators, we obtain a mean of 0.8021 with standard
deviation 0.1785, whereas Aly et al. (1990) report 0.77 and 0.19 (respectively).
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locative efficiencies for all dimensions (p + q). These results enable
applied researchers for the first time to estimate confidence inter-
vals and to test hypotheses about model features in general set-
tings.

Appendix A. Technical details
A.1. Proof of Lemma 3.1

To prove (i), recall that (c,y) = hy, (x,¥) = (W,x,y) and (C,y) =
hw, (X,y) = (WX, y). Now consider (x, y)e V. Given y, we have
C>C= WX > WX

=X>x since wy>0
= (X,y) e ¥ by Assumption 2.3
= hy, (X, y) € hy, (V) by (3.7)
= (Cy) € Wy,. (A1)
Alternatively, given x we have ¢ = wjx and
y<y= (xy)eW¥ by Assumption 2.3

= hy, (X.y) € hy, (W)

= (Wix,y) € Wy,

= (5,57) € Wy,,

establishing (i).
reasoning. O

(A2)

Results (ii) and (iii) follow from similar

A.2. Proof of Lemma 3.2

Define the level set
Xy =1{x|&xy) eV} (A3)

Let x, = argmin wix | (x,y) € ¥, wy,x € R} = argmin, {w}x | x
X(¥o), wx,x € RP}. The point x, € X(yg) is minimal in the sense
that it results in cost lower than any other point in X (yg). By the
Supporting Hyperplane Theorem there exists x«« such that wjX,. =
WiXe = Cmin (X0, Yo | W, wy) and

Xo = kx.., (A4)
for some ke[1, oo).
By definition in (2.7), C(xp,¥o | W, wx) = V”;;‘)’EO and by
X
(A4) M _ Wike _ M:k‘? Moreover, from (A.4) it is
WyXo WxXo WxXo

clear that [[X..||, = ||k~ xol|> = k~[|Xo||>» and hence k-1 = M

2.
Therefore cost efficiency is given by the ratio of lengths betV\;)eHezn
three collinear points (i.e., the origin, x«+ and xg). It is well-known
(e.g., see Byer, Lazebnik, and Smeltzer (2010), Theorem 12.7)
that affine transformations such as hy, that maps ¥ to Wy,
preserve such ratios. Moreover, the affine transformation hy, maps
extreme points of W to extreme points of W,,. In addition, the
half-space H* := {x | wjx > wix,} c R is mapped by hy, to the
half-space H**+:={c|c=>c,} c Rl where c,=w}x,.. Hence hy,
maps both x«« and the minimal point x, € X' (yg) to the minimal
point (c,,yo) € Ww,, establishing the result. O

A.3. Proof of Theorem 3.1

Before beginning the proof of Theorem 3.1, some additional, in-
termediate results are needed.

Lemma A.l. Let k,¢1,¢, and {3 be defined as in Theorem 3.1 for the
FDH and DEA cases. Under Assumptions 2.1-2.5, 2.8 and 3.1 for the
FDH case and under Assumptions 2.1-2.7 and 3.1 for the DEA case,
for each (x,y) € D,

n*(log (O(x.y | ¥n)) —log (O(x.y | ¥))) > Q%

Xy (A.5)

where Qg’f‘y is a non-degenerate distribution with finite variance. In
addition, 3 a constant D3 € (0, oo) such that for all i,j e {1, ..., n},
i#],

E[log (6(X;.Yi | Wn) —log (8(X,.Y; | W)]

=D3n™* + 0(n~* (logn)®), (A.6)

VAR([log (6.(X;. Y; | Wn)) — log (8(X;. Y; | W))] = O(n~* (logm)*"),
(A7)

and

|cov] og (0%, ¥; | #1) ~ 105 (006 ¥; | W),

log (6.(X;.Y; | ¥)) — log (6(X;.Y; | \p))]‘ = 0(n~% (logn)**)
=o(n™"). (A.8)

The value of the constant D3 depends on the particular estimator, the
density f and the structure of the set D c .

Proof. From Kneip et al. (2008, Theorem 2) we have
2 - c
neia (Q(X,y | o) —60(xy | \.Il)) — QQ,x,y

for the DEA case, and a similar result (with scaling factor n!/(P+)
for the FDH case from Daouia et al. (2017, Proposition 2) after
transforming to the input-oriented case. In addition, the log func-
tion is monotonic and differentiable with nonzero derivatives on
R.. Hence (A.5) follows by the delta method for both the FDH and
DEA cases.

The results in (A.6)-(A.8) follow from arguments similar to
those in the proof of Theorem 3.2 in Kneip et al. (2018) and the
proof of Theorems 3.1 and 3.3 in Kneip et al. (2015). In particu-
lar, the convergence rate here is n%/(P+4+1) for the DEA case (and
n!/(P+@ for the FDH case) as is the case in Theorem 3.2 of Kneip
et al. (2018) where distance is measured to boundary of the conical
hull of P. The arguments rely again on the fact that the log func-
tion is monotonic and differentiable, permitting Taylor expansions
and the delta method. O

Now recall the definition of input-allocative efficiency in (2.8).
Substituting 6 (co, Yo | Yw,) for C(xp,yo | ¥, wx) in (2.8) and then
taking logs yields

log (Ax(x0,yo | W, wx)) = log (8 (co.yo | Yw,))
— log (8 (x0. 0 |W)). (A.10)

A natural estimator of log (Ax(Xg,Yo | ¥, wy)) is obtained by re-
placing 6(co,y0 | Yw,) and 6(xg, yo|¥) on the right-hand side
of (A.10) with the corresponding estimators 6(co, o | ®WX.n) dis-
cussed in Section 3.3 and 6 (xg,yo | ¥n) given by (3.3). The next
result establishes the properties of the resulting estimator

log (Ax(Xo,yo | (I}n,Wx)) = log (Q(CO*yO | (I;W’“”))
— log (6 (x0. ¥0 | \T’n))~

(A.9)

(A11)
O

Theorem A.l. Let « be defined for the FDH and DEA cases as in
Lemma A.1. Under Assumptions 2.1-2.5, 2.8 and 3.1 for the FDH case
and under Assumptions 2.1-2.7 and 3.1 for the DEA case, for each
(x,y) €D,

n* (log (Ax(x.y | Un. wy)) — log (Ac(x.y | ¥, wy))) - Q% ,

(A12)

as n— oo wher is a non- nera istribution wi nite
S here Q}fxgx_y s a non-degenerate distribut th finit
variance.
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Proof. Recall that C(xq.Yo | Uy, wy) = 0 (co. Yo | (I}wx,n) where
Wy, n is the DEA estimator of the image of W wunder
the affine transformation hy,. Then the properties of
log (C(x0. Y0 | Wn. wy)) =log (6 (co. Yo | Ww,.n)) are given by
Lemma A.1 where the number of “inputs” p is 1. The results
(A12)-(A.15) for the DEA case follow trivially after recognizing
that the rate of log (G(CO, Yo | \DWX,n)) is dominated by the slower
rate of log ((co.yo | ¥n)).

Similar reasoning establishes the result for the FDH case. O

Theorem A.1 establishes the existence of a non-degenerate lim-
iting distribution and the rate of convergence for FDH and DEA es-
timators of the log of input allocative efficiency. Consequently, con-
fidence intervals with asymptotically correct coverage for the log
of input allocative efficiency of individual firms can be estimated
using the sub-sampling methods described by Simar and Wil-
son (2011a) while noting that the rate of convergence is n!/(P+@
for the FDH case or n%/(Pt4+1) for the DEA case as established
by Theorem A.l. Since the resulting intervals are transformation-
respecting, one can take exponentials of the endpoints to obtain
an asymptotically valid confidence interval for Ax(xg,yo | ¥, wx).

The next result establishes moment properties for FDH and DEA
estimators of log input allocative efficiency. O

Theorem A.2. Let k,(1,¢, and {3 be defined for the FDH and DEA
cases as in Theorem 3.1. Under Assumptions 2.1-2.5, 2.8 and 3.1 for
the FDH case and under Assumptions 2.1-2.7 and 3.1 for the DEA case,
3 a constant D4 € (0, oo) such that for all i, j € {1, ..., n}, i#],

E[log (Ax(Xi. Vi | W, Wy)) — log (Ac(X:, Y; | W, Wy1))]
=D4n™* +0(n~% (logn)®), (A13)

VAR[log (Ax(X;. Y; | Wi, Wy,1)) — log (Ac(X:. Y; | W, Wyi))]
=0(n"“ (logn)“")

and

(A14)

|cOV] log (A% ¥ | B W) — log (A % | W. W),

log (Ax(X;. Yj | Wn, Wy ) — log (A(X;.Y; | qf,wxyj))]‘
=0(n"% (logn)®)
=o(n") (A15)

as n— oo. The constant D4 depends on the particular estimator (FDH
or DEA), the density fxyw, and the structure of the sets D c ¥ and
Dy cRY, xRY,.

Proof. The results follow due to (A.6)-(A.8), noting that the slower
convergence rate in the denominator of log(Ax(X;,Y;) | Wy, Wy ;)
dominates the faster rate of the cost efficiency estimator in the
numerator. O

Due to Theorem A.l, log (Ax(x,y | \Tln,wx)) is a consistent es-
timator of log (Ax(x,y | ¥, wy)) with estimation error of order
O(n~*). In addition, Theorem A.2 makes clear that standard CLT
results can be used to make inference about mean input allocative
efficiency only if (p+q) <3 in the DEA case and not at all in the
FDH case.

Theorem 3.1 can now be proved. The exponential function
is monotonic and differentiable with nonzero derivatives on
R.. Hence the result in (3.23) follows from Theorem A.l1 via
the delta method. Now let I'(-) denote the log function. Due
to Assumption 3.1, T'(0(X;,Y; | Wn)) as well as its derivatives
'@ X, Y; | ¥p)) and T (6 (X;,Y; | Wn)) are uniformly bounded for
all (X;,Y;) € D. Then the results in (3.24), (3.25) and (3.26) follow
after applying Taylor expansions and arguments analogous to those

used to prove results (3.17)-(3.19) in Theorem 3.2 of Kneip et al.
(2018). O

A.4. Proof of Theorem 3.2

The results in (3.30) and (3.31) follow immediately using argu-
ments analogous to those of Kneip et al. (2015) leading to their
Theorems 4.3 and 4.4. The result in (3.32) follows from (3.23) in
Theorem 3.1 using arguments analogous to those used to prove
(4.5) appearing in Theorem 4.2 of Simar and Wilson (2019). O

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ejor.2019.10.011

References

Al-Khasawneh, J. A., Bassedat, K., Aktan, B., & Thapa, P. D. P. (2012). Efficiency of
Islamic banks: Case of North African Arab countries. Qualitative Research in Fi-
nancial Markets, 4, 228-239.

Aly, H. Y., Grabowski, R. G., Pasurka, C., & Rangan, N. (1990). Technical, scale, and
allocative efficiencies in U.S. banking: An empirical investigation. Review of Eco-
nomics and Statistics, 72, 211-218.

Ariff, M., & Can, L. (2008). Cost and profit efficiency of Chinese banks: A non-para-
metric analysis. China Economic Review, 19, 260-273.

Asmild, M., Paradi, J. C, Reese, D. N., & Tam, F. (2007). Measuring overall effi-
ciency and effectiveness using DEA. European Journal of Operational Research,
178, 305-321.

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating tech-
nical and scale inefficiencies in data envelopment analysis. Management Science,
30, 1078-1092.

Banker, R. D., & Natarajan, R. (2011). Statistical tests based on DEA efficiency scores.
In W. W. Cooper, L. M. Seiford, & J. Zhu (Eds.), Handbook on data envelopment
analysis (pp. 273-295). New York: Kluwer Academic Publishers, Inc..

Barros, C. P, & Mascarenhas, M. ]J. (2005). Technical and allocative efficiency in a
chain of small hotels. Hospitality Management, 24, 415-436.

Barros, C. P., & Sampaio, A. (2004). Technical and allocative efficiency in airports.
International Journal of Transport Economics, 31, 355-377.

Bjorkgren, M. A., Hdkkinen, U, & Linna, M. (2001). Measuring efficiency of
long-term care units in Finland. Health Care Management Science, 4, 193-200.

Bojnec, S., & Latruffe, L. (2008). Measures of farm business efficiency. Industrial Man-
agement and Data Systems, 108, 258-270.

De Borger, B., & Kerstens, K. (1996). Cost efficiency of Belgian local governments: A
comparative analysis of FDH, DEA, and econometric approaches. Regional Science
and Urban Economics, 26, 145-170.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge Uni-
versity Press.

Byer, O., Lazebnik, F., & Smeltzer, D. L. (2010). Methods for Euclidean geometry. Wash-
ington, DC: Mathematical Association of America.

Byrnes, P., & Valdmanis, V. (1994). Analyzing technical and allocative efficiency of
hospitals. In A. Charnes, W. W. Cooper, A. Y. Lewin, & L. M. Seiford (Eds.), Data
envelopment analysis: Theory, methodology and applications (pp. 129-144). Dor-
drecht: Kluwer Academic Publishers.

Camanho, A. S., & Dyson, R. G. (2005). Cost efficiency measurement with price un-
certainty: A DEA application to bank branch assessments. European Journal of
Operational Research, 161, 432-446.

Camanbho, A. S., & Dyson, R. G. (2008). A generalisation of the Farrell cost efficiency
measure applicable to non-fully competitive settings. Omega, 36, 147-162.

Chambers, R. G., Chung, Y., & Fare, R. (1998). Profit, directional distance functions,
and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98,
351-364.

Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of
data envelopment analysis for Pareto-Koopmans efficient empirical productions
functions. Journal of Econometrics, 30, 91-107.

Charnes, A., Cooper, W. W.,, & Rhodes, E. (1978). Measuring the efficiency of decision
making units. European Journal of Operational Research, 2, 429-444.

Chen, X., Skully, M., & Brown, K. (2005). Banking efficiency in China: Application of
DEA to pre- and post-deregulation eras: 1993-2000. China Economic Review, 16,
229-245.

Cinemre, H. A., Ceyhan, V., Bozoglu, M., Demiryiirek, K., & Kilig, O. (2006). The
cost efficiency of trout farms in the Black Sea Region, Turkey. Aquaculture, 251,
324-332.

Coelli, T., Rahman, S., & Thirtle, C. (2002). Technical, allocative, cost and scale ef-
ficiencies in Bangladesh rice cultivation: A non-parametric approach. Journal of
Agricultural Economics, 53, 607-626.

Coelli, T, Rao, D. S. P,, & Battese, G. E. (1997). An introduction to efficiency and pro-
ductivity analysis. Boston: Kluwer Academic Publishers.

Cummins, ]. D., Tennyson, S., & Weiss, M. A. (1999). Consolidation and efficiency in
the US life insurance industry. Journal of Banking and Finance, 23, 325-357.


https://doi.org/10.1016/j.ejor.2019.10.011
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0001
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0002
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0003
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0004
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0005
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0006
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0007
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0008
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0009
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0010
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0011
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0012
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0013
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0014
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0015
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0016
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0017
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0018
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0019
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0020
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0021
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0022
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0023
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0024
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0024

1176 L. Simar and PW. Wilson/European Journal of Operational Research 282 (2020) 1164-1176

Cummins, J. D., Weiss, M. A., Xie, X., & Zi, H. (2010). Economies of scope in finan-
cial services: A DEA efficiency analysis of the US insurance industry. Journal of
Banking and Finance, 34, 1525-1539.

Daouia, A., Simar, L., & Wilson, P. W. (2017). Measuring firm performance using non-
parametric quantile-type distances. Econometric Reviews, 36, 156-181.

Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post of-
fices. In M. M. P. Pestieau, & H. Tulkens (Eds.), The performance of public enter-
prises: Concepts and measurements (pp. 243-267). Amsterdam: North-Holland.

Eller, S. L., Hartley, P. R., & Medlock III, K. B. (2011). Empirical evidence on the op-
erational efficiency of national oil companies. Empirical Economics, 40, 623-643.

Fdre, R. (1988). Fundamentals of production theory. Berlin: Springer-Verlag.

Fdre, R., & Grosskopf, S. (1985). A nonparametric cost approach to scale efficiency.
Scandinavian Journal of Economics, 87, 594-604.

Fdre, R., & Grosskopf, S. (1995). Nonparametric tests of regularity, Farrell efficiency,
and goodness-of-fit. Journal of Econometrics, 69, 415-425.

Fdre, R., & Grosskopf, S. (2006). New directions: Efficiency and productivity. New York:
Springer Science & Business Media.

Fdre, R., Grosskopf, S., & Lovell, C. A. K. (1985). The measurement of efficiency of pro-
duction. Boston: Kluwer-Nijhoff Publishing.

Fdre, R., Grosskopf, S., & Lovell, C. A. K. (1988). An indirect approach to the evalua-
tion of producer performance. Journal of Public Economics, 37, 71-89.

Fdare, R., Grosskopf, S. & Margaritis, D. (2008). Productivity and efficiency:
Malmquist and more. In H. Fried, C. A. K. Lovell, & S. Schmidt (Eds.), The mea-
surement of productive efficiency (pp. 522-621). Oxford: Oxford University Press.

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal
Statistical Society A, 120, 253-281.

Ghiyasi, M. (2017). Inverse DEA based on cost and revenue efficiency. Computers and
Industrial Engineering, 114, 258-263.

Haelermans, C., & Ruggiero, ]. (2013). Estimating technical and allocative efficiency
in the public sector: A nonparametric analysis of dutch schools. European Jour-
nal of Operational Research, 227, 174-181.

Hansson, H., & Ohlmér, B. (2008). The effect of operational managerial practices on
economic, technical and allocative efficiency at Swedish dairy farms. Livestock
Science, 118, 34-43.

Hartman, T. E., Storbeck, J. E., & Byrnes, P. (2001). Allocative efficiency in branch
banking. European Journal of Operational Research, 134, 232-242.

Havrylchyk, O. (2006). Efficiency of the Polish banking industry: Foreign versus do-
mestic banks. Journal of Banking and Finance, 30, 1975-1996.

Hsu, W.-Y., & Petchsakulwong, P. (2010). The impact of corporate governance on the
efficiency performance of the Thai non-life insurance industry. The Geneva Pa-
pers on Risk and Insurance—Issues and Practice, 35(Suppl 1), S28-S49.

Hu, J.-L., Shieh, H.-S., Huang, C.-H., & Chiu, C.-N. (2009). Cost efficiency of interna-
tional tourist hotels in Taiwan: A data envelopment analysis application. Asia
Pacific Journal of Tourism Research, 14, 371-384.

Isik, I., & Hassan, M. K. (2002). Technical, scale and allocative efficiencies of Turkish
banking industry. Journal of Banking and Finance, 26, 719-766.

Kader, H. A., Adams, M., & Hardwick, P. (2010). The cost efficiency of Takaful insur-
ance companies. The Geneva Papers on Risk and Insurance-Issues and Practice, 35,
161-181.

Kaur, P, & Kaur, G. (2010). Impact of mergers on the cost efficiency of Indian com-
mercial banks. Eurasian Journal of Business and Economics, 3, 27-50.

Kneip, A., Park, B., & Simar, L. (1998). A note on the convergence of nonparametric
DEA efficiency measures. Econometric Theory, 14, 783-793.

Kneip, A., Simar, L., & Wilson, P. W. (2008). Asymptotics and consistent bootstraps
for DEA estimators in non-parametric frontier models. Econometric Theory, 24,
1663-1697.

Kneip, A., Simar, L., & Wilson, P. W. (2011). A computationally efficient, consistent
bootstrap for inference with non-parametric DEA estimators. Computational Eco-
nomics, 38, 483-515.

Kneip, A., Simar, L., & Wilson, P. W. (2015). When bias kills the variance: Cen-
tral limit theorems for DEA and FDH efficiency scores. Econometric Theory, 31,
394-422.

Kneip, A., Simar, L, & Wilson, P. W. (2016). Testing hypotheses in nonparametric
models of production. Journal of Business and Economic Statistics, 34, 435-456.

Kneip, A., Simar, L., & Wilson, P. W. (2018). Inference in dynamic, nonparametric
models of production: Central limit theorems for Malmquist indices. Discussion
paper #2018/10, Institut de Statistique, Biostatistique et Sciences Actuarielles,
Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

KociSova, K. (2014). Appication of data envelopment analysis to measure cost, rev-
enue and profit efficiency. Statistika, 94 47-47.

Kohersa, T., Hsiang Huang, M., & Kohers, N. (2000). Market perception of efficiency
in bank holding company mergers: the roles of the DEA and SFA models in
capturing merger potential. Review of Financial Economics, 9, 101-120.

Kwadjo Ansah-Adu, J. A., & Charles Andoh (2011). Evaluating the cost efficiency of
insurance companies in Ghana. The Journal of Risk Finance, 13, 61-76.

Linna, M., Hikkinen, U., & Magnussen, J. (2006). Comparing hospital cost efficiency
between Norway and Finland. Health Policy, 77, 268-278.

Lozano, S. (2011). Scale and cost efficiency analysis of networks of processes. Expert
Systems with Applications, 38, 6612-6617.

Merkert, R., & Hensher, D. A. (2011). The impact of strategic management and fleet
planning on airline efficiency - A random effects Tobit model based on DEA
efficiency scores. Transportation Research Part A, 45, 686-695.

Nedelea, I. C., & Fannin, ]J. M. (2013). Analyzing cost efficiency of critical access hos-
pitals. Journal of Policy Modeling, 35, 183-195.

Nguyen, T. P. T,, Nghiem, S. H., Roca, E., & Sharma, P. (2016). Bank reforms and ef-
ficiency in Vietnamese banks: Evidence based on SFA and DEA. Applied Eco-
nomics, 48, 2822-2835.

Park, B. U., Simar, L., & Weiner, C. (2000). FDH efficiency scores from a stochastic
point of view. Econometric Theory, 16, 855-877.

Ray, S. C. (2004). Data envelopment analysis: Theory and techniques for economics and
operations research. Cambridge: Cambridge University Press.

Sharma, K. R., Leung, P, Chen, H., & Peterson, A. (1999). Economic efficiency and
optimum stocking densities in fish polyculture: An application of data envelop-
ment analysis (DEA) to Chinese fish farms. Aquaculture, 180, 207-221.

Sharmaa, K. R,, Leunga, P, & Zaleski, H. M. (1999). Technical, allocative and eco-
nomic efficiencies in swine production in Hawaii: A comparison of parametric
and nonparametric approaches. Agricultural Economics, 20, 23-55.

Shephard, R. W. (1970). Theory of cost and production functions. Princeton: Princeton
University Press.

Simar, L, & Vanhems, A. (2012). Probabilistic characterization of directional dis-
tances and their robust versions. Journal of Econometrics, 166, 342-354.

Simar, L., Vanhems, A., & Wilson, P. W. (2012). Statistical inference for DEA esti-
mators of directional distances. European Journal of Operational Research, 220,
853-864.

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-para-
metric models of productive efficiency. Journal of Econometrics, 136, 31-64.
Simar, L., & Wilson, P. W. (2011a). Inference by the m out of n bootstrap in nonpara-

metric frontier models. Journal of Productivity Analysis, 36, 33-53.

Simar, L., & Wilson, P. W. (2011b). Two-stage DEA: Caveat emptor. Journal of Produc-
tivity Analysis, 36, 205-218.

Simar, L., & Wilson, P. W. (2013). Estimation and inference in nonparametric fron-
tier models: Recent developments and perspectives. Foundations and Trends in
Econometrics, 5, 183-337.

Simar, L., & Wilson, P. W. (2015). Statistical approaches for non-parametric frontier
models: A guided tour. International Statistical Review, 83, 77-110.

Simar, L., & Wilson, P. W. (2019). Central limit theorems and inference for sources
of productivity change measured by nonparametric Malmquist indices. European
Journal of Operational Research, 277, 756-769.

Simar, L., & Zelenyuk, V. (2018). Central limit theorems for aggregate efficiency. Op-
erations Research, 66, 137-149.

Staub, R. B., da Silva e Souza, G., & Tabak, B. M. (2010). Evolution of bank effi-
ciency in Brazil: A DEA approach. European Journal of Operational Research, 202,
204-213.

Tone, K. (2002). A strange case of the cost and allocative efficiencies in DEA. Journal
of the Operational Research Society, 53, 1225-1231.

Wadud, M. A. (2003). Technical, allocative, and economic efficiency of farms in
Bangladesh: A stochastic frontier and DEA approach. The Journal of Developing
Areas, 37, 109-126.

Williamson, R. E., & Trotter, H. F. (1974). Multivariable mathematics: Linear algebra,
dfferential equations, calculus. Englewood Cliffs, NJ: Prentice-Hall, Inc..

Wilson, P. W. (2008). FEAR: A software package for frontier efficiency analysis with
R. Socio-Economic Planning Sciences, 42, 247-254.

Wilson, P. W. (2011). Asymptotic properties of some non-parametric hyperbolic ef-
ficiency estimators. In I. Van Keilegom, & P. W. Wilson (Eds.), Exploring re-
search frontiers in contemporary statistics and econometrics (pp. 115-150). Berlin:
Springer-Verlag.

Worthington, A. C. (2000). Cost efficiency in Australian local government: A com-
parative analysis of mathematical programming and econometrical approaches.
Financial Accountability and Management, 16, 201-223.


http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0025
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0026
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0027
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0028
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0029
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0030
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0031
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0032
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0033
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0034
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0035
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0036
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0037
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0038
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0039
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0040
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0041
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0042
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0043
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0044
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0045
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0046
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0047
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0048
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0049
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0050
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0051
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0052
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0053
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0054
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0055
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0056
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0057
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0058
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0059
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0060
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0061
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0062
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0063
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0064
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0065
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0066
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0067
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0068
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0069
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0070
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0071
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0072
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0073
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0074
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0075
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0076
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0077
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0078
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0079
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0080
http://refhub.elsevier.com/S0377-2217(19)30843-4/sbref0080

	Technical, allocative and overall efficiency: Estimation and inference
	1 Introduction
	2 The statistical model
	3 Estimation and inference
	3.1 Technical efficiency
	3.2 Some preliminary results
	3.3 Cost efficiency
	3.4 Input allocative efficiency
	3.5 Revenue efficiency and output allocative efficiency
	3.6 Profit efficiency
	3.7 Profit allocative efficiency

	4 Empirical illustration
	5 Conclusions
	Appendix A Technical details
	A.1 Proof of Lemma 3.1
	A.2 Proof of Lemma 3.2
	A.3 Proof of Theorem 3.1
	A.4 Proof of Theorem 3.2

	Supplementary material
	References


