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ABSTRACT: Conversion of oxygenates derived from biomass is a promising strategy for the production of fuels and chemicals. The
needed H, can be supplied simultaneously (and sustainably) via aqueous phase reforming (APR; C,H,,0, + nH,0 — nCO, +
2nH,). APR is typically carried out over supported metal catalysts under liquid water. Dehydrogenation is the first constituent
reaction in APR and involves both C—H and O—H bond cleavages; however, details about the mechanism and natures of the active
sites remain unknown. Herein, such details are provided for methanol dehydrogenation over a supported Pt/Al,O; catalyst. Using
density functional theory calculations, we find that methanol dehydrogenation occurs on the Pt terraces and at the Pt/ALO,
interfaces but follows different paths: on interfacial sites, O—H cleavage occurs first and dehydrogenation follows a methoxy route,
whereas on terrace sites, C—H cleavage occurs first and dehydrogenation follows a hydroxymethyl route.

1. INTRODUCTION catalyst. The modest operating conditions and high chemical
potential of liquid H,O help shift the WGS equilibrium to the
right (AH? = —41 kJ/mol),” hence maximizing the
production of H, and minimizing the concentration of CO,

consumption, if it could be properly converted into usable which can act as a catalyst poison, in the product stream.

fuels." Many publications have reported on catalytic conversion However, achlewng high H, production requires designing
of biomass into fuels>2° and value-added chemicals. ! >126=37 catalysts that readily convert oxygenates to CO (and also
)

with a key requirement in many of these processes being the promote WGS). As with any endeavor into catalyst design, this

addition of Hy, For example, fungible biofuels can be produced requires understanding the molecular-level details that control
2 ) : . . .

by pyrolysis followed by hydrodeoxygenation (HDO) of the the APR mechanlsn?. This w1u enable the des1gn. of catal).rsts
pyrolysis oils.3** At present, ways of efficiently and that promote desired reaction pathways while keeping
sustainably supplying H, from biomass are lacking which reactions leading to undesired byproduct§ to a minimum.
impedes the expansion of biomass as a source of fuel. The Howeve‘r, a4 m91ecular-1eve1 9nderstand1ng of the APR
catalysis research community has an important responsibility m?\;h??lslm remalnshto be estﬂ) Iilsheid' bout h ted
to solve this problem, so that the world can transition from oil uitiple groups have provided clues about how supporte

. . : L . metal catalysts produce H, from oxygenates.”" "> These
to biofuels, which will decrease carbon emissions and improve .
. studies show that the oxygenates have to undergo dehydrogen-
energy independence.

Aqueous phase reforming (APR) of oxygenates converts part ation b.e.fore decarbonylation takes place anc.l that the
of the biomass to hydrogen sustainably and energy composition of the metal catalyst and metal oxide support

It was estimated that by 2030, the United States could produce
1.1 X 10° metric tons of dry biomass per year, which would
have an energy content equivalent to 46% of the current oil

efficiently.”' * Specifically, oxygenates are converted over

metal catalysts supported on metal oxide supports to form H, Received:  April 27, 2020
and CO,; typical reaction temperatures range between 215 and Revised:  July 28, 2020
265 °C.*V*°33 There are three primary steps in the APR Published: August S, 2020
mechanism: dehydrogenation, decarbonylation, and water—gas

shift (WGS, i.e., CO + H,0 — CO, + H,),"* as illustrated in

Figure 1 for glycerol reforming over a platinum/alumina
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Figure 1. Simplified mechanism of aqueous phase reforming of glycerol: (a) dehydrogenation, (b) decarbonylation, (c) water dissociation (part of
water—gas shift), (d) production of H, and CO, (part of water—gas shift).

strongly influence catalytic performance. Critical to under-
standing the mechanism is identifying the active sites.
Combining results from multiple research groups collected
over ~ 15 years,”°™'"" Heyden and co-workers used
uncertainty quantification and microkinetic modeling to
show that the active sites for the WGS step occur at the
metal/support interface''> (Figure 2). This level of molecular-

Terrace

Interfacial

Figure 2. Cartoon illustration of catalyst sites on a supported Pt
catalyst particle (yellow polyhedron) on a support (gray cuboid). The
top and sides of the particle are comprised of Pt terraces, while the
interfacial sites are at the boundary between the Pt cluster and the
support.

level understanding does not exist for the dehydrogenation
step; in fact, to our knowledge, molecular-level investigations
into the mechanism of this step are limited to metal single
crystals. While single-crystal studies are important for learning
about the mechanism on sites likely to be located on the
terraces of large metal nanoparticles (Figure 2), they cannot be
extrapolated to metal/support interfaces. Hence, the role of the
metal/support interface in the dehydrogenation step remains a
major knowledge gap.

In this work, we use density functional theory (DFT) to
calculate the thermodynamics and kinetics of methanol
dehydrogenation on Pt/Al,O; interfacial sites. We compare
these values to analogous values previously published for
Pt(111) single crystals." >~"'® We find that Pt/AL O, interfaces
are active for methanol dehydrogenation, and that they
promote a mechanism that is different from Pt single crystals.
Specifically, methanol binds O-down to Al at Pt/Al,O,
interfacial sites with its hydroxyl H oriented toward Pt and
its CH; group oriented away. Dehydrogenation thus begins
with O—H cleavage and follows a methoxy (CH;0*) route.
This is in contrast to Pt(111) single crystals, where methanol
binding is more amenable to C—H bond breaking, and
dehydrogenation follows a hydroxymethyl (CH,OH*)

116
route.

2. COMPUTATIONAL METHODS

2.1. Pt/Al,0; Catalyst Models. Pt/Al,O; interfacial sites
are modeled using a Pt, cluster anchored at the oxygen sites' '’
on an a-Al,O; surface (see Figure 3 and Section S1 in the
Supporting Information). The & phase of Al,O; is chosen since
it is computationally tractable and also because it is relatively
close packed, which enables it to support a close-packed metal
cluster. The Pt, cluster is modeled as a tetrahedron; this shape

19016

Figure 3. Top (a) and side (b) views of the Pt,/ALO; interfacial
model used in this work. Color key: oxygen = red, Al = blue, and Pt =
gray. Catalytic species are adsorbed to Al that is marked with a “*” in
(a). The supercell boundaries are indicated with the solid black lines.

is chosen because it is close packed, maximizing metal
coordination for a four-atom cluster. Since actual catalysts
comprise distributions of nanoparticle sizes, a key consid-
eration in model development is the construction of a site
where the arrangement of metal atoms at the metal/support
interface could exist on a variety of cluster sizes. The
tetrahedral shape with its close-packed structure is the smallest
geometry that accomplishes this. The four-atom size is chosen
to optimize comgutational tractability and chemical accuracy.
Prior literature'®™'%* indicates that binding energies, reaction
energetics, and catalytic species geometries on four-atom metal
clusters are only minorly different than the analogous values
calculated on 6—10 metal-atom clusters; indeed, the binding
energy of CO* (of —2.41 €V; see Table 1) calculated in this
work is within the range of values calculated by Heyden and
co-workers (spanning from —0.76 to —2.74 eV) on a
supported Pty/TiO, cluster.'*

An additional consideration for the development of the Pt/
Al,O; model is the presence of an undercoordinated Al site
near the interface with Pt. Such sites exhibit Lewis acidity and
promote catalytic activity.'**'** The Pt/Al,0; model
employed here comprises such a site at the Pt interface,
labeled with a “*” in Figure 3. For comparison, the adsorption
energy of methanol at this site (of —1.21 eV; see Table 1) is
within the range of values reported previously'*'*” for
alcohols on Al O; surfaces (spanning from —0.43 to —2.16
eV). Further, reaction energies calculated at this site are within
the range of those calculated using other models of a- and y-
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Table 1. Calculated Reaction Energies (AE™) and Activation Energies (AE*) in eV on the Pt,/Al,0; Interfacial Model

Compared with Values from ref 116 on the Pt(111) Terrace

AE™ (eV) AE* (eV)
xn. Pt,/ALO,* Pt(111)° Pt,/ALO," Pr(111)%
1 CH;0H (g) + * — CH,0OH* 121 —0.46 < N/A
2 CH,OH* + * — CH,OH* + H* +0.35 —-0.35 < 0.81
3 CH,OH* + * — CHOH* + H* —-0.18 —-0.29 ¢ 0.73
4 CHOH* + * — COH* + H* -0.56 —0.62 < 0.82
5 COH* + * —» CO* + H* -1.35 —0.49 0.65 123
6 CH,OH* + * — CH,0* + H* —-0.37 +0.50 0.30 0.87
7 CH,0% + * — CH,0* + H* -0.52 —0.46 1.00 0.32
8 CH,O* + * — CHO* + H* —0.45 -0.75 0.84 0.39
9 CHO* + * — CO* + H* —-0.39 -1.06 1.32 0.43
10 CH,OH* + * — CH,0* + H* 125 +0.40 ¢ 0.94
11 CHOH* + * — CHO* + H* -1.52 —-0.06 < 0.45
12 CO* - CO (g) + * +2.41 +1.89 ‘ N/A

“This work. “Ref 116. “Not calculated. dN/A = not available.

AL O; (see Table S2 in the Supporting Information). Further
details about the selection and construction of this Pt,/Al, O,
model are provided in the Supporting Information Sections S1
and S2.

The Al O; supercell employed in this work is triclinic with
lattice vectors of lengths 10.3, 10.3, and 25.8 A and angles of
55.3°. The lattice vectors are in good agreement with
previously published models of a-ALO;."**7"* Al atoms on
the top of one slab and those in the bottom of its adjacent
vertical image are separated by over 13.5 A. Reaction energies
calculated on this slab model show only minor differences of
0.07 eV or less when compared with energies calculated on
analogous slabs with extended vertical and lateral spacing (see
Table S1 in the Supporting Information).

2.2. Density Functional Theory Calculations. DFT
calculations are performed with the VASP code.”'™'*
Exchange and correlation of valence electrons are modeled
with the Perdew—Burke—Ernzerhof (PBE)"**'* form of the
generalized gradient approximation (GGA). Core electrons are
modeled using projector augmented wave (PAW) pseudopo-
tentials'*>'*° to an energy cutoff of 400 eV. Gaussian smearing
with a smearing factor of 0.1 eV is employed to facilitate the
convergence of the electronic structures. Spin polarization is
included as indicated in Section S10 in the Supporting
Information. Dipole corrections are applied normal to the
surface in all calculations. The D3 dispersion method"*”"** is
employed to improve the modeling of dispersion interactions.
Automatically generated T'-centered Monkhorsk-Pack'™ k-
point meshes of 7 X 7 X 1 are used to sample the first Brillouin
zones. Electronic structure calculations are performed
iteratively, and electronic structures are considered to be
converged when the difference in energy between subsequent
steps falls below 107 eV. Following our prior work, *"'*!
energies used in this work are calculated with just one catalytic
species or transition state structure in each supercell
Geometries of catalytic intermediates (local minima on the
potential energy surface) are optimized using the quasi-
Newton algorithm. Geometries of transition states are
optimized using a combination of the climbing image nudged
elastic band (CI-NEB)"'**'** and dimer'** methods, as in prior
work."*'** All atoms are allowed to relax in both geometry
optimizations and transition state searches. Geometries are
considered to be converged when the forces on all atoms fall

transition state searches. Transition state structures are verified
via their vibrational modes, which are calculated using the
center difference method. In these calculations, atoms are
displaced by 0.05 A in the + and — directions in 4, b, and ¢
dimensions. In vibrational mode calculations, the adsorbate
and the atoms in the Pt, cluster are displaced. VASP
CONTCARs for all structures considered in this work are
provided in Section S10 of the Supporting Information along
with the examples of the relevant INCARs (which are provided
in Section S8).

3. RESULTS

3.1. Binding Geometries of Catalytic Species. Calcu-
lated adsorption geometries on the Pt,/Al,O; interfacial site
models are depicted in Figure 4. For comparison, calculated
adsorption geometries for the same species on Pt(111) terraces
are depicted in Figures S3—S10 of the Supporting Information.
On the Pt(111) terraces, CH;OH* and CH;O* bind via their
O atoms, while CH,OH*, CHOH*, COH*, CO*, and CHO*
bind via their C atoms.''® CH,O* lies flat on the Pt(111)
terrace. On the interfacial sites, CH;OH* and CH;0* bind
primarily to the undercoordinated Al atom at the Pt,/Al,O;
interface via their O atoms. CH,0* and CHO* bind to the
same Al atom via their O atoms and also to the Pt cluster via
their C atoms. In contrast, CH,OH*, CHOH*, COH¥, and
CO* bind primarily to the Pt cluster via their C atoms. The
greatest differences in binding geometry on the Pt,/Al,O;
interfacial sites versus the Pt(111) terraces are thus for
CH;O0H*, CH;0%, CH,0%*, and CHO%*; for these species, the
undercoordinated Al atom at the Pt/Al,O; interface provides
an additional anchoring point for the oxygenate species O
atom. Indeed, CH;OH*, CH;0%*, CH,0*, CHO*, and CO*
prefer binding at the Pt,/Al,O; interfacial sites, while
CH,OH*, CHOH*, and COH* prefer binding on the terrace
sites (see Section S4 in the Supporting Information).

3.2. Calculated Thermodynamics and Kinetics. The
catalytic reaction network for methanol dehydrogenation is
depicted in Figure S, and calculated energetics within this
network are listed in Table 1. Reaction energies are calculated
as

below 0.03 eV/A in geometry optimizations and 0.05 eV/A in
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AE™ = Ecnon,* + En+ — Ecu on

(1)

https://dx.doi.org/10.1021/acs.jpcc.0c03717
J. Phys. Chem. C 2020, 124, 19015-19023


http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.0c03717/suppl_file/jp0c03717_si_001.pdf
pubs.acs.org/JPCC?ref=pdf
https://dx.doi.org/10.1021/acs.jpcc.0c03717?ref=pdf

The Journal of Physical Chemistry C

pubs.acs.org/JPCC

(@)

f)

(9)

<
<5
NS

(d) (h)

Figure 4. Calculated geometries of CH;OH* (a), CH,OH* (b),
CHOH* (c), COH* (d), CH,0* (e), CH,O* (f), CHO* (g), and
CO* (h) on the Pt,/Al,O; interfacial sites. Color key: oxygen = red,
Al = blue, Pt = gray, C = brown, H = white.
CH3;OH*
28
CH,OH* CH;0*
3] 10 17

CHOH* CH,O*
4) R 18
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N o /4

Figure S. Possible pathways for methanol dehydrogenation. Numbers
over the arrows are rxn. numbers, which are the same as in Table 1.

where Ecy op + and Ecy on, + are calculated electronic energies
(where: (x' +3') — (x +y) = 1; x and &’ can be 0, 1, 2, or 3;
and y and ' can be 0 or 1). Eys is the energy of adsorbed H*
on the Pt(111) surface, calculated as Ey« = Er!!) — ERID.
We make the H* reference to Pt(111) for comparison with
prior work performed on Pt( 111);"'° however, the energy of
H* on Pt,/a-Al,O; is identical (see the Supporting
Information Section S2). Activation energies are also provided
in Table 1. They are calculated as

AE* = ETS - Ereactant (2)

Transition state (TS) structures calculated in this work are
depicted in Figures S12—S16 in the Supporting Information.
We only calculate TSs for reactions that are likely to contribute
to the methanol dehydrogenation mechanism, i.e., reactions
that are part of dehydrogenation pathways that are
thermodynamically downhill. From Table 1, this is rxns. 5—
9. Molecular adsorption and desorption reactions (rxns. 1 and
12) are assumed to be unactivated.

3.3. Reaction Mechanism on the Pt,/Al,Oj; Interfacial
versus Pt(111) Terrace Sites. The results in Table 1 show
that all dehydrogenation reactions are exothermic except for
rxn. 2 (CH;0H* + * - CH,OH* + H*) on the Pt,/ALO,
interfacial sites and rxns. 6 (CH;OH* + * — CH;0* + H*)
and 10 (CH,OH* + * — CH,O* + H*) on the Pt(111)
single-crystal terrace sites. The feasibility of surface reactions
depends on their reaction free energies; estimates of the free
energies of rxns. 1—12 are provided in Section S7 of the
Supporting Information. Assuming a reaction temperature of
250 °C (typical of catalytic APR) and a pre-exponential factor
of 10" 57!, reactions with AE** < 1.32 eV are kinetically facile
(i.e, these reactions yield turnover frequencies of 1 s™' or
greater at 250 °C). All of the AE* in Table 1 are equal to or
below this value; hence, all reactions considered in this work
are kinetically feasible and thus thermodynamically controlled
under APR conditions. This agrees with spectroscopy analysis
(see Section SS of the Supporting Information), which
indicates that CO* formation from methanol on Pt/AL O,
catalysts is facile at 250 °C. Once adsorbed, methanol
dehydrogenation will occur through one of four pathways
(Figure 5)

o Pathway 1 (orange in Figure 4): rxn. 2 — rxn. 3 — rxn. 4
- rxn. §

e Pathway 2 (purple in Figure 4): rxn. 6 — rxn. 7 — rxn. 8
— rxn. 9

e Pathway 3 (orange/purple in Figure 4): rxn. 2 — rxn. 10
— rxn. 8§ = mxn. 9

e Pathway 4 (orange/purple in Figure 4): rxn. 2 — rxn. 3
= rxn. 11 = xn. 9

On the Pt,/ALO; interfacial sites, the only viable reaction
pathway for methanol dehydrogenation is Pathway 2, ie.,
CH,OH* — CH;0* — CH,0* — CHO* — CO¥, since
methanol dehydrogenation to hydroxymethyl (CH,OH*; rxn.
2) is endothermic on the Pt,/AlL,O; interfacial sites. In this
pathway (Pathway 2), the O—H bond is broken first, and C—H
bond cleavage reactions then proceed from a methoxy
(CH,;0%) intermediate. In contrast, a C—H bond is broken
first on the Pt(111) terraces, and methanol dehydrogenation
proceeds via a hydroxymethyl (CH,OH*) intermediate.''®
Taken together, these results indicate that the pathway for
methanol dehydrogenation depends on the site where
methanol adsorbs, following a methoxy route if adsorbed to
a Pt/Al,O; interfacial site and a hydroxymethyl route if
adsorbed to a Pt(111) terrace site.

4. DISCUSSION

The preference for the methoxy route on the interfacial sites is
motivated by the thermodynamic preference of species with
cleaved O—H bonds and/or fully saturated methyl groups to
bind to Lewis acid sites. Specifically, CH;OH*, CH;O0%,
CH,0%*, and CHO* bind strongly to the undercoordinated Al
ion at the Pt interface via their O atoms (CH,O* and CHO*
also bind to the Pt, cluster via their C atoms). In contrast,
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CH,OH*, CHOH*, COH*, and CO* bind to the Pt, particle
and interact minimally with the Al,O; support. The step where
methanol fragments transition from utilizing Lewis acid sites at
the Pt/AL O; interface to binding to Pt is CHO* + * — CO*
+ H¥; breaking the HCO—AI bond in this reaction invokes a
large kinetic barrier.

The reaction CH;O0* + * — CH,O* + H* also has a high
barrier. Comparing the structure of the methoxy intermediate
in Figure 3e to the transition state for CH;0* + * — CH,O*
+ H* in Figure S14, this reaction requires CH;0* to reorient
from its preferred structure, which has the methyl group
pointing away from the Pt particle. CH;OH* also takes on a
geometry where the methyl group is oriented away from the Pt
particle (see Figure 3a); indeed, breaking a C—H bond to form
CH,OH* is endothermic. Hence, in addition to providing
Lewis acid sites that strengthen binding of oxygenates with
cleaved O—H bonds and/or fully saturated methyl groups, Pt/
Al,O; interfacial sites additionally serve to orient oxygenates to
favor O—H cleavage and hinder C—H cleavage. We expect that
this phenomenon will be even more significant for larger
oxygenates that can interact with multiple support sites,'*>'*”
which could help to explain the decreasing H, yield in APR
with increasing size of the feed molecule.”""** We will
investigate such phenomena in detail in future work.

5. CONCLUSIONS

In this work, we have used DFT calculations to learn about the
sites for methanol dehydrogenation on Pt/AL,O; catalysts.
Methanol binds exothermically to Pt(111) terraces and Pt,/
Al O; interfaces; however, methanol adsorption at Pt,/Al,O4
interfaces is significantly stronger due to a favorable interaction
with Lewis acid sites on the Al,O; support. Methanol bound to
Pt,/AL,O; interfaces is converted via O—H cleavage to
methoxy, which is then converted to CO* via subsequent
C—H cleavage steps. All CH,O* species along this pathway
retain the O—Al bond except CO*; breaking the O—Al bond
in the reaction CHO* + * — CO* + H* has a large kinetic
barrier. In contrast, methanol bound to Pt(111) terraces is
converted via C—H cleavage to hydroxymethyl. Significant if
not full C—H cleavage is then achieved before the O—H bond
is broken.''® Hydroxymethyl (CH,OH*) and its derivatives
(CHOH*, COH*) interact minimally with the Al,O; support;
in contrast, species with fully saturated methyl groups
(CH;OH*, CH;0*) bind strongly to the AL,O; support and
interact minimally with the Pt, cluster. With the exception of
CO*, species with incompletely saturated methyl groups and
broken O—H bonds (CH,O*, CHO*) bind to the Al,O,
support via their O atoms and the Pt, cluster via their C atoms.
CO* prefers binding to the Pt particle and interacts minimally
with the Al,O; support.

While the results presented here provide insight about the
active sites for methanol dehydrogenation on Pt/Al,O,
catalysts in the vapor phase, APR is carried out in aqueous
phase, and water will almost assuredly change the chemical
picture. For example, we have previously shown that liquid
water significantly influences the reaction energies and
mechanisms of O—H cleava§e reactions in the pathway for
methanol dehydrogenation,'*’ making reaction energies more
positive (due to a decrease in hydrophilicity of the catalytic
species) and decreasing activation energies to 0 (by acting as a
cocatalyst). Further, liquid water and its fragments can
compete with methanol and its fragments for catalytic
sites,"*” including hydrating the Al,O; surface."**'*” Further,

water is likely to interact strongly with a polar support such as
AL O; and this competition could drive the reaction toward
non-interfacial sites. One of our immediate next steps is to
begin clarifying the influence of liquid water on the
dehydrogenation step in APR at metal/support interfaces;
understanding the reaction pathway in the vapor phase is a
necessary first s.tep.MO’150
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