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ABSTRACT: Adsorption is an important step in heterogeneous catalysis as it
predetermines how many reactant molecules can participate in a surface
reaction per unit time. While the rate of adsorption processes is well studied in
gas−solid adsorption in both theory and experiment, such rates are still not well
studied for liquid−solid adsorption. This is partly because the ever-changing
configurations of liquid-phase solvent molecules impede the ability to study a
molecule approaching a surface from a liquid phase by either experiment or
theory. In this work, we develop a method using molecular dynamics (MD)
simulations to study the rate of adsorption in liquid−solid adsorption processes.
Specifically, we use MD to model the diffusion of a methanol molecule in
aqueous solvent and its adsorption to a Pt(111) surface. We find that by
approximating the solute motion as following the same displacement rates as a
random walk model, the adsorbed and non-adsorbed states of the methanol
molecule near the Pt(111) surface can be discerned and quantified. In particular, this methodology enables extracting a sticking
coefficient and a macroscopically relatable adsorption rate. This method can be applied to arbitrary types of reactants and surfaces, as
well as different liquid environments, thus providing a general tool for predicting quantitative adsorption rates of liquid−solid
adsorption systems.

1. INTRODUCTION

Aqueous-phase heterogeneous catalysis has many applications,
including biomass reforming, Fischer−Tropsch synthesis, and
electrocatalysis.1,2 Formulation of accurate kinetic models for
these systems is necessary not only to gain mechanistic
understanding but also to have quantitative prediction of the
activity and selectivity under reaction conditions.3 Many
studies on aqueous-phase catalysis have found that the liquid
solvation environment can influence the reaction mechanisms
and kinetics differently than the gas phase, e.g., by forming
hydrogen bonds with reaction intermediates, co-catalyzing
certain reactions, and affecting kinetic barriers and reaction
mechanisms.4−7 However, most of the studies on aqueous-
phase catalysis focus on surface intermediate reaction steps;
whereas, for a full catalytic cycle, the kinetics of adsorption
from the liquid solvation environment to the surface are
equally important.8 Despite its importance, understanding how
the aqueous environment influences adsorption kinetics in
aqueous-phase heterogeneous catalysis is significantly less
developed.
In the adsorption process, species from the fluid phase (gas

or liquid) are localized at the surface. The adsorption rate per
unit area σ is usually written as

θ= × ×σr F Sads, S (1)

where F is the flux, S is the sticking coefficient (i.e., the fraction
of impinging molecules that stick to the surface), and θS is the
number of surface sites per unit surface area that is available for
adsorption. Sticking can occur either directly when the
molecule encounters the surface or via trapping, which involves
the molecule binding transiently to the surface, resulting in a
short-lived adsorbed state that can serve as a precursor to
sticking. At the mesoscopic system level, F depends on three
factors external to the elementary reaction step:9−11 (1) the
rate of diffusion of the fluid molecule from the bulk fluid phase
to the solid surface, (2) the concentration of the fluid molecule
in the gas or liquid phase, and (3) the functional form for the
flux, i.e., the rate of collisions/encounters that result in an
average number of opportunities for adsorption per unit time.
In gas−solid adsorption, the flux is calculated from collision
theory as9,11,12
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where PA is the partial pressure of the adsorbing species, m is
its molecular mass, kB is Boltzmann’s constant, and T is the
temperature. Theoretical calculations of the sticking coefficient
are not trivial, partly due to challenges in calculating the steric
factor, which determines the fraction of orientations of the
fluid molecule relative to the surface that are capable of
sticking.13−19 In gas−solid adsorption, every encounter between
a gas molecule and the solid surface results in a single collision
event, which enables quantification of the sticking coefficient
using experimental20−24 or empirical25,26 methods. In liquid−
solid adsorption, the number of encounters does not equal the
number of collisions. In contrast to gas−solid adsorption, the
impinging molecules undergo multiple collisions per encoun-
ter, which makes it more challenging to determine the flux and
sticking coefficient. The difference between an encounter and a
collision is depicted in Figure 1; these terms and others, which

are italicized on first mention, are collected in a table of terms
and definitions in an Appendix. Even with this challenge, a
handful of experimental studies have measured sticking
frequencies or sticking coefficients indirectly with the use of
physically realistic models and numerical simulations or
approximations.10,12,27−30 However, these studies are limited
to specific systems and, in most cases, require specialized
analytical techniques. A general strategy for predicting and
assessing sticking phenomena in the liquid phase is still an
outstanding problem.
Molecular dynamics (MD) simulations are practical for

sampling the diverse environments that liquid molecules
experience31 and for developing general strategies to obtain
liquid−solid sticking coefficients. In this work, we present a
method based on MD simulations to calculate the encounter
sticking coef f icient (SE), which is the probability per encounter
that a molecule ultimately sticks to the solid surface. To apply
this method, MD is first used to simulate the diffusion of a
methanol molecule in an aqueous solvent and its adsorption to
and desorption from a Pt(111) surface, with multiple
encounters occurring per simulation. Motions of the methanol
molecule normal to the surface are approximated as having the
same rate of motion as a continuous time random walk
(CTRW). The data from each simulation is fitted with a
Poisson distribution of the residence times within fluid layers
above the catalyst surface, which is used to extract SE. Using
this treatment, we find that the average lifetimes of adsorbed
versus non-adsorbed states of the methanol molecule near the

Pt(111) surface can be separated and quantified, providing a
straightforward tool for studying the adsorption rate and
obtaining parameters needed in microkinetic modeling.

2. THEORY
Extraction of the liquid−solid sticking coefficient is non-trivial
even in molecular simulations, in part due to the challenge of
separating collisions from encounters. An encounter is the time
when the potentially adsorbing molecule is in the fluid phase
neighboring the surface; whereas, a collision occurs when the
distance between the molecule and the surface equals the sum
of the radii of the molecule and a surface atom (Figure 1). In a
liquid phase, each encounter consists of many collisions, and
each collision may or may not result in sticking. Even
encounters that consist of many thousands of collisions may
not result in sticking since the process of sticking may be
activated. In addition to the possibility of an activation energy,
impinging molecules can experience a variety of configurations
during an encounter, which makes it challenging to determine
the encounter sticking coefficient SE. An intuitive idea for
extracting SE from MD simulations is to use molecular
coordinates, but such an approach is complicated for two
reasons: (1) molecules can adsorb in multiple types of surface
sites (e.g., atop and bridge) and adsorption geometries (e.g.,
due to intramolecular rotations), which are difficult to predict
ahead of time and (2) molecules that have encountered the
surface but not undergone sticking can assume geometries that
resemble those of an adsorbed molecule. Even when geometric
criteria can be used to determine when a molecule has
adsorbed to the surface, that knowledge alone would still be
insufficient to calculate the sticking coefficient since calculation
of the sticking coefficient also requires extracting the number
of encounters. Consequently, while geometric algorithms are
useful, they are complementary to rather than a replacement
for the methodology introduced herein. In this work, we
describe a method that is based on tracking the motions of the
molecule perpendicular to the surface generated in atomistic
MD simulations and fitting the resulting distributions of times
that the molecule spends at different distances from the
surface. Since this approach utilizes atomistic simulations, it
captures the diverse set of configurations that the molecule can
sample. This approach is also compatible with situations where
the accessible adsorption states are not known before the
simulation.
In this study, we calculate SE for a methanol molecule on a

Pt(111) surface under the aqueous phase. We know from
density functional theory (DFT) analysis that methanol prefers
to bind to Pt(111) via its oxygen atom.5 Hence, we track the
motions of the oxygen atom normal to the surface in our MD
simulations, and we use these to determine encounters for
quantification of SE. Specifically, the MD simulation box is
divided into layers (Figure 2) with heights equal to the
diameter of the methanol molecule. The diameter of the
methanol molecule is determined using DFT calculations.
Briefly, we calculate the interaction energy between the
methanol molecule and the Pt surface as a function of distance
from the surface and plot the results. The distance at which the
interaction energy goes to 20% of the full interaction is taken
as the methanol diameter. Full details of this analysis are
provided in the Supporting Information Section S1. To
calculate SE, we take continuous position data for the methanol
molecule relative to the Pt(111) surface and bin it into
different fluid layers. This enables us to determine the amount

Figure 1. Molecule (red sphere) approaches (left), encounters
(middle), and collides with (right) a Pt(111) surface (gold spheres).
These different events are distinguished by the distance of the
molecule from the surface relative to the diameter of the molecule (in
this work: 3.7 Å for methanol).
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of time that the molecule spends in fluid layers at different
distances from the Pt(111) surface. The amount of time spent
in a layer is the residence time for that layer. To determine the
residence times for the different layers, we track the number of
times that the molecule “hops” between layers. The word
“hop” here has a meaning that is different from typical surface
kinetics studies. In surface kinetics, a hop typically means that
the molecule has moved from one stable (or metastable)
binding site to another, e.g., moving between adjacent sites in a
lattice; whereas in this work, a hop refers to the molecule
diffusing across a geometric boundary (i.e., analogous to a walk
step in random walk model). We note that boundaries and
layers are separate terms; layers are volumes, and boundaries
are planes that separate layers (these terms are not related to
the “boundary layers” in continuum fluid dynamics). In
contrast to surface kinetics studies, hops in this work do not
necessarily correspond to crossing an activation barrier. In this
work, we assume that hops can be coarse grained as a
continuous time random walk (CTRW) with a fixed step
length. This enables us to use the distribution of residence
times that the methanol molecule spends in particular layers
(which are the durations of individual encounters10) as
indication of how quickly molecules exchange positions with
their neighbors in a particular direction. Fitting this
distribution of times allows extraction of SE. The assumptions
made in this work are as follows.
2.1. Vertical Motions of a Solvated Molecule Can Be

Described by a Continuous-Time Random-Walk (CTRW)
Model. We chose this model based on the assumption that
methanol diffusion around water molecules obeys a first-order
Fickian mechanism,12,27,30,32 consistent with molecular trans-
port and a random walk process.33 Then, the motions of the
methanol molecule can be simplified as hops between fluid
layers perpendicular to the Pt(111) surface. Layers are labeled
L1−L6 and have corresponding boundary planes labeled B1−
B5 in Figure 2. In our model, L1 is referred to as the “adjacent
layer” because it is adjacent to the Pt(111) surface. While L6 is

also adjacent to Pt(111), it does not constitute a “full” layer
due to differences in the sizes of the solvent and solute
molecules (see the Supporting Information), and hence, all
references to “the Pt surface” or “the surface” are to the lower
Pt surface in Figure 2. Furthermore, since we only study the
lower Pt surface with the adjacent layer and enough layers to
represent the “bulk” solvent, we only report information for
L1−L4 in this manuscript. The hop length (functioning as a
random walk step length) between neighboring layers is fixed
and equal to the layer length, which is defined here as a
methanol kinetic diameter of 3.7 Å. How this value influences
the results is discussed in the Supporting Information Section
S6. Herein, we define hops moving toward the surface as
“forward” hops and hops moving away from the surface as
“reverse” hops.

2.2. The Residence Time (τ) that a Molecule Stays in a
Particular Layer Can be Modeled with a Poisson
Distribution. Suppose a methanol molecule enters a layer at
time t = 0, the residence time is then the amount of time that
the methanol molecule stays in this layer until time t (t > 0)
when it hops to another layer. This is called a visit. During MD
simulation, the methanol molecule hops between layers
multiple times, and for each individual hop, there is an
associated residence time. The total residence time in each
layer is modeled using a Poisson distribution (the relevant
expressions are provided in eqs 3, 4, and 6). Since the presence
of the Pt(111) surface provides asymmetry and causes
anisotropic motions of the methanol molecule, we track
residence times in both the forward and reverse directions.
This accounting is indicated by subscripting τ. For example,
τB1F,T denotes the average residence time that the molecule
spends in L2 before it crosses boundary B1, i.e., before it hops
in the forward direction (F) to L1. The T in the subscript
stands for “total” to indicate that τB1F,T corresponds to a sum
over all forward processes across B1. Considering L2, for
example, a molecule in L2 could hop either to L1 or to L3.
τB1F,T is the total time that the molecule spends in L2 before
hopping to L1. τB1F,T is thus less than the total residence time
for L2. For example, if the molecule stays in L2 for a total of
100 ps where 45 of the 100 ps results in the molecule hopping
to L1 (hence, 55 ps results in hopping to L3) then τB1F,T = 45
ps.

2.3. The Diverse States that the Solvated Molecule
Accesses Can Be Lumped into a Small Number of
Kinetically Distinct Sets of States within Each Layer.
Within the solvent layers, there can be multiple states
(thousands or more) arising from the multiple conformations
that the molecule can access, multiple configurations that the
solvent can take on, and multiple types of interactions at play
between the molecule and the solvent (e.g., via hydrogen
bonding). We assume that these diverse states can be
chemically lumped into kinetically distinct sets of states (SoS)
and that the number of SoS is smaller, to the extent of being
countable. For example, it may be that all conformations of
methanol that form a specific number (nHB) of hydrogen
bonds with the surrounding water environment could be
lumped into a single SoS, regardless of the configurations of
the surrounding water molecules. It is not necessary to know
the chemical origins of the different SoS to apply the method
presented here; in fact, the method presented here can be used
to gain chemical information about the different SoS without
any prior knowledge. The different SoS give rise to kinetically
distinct diffusion/desorption rates, with diffusion/desorption

Figure 2. Periodic simulation box used in this work comprising an
aqueous-phase methanol molecule and a Pt(111) surface. The fluid is
broken into layers (L), which are separated by boundary planes (B).
Water molecules are de-emphasized for clarity. The distance between
periodic Pt(111) surfaces (i.e., from the top of the lower surface to
the bottom of the upper surface in the next adjacent image) is
21.3629 Å, and each layer is 3.7 Å thick except for L6 (See Section
2.1). Color key: C = cyan, H = white, O = red, and Pt = gold.
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being faster for some SoS (short-lived states) and slower for
other SoS (long-lived states). For example, for L1, we
anticipate at least two types of SoS, including at least one
adsorbed SoS (long-lived state) and at least one non-adsorbed
SoS (short-lived state). Depictions of adsorbed (i.e., through
the oxygen atom) and non-adsorbed states in L1 are shown in
Figure 3. Each SoS has its own characteristic residence time,

which can be modeled with a Poisson distribution.34,35

Specifically, the Poisson distribution is used to model the
probability per unit time that the methanol molecule
transitions between one SoS to another.
2.4. Each Kinetically Distinct Type of Transition Is a

Process (p) with Transition Frequencies that Can Be
Modeled Using a Poisson Distribution. These processes
move the solute between SoS, with each such movement being
a transition event. For example, moving from a particular SoS
in L2 to a particular SoS in L3 is a process; each time this
happens is a transition event. When modeled by a Poisson
distribution, the probability of a process event occurring within
a particular unit time is expected to obey the probability
density function

λ
=

!
λ−P n t

t

n
( , )

( )
e

n
t

p
p

p

(3)

where n represents the specific number of hop events to have
occurred within time t and λp is the average transition
frequency (hopping rate) for that process. We anticipate that
there will be at least two processes associated with hopping
from L1 to L2, one due to desorption and one due to diffusion.
When methanol has a long lifetime in L1, it will on average be
due to an adsorbed SoS produced by sticking. In contrast, for
hopping between other layers (where there is no surface), the
hopping rate between layers is solely due to diffusion, though
there still may be more than one SoS and thus more than one
diffusion process. To extract information about the statistics of
the SoS, we must consider the distribution for the number of
visits (V) that have residence times longer than some time t
within a given layer. This information can be modeled using a
raw survival distribution function (RSDF), i.e., an unscaled
complementary cumulative distribution function of eq 3 that
represents the probability that the molecule resides in a state
beyond a certain length of time

τ > = λ−P t( ) e t
p

p
(4)

where Pp(τ > t) is the probability of occurrence for a particular
residence time τ > t. Equation 4 enables us to resolve the
statistics for processes from a given SoS that are associated
with different diffusion/desorption rates. Resolving the extent
of non-adsorbed versus adsorbed SoS in L1 is essential to
extract the effective SE, as it enables us to distinguish the
percentage of visits that result in adsorption.

=S
V

VE
B1F,A

B1F,T (5)

where the subscript A stands for the adsorbed (and the
subscript B1F indicates the total forward visits across B1, i.e.,
into adsorbed and non-adsorbed SoS).
The process flow for the procedure presented in this work is

provided in Figure 4. The innovative aspect is to extract VB1F, A

(and VB1F) from MD simulations by analyzing the distribution
of visit residence times within the different layers. We carry out
such an analysis for MD simulations of the methanol/water/
Pt(111) system in Section 4.

3. SIMULATION METHODS
3.1. System Setup. The Pt surface is modeled with a

three-layer thick 6 Pt × 6 Pt slab in a periodic supercell with a

Figure 3. Methanol encountering the Pt surface in (a) an adsorbed
state (long residence time), and (b) a non-adsorbed state (short
residence time).

Figure 4. Process flow used in this work to obtain the sticking
coefficient SE and adsorption rate equation. Feedback loops are not
required provided that appropriate boundaries have already been
chosen and the run time is sufficiently long.
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= 16.8318 Å, b = 14.5768 Å, and c = 28.6979 Å. The c
dimension is determined using MD in the NPT ensemble to
attain the proper density of bulk H2O (of 1 g/cm3 in the
middle of the unit cell).6,36 The full procedure for obtaining
this value is discussed in detail in our prior work.6,36 The
simulation box comprises one methanol molecule and 165
H2O molecules above the Pt(111) surface. The size of the unit
cell (and hence the number of H2O molecules) is chosen to
balance computational expense with the requirement of having
two types of H2O in the system: interfacial H2O (near the
surface) and bulk H2O (further from the surface). This unit
cell size is suitable to have one methanol molecule in the
system, which simplifies the analysis of methanol diffusion,
while maintaining a reasonable methanol concentration (of
0.32 mol/L). We have previously tested the effect of varying
the number of H2O molecules on the water structure at a
Pt(111) interface6 and found that interfacial properties are
constant when between 24 and 240 H2O molecules are used in
the MD simulation. Results of these tests are provided in
Section S4 of the Supporting Information. Based on these
results, we do not expect the small size of the unit cell to
influence the interfacial behavior of the methanol molecule in
our simulations.
3.2. Molecular Dynamics Simulation. MD simulations

are carried out using the large-scale atomic/molecular
massively parallel simulator (LAMMPS), similar to our prior
work.6,36 Intermolecular energies in LAMMPS are calculated
using pairwise Lennard-Jones + Coulomb (LJ + C) potentials.
LJ interactions are calculated up to cutoff distances of 10 Å.
This distance is chosen since all LJ interactions are ∼0 at this
distance. Water molecules are modeled using the flexible
transferable intermolecular potential with 3 points−Chemistry
at Harvard Macromolecular Mechanics (TIP3P/
CHARMM)37force field, the methanol molecule is modeled
using the optimized potentials for liquid simulations (OPLS-
AA)38 force field, and Pt atoms are modeled using the
universal force field (UFF),39 with the exception that the
partial charges on the Pt atoms are set to 0 in our models. The
positions of all Pt atoms are held fixed during all simulations.
All LJ cross terms are calculated with geometric mixing rules,
except for the intermolecular O−H interactions between H2O
molecules, which employ Lorentz−Berthelot mixing rules. The
particle−particle particle−mesh (PPPM) method is used to
calculate long-range Coulomb interactions to an accuracy of
10−4. All LJ + C model parameters are provided in the
Supporting Information. Following simulation box initializa-
tion (described in detail in our prior work6,36), diffusion of the
methanol molecule in liquid H2O solvent is simulated in the
canonical (NVT) ensemble at 300 K, which is maintained with
a Nose−́Hoover thermostat. The NVT simulation is carried
out for a total of 200 ns using 1 fs timesteps. The first 2 ns are
used for system equilibration, and the remaining time is the
production run. The positions of the methanol O atom are
sampled every 10 fs during the production runs. A total of 10
NVT simulations are performed. Results reported herein are
averages over those 10 simulations unless specified otherwise.
For averaged quantities, two standard deviations are used for
the 95% confidence intervals.

4. RESULTS
According to the development in Section 2, two quantities are
needed in order to calculate SE: VB1F,T and VB1F,A. We discuss
how we obtain VB1F,T in Section 4.1 and how we extract VB1F,A

in Section 4.2. Then, in Section 4.3, we use these quantities to
calculate an apparent rate constant for adsorption, which is
needed in conventional kinetic modeling. These values are
expected to depend on the simulation temperature; all values
presented herein were obtained using a simulation temperature
of 300 K.

4.1. Methanol Hopping between Layers. Figure 5 plots
the number of times the methanol molecule hops across B1−

B3 in both the forward and reverse directions during our MD
simulations. We are especially interested in the number of
forward hops across boundary B1, as this quantity is equal to
the total number of visits to L1 from L2, i.e., VB1F,T, which is
the denominator in eq 5. We find that VB1F,T = 7020.

4.2. Methanol Residence Time Distribution in Each
Layer. Obtaining the numerator of eq 5 is more challenging.
When the methanol molecule hops to a certain layer, it will
stay there for some amount of time until hopping to another
layer. The time between the two consecutive hops is the
residence time for the individual directional hopping event.
During the MD simulation, there will be multiple such hops,
giving rise to a distribution of residence times. These are
plotted for L1 (reverse direction) in Figure 6a and L2 (forward
direction) in Figure 6b. Note that the residence times plotted
in Figure 6 are not yet separated: they represent a sum of
transitions. For example, if methanol has two possible SoS in
L2, resulting in two diffusion rates (λ1 and λ2), then the data in
Figure 6b are the sum of the distributions of these two SoS. To
differentiate the different SoS in each layer, we fit an RSDF
with a multi-exponential function to the residence time
distributions for each layer

∑τ > = λ

=

−P t a( ) e
p

n
t

1
p

p

(6)

where ap refers to the number of hopping events associated
with that process. Some clarification is provided in the
Supporting Information Section S8 about why λp is associated
with a process rather than with an SoS.
For this work, the transition frequency λp is taken as the

“rate” of hopping across a boundary layer in units of molecules
per second. For first-order processes, the λp term is equal to the
product of the concentration of methanol molecules in the
layer and the effective rate constant for leaving the particular
SoS, i.e., λp = kp, c

eff ci = kp, η
eff ηi, where ci is the absolute

concentration of species i in a particular layer (e.g., in units of
mol/L), kp, c

eff is the effective rate constant when expressed with

Figure 5. The number of times the methanol molecule crosses
boundaries B1−B3 in the forward (solid) and reverse (hashed)
directions. The results represent the average of 10 simulation runs,
and the error bars represents 95% confidence intervals.
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absolute concentration units, and kp, η
eff is the effective rate

constant when expressed with relative concentration units. The
relative concentration units used here are defined as follows:
η =i

c
c

i

single
, where csingle corresponds to the concentration when

there is one molecule contained within the volume associated
with the layer. Thus, ηi is the number of molecules within that
layer. The terms kp, c

eff ci and kp, η
eff ηi are based on layer thickness

(which in this work is = 3.7 Å) and thus have units that
correspond to concentrations and process transition rates
relative to the number of molecules in a layer of that specific
thickness. The flux of molecules across a boundary (JB) is given

by = =
η

σ σ
ηJ

k k c
B

i ip,
eff

B

p,c
eff

B
, where σB is the area of the boundary.

The simulated data in this work always correspond to a single
molecule in a layer (because we never have more than one
methanol in the system), and thus ηi = 1 for all transitions
observed during simulations in this work, i.e., this work
samples the special case where λp = kp, η

eff × 1 (though the
method can be extended that is, to cases of arbitrary solute
concentration). Since each SoS is inferred from a sampling of
diffusion events that occur in various configurational environ-
ments, kp, η

eff is an effective diffusion rate constant.

In fitting the raw survival distribution function to the data in
Figure 6, we applied the simplest model capable of explaining
the data. Hence, we initially assumed that each layer has only
one SoS (so that n in eq 6 is equal to 1) and then we
incrementally increased n until a good fit was obtained (see the
Supporting Information for details). Comparing fits for n = 1,
2, and 3, we find that (i) n = 2 is sufficient to explain visits to
L1 from L2 and (ii) visits from L1 to L2 (which include
transitions from the adsorbed SoS) can be well described by n
= 3. Results from fitting are tabulated in Table 1 and shown in
Figure 7. Table 1 also includes the percentage of boundary

crossings associated with each process (ap%), which is
calculated for process p by normalizing to a sum across all
processes by ap% = ap/(∑j = 1

n aj).
In the interpretation presented here for the data in Table 1,

the fitted values for λp reflect the rates of processes for leaving
the associated layer. Furthermore, each λp is related to the
effective diffusion and/or desorption rate for the process
associated with leaving a specific non-adsorbed/adsorbed SoS.
In L2, the λp values can only correspond to diffusion events
and non-adsorbed SoS. It is interesting that even in L2, there
are 2 types of diffusion processes, which could correspond to

Figure 6. Raw Survival Distribution of methanol residence times for τ
> t in (a) L1 and (b) L2. Each graph shows the count for discretized
residence times in bins of 0.01 ps width. The counts in each graph
encompass multiple SoS; data for the adsorbed SoS are encompassed
within L1 (panel a). For clarity, only data from the first out of the 10
simulations are displayed.

Table 1. Parameters from Multi-Exponential Fitting of Residence Time Distributions Using Equation 6 for the Different
Processes in L1 and L2a

L1 L2

process ap ap% λp (ps
−1) ap ap% λp (ps

−1)

1 3374 ± 254 48 ± 2.7 6.639 ± 0.448 5168 ± 404 74 ± 0.9 4.284 ± 0.08
2 1722 ± 232 25 ± 2.6 1.312 ± 0.132 1851 ± 115 26 ± 0.9 0.274 ± 0.01
3 1923 ± 157 27 ± 0.6 0.027 ± 0.001 N/A N/A N/A

aThe results are the averages from 10 simulations at 300 K, and the +/− values are 95% confidence intervals.

Figure 7. Fitted raw survival distribution functions (eq 6) of the
residence times in (a) L1 and (b) L2. The fits shown have three B1-
crossing processes in L1 and two B1-crossing processes in L2. For
clarity, only data from the first out of the 10 simulations are displayed.
Some of the raw data (gray circles) are obscured by the fitted
functions.
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the two different modes of diffusion for solutes in a solvent
(i.e., as discussed by Nir and Stein32); however, our analysis
does not enable us to discriminate between two processes of
diffusion for a single type of solvated SoS versus two types of
solvated SoS with separate diffusion processes (answering that
question is saved for future work). For L1, two of the three λp
values are on the same order of magnitude as those for L2. We
ascribe these to diffusion processes. The third, which has a
small value of 0.027 ± 0.001 ps−1, we ascribe to surface
adsorbed methanol. The observed value of λ3, L1 = 0.027
reflects an average residence time due to three processes: (1) a
molecule diffusing from the B1 boundary to the surface, (2) a
molecule being adsorbed on a surface, and (3) a molecule
diffusing from the surface back to the B1 boundary at the end
of an adsorption visit. However, we know that the diffusion of
non-adsorbed methanol occurs on a substantially faster time
scale (as described by the much higher-hopping effective
transition frequencies) and that the residence times in those
diffusing SoS are negligible relative to the length of time spent
in the adsorbed state. Consequently, the observed λ3, L1
effective transition frequency is (by approximation) taken as
the effective transition frequency for desorption. The
associated occurrence of visits that include the adsorbed SoS,
VB1F,A, has a value of 1923 ± 157 (obtained from fitting as the
coefficient ap in eq 6).
4.3. Sticking Coefficient and Apparent Rate Con-

stants. Inserting VB1F,T obtained in Section 4.1 with VB1F,A
obtained in Section 4.2, we can use eq 6 to calculate the

encounter sticking coefficient = =S 0.27
V

VE
B1F,A

B1F,T
. Assuming an

Arrhenius factor and conventional chemical kinetics theory, the
sticking coefficient is related to the steric factor for the

encounter sticking coefficient by SE = SE,0 ×
−e E RT/A,ads , where

SE,0 is the steric factor and EA,ads is the activation barrier for
adsorption. The lower bound for SE,0 (corresponding to the
case where there is no adsorption barrier) is thus 0.27 at 300 K
(the upper bound is by definition 1). While investigating the
temperature dependence of adsorption and diffusion is beyond
the scope of this work, application of the method presented
here to obtain SE at multiple temperatures would enable SE,0
and EA,ads to be obtained.
The apparent rate constant for methanol hopping between

layers, which is useful for kinetic modeling, is obtained in a
similar manner to SE. The apparent rate constant of methanol
crossing a particular boundary encompasses the behavior of all
SoS in that layer (as opposed to an effective rate constant,
which is for a single SoS). The apparent rate constant of
hopping can be obtained by

=ηk
number of visits that exited layer of origin O across boundary B in direction D

total residence time in layer of origin OO,B,D, (hop)
app

(7)

For these rate constants, O is the layer number (associated
with the layer of origin), B is the boundary plane being

crossed, and D is the direction (either forward (F) or reverse
(R)). The subscript η is as defined in Section 4.2. However,
since the layer of origin can be inferred, we can simplify the
notation, i.e., kL2, B1, F, η(hop)

app can be truncated to kB1F, η(hop)
app . The

total residence times for methanol in each layer and the
maximum (longest) residence time for an individual visit are
listed in Table 2. While no formal convergence or steady state

analysis was performed,40,41 it is evident that the simulation
times were long enough for the values to have converged after
averaging 10 runs.
Using eq 7 with values shown in Figure 4 (number of hops)

and Table 2 (total residence time), the apparent rate constants
for methanol hopping between layers are calculated and shown
in Figure 8.
In Figure 8, it is interesting to compare kB1F, η(hop)

app (value of
0.45 × 1012 s−1), which is the apparent rate constant of
methanol hopping forward to the Pt surface from L2 to L1,
and kB1R, η(hop)

app (value of 0.10 × 1012 s−1), which is the apparent
rate constant of methanol leaving the layer closest to the
surface (L1). kB1R, η(hop)

app encompasses two kinds of hops: from
visits where adsorption occurred and visits where adsorption
did not occur. kB1R, η(hop)

app therefore does not reflect a single
intrinsic rate constant. The ratio of kB1F, η(hop)

app /kB1R, η(hop)
app

displays the magnitude of difference in the kinetic residence
times in the two layers. For this system, the residence time in
L1 is dominated by the time in the adsorbed state, and thus
kB1F, η(hop)
app /kB1R, η(hop)

app is also an effective equilibrium constant
for residing on the surface relative to solvation (this ratio
directly compares the apparent rate constants of the hops
between L1 and L2 and thus is free from any entropic effects
from the size of the full solution space). This concept of an
effective equilibrium constant is useful for relating the sticking
coefficient to the bulk concentration, which is an exper-

Table 2. Total Residence Time of Methanol Spent in Each
Layer and the Maximum Residence Time of a Single Visit in
Each Layera

layer

total
residence
time (ps)

percentage of total residence time
during the whole MD simulation

(%)

longest residence
time observed for a
single visit (ps)

1 73,040 ±
5760

36.5 ± 2.9 308 ± 31

2 15,617 ±
800

7.8 ± 0.4 35 ± 2

3 14,928 ±
488

7.5 ± 0.2 34 ± 2

4 15,090 ±
867

7.5 ± 0.4 33 ± 2

aThe results represent the average of 10 simulation runs, and the error
bars represents 95% confidence intervals.

Figure 8. Apparent rate constant for methanol hopping crosses
boundaries B1−B3 in the forward (solid) and reverse (hashed)
directions. The error bars are the 95% confidence intervals.
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imentally measurable quantity; tying this methodology to
experimentally measurable quantities is further described
below.

5. DISCUSSION
5.1. Extracting SE and the Adsorption Rate Equation

from Simulations. From the apparent rate constants, one can
calculate the average flux and then obtain the expected
adsorption rate using eq 1 (rads, σ = Fl − s × SE × θs). The
average flux is the same as the absolute rate per unit area and
can be r e l a t ed to the hopp ing r a t e th rough

⟨ ⟩ = = ×
σ

F r r(absl) (hop)
molecules

B
, where the diamond brackets

denote the arithmetic average and the word molecules is
included as a unit conversion. In this study, the area of the
layer boundary is also equal to the nominal surface area σB = σS
= 245.35 Å2. Similar to the discussion in Section 4.2, r(hop) =
kc(hop)
app × ⟨c⟩ = kη(hop)

app × ⟨η⟩. From the above considerations, we
are able to obtain the average flux into a layer L from across a
particular boundary B by

σ

η
σ

⟨ ⟩ = × ⟨ ⟩ ×

= × ⟨ ⟩ ×η

F k c

k

molecules

molecules

cL,B O,B,D, (hop)
app

O
B

O,B,D, (hop)
app

O
B (8)

with subscripts as previously defined. Note that the left-hand
side of eq 8 has a subscript L while the right-hand side has a
subscript O: this is because we typically refer to the flux toward
the surface, which depends on the concentration at the layer
from which the molecules are entering. For adsorption to the
surface, L is layer 1 and O is layer 2. Thus, as an example, when
⟨η2⟩ = 0.002, the rate of adsorption on an empty surface would
be given by

θ η
σ

θ

= × × = × ⟨ ⟩ ×

× × = × × × ×

×

σ η−
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S s
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ads, l s E s L2,B1F, (hop)
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If desired, converting from kO,B,D,η(hop)
app to kO,B,D,c(hop)

app is
accomplished using × =η

−k c k cO,B,D, (hop)
app

single
1

O,B,D, (hop)
app ,

where csingle corresponds to the concentration for one molecule
per volume associated with a layer, as discussed in Section 4.2.
Then

θ
σ

θ
σ

θ

= × × = × ⟨ ⟩ ×

× × = × × ⟨ ⟩ ×

× ×
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It is worth noting that even at equilibrium the concentration
in L2 may be different from that deep in the bulk. For cases
where there are no mass transfer limitations, it is convenient to
use the equilibrium ratio of L2 relative to the bulk (in this
present study, the concentration from L3 is a bulk
concentration). The effective equilibrium constant is calculated
by K2b = ⟨cb⟩/⟨c2⟩ = ⟨ηb⟩/⟨η2⟩, where for this system, values of
⟨ηb⟩ and ⟨η2⟩ are from Table 2 with ⟨ηb⟩ = 0.075 and ⟨η2⟩ =
0.078, which gives K2b = 0.96. Now, if we obtain ⟨cb⟩, we can

calculate ⟨c2⟩ and get the adsorption rate. Notice that ⟨cb⟩ is
the average bulk concentration and is the quantity that is
typically controlled experimentally. Thus, this approach will
enable a more direct comparison with experiment for situations
where equilibrium is maintained between ⟨c2⟩ and ⟨cb⟩. For
cases where adsorption is mass-transfer limited, ⟨η2⟩ can be
calculated using numerical evaluation of Fick’s law, as in refs 12
and 27. In this work, we have considered a situation where the
adsorption occurs with the solute concentration sufficiently
close to the dilute limit that the adsorption rate would be
expected to be linear with solute concentration. However, with
increasing solute concentrations, the sticking coefficient and
adsorption rate would exhibit solute concentration depend-
ence. The method presented here can be extended to
investigating the concentration dependence of the adsorption
rate by running simulations with varying concentrations of
solute.
The method presented here can be used to produce

experimentally relevant rates as follows. Consider a situation
for the system in this work where the bulk methanol

concentration ⟨cb⟩ is × −8.26 10 5 molecule
Å3 and θS = 0.5 and

conditions where the concentration in ⟨c2⟩ is determined by
equilibrium rather than mass transport, then ⟨c2⟩ = ⟨cb⟩/K2b =

× −8.61 10 5 molecule
Å3 , and the rate of adsorption is

θ

σ
θ

= × × = × × ⟨ ⟩

× × × = ×

× ×

× ×
*

× ×

= × · · = × · ·
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which is in experimentally relevant units. We note, however,
that the chemistry and rates are influenced by the methanol−
Pt(111) interaction energy, which depends on the force field
that is employed. The force field employed here captures
physisorption but not chemisorption. Our DFT calculations
(see ref 5 and the Supporting Information) indicate that the
methanol molecule chemisorbs to Pt(111), and we recognize
that the example in this paper is lacking that chemistry.
Obtaining values that match experiment thus requires accurate
force fields to capture the interaction between the methanol
molecule and the Pt surface. This is a subject of ongoing work
by our group and others.42 The method described herein will
accommodate the more chemically accurate force fields being
developed, enabling one to obtain a sticking coefficient from
simulation and subsequently an adsorption rate equation that
relies only on bulk concentrations and the fraction of surface
sites available.
The above rate equation can be used in microkinetic

modeling and kinetic Monte Carlo simulations.3 Additionally,
as the bulk concentration is an easily controllable and
measurable experimental quantity, the rate equation can also
be used in conjunction with experimental studies, demonstrat-
ing the robust utility of the method. Furthermore, the method
provides an improvement in physical realism relative to basing
liquid−solid adsorption rates on the gas-phase partial pressure
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(allowing greater accuracy in future elementary step kinetic
modeling, such as in refs 43 and 44). A comparison of values
from the method presented herein to those from algebraic
approximations is provided in Section 5.2.
5.2. Estimating Steady-State Adsorption Rates for

Non-simulated Systems. In the best case, the factors
× × ⟨ ⟩η

−k c cL2,B1F, (hop)
app

single
1

2 and K2b are known, enabling

the calculation of the rate of adsorption for arbitrary conditions
by eq 8. However, it is worth considering what approximations
can be used to estimate the rate of adsorption under steady
state for non-simulated systems. The general case is that the
rate of adsorption is given by the sticking coefficient, the flux
(encounter frequency), and the percentage of surface that is
unoccupied: rads, σ = Fl − s × SE × θs. Based on the simulations
in this work, we are able to compare our results to algebraic
approximations for the rate of adsorption for non-simulated
systems. The flux is dependent on the solute concentration in
layer 2. It is possible to employ approximations for the flux and
set SE and K2b to 1, in which case the rate of adsorption can be
approximated as a function of the bulk concentration, rads, σ =
f(cb) × θs. Additional discussion and the origins of the
approximations below are provided in the Supporting
Information Section S11.
One simple method would be to estimate the flux from layer

2 as being similar to that given by the mean displacement of
the bulk diffusion coefficient, which we will denote with a
subscript bdc,

θ∼ × × × × ⟨ ⟩ ×

×

σ
− −r

D
d

S c K

d

(e ) ( )bdc
E RT

ads, ,
b

2 0
, /

s b 2b
1A ads

(9)

where Db is the bulk diffusion coefficient for the solute, S0 is
the steric factor from collision theory (in our notation, S0 is
just one term in the sticking coefficient), EA,ads is the activation
energy for adsorption, θs is the fraction of empty sites, and d is
the layer thickness, which is equal to the diameter of the solute
molecule. As noted in the literature, for most liquid−solid
catalytic reactions, the rate of adsorption does not have a high
degree of rate control.43 Thus, it is likely that for cases in which
a reactant starts in the gas phase and then undergoes a solid-
catalyzed reaction in the liquid phase, that there will often be a
pre-equilibrium established between the gas phase and the
solute. In this case, the term in eq 9 can be obtained by ⟨cb⟩ =
PA × (KH

pc)−1, where the term KH
pc is a Henry’s law constant

(used to obtain the equilibrium absolute concentration from
the gas-phase partial pressure of the solute/adsorbate).45

There are various types of Henry’s law constants, and the
reader is directed to the reference provided for further
information on the various units that are possible in Henry’s
law constants. For small molecules the diffusion coefficient in
liquids is typically ∼1.0 × 10−9 m2 s−1 (for example, Db = 2.0 ×
10−9 m2 s−1for methanol46), and the rate can be even further
approximated as

θ∼ × × × ⟨ ⟩ ×σ
− −r c d1.0 10 m sbdcads, ,

9 2 1
s b (10)

where ⟨cb⟩ can again be calculated as noted above. Further
details about these approximations are provided in the
Supporting Information Section S11.
An alternative method is based on the kinetic gas flux (eq 2).

When correcting the density difference between the liquid
phase and the gas phase, this turns out to be a good
approximation for the flux across a plane in the liquid phase

(see also refs 12 and 27). We denote this approximation with
the subscript kgf:
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where x is the mole fraction of the solute in the solvent as
obtained by x = PA(KH

px)−1, ρ(solvent) is the molar density of the
solvent in its pure bulk liquid form, ρ(solute) is the molar density
of the solute in its pure bulk liquid form, and ρA(g) is the
density of the adsorbing species in the gas phase above the
liquid. As liquids of small molecules are typically on the order
of ∼103 times more dense than gases at 1 bar, the equation can
be further approximated for small molecules by

π
θ∼ × × × ×σ

−
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(12)

where x can again be calculated as noted above.
The comparison of the values obtained by the various

equations is shown in Table 3 for the methanol-to-Pt(111)

adsorption rate simulated in this study for the case where T =
300 K, the bulk methanol-to-water concentration mole ratio is
1:150. Using a realistic value45 of (KH

pc)−1= 2.0 mol m−3 Pa−1,
which corresponds to KH

px = 27.7 × 103 Pa, we see that this
corresponds to a partial pressure of 184.4 Pa for methanol and
gives a bulk molar concentration of ⟨cb⟩ ∼2.22 × 10−4

methanol Å−3. We see that eqs 9−12 provide reasonable
order of magnitude estimates for the adsorption rate simulated
in this study. Thus, the above algebraic expressions seem to
provide a good intermediate term approximation for order of
magnitude accuracy, which can be used in microkinetic
modeling (elementary step kinetic modeling) of catalytic
systems when constants from the methodology presented in
this work are not available. In the long term, systematic studies
based on the methodology presented in this study could result

Table 3. Comparison of Estimates for Steady-State
Adsorption Ratesa

equation
method for solute-to-
surface flux estimation

estimated
adsorption rate

(molecules·m2·s−1)
factor relative
to equation 8

8 extracted from MD 3.85 × 1028 1.0
2 kinetic gas flux directly 4.96 × 1024 1.29 × 10−4

9 bulk diffusion coefficient 1.20 × 1027 3.12 × 10−2

10 bulk diffusion coefficient
further approximated

6.00 × 1026 1.56 × 10−2

11 kinetic gas flux with density
correction

2.47 × 1028 6.41 × 10−1

12 kinetic gas flux with density
correction further
approximated

1.82 × 1028 4.71 × 10−1

aThe value obtained from the method presented herein is presented
in bold. For eq 8, the constants from the simulations were utilized.
For eqs 9−12, it was assumed that in the absence of simulations, the
value of K2b would be unknown. Thus, for eqs 9−12, the values used
were K2b = 1, d = 3.7 Å, KH

px = 0.273 atm, and (KH
pc)−1= 2.0 mol m−3

Pa−1. For eq 10, a Db of 2.0 × 10−9 m2 s−1 was used. For eqs 9 and 11,
× −S (e )E RT

0
, /A ads = 1 was used. For all cases, θs = 1.0 was used.
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in more accurate system specific approximations (for example,
by machine learning).

6. CONCLUSIONS

In this work, we developed a method using molecular
dynamics (MD) simulations to calculate the encounter sticking
coefficient (SE) and the adsorption rate for liquid-phase solutes
adsorbing to a solid surface. The method was applied to the
case of methanol adsorbing molecularly on a Pt(111) surface
under aqueous conditions. The residence times of the
molecule in the direction normal to the Pt(111) surface
were fitted using Poisson distributions with the assumption
that motions of the molecule can be coarse grained into
consecutive hops based on their positions during MD
simulations. Using this methodology, encounters of the
methanol molecule with the Pt surface were quantified, and
adsorbed and non-adsorbed states near the Pt(111) surface
were discerned by fitting to a raw survival distribution function
(RSDF). Our procedure provides a straightforward way to
extract the encounter sticking coefficient in liquid−solid
adsorption. After obtaining the sticking coefficient, a rate
equation for adsorption related to the bulk concentrations can
then be written. The rate equation allows this methodology to
create inputs for microkinetic modeling and kinetic Monte
Carlo simulations. Additionally, as the bulk concentration is an
easily controllable and measurable experimental quantity, the
apparent rate constant can also be used in conjunction with
experimental studies. Application of this method should enable
simulation-based screening studies, such as across different
solvents, various concentrations, etc. Using insights from this
study, we present several algebraic approximations that can be
used for systems where molecular dynamics simulations are
not explicitly carried out. Comparisons of the adsorption rates
obtained from the algebraic expressions show that they can
achieve order of magnitude accuracy for adsorption rates under

equilibrium conditions and are suitable for kinetic modeling of
catalytic systems.

■ APPENDIX A1
Terms and definitions are provided in Table A1.
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Table A1. Terminology Used for Deriving Sticking Coefficient at Liquid−Solid Interface, Listed in Alphabetic Order

term/variable definition

adjacent layer the volumetric cross section of solution that is within 1 molecular diameter of the surface (e.g., L1 in Figure 2)
bulk layer volumetric cross sections of solution that are 1 molecular diameter wide and not adjacent to the Pt surface (e.g., L3 in Figure 2)
boundary planes used to distinguish neighboring layers. (e.g., B1 represents the boundary between L1 and L2 in Figure 2)
collision A collision occurs when the distance between the center of a molecule and the nucleus of a surface atom is less than or equal to the sum of their

radii (see Figure 1 and the Supporting Information).
encounter An encounter occurs when the distance between the center of a molecule and the edge of a surface atom is less than or equal to the kinetic

diameter of the molecule (see Figure 1 and the Supporting Information).
layer a volume cross section (or voxel) of the solution with height equal to the diameter of the methanol molecule.
process A process is a kinetically distinct type of transition between states or lumped states. Examples include diffusion between layers in this work,

desorption, or a chemical reaction.
sticking Sticking occurs when a molecule stays on the surface in a defined adsorption state and can be entered directly from a collision or via a precursor

state such as by trapping.
trapping Trapping occurs when a molecule enters a short-lived adsorbed state (up to microseconds) following a collision, without being confined to a

discrete surface site.
visits (number of
visits is denoted
with variable V)

A visit occurs when a molecule hops into a layer for a finite amount of time. We use subscripts to track the history of a particular visit. For
example, VB1F,T represents the total number (T) of visits originating from layer 2 to layer 1 (i.e., across boundary B1 in the forward direction
(F)).

RSDF raw survival distribution function: the complementary cumulative distribution function of the Poisson distribution based on raw input rather
than the normalized probability. Further defined in the text.

SE encounter sticking coef f icient: the probability per encounter that a molecule ends up sticking
SC collision sticking coef f icient: the probability per collision that a molecule ends up sticking
SoS set of states: A molecule (solute) can experience many conformations due to various possible solvation orientations: when there is no large

chemical difference between these states, such states can be chemically/physically lumped into a single set of states (SoS). Thus, the states of a
molecule in a layer can be approximated by a finite number of SoS (the example presented in this work employs 2−3 SoS).

τ residence time: Here, generally used for the time that a molecule spends in a layer before hopping to the next layer. In this work, the directions
are also tracked using subscripts: τB1F,T denotes the total residence time (T) that molecule spends in layer 2 before it hops to layer 1 (forward
hopping (F) to the Pt surface via boundary B1).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.9b01249
J. Chem. Theory Comput. 2020, 16, 2680−2691

2689

https://pubs.acs.org/doi/10.1021/acs.jctc.9b01249?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01249/suppl_file/ct9b01249_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aditya+Savara"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1937-2571
mailto:savaraa@ornl.gov
mailto:savaraa@ornl.gov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rachel+B.+Getman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0755-0534
http://orcid.org/0000-0003-0755-0534
mailto:rgetman@clemson.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaohong+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01249/suppl_file/ct9b01249_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.9b01249/suppl_file/ct9b01249_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01249?ref=pdf


Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.9b01249

Notes
This manuscript has been authored in part by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S.
Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access
to these results of federally sponsored research in accordance
with the DOE Public Access Plan (http://energy.gov/
downloads/doe-public-access-plan).
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

Work by X.Z. and R.B.G. was funded by the National Science
Foundation under grant no. CBET-1554385. Work by A.S. was
supported by the U.S. Department of Energy, Office of
Science, Basic Energy Sciences, Chemical Sciences, Geo-
sciences, and Biosciences Division. All simulations were
performed on the Palmetto Supercomputer Cluster, which is
maintained by the Cyberinfrastructure Technology Integration
Group at Clemson University. The authors thank Prof. Robert
Lund from the Clemson University Department of Math
Sciences for the helpful discussions and one of the peer
reviewers of this manuscript for the suggestion to consider how
the methodology presented herein could be related to values
derived from Henry’s law constants.

■ REFERENCES
(1) Davies, P. R. On the Role of Water in Heterogeneous Catalysis:
A Tribute to Professor M. Wyn Roberts. Top. Catal. 2016, 59, 671−
677.
(2) Zhang, X.; Sewell, T. E.; Glatz, B.; Sarupria, S.; Getman, R. B.
On the water structure at hydrophobic interfaces and the roles of
water on transition-metal catalyzed reactions: A short review. Catal.
Today 2017, 285, 57−64.
(3) Matera, S.; Schneider, W. F.; Heyden, A.; Savara, A. Progress in
Accurate Chemical Kinetic Modeling, Simulations, and Parameter
Estimation for Heterogeneous Catalysis. ACS Catal. 2019, 9, 6624−
6647.
(4) Hibbitts, D. D.; Loveless, B. T.; Neurock, M.; Iglesia, E.
Mechanistic Role of Water on the Rate and Selectivity of Fischer-
Tropsch Synthesis on Ruthenium Catalysts. Angew. Chem., Int. Ed.
2013, 52, 12273−12278.
(5) Bodenschatz, C. J.; Xie, T.; Zhang, X.; Getman, R. B. Insights
into how the aqueous environment influences the kinetics and
mechanisms of heterogeneously-catalyzed COH* and CH3OH*
dehydrogenation reactions on Pt(111). Phys. Chem. Chem. Phys.
2019, 21, 9895−9904.
(6) Zhang, X.; DeFever, R. S.; Sarupria, S.; Getman, R. B. Free
Energies of Catalytic Species Adsorbed to Pt(111) Surfaces under
Liquid Solvent Calculated Using Classical and Quantum Approaches.
J. Chem. Inf. Model. 2019, 59, 2190−2198.
(7) Singh, N.; Campbell, C. T. A Simple Bond-Additivity Model
Explains Large Decreases in Heats of Adsorption in Solvents Versus
Gas Phase: A Case Study with Phenol on Pt(111) in Water. ACS
Catal. 2019, 9, 8116−8127.
(8) Salvestrini, S. A modification of the Langmuir rate equation for
diffusion-controlled adsorption kinetics. React. Kinet., Mech. Catal.
2019, 128, 571−586.

(9) Cortright, R. D.; Dumesic, J. A. Kinetics of heterogeneous
catalytic reactions: Analysis of reaction schemes. Adv. Catal. 2001, 46,
161−264.
(10) Savara, A.; Rossetti, I.; Chan-Thaw, C. E.; Prati, L.; Villa, A.
Microkinetic Modeling of Benzyl Alcohol Oxidation on Carbon-
Supported Palladium Nanoparticles. ChemCatChem 2016, 8, 2482−
2491.
(11) Chorkendorff, I. B.; Niemantsverdriet, J. W. Concepts of modern
catalysis and kinetics; John Wiley & Sons, 2017.
(12) Jung, L. S.; Campbell, C. T. Sticking probabilities in adsorption
of alkanethiols from liquid ethanol solution onto gold. J. Phys. Chem. B
2000, 104, 11168−11178.
(13) Chen, M. S.; White, M. C. Combined Effects on Selectivity in
Fe-Catalyzed Methylene Oxidation. Science 2010, 327, 566−571.
(14) Vattuone, L.; Gerbi, A.; Rocca, M.; Valbusa, U.; Pirani, F.;
Vecchiocattivi, F.; Cappelletti, D. Stereodynamic effects in the
adsorption of ethylene onto a metal surface. Angew. Chem., Int. Ed.
2004, 43, 5200−5203.
(15) Muino, R. D.; Busnengo, H. F. Dynamics of Gas-Surface
Interactions: Atomic-level Understanding of Scattering Processes at
Surfaces; Springer Berlin Heidelberg, 2013.
(16) Kresse, G. Dissociation and sticking of H2 On the Ni(111),
(100), and (110) substrate. Phys. Rev. B 2000, 62, 8295−8305.
(17) Ludwig, J.; Vlachos, D. G. First principles modeling of
dissociative adsorption at crystal surfaces: Hydrogen on Pt(111). Mol.
Simul. 2004, 30, 765−771.
(18) Stampfl, C.; Kreuzer, H. J.; Payne, S. H.; Pfnür, H.; Scheffler,
M. First-principles theory of surface thermodynamics and kinetics.
Phys. Rev. Lett. 1999, 83, 2993−2996.
(19) Groß, A. Dynamics of molecule-surface interactions from first
principles. Chem. Phys. Solid Surf. 2003, 11, 1−26.
(20) He, J.; Acharyya, K.; Vidali, G. Sticking of Molecules on
Nonporous Amorphous Water Ice. Astrophys. J. 2016, 823, 56.
(21) Hoffmann, J.; Schauermann, S.; Johańek, V.; Hartmann, J.;
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