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ARTICLE INFO ABSTRACT

Keywords: This study details the progress in transportation data analysis with a novel computing framework in keeping
Social media with the continuous evolution of the computing technology. The computing framework combines the Labeled
New York

Latent Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine (SVM) classifier with the supporting
computing strategy on publicly available Twitter data in determining transportation-related events to provide
reliable information to travelers. The analytical approach includes analyzing tweets using text classification and
geocoding locations based on string similarity. A case study conducted for the New York City and its surrounding
areas demonstrates the feasibility of the analytical approach. Approximately 700,010 tweets are analyzed to
extract relevant transportation-related information for one week. The SVM classifier achieves > 85% accuracy in
identifying transportation-related tweets from structured data. To further categorize the transportation-related
tweets into sub-classes: incident, congestion, construction, special events, and other events, three supervised
classifiers are used: L-LDA, SVM, and L-LDA incorporated SVM. Findings from this study demonstrate that the
analytical framework, which uses the L-LDA incorporated SVM, can classify roadway transportation-related data
from Twitter with over 98.3% accuracy, which is significantly higher than the accuracies achieved by standalone

Traffic operation
Short-term planning
Machine learning

Traffic management policy

L-LDA and SVM.

1. Introduction

Traffic information is currently available through different private
sources and navigation applications developed by private companies,
such as Waze, Google, or Apple. At the same time, public agencies,
specifically law enforcement agencies, must collect, validate, and dis-
seminate incident information, as they are primarily responsible for
traffic management and safety. A 2015 survey found that most state
transportation agencies collect traffic data from sensors and through
third parties, such as INRIX, and then use web sites and Dynamic
Message Signs to disseminate traffic information to travelers (Fries
et al., 2015). In the study conducted by Fries et al. (2015), based on the
survey responses, researchers emphasized the need for improvement in
methods and technologies for travel time data collection. As stated in a
USDOT (2018) report, transportation applications using real-time data
increases the operational and safety benefits by generating data helpful
for making informed travel decisions (USDOT, 2018). Given the im-
portance of the quality and availability of traffic data for providing
reliable transportation services, tools that provide accurate, timely and
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accessible data to support traffic management and planning practices
related to roadway traffic information collection and dissemination are
essential. In addition to navigation applications developed by private
companies, social media platforms like Twitter produce publicly
available data that can provide ‘where’, ‘what’ and ‘when’ information
about any traffic incident event. For example, “Incident on #Mon-
taukBranch EB at Jamaica Station” tweet says where (i.e., at Mon-
taukBranch EB, Jamaica Station) and what event (i.e., incident) hap-
pened. Another example tweet, “real confused as to why the workers
aren’t out here cleaning the roads!!” tells what event (i.e., there are
obstructions or debris on the road), but the tweet itself does not tell
where the event happened unless tweet has geolocation information
available beyond the tweet text. In both tweet examples, the time of
tweet generation is provided by Twitter. While Twitter has been ana-
lyzed as a potential source of traffic data (D'Andrea, Ducange, Lazzerini,
& Marcelloni, 2015; Gu, Qian, & Chen, 2016), tweets do not always
have geolocation information available. Also, since drivers should not
tweet while driving, Twitter data is most appropriate as support for
traffic incident-related data in which the tweets from the general public
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originate from stopped vehicles or the passengers within (Pratt, Morris,
Zhou, Khan, & Chowdhury, 2019).

In this paper, the term ‘tweet’ refers to the message or status update
from a Twitter user account, which cannot exceed the 140 character
limit (the size of tweets has been extended to 280 characters since the
time of this study). Although Twitter provides data generated by nu-
merous users from a specific region, analyzing the raw streaming data
in real-time and providing useful feedback based on the analysis are
challenging. The research objective is to develop a parallel-computing
based analytical framework to accurately categorize and reliably geo-
code tweets for the transportation-related events. This contribution of
this paper entails developing and evaluating: (a) the Labeled Latent
Dirichlet Allocation (L-LDA)-incorporated Support Vector Machine
(SVM) classifier to classify tweets with supporting distributed com-
puting framework to support roadway transportation operations and
(b) the string-similarity based location identification system.

After analyzing the collected tweets from a specific region using the
Natural Language Processing (NLP) techniques, transportation-related
tweets are extracted with SVM, a supervised classification technique.
SVM is used to identify transportation-related tweets from the whole
Twitter dataset for each day, and the Clemson University Palmetto
supercomputing cluster is used to support parallel computations to
develop SVM models. The motivation of using this parallel computation
framework, to classify almost 700,010 tweets in this study, is to mini-
mize the computation time for the SVM training phase compared to
single node-based computation. After identification, the transportation-
related tweets are classified via three supervised classification techni-
ques: L-LDA, SVM, and L-LDA incorporated SVM. L-LDA is a supervised
credit attribution method, whereas L-LDA and L-LDA incorporated SVM
have not been used to identify transportation-related events in earlier
research. It has been previously determined that L-LDA performs as well
as or better than SVM for multi-label text classification (Ramage, Hall,
Nallapati, & Manning, 2009). The motivation for integrating L-LDA
with SVM in this study is to improve the performance of SVM in clas-
sifying tweets. In the L-LDA incorporated SVM technique, topic dis-
tribution probability for each tweet generated by L-LDA is used by SVM
classifier to categorize the tweets in multiple classes (i.e., incident,
congestion, special event, construction, and other events). Accuracies of
SVM, L-LDA, and L-LDA incorporated SVM classifiers are measured
with respect to the labels manually assigned to the tweets.

According to Title 23 of the Code of Federal Regulations, real-time
highway information programs, including statewide incident reporting
system, must be 85% accurate as a minimum (GPO, 2011). It can be
inferred, from this code, that it is possible to use Twitter as a potential
standalone tool to compile and classify roadway transportation events if
the accuracy is above the 85% threshold. Following the text classifi-
cation, the tweets are geocoded. Using the analytical framework pre-
sented in this study, a case study is conducted for New York City (NYC)
and its surrounding areas. The following sections discuss the previous
studies related to twitter data analysis, analytical framework for this
study, and a case study using the analytical framework.

2. Literature review

Twitter data are used for assessing various events (D'Andrea et al.,
2015; Gu et al., 2016; He, Boas, Mol, & Lu, 2017; Purohit et al., 2014;
Qian, 2016; Roberts et al., 2018; Tang et al., 2017) including natural
disasters, mass emergency, acts of terrorism, extreme weather events,
political protests, and transportation events. In a study conducted by
Mironiczuk and Protasiewicz (2018), the authors have reviewed recent
research to understand the general approach of text classification
practices and identify the future research questions related to text
classification (Mironczuk & Protasiewicz, 2018). The most common
research for text classification includes the use of supervised learning
methods and involves a number of steps including data acquisition,
data labeling, feature construction, feature weighing, feature selection,
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classification model training, and assessment. The authors have iden-
tified overfitting of the text classification models, dynamic classifier
selection, multi-lingual text analysis, text stream analysis, sentiment
analysis and ensemble-learning methods as the emerging research to-
pics in text classification.

2.1. Tweet classification with machine learning

Once Twitter data are collected, their contents are analyzed. This is
a difficult process, as Twitter data is often characterized as “vast, noisy,
distributed, unstructured, and dynamic” (Gundecha & Liu, 2014).
Therefore, machine-learning techniques are integral to the process of
mining content for decision-making purposes. These machine learning
techniques are categorized into three primary areas, supervised
(Kotsiantis, 2007), semi-supervised (Zhu, 2006), and unsupervised
(Hastie, Friedman, & Tibshirani, 2001). A supervised learning algo-
rithm uses training data with known outcomes. The learning algorithm
can gradually adjust its parameters to generate results from training
data so that these results match most closely with the known outcomes.
For unsupervised learning, there are no known outcomes, and the al-
gorithm will attempt to extract the pattern from the data itself. Semi-
supervised learning techniques contain a mixture of both by using a
small set of training data with known outcomes and a majority of
training data without known outcomes. The evidence of the various
degrees of success in applying different machine learning techniques to
analyze social media contents is well known (D'Andrea et al., 2015;
Ramage et al., 2009). For this specific study, a supervised machine
learning technique, SVM (Cortes & Vapnik, 1995), is selected to auto-
mate the process of identifying transportation/non-transportation
tweets, and L-LDA (Ramage et al., 2009), another supervised technique,
is selected to model the topics of the classified tweets. SVM facilitates
the utilization of kernel functions to develop hyperplane(s) within the
feature space of the observation to classify the observations into dif-
ferent distinctive groups. Supervised LDA (s-LDA) methods are used to
identify the label of the tweets by simply restricting the topic model to
use only the topics corresponding to the training dataset's label set. A s-
LDA classifier is used by Gu et al. (2016), where the authors found that
51% of the geo-codable tweets can be classified with their s-LDA clas-
sifier.

2.2. Twitter data for transportation applications

In earlier investigations of the reliability and accuracy of social
media data for unplanned transportation events (i.e., incidents, con-
gestion), various methods (i.e., machine learning, statistical analysis)
were proposed to extract necessary data from user-focused contextual
information that is shared in the social media platform. To determine
real-time incident information, Twitter data were analyzed using ma-
chine learning technique that incorporated semantic web technology
(i.e., Linked Open Data Cloud) and features from tweets and LOD data
for tweet classification (i.e., car crash class, shooting class and fire
class) (Schulz & Ristoski, 2013). The proposed model achieved about
89% accuracy for classifying tweets. They concluded that even with
very few social media posts, this method is capable of detecting in-
cidents. For traffic congestion monitoring, (Chen, Chen, & Qian, 2014)
developed a statistical framework that integrated both Hinge-loss
Markov Random Fields and a language model. Evaluations were per-
formed over different spatial-temporal and other performance metrics
on the collected tweet and INRIX probe datasets. The two major U.S.
cities used in this study were Washington D.C. and Philadelphia, PA.
Based on their analysis, (Chen et al., 2014) found that Twitter data can
supplement traditional road sensor data to assess traffic operational
conditions. The authors from (Sakaki, Matsuo, Yanagihara, Chandrasiri,
& Nawa, 2012) study created a system to distribute important event-
related information to vehicle drivers, including the location informa-
tion and temporal information. Tweets were classified as either traffic
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or not-traffic related. Subsequently, the extracted information was
forwarded to vehicle drivers after extracting spatial information from
the tweets. As a result, the authors achieved an 87% precision rate in
categorizing tweets that referred to heavy traffic. To classify incident-
related tweets, Gu et al. (2016) utilized an adaptive data acquisition
framework and prepared a dictionary of important keywords. The study
suggested that the mining of Twitter data holds potential to cost-ef-
fectively providing traffic incident data. Additional findings noted that
most of the geo-tagged tweets are posted by influential users who are
mainly public agencies or/and media (Gu et al., 2016). While com-
paring Twitter data with the California Highway Patrol (CHP) records,
the authors from (Mai & Hranac, 2013) study captured tweets of in-
terest using specific keywords. The authors used a nine-hour time
window and a 50-mile radius of coverage to match tweets with CHP
records and then applied a semantic-based weighting factor to find the
incident-related tweets by assigning weights to a tweet based on text
included in that tweet. They suggested a logical order of Twitter ana-
lysis, which involves identifying tweets with correctly geocoded in-
formation (latitude and longitude), filtering tweets that contain traffic
information, and analyzing these tweets. The approach is limited in that
only a small percentage of tweets contained latitude and longitude (Mai
& Hranac, 2013). Compared to the complete data set acquired from
Twitter's Firehose, it is possible to infer that the number of usable
tweets is further reduced in cases where Twitter's public API is used,
due to the 1% of the total data available in the public APIL

2.3. Twitter data analysis in a distributed computing infrastructure

Large-scale data analysis in a centralized environment is often in-
efficient, and impractical due to the high computation time. As such,
applications of parallel computing framework in civil engineering de-
cision making have been developed in (Kandil & El-Rayes, 2005;
Karatas & El-Rayes, 2015). In (Kandil & El-Rayes, 2005) the authors
used a manager/worker paradigm and a distributed genetic algorithm
to optimize both the construction time and costs of large-scale con-
struction projects. The input of the optimization tasks were project
planning data that described project activities. Inititally, the processor
functioning as a manager in the manager/worker paradigm initialized a
genetic algorithm to create a random set of feasible solutions. Finally,
the manager processor completed the fitness evaluation to generate a
new set of solutions. Using 150 experiments on the parallel computin
cluster at the University of Illinois, the authors found an eight-time
parallel speedup in obtaining solutions compared to the single proces-
sing framework. Similarly, the authors in (Karatas & El-Rayes, 2015)
evaluated a parallel computation-enabled genetic algorithm where
multiple processors analyzed the environmental impacts of a sub-
population distributed by the coordinator processor. Based on the fit-
ness function evaluation from the multiple processors, the coordinator
processor creates the next group of solutions. The computation time
was reduced to 1.7 days from 12 days using eight paralleled processors.
The distributed computing framework was also studied in terms of
analyzing large-scale Twitter data. The authors in (Gao, Ferrara, & Qiu,
2015) studied parallel clustering of social media data using the stream
processing engine, Apache Storm, which helps to implement parallel
processors and distribute workload in a fault tolerant environment.
First, the initial clusters were developed using historical Twitter data.
Based on these initial clusters, multiple processors clustered the new
tweet stream and detected outliers. Using the framework, the compu-
tation speed with 96 parallel processors was higher than the Twitter
stream arrival speed. The authors in (Kanavos et al., 2017) used Ma-
pReduce and Apache Spark framework to classify tweet sentiments
based on hashtag and emoticons. With the increase in data size, the
analysis speed increased linearly with the increase in processor number.
A similar study on tweet sentiment analysis conducted in (Kumar &
Rahman, 2017) entailed evaluating the Apache Spark and Message
Passing Interface (MPI) clustering frameworks. MPI performed better
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than Apache Spark in that the programmer had access to the freedom-
on-memory allocation and task scheduling. So far, no study has been
conducted on distributing supervised machine learning methods to
classify transportation-related tweets, which is a motivation for this
study.

3. L-LDA incorporated SVM

The L-LDA incorporated SVM classifier is a supervised learning
based classifier, in which the feature space of the SVM includes the
multinomial topic distributions (6) value over the vocabulary for each
topic generated by L-LDA. The L-LDA classifies the tweets based on the
mixture of the underlying topic. The main difference between tradi-
tional LDA (Blei, Ng, & Jordan, 2003) and L-LDA (Ramage et al., 2009)
is that L-LDA constrains the topic model to use topics observed in a
training data set. For a processed tweet T, let us consider N is the total
vocabulary size in T, expressed as a tuple w = (wy, ..., W;, ... Wy), where
w; is an i-th processed token. Each w is accompanied with a label pre-
sence/absence indicator list L = (I3, Ly, ..., lg) where [; = 1 is the topic i
presence indicator and [; = 0 is the topic i absence indicator. There are
K topics in the training set. The multinomial mixture distribution (0) is
used to identify the final label of the test data, which is restricted to
only topics K from the training dataset, meaning L-LDA assigns a label
for a test case based on the training dataset label.

The feature space is the main difference between the L-LDA in-
corporated SVM and the SVM classifier. Using L-LDA, the multinomial
topic distributions (6) values of each tweet is estimated, and these topic
distribution values are included in both training and test feature space
of the L-LDA incorporated SVM. Cross-validation is used to identify the
transportation sub-class specific 6 values, which gives better perfor-
mance compared to the standalone SVM. The SVM classifier, as con-
sidered in this study, lacks the support on the topic distribution, unlike
the L-LDA incorporated SVM.

4. An analytical approach for twitter categorizing and geocoding

This research utilizes the same procedure as described by
(Mironczuk & Protasiewicz, 2018) to develop a text stream analysis
framework for a large region. The motivation of this research is to sa-
tisfy the research gap in text stream analysis as identified by
(Mironiczuk & Protasiewicz, 2018). As detailed in the analytical ap-
proach in Fig. 1, tweets are first collected from a specific region. The
data processing, feature extraction, feature selection, and classification
steps are then associated with tweet classification to identify the re-
levant transportation-related tweets. Based on the data size and com-
putation complexities, parallel computation is used in the SVM training
phase to increase the data processing and tweet classification cap-
abilities of the framework. Next, location information is extracted from
the tweet from ‘geo’ field, and if no coordinate is available, the location
information is extracted from the tweet text.

A case study is conducted for NYC and its surrounding areas using
the adopted analytical framework. Tweets are collected for the week of
Saturday, 01/07/2017 to Friday 01/13/2017. First, data for two days of
the week are labeled: Saturday and Wednesday. The total volume of the
generated tweet for these two days is 194 K. Five individuals have
helped to label these data. The total rate of manual labeling is almost
3000 tweets/h. Following one annotator-one manager approach, data
are divided into different parts, with each part passed to each individual
annotator. The work of the annotators was verified by a manager to
consider the verified data as the ground truth data. When the ground
truth data is labeled, the SVM supervised classifier is developed based
on these two days data. In the second step, the SVM classifier is used to
classify the data for the remaining five days. However, given the poor
performance of the supervised classifier in classifying the unstructured
data, manual labeling is conducted based on a keyword search method
for the other five days. The keywords are selected based on the data
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Fig. 1. Analytical approach steps.

from Saturday and Wednesday, and also from other literature. The
parallel computation nodes on the Palmetto Supercomputing cluster at
Clemson University are then used to develop and evaluate the SVM
classifier for each day. The accuracy, precision, recall, and Root Mean
Square Error (RMSE) of the SVM classifier are subsequently evaluated
to categorize the data as non-transportation related or transportation-
related tweets. After studying the accuracy of SVM in identifying the
transportation-related tweets, the accuracies of supervised L-LDA, SVM
and L-LDA incorporated SVM are investigated to identify five sub-
classes (i.e., construction, traffic operations, incidents, special events,
and other events). The tweets are then passed through two geocoders to
determine the tweet location. The steps of the analytical approach are
described below.

4.1. Data collection

Using the Twitter streaming API, tweets from NYC and its sur-
rounding areas, confined by approximately (40.49, —74.25) and
(40.92, —73.70) coordinates, are collected using a location-bounding
box which covered all five boroughs (i.e., county-level administrative
divisions) of NYC and its surrounding areas. No additional features or
keywords are used to collect the tweets. The total number of tweets
collected for each day from Saturday to Friday are 79,310, 99,879,
106,520, 98,932, 115,391, 99,671, and 97,976, respectively. These
tweets are all labeled manually to validate the accuracy of the SVM, L-
LDA, and L-LDA incorporated SVM classifiers. Several students were
recruited to label the tweets, and the later accuracy of the classifiers are
evaluated compared to the labels assigned by the students.

4.2. Data preprocessing for classification

For Twitter, the streaming API returns additional information such
as user id, profile information, and creation time along with the tweet
text. Only tweet texts are considered for classification. Given the in-
herent ambiguity of tweets (e.g., non-standard spelling, inconsistent
punctuation and/or capitalization), the following preprocessing steps

are performed to extract the features for the classification:

e In the first step, the tweets are tokenized, meaning that they are
transformed into a group of meaningful processing units (e.g.,
phrases, syllables, or words). Each tweet T is split into words, w,
after which each tokenized tweet T is expressed as:

w = {w; wy ws _ w;__ Wy} 1)

where w; is the i-th tokenized word for each tweet T of length N.

e In the second step, internet slangs are replaced and stop words are
removed. Internet slangs are highly informal words, and abbrevia-
tions or expressions used by the general public for online interac-
tion. Such slang is not considered as part of the standard language,
which requires their replacement with elaborated expressions. For
example, ‘hbd’ is replaced with ‘happy birthday’, and ‘2moro’ is
replaced with ‘tomorrow.” Stop-words (i.e., articles, prepositions,
conjunctions) are those words within a sentence that offer negligible
or no information for the text analysis. In this paper, a list including
both slang words (a total of 5188 records) and stop words (a total of
675 records) are created with the lists available from multiple online
resources.

e In the third and final step, punctuation marks, special characters
(e.g, " $, ., |, ¥, +) and additional white spaces in each tweet are
removed, followed by the removal of duplicate words, and re-
placement of the URL with the term ‘URL’ and @-mentions with
‘at_user’.

After this processing, a tweet is expressed as a sequence of relevant
tokens that excludes the stop words, punctuation marks, special char-
acters, and duplicate tokens. If r is the processed relevant token, the
processed tweet T is expressed as:

r={nnrn. k. "' @)

where r; is the i-th processed relevant token of processed tweet T of
length M (excluding the stop words, punctuation marks, special
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characters, and duplicate tokens). M < N, where N is the total token
number (including the stop words, punctuation marks, special char-
acters, and duplicate tokens) for each tweet.

4.3. Tweet feature extraction

Extracting features from textual data to identify the most relevant
transportation-related tweets involves a conversion of tweets' texts to
numeric matrices. It was determined from an earlier study (Schulz,
Guckelsberger, & Schmidt, 2015) that for generalized models (i.e.,
models applicable in multiple areas, even if the training dataset is de-
veloped using data from a single geographic area or few geagraphic
areas), a limited number of features containing word-n-grams and
character-n-grams exhibited superior performance over a similar da-
taset with a large number of features. For the developed model, several
unique numeric features and one tf-idf vector are considered for the
classification analysis as followed.

e Sentiment score is considered as one of the features, as the general
public expresses emotions through tweet texts while traveling and/
or during unplanned events (e.g., warning during congestions, in-
cidents which will have negative sentiment values). Here, a lexicon-
based analysis is performed, in which a dictionary of words with
emotional connotation strength is used to measure the sentiment
related with each tweet. The value of the emotional connotation
expresses the polarity (i.e., positivity or negativity) of the words. If a
processed tweet T has tokens r = {r; r r3 . 1, . rm}, then the
polarity of T is calculated as (Dayalani and Patil, 2014):

Polarity (r) = Z?1113(’3’)/1\] 3)

where N is the total token numbers in each processed tweet, P(r;) is the
polarity score of token r; calculated from the used lexicon.

e Term Frequency Inverse Document Frequency (tf-idf) values amplify
the effect of unique words for each document or single tweet and
diminish the effect of common words in the whole tweet dataset or
corpus because the common words contain no extra information.
This feature has been used in previous studies to classify transpor-
tation-related tweets (Khatri, 2018; Schulz & Ristoski, 2013). For
each processed tweet token r the idf is calculated based on the
training corpus D. Following is the equation of calculating tf-idf.

tf — idf(r,d, D) = tf(r,d) x idf(r,D) “4)

where r is a processed relevant token from tweet d and D is a corpus of
tweets; tf(r, d) is a frequency of r in d and idf(r, D) is an inverse docu-
ment frequency of r: idf(r, D) = log(‘Dyl +1df D)‘). Here df(r, D) is a
number of tweets from D in which r occurs at least once, and |D| is the
total tweet number in the document. The ‘|x|” expression represents the
count of variable x.

e The presence of a specific word/token can help to determine the
tweet category with the ‘Frequent Token Presence’ or FTP score
calculated based on the presence of a specific word from a list in the
specific tweet dataset. The list is created based on the most frequent
words in the training dataset. Consider a processed tweet T with
tokensetr = {r; ra rs . r; . ru}. If |r] is the total count of a token
r which exists in the most frequent word list (L), the FTP score of
tweet T, expressed as FTP(r), is calculated as:

FIP(r) = Zmet T C Ll/N o

where M is the total number of processed relevant tokens (excluding the
stop words, punctuation marks, special characters, and duplicate to-
kens) in T.
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e Syntactic features, i.e., the number of hashtags, question marks,
exclamation marks, the number of capital letters, and the tweet
length, are also considered.

4.4. Tweet feature selection

After the initial features are extracted, the relevant features required
to develop the reliable classification models are selected based upon
Lasso feature selection as the data may not be normally distributed
(Fonti & Belitser, 2017). For tf-idf vector, a different feature selection
strategy is used. For high-dimensional data like the tf-idf vector, Sin-
gular Value Decomposition (SVD) identifies the dominant pattern inside
the main data. SVD maps the high-dimensional data into a new co-
ordinate system using the correlations between the initial data. Con-
sidering a rectangular matrix M, SVD decomposes M into three matrices
as shown below.

M=ASBT (6)

where S is a diagonal matrix, and A and B are two orthogonal ma-
trices. A Truncated SVD or T-SVD discards the small singular values of
M. Using T-SVD, a matrix M; with reduced rank j can represent the
matrix M fairly accurately, which can be used for feature dimension
reduction.

4.5. Tweet classification

The selected features are standardized (i.e., the distribution of each
attribute is shifted to mean of ‘0’ and standard deviation of ‘1’) and
normalized (i.e., the numeric attributes are rescaled into the range of 0
to 1). Once all the features are normalized, the SVM classifier is used.
SVM can process data with high dimensional feature spaces and a
sparse document vector (Joachims, 1998). The model is implemented
using Scikit-learn libraries. For the multi-class SVM problem, the one-
vs-one decomposition process is used. This process handles an ‘n’ class-
based classification problem with n(n-1)/2 number of binary classifiers
that distinguish between different pairs of classes. The final class is
assigned based on majority voting that is assigned by n(n-1)/2 binary
classifiers. Next, multiple kernel functions (i.e., linear, polynomial, and
radial basis functions) are tested and their associated parameters are
identified from cross-validation of the classfier within the training da-
taset. For statistical confidence, 30 processes are executed concurrently
on the Palmetto Supercomputer at Clemson University, as required by
the non-parametric Wilcoxon Signed Rank test (“Scipy,”, 2019). This
test is used in this research to compare the performance of supervised
classifiers. A PBS script is written to run all the test cases in parallel. The
requested interactive jobs are submitted for all test cases running si-
multaneously, with each using a single hardware node with 16 CPU
cores per node, and 60 GB of RAM per node.

Once transportation-related tweets are identified, L-LDA, SVM, and
L-LDA incorporated SVM are used to classify the transportation-related
tweets in the following five topics:

e Construction: Updated status related to construction;

e Traffic operations: Updated status related to traffic;

o Incidents: Incident notification, and clearance information;

e Special events: Road closure due to the public gathering;

o Other Events: Events that do not fall under any specific category.

For L-LDA classifier, the Collapsed Variational Bayesian method is
used for inference of the training model over test dataset (Teh,
Newman, & Welling, 2007). For each run, the dataset is randomly di-
vided into two groups. The initial 80% data in each run is considered as
training dataset and the rest 20% of the dataset is considered as test
data. The accuracy, for all classifiers, is then derived using Eq. (7) ex-
pressed as:
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Table 1
Location information extracted from example tweets.
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Example tweet

Extracted location information

@MTA @NYCTSubway currently at Grand Ave/Newtown...can you send someone??
I'm at LaGuardia Airport (LGA) in East Elmhurst, NY

Accident in #TheBronx on The Bronx River Pkwy SB approaching 177th St, stop and go traffic back to Boston Rd, delay of 2 mins

#traffic

Grand Ave, Newtown
Laguardia Airport, East Elmhurst
Bronx River Pkwy Sb, Boston Rd, 177th St

CT;
Accuracy = P/T]}: + 100 %)

where CTp is the correctly classified tweets, and TTp is the total tweet
number. Also, precision (%) is calculated as:

. True Positive
Precision = /(True Positive + False Positive) * 100 8

Recall (%) is calculated as:

Recall = True Positive / (True Positive + False Negative) * 100 9

While computing overall recall and precision, the macro average
measure is used, which shows the average recall or precision values
over the total number of classes. For C total class number, the macro-
average value of recall can be calculated using Eq. (10). Similarly, the
macro-average value of precision can be calculated.

C
RecallMacro—average = Zi:l Reca”i/c (10)

With sample size A if y; iis the observed i-th data and yy,, iis the
forecasted i-th data, RMSE can be calculated with the following Eq.
(11).

RMSE = \/(2?_1 Oori = yobs,i)z/A)

(1)

Shapiro-Wilk and Anderson-Darling univariate normality tests are
used to check whether the underlying data distribution is normal or not.
As the underlying data distribution is not normal, the non-parametric
statistical test, Wilcoxon Signed Rank test is used to compare the
median of paired samples. As same test datasets are used to evaluate L-
LDA incorporated SVM, SVM and L-LDA classifiers, the paired sample
test, i.e., Wilcoxon Signed Rank test is used. The hypotheses (Stephanie,
2005) are as follows:

H, = the medians of classifier accuracies are equal

H, = the medians of classifier accuracies are not equal

If 0.1 level of significance is considered, then the Hy (i.e., null hy-
pothesis) is rejected when p-values < 0.1.

4.6. Tweet location identification

The most convenient method for acquiring the geocode data from a
tweet entails extracting the latitude-longitude information from the
‘geo’ field associated with the tweets. This field provides information on
the point location where the tweet is created. Many public agencies
provide real-time incident information on Twitter with the ‘geo’ in-
formation, where the ‘geo’ field resembles the incident location. After
experiencing any traffic event, people can also tweet from their per-
sonal devices that are geo-tagging service-enabled. Geo-enabled tweets
from individuals are not very common. To overcome this limitation,
location information derivation from the tweet text data is performed in
this study. For example, general public posted the following tweets with
specific location information: “@MTA @NYCTSubway currently at
Grand Ave/ Newtown...can you send someone??” or “I'm at LaGuardia
Airport (LGA) in East Elmhurst, NY.” Public agencies also provide street
name-embedded tweets such as “Accident in #TheBronx on The Bronx
River Pkwy SB approaching 177th St, stop and go traffic back to Boston

Rd, delay of 2 mins #traffic”. To extract the location/street information
from the tweet, the Named Entity Recognition (NER) task was per-
formed with the NLTK module (Bird, Klein, & Loper, 2009). The NER is
used to capture street information via the following steps:

1. From the original tweet, @, URL, and hashtag signs are removed,
and hyphen sign was replaced with ‘or’. After this processing task,
tokens for each tweet are extracted.

2. Using the tokens, the Part-Of-Speech (POS) tagging is done, which
identifies nouns, verbs, adjectives, and other parts of speech in
context.

3. Using the built-in classifier provided with the NLTK module, loca-
tion information is extracted from each tweet. Necessary revisions in
the POS tagging task are done to accurately extract the location
names. The extracted location names from the sample tweet texts
are provided in Table 1.

The extracted location information is tokenized and sorted, and fi-
nally matched with the Street Name Dictionary (SND) list (DCP, 2019).
Developed by the NYC Department of Planning, the SND file contains
the information of the geographic features, including street names, of
the entire city of New York. The match between the location names
from the tweets and SND file was calculated using the similarity ratio
(i.e., the closeness of two strings expressed from 0 to 100) based on the
Levenshtein distance (Cohen, 2011; Occen, 2016). If x (i.e., tweet) and
y (i.e., SND record) are two strings, and a and b are the length of these
strings, respectively, the similarity between these strings are defined as
(Cohen, 2011):

2% m
<a

Sxy(@.b) = T < 12)

where m is the number of matched elements in strings x and y, and a
is the acceptable threshold of the ratio to consider a match between x
and y. Once both the on street and cross streets are identified in the SND
list based on the a, their boroughs are matched. In NYC, the same street
name can often be found in different boroughs. Extracting and
matching the borough names from the SDN file limits the possibility of
locating the incident in the wrong borough. Using the street names and
borough information, the intersection coordinate is found in the NYC
geoclient API (Krauss, 2014). If no record of the intersection is found
using this API, the coordinate is derived using the borough name and
any one of the street names with the Geopy package as suggested in
(Russell, 2011). The steps associated with this tweet coordination re-
trieval task are illustrated in Fig. 2.

5. Twitter data analysis
5.1. Tweet dataset description

Table 2 shows the amount of data collected from the case study area
for each day. The initial SVM-based classification of transportation-re-
lated and non-transportation related tweets for each day are conducted
using the total number of tweets collected each day. After assessing the
performance of SVM, an analysis is conducted using only the trans-
portation-related tweets (i.e., the 18,126 tweets) to evaluate the per-
formance of L-LDA, SVM, and L-LDA incorporated SVM classifiers.
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Fig. 2. Geoding the tweets.

5.2. Temporal distribution of Twitter data and influential users

Fig. 3 shows the distribution of Twitter information with times for
(a) each day and (b) for weekday and weekend with the average value
for transportation-related tweets. Fig. 3(a) shows the data for peak
(morning peak: 6 am-10 am, afternoon peak: 4 pm-7 pm) and off-peak
(7 pm-6 am, 10am-4pm) periods. Fig. 3(b) shows that on average
Twitter produces more transportation-related tweets on a weekday than
a weekend.

As shown in Table 3, among the transportation-related tweets, very
few tweets are generated by the general public and other accounts. For
the selected week, the general public mostly used Twitter while using
different subways in NYC, or when they are at the airports. On Monday,
Tuesday and Thursday, only 4% of the total transportation-related
tweets are generated by the general public and other accounts, and on
Saturday 22% of the transportation-related tweets are generated from
the general public and other accounts. Table 4 demonstrates the
number of tweets generated by different user groups for the transpor-
tation-related sub-classes. The main influential users are 511 and To-
talTraffic, and tweets generated from these accounts have geolocation
information. In Twitter, both 511 and TotalTraffic accounts in New
York are specific agency-based accounts that distribute transportation-
related information across New York City. The 511NY Twitter account
(e.g., 511NY system) automatically distributes structured information,
based on the data collected from the police department, transportation
agencies, 911 calls, construction crews, motorist assistance patrol dri-
vers, transit agencies and roadway sensors (i.e., traffic camera). The
TotalTraffic account, distributes structured data based on the data
collected by a private company, titled “Total Traffic and Weather

Table 2
Tweet data amount per day.

Network”. Instead of using the publicly available Twitter data, if the
data from the Twitter Firehose (where 100% Twitter data is available)
can be used, the scenario will differ given the availability of additional
tweets from Twitter. However, as the Twitter Firehose is not used for
this research, only publicly available Twitter data is used.

5.3. Feature selection for tweet classification

Based on the Lasso feature selection method, five unique numeric
features are identified for SVM: sentiment score, length of a tweet,
number of hashtags, number of exclamation marks, and number of
question marks. This test is conducted with data from Monday. For the
tf-idf vector, the dimension is reduced by T-SVD. For T-SVD, the re-
duced dimension of the data is assessed using cross-validation method.
Using the Saturday training dataset (as it was the initial day of data
collection) the accuracy of the SVM method with different dimension
sizes is evaluated to classify the transportation and non-transportation
data. From the following Fig. 4, it is observed that after 400 and more
dimensions, the accuracy of SVM classification does not improve. Based
on this finding, T-SVD with 400 dimension is considered for the later
analysis in this study. For L-LDA, no feature selection is needed to
identify the sub-classes of the tweets since L-LDA creates the multi-
nomial topic distributions over the entire vocabulary of each data.

5.4. Parallel computation efficacy for transportation-related tweet
classification

While classifying the whole dataset with almost 700,010 tweets,
SVM parameters need to be optimized, and the appropriate kernel

Tweet type Number of tweets Total tweets per class
Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Non-transportation related tweets 103,547 95,807 115,389 96,674 94,638 77,379 98,450 681,884

Transportation related tweets 2973 3125 2333 2997 3338 1931 1429 18,126

Total tweets per day 106,520 98,932 115,391 99,671 97,976 79,310 99,879 Total: 700,010
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Fig. 3. Temporal Distribution of Twitter information.

function needs to be identified. Once the features are selected, a grid-
search method is used to identify the optimal parameter for SVM. For
this task, stratified sampling is used, which creates equally balanced
transportation and non-transportation training dataset to find the op-
timal parameters, as the number of non-transportation related tweets
are higher compared to the transportation-related data in the training
dataset. As the classification task requires intensive computation, the
Clemson University Palmetto supercomputing cluster is used to run the
testing 30 times, following the study conducted by (Singh, Lucas,
Dalpatadu, & Murphy, 2013), with random training and test samples.

Table 3

Users/account holders generating transportation related tweets.

Sunday Tweet (% of total

Sunday Tweet)

Saturday Tweet (% of total

Saturday Tweet)

Friday Tweet (% of

Thursday Tweet (% of total

Thursday Tweet)

Wednesday Tweet (% of total

Wednesday Tweet)

Tuesday Tweet (% of total

Tuesday Tweet)

Monday Tweet (% of total

Monday Tweet)

User

total Friday Tweet)

1151 (81%)

1405 (73%)

2985 (89%)

2665 (89%)

2704 (86%) 1986 (85%)

2600 (88%)

511 (511NY, 511NYC

etc.)
Total Traffic

115 (8%)
163 (11%)

106 (5%)

199 (6%)
154 (5%)

216 (7%)
116(4%)

182 (8%)
165 (7%)

300 (10%)

121 (4%)

242 (8%)
131 (4%)

420 (22%)

General public and others
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Table 4
Number of transportation-related tweet per user group.

Transportation sub-class ~ Number of total tweet per user group

511 service TotalTraffic service Others

provider provider users
Construction 3993 16 4
Traffic operations 93 257 87
Incident 11,322 1080 35
Special events 86 2 0
Others events 2 5 1144

99.13
a2 99.09
99.05
= 99.01
98.97
98.93

%)

Accuracy (

10 20 100 200 400 1000 2000
Data dimension

Fig. 4. T-SVD data dimension and corresponding accuracy.

Using parallelization, the SVM parameter optimization and classifica-
tion tasks have achieved 30 times faster processing compared to the
sequential computing. To identify the transportation and non-trans-
portation related tweets, a single SVM parameter optimization task
requires, on average, around 30 min to execute. Using the optimized
parameters a single training and validation process requires, on
average, 8 and 10 min to execute, respectively.

5.5. Performance of tweet classification

5.5.1. Transportation and non-transportation event identification using all
tweets

Each tweet is manually labeled to study the accuracy of supervised
classifiers. After cross-validation, the linear kernel function is found to
provide higher accuracy than other kernel functions. Average accuracy
(for running the test 30 times) of the SVM classification model is found
to be 99% for each day to classify the transportation and non-trans-
portation related tweets (including both structured data from 511 and
TotalTraffic, and unstructured data from other users including the
general public and news media). The accuracy of classifying transpor-
tation and non-transportation related tweets are 99.9% and 90.7%,
respectively, as shown in Table 5. It also shows that machine learning-
based classifier is not able to identify the unstructured data (accuracy is
only 6.8%). Only 7% of the total transportation-related tweets have the
unstructured format. The language used in the unstructured data is
extremely diversified. Based on the findings, unstructured tweets
cannot properly be classified if the classifier is developed using both
structured and unstructured tweets from NYC. The precision and recall
values are 98.9% and 95.3% respectively. Table 6 shows the confusion
matrix of the classifier performance.

5.5.2. Transportation and non-transportation event identification using
unstructured tweets

Another classification task is conducted with only unstructured
data. Data from 511 and TotalTraffic accounts are excluded. As the
number of transportation-related tweets is relatively small than the
number of non-transportation tweets, the random under-sampling
method (Galar, Fernandez, Barrenechea, Bustince, & Herrera, 2012) is
used to train the classifier. In the random under-sampling method, the
sample distribution for different classes is balanced by the random
elimination of the samples from the class with a higher sample size. For
each evaluation, a total number of 1016 non-transportation and
transportation-related tweets are used to train the SVM classifier. In the

Table 5

Transportation and non-transportation classifier accuracy (for both structured and unstructured data).

RMSE

Precision (%)

Recall (%)

Accuracy (%)

Tweet type

Tweets with structured and unstructured data

Tweets with structured and

unstructured data

Tweets with

Tweets with structured data

unstructured data

Overall

For each tweet

Overall (Marco-
average)

For each tweet
type (all users)

Overall (Marco-

For each tweet
average)

type (all users)

Overall

For each tweet type

(all users)

Other users

TotalTraffic service

providers

511 service
providers

type (all users)

99.8 98.9 0.02 0.053
0.3

95.3

99.9

99.7

N/A? 99.9

6.8

N/A?
92.9

Non-transportation N/A?

Transportation

98.2

90.8

90.7

97.4

@ User group-specific evaluation is not conducted for non-transportation data.
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Table 6
Confusion matrix for SVM classifier.

Cities 96 (2020) 102410

Predicted non-transportation related tweets

Predicted transportation related tweets

Actual non-transportation related tweets
Actual transportation related tweets

True Negative = 136,308
False Negative = 335

False Positive = 60
True Positive = 3289

Table 7
Transportation and non-transportation classifier accuracy (for only un-
structured data).

Tweet type Accuracy (%) Recall Precision RMSE
(marco- (marco-
For each  Overall average) (%) average) (%)
tweet
type
Non-transportation  82.9 83 68.1 50 0.4
Transportation 53.2

test cases, 680,868 non-transportation and 254 transportation-related
tweets are used. The SVM classifier parameters (i.e., C and gamma) are
obtained through the cross-validation analysis. The study revealed that
the radial-basis kernel function gives the highest accuracy with C = 0.5,
gamma = 0.5. Using these values, Table 7 shows the SVM classifier
accuracy using only unstructured data. The overall accuracy of the
classifier using unstructured data is 83%, while for transportation-re-
lated data, it is 53.2% for 30 test cases.

5.5.3. Transportation events identification using all tweets

After the transportation-related tweets are extracted with SVM,
three supervised classifiers (i.e., L-LDA, SVM and L-LDA incorporated
SVM) are applied to further categorize transportation-related tweets
into sub-classes using both structured (i.e., data from 511 and
TotalTraffic) and unstructured data (i.e., data from the general public
and other news media). While compared with the manually coded la-
bels, as indicated in Fig. 5 and Table 8, L-LDA achieves the minimum
average accuracy (88.2% for 30 random tests) to classify the tweets into
five sub-classes, whereas the L-LDA incorporated SVM achieves the
maximum average accuracy (98.3% for 30 random tests) for the same
classification. At a 90% confidence level, based on the Wilcoxon Signed
Rank test, the median of the accuracy achieved by L-LDA incorporate
SVM is significantly higher than the accuracy of both L-LDA and SVM
for classifying transportation-related tweets. Fig. 5 also shows the
average accuracy for 30 random tests of five sub-classes, and the
number of tweets per sub-class for each sample. For construction and
incident sub-classes, more data are available compared to other sub-

classes, consequently all three classifiers achieve higher accuracy to
classify tweets compared to the minimum required accuracy of 85%. L-
LDA incorporated SVM achieves higher accuracy than both L-LDA and
SVM classifiers for classifying in all five sub-classes, except other events
where SVM achieves 0.4% higher accuracy compared to L-LDA in-
corporated SVM.

Table 9 shows the actual class and predicted class matrix of L-LDA
incorporated SVM. The values in parenthesis show the classification/
misclassification accuracy of each predicted class. It shows that for
‘traffic operations’, 28.1% of tweets are misclassified as ‘incident’. Due
to the similarity of the tweet information (i.e., roadway condition
status, road blockage, clearance information, etc.) between these sub-
classes, the misclassification occurs.

Table 10 shows the precision and recall values of the L-LDA in-
corporated SVM classifiers. It shows that tweets related to other sub-
classes are not classified as ‘construction’ and ‘incident’ sub-classes, as
the precision value of these two sub-classes is almost close to 100%.
Based on the recall values, tweets from ‘construction’, ‘incident’, ‘spe-
cial events’ and ‘other events’ sub-classes are grouped most accurately
(i.e., recall value > 90%). Table 11 shows the top words identified by
L-LDA for each transportation-related sub-class.

5.6. Geocoder accuracy analysis

Using the geocoders, coordinates of tweets records are estimated.
Location names from tweets are matched with the SND dataset using
the similarity ratio calculated with the Eq. (12). After cross-validation,
it is found that location names are similar with similarity ratios (o) 80
or more. For this research, a is taken as more than or equal to 80. Geo-
enabled tweets with embedded latitude-longitude information (i.e.,
latitude-longitude provided in the ‘geo’ field) are tested to validate the
performance of the geocoders. Using a geocoder, the locations of the
tweets are identified based on information from the tweet text. The
geocoder-derived latitude and longitude are matched with the latitude-
longitude information provided in the tweet ‘geo’ field. The mean value
of the distance difference between latitude-longitude provided in the
‘geo’ field and geocoder information from the tweet text is 7.3 miles,
with 8.7 miles of standard deviation. As shown in Fig. 6, the 25, 50, and
75th percentile values are 0.5, 3.9 and 10.6 miles respectively.

100.00
%
9
g 7500
5
9
<
50.00 e
Construction 1? 1c ) Incident Special Events  Other Events
Operations
OL-LDA 94.19 71.82 86.45 95.93 92.05
aSvVM 99.61 55.68 99.62 97.41 95.25
BL-LDA incorporated SVM 99.63 5742 99.62 97.41 95.21
Sample Size for Each Test Case 803 88 2488 18 231

Fig. 5. Classifier average accuracy for test transportation-related tweets.
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Using the geocoder, the tweet location for the general public is also
assessed. Geolocation discrepancy exists in Twitter because motorists
often mention neither street nor location names when tweeting about
traffic congestion, incidents or any other events. For example, “Our Lyft
driver just told me that she's only been driving for 10 days. #jesusta-
kethewheel” or “U gotta thank the bus drivers for getting u to ya des-
tination safe,I really be appreciating that” are examples of transporta-
tion-related tweets which do not have any content to derive any specific
location. Often the tweet is about locations out of NYC, which also did
not help to generate the location of the tweet in NYC. Using geocoder,
latitude-longitude information is successfully captured if the location-
related text is provided in the tweet text. For example, “495 westbound
out of Lincoln Tunnel is apparently closed. Thanks, #sarcasm #fare-
hikesforwhat” or “On Atlantic Ave this morning thanks to my Brad.
Uber from Massachusetts? @nyctaxi” tweets have location information,
and the geocoder has successfully captured the location from the tweet
text. The geocoder derived locations for these two tweets are “Lincoln
Tunnel (40.7588352, —73.9999574)” and “Atlantic Avenue (40.59116,
—74.090754).” Sometimes some landmarks are used in the tweet text,
which also helps to identify the tweet location. For example, “Really @
Uber $150 to get from JFK to UWS? I'd say it's highway robbery but it's
really more Van Wyck Robbery.” has JFK airport in the tweet text,
which implies that the tweet is originated from the JFK airport. The
geocoder also captures such events. Once the transportation-related
tweets are classified and geocoded, these tweets are projected onto a
map of NYC. For example, Fig. 7 shows a density map, as a case study,
using Twitter data for Monday. It shows the information gathered from
Twitter for each 100 sq. ft. area for the sub-classes. It is evident from
Fig. 7 that using the publicly available tweets, classified transportation-
related events, such as construction, incident, special events, traffic
condition, could also be captured in NYC. This suggests that Twitter can
potentially provide more details about transportation-related events
including the type of events.

Tweets from users with both structured

Precision (marco-average) (%)
and unstructured data

Overall
64.3
93.4
94.4

Recall (marco-average) (%)
and unstructured data

Overall
88.1
89.5
90

6. Discussion of the results

Tweets from users with both structured Tweets from users with both structured

and unstructured data

Overall
88.2
98.2
98.3

This study has identified Twitter as a viable source of collecting
transportation data by analyzing both structured and unstructured
tweets. In the unstructured tweets generated by public, ambiguities
exist in tweet texts, which influence the classifier performance. Also,
the lack of transportation domain-specific ontology, language-related
challenges (e.g., jargons in the language), imbalanced data in different
classes, improper annotation, and lack of location information are some
of the critical challenges to analyze the unstructured tweets (Grant-
Muller et al., 2015; Kuflik et al., 2017). The general analytical frame-
work has two steps: tweet classification and tweet geocoding. Of these
steps, the tweet classification framework can be transferred to other
locations once the tweets are collected from those regions, and the
classifiers are trained with data (both structured and unstructured)
generated specifically from those regions. For tweet geocoding, the NYC
geoclient and Geopy geocoders are used. The NYC geoclient is an API,
which is available for NYC only. To identify locations for other areas,
area-specific geocoders can be used. Also, the Geopy geocoder can be
used to identify the location from any region on this planet. In the fu-
ture, other publicly available databases can be augmented with the
Twitter-based transportation event identification system. Publicly
available navigation tools, such as Waze and Google maps, provide data
on incident, construction, and major events. Google map shows the live
traffic data based on historical data as well as real-time smart-phone
based crowdsourced data. Additional data, such as data related to
construction, incident, special events, are derived from the Waze ap-
plication, which is a crowdsourced-based application. Waze is a spe-
cialized social network tool for navigation, which provides customized
routes for users based on the users' preferences (the route through a
low-price gas station, police activities along the routes, etc.). Data from
these platforms (i.e., Google map, Apple map, Waze) can be integrated

Tweets from users with
unstructured data
Other Users

85.9
88.7
88.5

TotalTraffic Service

Provider
49.4
94.4
95.2

Tweets from users with structured data

Accuracy (%)
511 Service
Provider
91.8

99.4

L-LDA incorporated SVM  99.4

Classifier
L-LDA
SVM

Classifier accuracy for transportation-related sub-classes by different classifiers.

Table 8
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Table 9
Evaluation of L-LDA incorporated SVM (percentages are shown in parenthesis).

Cities 96 (2020) 102410

Actual class Predicted Class

Sample size (classification/misclassification accuracy %)

Construction Traffic operations Incident Special events Other events
Construction 800 (99.5) 2 (0.25) 1(0.12) 0 (0.0) 1(0.12)
Traffic operations 1(1.12) 51 (57.3) 25 (28.1) 0 (0.0) 12 (13.5)
Incident 0 (0.0) 3(0.12) 2479 (99.64) 0 (0.0) 6 (0.24)
Special events 0 (0.0) 0 (0.0) 0 (0.0) 18 (100) 0 (0.0)
Other events 1 (0.43) 5 (2.16) 5 (2.16) 0 (0.0) 220 (95.24)
Table 10 60 - 0
Precision and recall for L-LDA incorporated SVM. 5 8
Measures ~ Sub-class “é
a 501
Construction Trafﬁc‘ Incident Special Other §
operations events events 8 g
o
Precision  99.8% 83.3% 98.8%  98.1% 92.2% T 404
Recall 99.6% 57.42% 99.6% 97.4% 95.2% 5 é 0
]
5 § 0
with the transportation-related data available from the Twitter. Also, Z% ks
labeling of 700 K tweets with multiple human annotators is a challen- g 20
ging and time-consuming task. In a parallel study, manual annotation of g
Tweet dataset on UberPool is conducted with a small sample size (i.e., 9
1000 tweets), where three different annotators were involved (Pratt 2 10 4
et al., 2019). This study reported the final labels from these three an- ©
notators based on the weighted average method. The inter-annotator
agreement from the parallel study on the UberPool dataset is 98% for 0 —
the speaker (i.e., identifying who generated that tweet), 86% for the er—

subject (i.e., identifying what is the tweet about), and 96% for the
sentiment (i.e., identifying general emotion of the tweet). Sometimes
the inter-annotator agreement rates can be low if the subject matter
experts are not involved. In one study (Nowak & Riiger, 2010), authors
evauated crowd-sourcing based annotation and found that the non-ex-
pert based inter-annotator rate is much lower than that of the expert-
based. Further, because of language ambiguity, typos, and lack of
context in the texts, the inter-annotator agreement can be low. In the
future, a machine learning-based auto-annotator can be used to anno-
tate the Twitter data, and manual labeling can be performed to verify
the performance of the machine-learning based auto-annotator.

To increase the classifier (i.e., classifier to categorize transportation
and non-transportation data) accuracy with only unstructured data, a
data-driven feedback loop can be used in the framework which will
monitor the performance of the machine-learning based classifier and
update the database in real-time. In the unstructured tweets, general
people and different news media provided information about con-
structions, incidents, and traffic operations. They also provided: (a)
comments about the public transit, and ridesharing services, (b) update
from multi-modal terminals (i.e., airport, public transit), (c) opinions
about transportation events, (d) comments about other road travelers'
behavior, etc. Due to the large topic variation for a single dataset

Table 11
L-LDA identified top words for transportation sub-classes.

Fig. 6. Box plot of the geocoder position and tweet actual position distance.

having a low sample size, classification of the unstructured data from
general people and news media is inherently challenging. If more data
can be collected from the general public, the data can be used for crash
data validation, secondary crash identification, and bottleneck extent
identification due to congestion and/or construction. Using more un-
structured transportation-related data in the future, the better classifier
can be developed to classify the unstructured data more accurately. In
one study (Holzinger, 2016), the author discussed reinforcement
learning and preference learning methods to provide feedback to the
machine learning models, which can be used in the future for the
Twitter classification framework as shown in Fig. 8. In this framework,
the auto annotator will assign labels to the new training and validation
tweet set, and store the data in the database. The machine learning
(ML) based classifier will assign labels to the test data, which will be
evaluated by the classification-performance monitoring module. Later
the monitoring module will provide performance feedback to the
classifier so that the ML can be updated with time to achieve better
classification accuracy.

Transportation sub-class L-LDA-identified top words

Construction
Traffic Operations
services
Incident
Special Events
construction, broadway, avenue, interchange, east
Others

Street, north, cleared, station, both, url, new, update, west, exit, wb, eb, sb, nb, construction, directions, avenue
Closed, eb, traffic, minutes, closure, path, train, nyc, both, avenue, restrictions, new, side, update, ave., delay, queens, sb, ramp, nb, directions, url, wb,

Street, incident, traffic, cleared, station, both, url, new, update, exit, wb, eb, expressway, sb, nb, directions, avenue
Highway, special, event, plaza, sb, update, wb, service, center, side, traffic, toll, bound, cleared, streets, both, url, level, eb, parkway, york, nb,

Traffic, bus, ny, train, uber, york, new, terminal, my, airport, driver, car, subway, url, flight, mta, nyc
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Fig. 7. Density map for Monday using Twitter.
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Fig. 8. Real-time, data-driven and feedback-based tweet identification framework.

7. Contributions of the research tested (L-LDA incorporated SVM) to classify the transportation-related
tweets. In one study, the authors (Dalal & Zaveri, 2011) discussed the

In this research, a novel tweet classification and geocoding frame- importance of developing a hybrid method for text classification to
work has been developed for the real-time tweet stream classification achieve better classification results. For the location identification, a
and location identification for any region. This study fills the gap in text novel method of identifying tweet location based on the string simi-
stream analysis by developing a tweet stream analysis framework, larity is developed. On average, the geocoder assigned coordinates fall
which is absent from the literature (Mironiczuk & Protasiewicz, 2018). within 7.3 miles of the actual tweet location. This geocoder can accu-
The framework has two components, which are tweet classification and rately identify locations from tweet text generated by the general public

location identification. In the tweet classification, one hybrid method is if they mention any landmark or street names within the tweet text.
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Using this framework, real-time tweet stream is automatically analyzed
for any large region, and the extracted information can be used by both
public and private agencies, researchers, and the general public.

8. Conclusions

Public or government agencies, such as transportation agency and
law enforcement agency, and private companies collect, process, and
disseminate traffic information as part of their services to travelers. Any
accurate publicly accessible information would increase the reliability
of the public or private agency collected data. Among other external
data sources, the emergence of social media platforms over the last
decade has created a unique platform for public agencies to collect real-
time incident status information from the social media users with a
minimum resource investment. In this research, an analytical approach
is developed for supporting tweet classification and string similarity
based geocoding in a parallel computing environment. Once the clas-
sifiers are developed, streaming data from Twitter can be classified in
real-time to identify the transportation related tweets. Developing su-
pervised learning based classifiers for a large region using tweets is
computationally expensive, as the computation time can be very high.
In this research, parallel computation-enabled natural language pro-
cessing steps and a novel geocoding procedure have been used to
overcome the inherent ambiguities of tweets to extract relevant trans-
portation-related information.

A new supervised classifier is developed so that SVM may use topic
distribution probability using L-LDA into the SVM feature space. The
accuracy of this classifier (i.e., L-LDA incorporated SVM) is found to be
significantly higher than the accuracies of both standalone L-LDA or
SVM at a 90% confidence level. The achieved 99% classification ac-
curacy (i.e., compared to the manually coded labels) is above the
minimum accuracy requirement (i.e., 85%) for the statewide incident
reporting system according to the Title 23 of the Code of Federal
Regulations. It is observed that 511 and TotalTraffic are the influential
users of Twitter in NYC and its surrounding areas, and apart from these
accounts, very limited transportation related-tweets are generated from
general public and news accounts.

Also, in this research, the geo-coordinates assigned by the string-
similarity based geocoding process is validated using the tweets which
have geo-coordinate information available from Twitter. On average,
the assigned coordinates fall within 7.3 miles of the actual tweet loca-
tion. Using these accurately classified and geocoded tweets, the trans-
portation-related information available from the general public in
Twitter can be used to augment public agency collected data, such as
incident data collected by the New York Police Department. Various
information (e.g., incident impact, congestion extent, emergency
weather) are available from Twitter, which can provide additional in-
formation to public agencies about any traffic events. The L-LDA in-
corporated SVM classifier can be utilized in a traffic management center
or TMC to extract transportation data from publicly available tweet
dataset to help manage traffic in real-time. Data from the general public
can help receiving the real-time update during emergency evacuation
events, or special occasions, which can help real-time traffic manage-
ment as well as future traffic planning. Analysis of both structured and
unstructured tweets demonstrates the feasibility of using Twitter as a
viable source for transportation data collection. This research is con-
ducted with publicly available Twitter data which is only 1% of the
total Twitter dataset. If Twitter Firehose data is included, it will provide
more coverage to validate the traditional roadway traffic sensor (e.g.,
loop detector, video camera) collected data.
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