
Massively Scalable Parallel KMeans on the HPCC
Systems Platform

Lili Xu∗†, Amy Apon∗, Flavio Villanustre†, Roger Dev† and Arjuna Chala†
∗School of Computing

Clemson University, Clemson, USA
Email: lilix@clemson.edu, aapon@clemson.edu

†HPCC Systems
LexisNexis Risk Solutions, Alpharetta, USA

Email: Flavio.Villanustre@lexisnexisrisk.com, Roger.Dev@lexisnexisrisk.com, Arjuna.Chala@lexisnexisrisk.com

Abstract—Clustering algorithms are an important part of un-
supervised machine learning. With Big Data, applying clustering
algorithms such as KMeans has become a challenge due to
the significantly larger volume of data and the computational
complexity of the standard approach, Lloyd’s algorithm. This
work aims to tackle this challenge by transforming the classic
clustering KMeans algorithm to be highly scalable and to be able
to operate on Big Data. We leverage the distributed computing
environment of the HPCC Systems platform. The presented
KMeans algorithm adopts a hybrid parallelism method to achieve
a massively scalable parallel KMeans. Our approach can save a
significant amount of time of researchers and machine learning
practitioners who train hundreds of models on a daily basis. The
performance is evaluated with different size datasets and clusters
and the results show a significant scalabilty of the scalable parallel
KMeans algorithm.

Index Terms—Scalable KMeans, Hybrid Parallelism, Machine
Learning, High Performance Computing, HPCC Systems

I. INTRODUCTION

As a result of the fast growing of data-intensive industries
such as social media, online shopping, blockchian and Internet
of Things, new datasets and sources of data are becoming
available at an unprecedented rate. With this growth in size and
speed of data, traditional machine learning algorithms such as
KMeans [1] face a challenge to process data sizes that can no
longer fit into main memory of a single computer.

Compounding the problem of larger data sizes, algorithms
like KMeans depend on certain hyper-parameters to identify
the most optimal model, which requires the execution of the
algorithm multiple times with different values for the hyper-
parameters. In the case of KMeans, a pre-defined hyper-
parameter K, representing the number of centroids, and the
starting values for the centroids, are required to train the
model. In many cases, machine learning practitioners need to
execute the algorithm a large number of times with hundreds
of these values, which is very time and resource-consuming.

To meet these challenges, in this paper we introduce a
massively scalable parallel KMeans to cluster Big Data that
leverages the distributed computing environment of the HPCC
Systems platform.

<978-1-7281-2619-7/19/$31.00 ©2019 IEEE>

II. BACKGROUND

A. HPCC Systems

HPCC Systems (High Performance Computing Cluster Sys-
tems) is an open source, data-intensive computing system
platform developed by LexisNexis Risk Solutions in 2000. It is
a highly scalable distributed computing system based on com-
modity hardware. It includes system software that provides
a distributed file storage system, job execution environment,
online query capability, parallel application processing, and
parallel programming development tools.

HPCC Systems uses clusters of commercially available off-
the-shelf (COTS) [2] hardware running the Linux operating
system in a manner similar to Hadoop. The platform provide a
complete and comprehensive job execution environment along
with a distributed query and file systems support that are
needed for data-intensive computing through the additional
system software and middleware components to. In HPCC
Systems, datasets are stored in the Dali File System as tabular
records, where each record corresponds to a row and the
computation is implicitly parallel.

1) Architecture: HPCC Systems includes the Thor and
Roxie [4] clusters, as well as common middleware compo-
nents. It also includes an external communications layer and
client interfaces that provide both end-user services and system
management tools. The auxiliary components support moni-
toring and facilitate loading and storing of file system data
from external sources. Fig. 1 illustrates the overall software
architecture of the HPCC Systems environment. It includes
system configurations to support both high-performance online
query applications using indexed data files (Roxie) and parallel
batch data processing (Thor) as shown in Fig. 2.

The computing engine Thor has a master-slave architecture
as shown in Fig 3. Each physical Thor node is capable
to run multiple processes to offer flexible configuration. A
Roxie cluster is capable of high-performance online processing
that can efficiently execute multiple queries in parallel. It
is similar in its function to Hadoop with HBase and Hive
capabilities added. Both Thor and Roxie clusters utilize the
same programming language ECL to implement applications,
which can lead to higher programmer productivity.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. HPCC Systems Architecture

Fig. 2. Use of HPCC Systems for Big Data Processing [3]

Another feature of HPCC Systems is the extensible library
of native machine learning routines [5]. It is a rich set of
fully scalable parallel Machine Learning and matrix processing
algorithms covering supervised and unsupervised learning,
such as KMeans, decision trees, regression analysis, statistics
and probabilities.

2) Programming Framework: In the HPCC Systems plat-
form, the Data operations and data queries are defined using
a declarative dataflow programming language called Enter-
prise Control Language (ECL). ECL is a data-centric par-

Fig. 3. Thor Computing Cluster

allel processing language designed specifically for the data-
intensive computing environment of HPCC Systems. It plays
an important role in making HPCC Systems excel at data-
intensive Extract, Transform and Load tasks (ETL) and Big
Data analytic.

An ECL program, also known as a ’WorkUnit’ or ’Query’,

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Dataflow Graph of HPCC Systems

declaratively defines activities as nodes in a dataflow graph
in ECL-Watch as shown in Fig. 4, where edges represent the
data traversal across these activities. The graph is displayed
for the user via the ECL-Watch interface.

Fig. 5. Workunit Detail Page

3) Performance Monitor: In HPCC Systems, as a side
effect, the ECL compiler will generate a full execution plan
rendered as a visual dataflow graph, accessible through the
ECL-Watch management web tool after an ECL program is
submitted . This visual dataflow graph plays an important
role to help optimize the Big Data applications on the HPCC
Systems platform.

In HPCC Systems, you can gain a better understanding of
the use of resources and the activities such as those take the
longest by leveraging the detailed timing information (see Fig.
5) in ECL-Watch. In addition to accessing the visual execution
plans, ECL-Watch provides this timing information to direct
the optimization work to those areas that can provide the
biggest amount of benefit with the least amount of effort. Our
work utilizes the built-in ECL distributed computing jobs and
the dataflow graph in ECL-watch to optimize Big Data jobs
in HPCC Systems.

B. KMeans Clustering Algorithm

Machine learning algorithms can be roughly categorized
into two types based on their requirement for training data:
supervised learning and unsupervised learning. Unsupervised
learning is comprised of machine learning algorithms that do
not require labeled training data. Within the unsupervised cate-
gory, KMeans is one of the most popular clustering algorithms
and is extensively used in the academia and industry to develop
scientific and industrial applications [6]. KMeans has been
widely used in many different fields, including education [7],
agriculture [8], fraud detection [9], public transportation [10],
IoT management [11].

KMeans groups an unlabeled dataset of p observations into
a predefined K number of clusters, so that the resulting
clusters have high intra-cluster similarity. If centroids are
m1,m2, ...mk, and partitions are c1, c2, ...ck, then one can
calculate the inertia of KMeans as:

K∑
k=1

∑
i∈ck

||xi −mk||2 Euclidean distance (1)

To initiate the clustering process, the KMeans algorithm
takes the number of clusters K and the initial position of the
centroids (the center of each cluster) as model parameters. The
initial centroids can be randomly chosen or identified using
optimization methods to find better initial centroids, such as
what is done in K-means++ [12].

After initialization, the KMeans model starts an iterative
process which keeps updating the position of the centroids and
their associations with the observations. There are two major
steps in the iterative process: assignment step and update step.

With a set of k centroids (µ), the assignment steps first
calculates the distances from each observation to each centroid
via Euclidean Distance [1]. All observations p are assigned to
their nearest centroid as described by [13]. The observations
assigned to the same centroids are regarded as a cluster (see
equation 2).

S
(t)
i =

{
xp :

∥∥xp − µ(t)
i

∥∥2 ≤ ∥∥xp − µ(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k}
(2)

The next step is the update step. The centroids are updated
or repositioned by calculating the new mean of the assigned
observations, which is the mean of the least squared Euclidean
distance (see equation 3).

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (3)

By iterating between the last two steps, the KMeans algo-
rithm tries to optimize the objective function.The final position
of the centers are generated and the iterations stop when all

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

observations remain at the assigned centroids and therefore the
centroids would not be updated anymore.

In practice, a maximum number of iterations and a converge
rate or tolerance are defined to avoid an indefinite number
of iterations and unnecessary computations. In this case, the
KMeans algorithm will stop iterating once it reaches the
maximum number of iterations or the movement distance of
each center is smaller than the tolerance.

The rest of the paper is organized as follows: Section II
provides the related works on the scalable KMeans algorithm.
In Section III, we demonstrate our approach to implementing
a massively scalable parallel KMeans algorithm on the HPCC
Systems platform. Section IV introduces the experimental en-
vironment and experiment results. Section V is the conclusion
of our work. We present our future work in Section VI.

III. RELATED WORKS

Most of the traditional clustering [1] [14] [15] algorithms
are designed for centralized computation environments. As
data sizes become larger, traditional clustering methods are
challenged. To meet this challenge, parallel and distributed
clustering algorithms have been implemented, such as [16]
[17] [18]. In this session, we introduce some of the parallel
and distributed KMeans implementations described in the
literature.

One type of parallel Kmeans is an approximation of the
original KMeans. For example, [19] introduces a distributed
KMeans clustering algorithm based on distributed coreset
construction to approximate the original KMeans. [20] is also
an approximation solution which further proceed the work of
[19]. It proposed a distributed Principal component analysis
[21] algorithm to cluster the data in a projected space. Other
variances of parallel KMeans have been published as well
such as the parallel fuzzy KMeans [22] and privacy preserving
parallel KMeans [23].

Another type of parallel KMeans pursue the exact result
as the original KMeans. Our work belongs to this category.
some works in this category utilize the traditional CPU-based
computers such as [16] [24] [17]. Some works take avantage of
the invention of Graphic Processing Unit (GPU) and the use of
GPUs in general computing problems (GPGPU). For example,
[25] [26] [27] [28] utilize the shared-memory computing
structure and high performance GPUs to implement parallel
KMeans.

In addition, scalable implementations of KMeans are avail-
able using High Performance Computing (HPC). For example,
[29] implements high performance KMeans using Message
Passing Interface (MPI) in an HPC distributed computing
environment. Other research such as [30] [31] shows scalable
implementations based on different distributed frameworks and
platforms.

In this paper, we present a massively scalable parallel
KMeans implementation to cluster very large datasets on
the HPCC Systems platform. There are some works focused
on implementing the KMeans algorithm to cluster massive
datasets such as [32] [33]. [34] is very close to our work

instead of parallelizing KMeans in Hadoop Mapredcue frame-
work.

IV. APPROACH

To maximize the parallelization and minimize the inter-node
communication, our key approach to implementing a highly
scalable KMeans on HPCC Systems uses data parallelism. We
also show how features of HPCC Systems can be leveraged
during specific training phases by allowing it to train different
models concurrently on very large datasets on commodity
hardware.

1) Data Parallelism Method: The KMeans algorithm
groups p observations into K clusters by iteratively updating
the centers until convergence.

At each iteration, the computation performs two types of
distance calculations: the distance between each observation
to each center and the distance movement of each center
compared to the last iteration. The computation cost of these
two types of distance calculation are O(nkd) and O(kd)
respectively, where n is the number of observations, k is the
number of cluster and d is the dimensions of the clustering
space.

In general, the distance calculations between each obser-
vation and each center are more expensive than the distance
calculations for the movement of the centers. For Big Data ap-
plications in particular, the distance calculation between each
observation and each center is significantly more expensive
due to the number of observations n being much bigger than
k and d.

Based on above analysis, our algorithm design aims to
use �Data Parallelism to maximize the parallelization of the
distance computations between observations and centroids and
minimize the inter-node communication as much as possible.

Algorithm 1 Data Parallelism
Input: Observations O, Centers C
Output: Groups G

1 Distribute O to each node evenly
2 while Not Converged do
3 Broadcast C to each node;
4 Locally calculate the distance between each observation

and each center;
5 Locally calculate and assign the closest center to each

observation;
6 Locally partial update the values of each center;
7 Globally update the number of cluster members;
8 Globally update the values of C;

9 Result clustered Groups G

Our implementation of the KMeans algorithm calculates all
the distances locally via embarrassing parallelism. Most of
the assignment and update steps are also executed in parallel,
except the global update of the centers. The pseudocode of
�Data Parallelism of the KMeans algorithm on the HPCC
Systems platform is shown in Algorithm 1.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

As we can see from the pseudocode, the observations are
first evenly distributed to each node. Then the centers are
broadcast to each node so that each node has a full copy
of all the centers. This step initiates the data parallelism and
allows the following steps to be locally calculated without
any communication cost, until the global update of the centers.
Note that in Step 4, the observations closest to the same center
are grouped as a cluster or a group. In other words, they are all
members of the same cluster. In Step 5, the value of centers are
locally updated by summing up the values of the local cluster
members. Since the members of each cluster can be located
in different nodes, the local value of each center needs to sum
up and update globally as shown in Step 7 for the accurate
final result to go into the next iteration if not converged.

In HPCC Systems, datasets are stored in the Dali File
System as records, where each record corresponds to a row.
The computation on HPCC Systems is not only implicitly
parallel but also allows users to explicitly control the data
distribution and customize the distribution methods, such as
broadcasting or gathering.

To implement the presented KMeans, we utilize both the
implicit and explicit parallelism on HPCC Systems. For ex-
ample, to distribute the observations evenly on each node
and broadcast the centers, we use explicit distribution. As a
result of this explicit distribution, the closest center of each
observation can be calculated and assigned locally and the
values of each center can be partially updated locally, as well.
The final step is to globally update the value of each center
by gathering the local value of each center.

2) Notes on Model Parallelism in HPCC Systems: In addi-
tion to the scalability to support clustering of massive datasets,
the presented work also enables model parallelism, that is,
the ability to run massive number of models simultaneously,
leveraging the programming model of HPCC Systems. Model
parallelism is when each replica trains over the same or
different data but uses different part of the model [35]. Model
parallelism also allows for large number of models to run
efficiently in parallel to save modeling time.

Model parallelism is essential for Big Data because the
training process of Big Data applications usually takes hours or
even days. Imagine needing to run a model on 10,000 different
datasets with 10,000 different hyperparameters. This would
need a total of 100,000,000 models to run sequentially.

Algorithm 2 Model Parallelism
Input: Groups of Observations GO, Groups of Centers GC
Output: Groups of Cluster GG

1 Distribute GO to each node evenly
2 while Not Converged do
3 Broadcast GC to each node;
4 Locally calculate the distance between each observation

and each center in e
¯
ach group;

5 Locally calculate and assign the closest center of each
observation in e

¯
ach group;

6 Locally partial update the values of each center in e
¯
ach

group;
7 Globally update the number of cluster members in e

¯
ach

group;
8 Globally update the values of GC of different group;

9 Result clusters of different group GG

HPCC Systems enables the execution of a large number
of models simultaneously on different datasets, leveraging the
Myriad Interface and computing framework of HPCC Systems.
The Myriad Interface allows a user to perform multiple inde-
pendent machine learning activities within a single interface
invocation [36]. The pseudocode of the massively Scalable
Parallel KMeans algorithm on HPCC Systems platform is as
shown in Algorithm 2.

The model inputs of Algorithm2 are different from
Algorithm1: different groups of observations and different
groups of centers instead of a single group of observations
and a single group of centers. With the help of the machine
learning dataframe of HPCC Systems, we are able to map
datasets with its centers in different groups.

3) Combining Data Parallelism and Model Parallelism:
The implemented KMeans algorithm adopts both data paral-
lelism and model parallelism to enable KMeans calculations
on massive datasets and also with a large count of hyper-
parameters. In this section, we introduce the methods that we
use to realize this hybrid parallelism in HPCC Systems.

HPCC Systems is a Big Data processing platform with
implicit parallel computing. It also allows users to control the
data distribution method explicitly via the �Distribute function
by specifying the methods in its �expression. This is the key
function to realize data parallelism. Further more, the machine
learning library of HPCC Systems provide core dataframes
such as the ’AnyField’ dataframe, which are essential to realize
the myriad interface or model parallelism.

Thus, in HPCC Systems the hybrid parallelism can be
realized by utilizing the flexible data distribution control and
Myriad Interface. As seen in the base dataframe 1, each data
record is assigned a model identifier(wi) and an observation
identifier(id). Based on these two identifiers, the �Distribute
function can distribute the data based on the wi and id of
each record, allowing data and model parallelism in HPCC
Systems.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

Listing 1. Hybrid Parallelism Dataframe
EXPORT AnyFie ld := RECORD

/ / model i d e n t i f i e r
t Work Item wi ;
/ / o b s e r v a t i o n i d e n t i f i e r
t RecordID i d ;
/ / f e a t u r e i d e n t i f i e r
t F ie ldNumber number ;

END;

V. EXPERIMENT ENVIRONMENT AND RESULTS

To evaluate the performance of the Scalable Parallel
KMeans on HPCC Systems platform, experiments are con-
ducted on various clusters with different number of nodes. The
version of HPCC Systems for performance evaluation is 6.4.0.
The size of different clusters are 1 node, 4 nodes, 20 nodes, 25
nodes and 400 nodes, each of which has 2 x Intel(R) Xeon(R),
2.10GHz, 8 cores, 8GB memory, 140GB Micron 5100 SSD
and 5Gbps network adapters.

Our experimental data is the public Iris flower dataset [37],
which is widely used in the fields of data mining, machine
learning, and clustering. The original Iris dataset has 150
records and five attributes. To evaluate the accuracy and
scalability of the presented work, the original Iris dataset
is replicated to increase the data volume. As a result, the
experimental data sizes range from 150 records to 600,000,000
records. We also apply our method to a second test dataset,
the public CoverType dataset, which is obtained from [38]. In
the CoverType dataset each record represents the cartographic
data for one plot of Rocky Mountain forest. The dataset has
54 attributes and 500 million records.

Fig. 6. KMeans Experimental results, Iris dataset

The performance of the KMeans implementation is shown
in Fig. 6 and Fig. 7. From the results we can see that:

1) The single node configuration shows better performance
only when the data size is less than 150,000 records.
When the data size is too small, other configurations’
performance is heavily affect by the communication
overhead. However, when the data size is larger than
150,000 records, all of the configurations outperform
the single node configuration. Moreover, the single node

Fig. 7. Single Node Configuration Runs Show Out of Memory Compared to
Runtimes on Various-Sized Clusters (Time in Seconds, Iris dataset)

configuration runs out of memory when the data size
increases to 7,500,000 records as we can see in Fig. 7.

2) As the data sizes increase, the runtime of the single node
and 4 nodes configurations increase rapidly. In contrast,
the 20, 25 and 400 nodes configurations show good
scalability with much less run time and lower run time
increase rate as show in Fig. 6.

If we remove single and four-node configurations from the
graph, the results are as shown in Fig. 8. We can see that
all nodes scale reasonably well and 400 nodes eventually
outperform other clusters when the data is large enough.

Fig. 8. KMeans Runtime on Larger Cluster, Iris dataset

To further evaluate the performance of our method, we
conduct experiments on massive datasets, as shown in Fig.
9. The record count ranges from 15,000,000 to 600,000,000.
The testing clusters have 4, 20 and 400 nodes respectively.

Fig. 10 shows that the 400-node cluster configuration has
the best performance for all massive datasets. As data sizes
increase, the 400-node cluster configuration has outstanding
performance as compared to the smaller cluster configurations,
with a lower run time increase rate as shown in Fig. 9.

We validate the accuracy of our approach by comparing
the results of clustering experimental data to the KMeans
implementation in scikit-learn [39]. The comparison shows
that the output of the methods is the same.

To further demonstrate the scalabiliy of the presented work,
another set of experiments are conducted with the CoverType
dataset with higher dimensions. We randomly sampled 5,000
records as base dataset and test the scalability as the same
manner as testing Iris dataset. The result also shows impressive
scalability as seen in Fig. 11.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. KMeans Runtime on Massive Datasets

Fig. 10. Runtimes on Massive Datasets (Time in Seconds, Iris dataset)

Fig. 11. KMeans Runtimes on CoverType Dataset (Time in Seconds)

Our implementation [40] is open source and can be accessed
via https://github.com/hpcc-systems/KMeans.

VI. CONCLUSIONS

To tackle the challenge of clustering big datasets we present
a massively scalable parallel KMeans method that leverages
the distributed computing environment of the HPCC Systems
platform. Our key contribution is to leverage data parallelism
in the distributed environment and an efficient method for
global update of KMeans centroids. We also call out the
model parallelism available in HPCC Systems. We report
the performance of the implementation on a large range of
dataset sizes on several clusters with different node counts. The
experimental results show that massive datasets that cannot
be processed on a single node environment can be processed
effectively in parallel using a distributed cluster. The results
show significant speedup and scalability up to a cluster of size
400 nodes on a dataset of 600,000,000 records.

VII. FUTURE WORK

In future work we will first explore optimization of the
positions of the initial centroids. The current implementation
does not consider optimal starting positions. Secondly, we will
study the performance on additional types of datasets and on
additional sizes of clusters.

REFERENCES

[1] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on
information theory, vol. 28, no. 2, pp. 129–137, 1982.

[2] N. A. GENERAL SERVICES ADMINISTRATION, DEPARTMENT
OF DEFENSE and S. ADMINISTRATION, “2.1-3 federal acquisition
regulation,” p. 46, 2019.

[3] LexisNexis. (2017) HPCC Systems. [Online]. Available: https:
//hpccsystems.com

[4] HPCC Systems. (2017) Roxie: The Rapid Data Delivery
Engine. [Online]. Available: http://cdn.hpccsystems.com/releases/
CE-Candidate-6.4.2/docs/RoxieReference-6.4.2-1.pdf

[5] ——. (2019) HPCC Systems Machine Learning Library.
[Online]. Available: https://hpccsystems.com/download/free-modules/
machine-learning-library

[6] P. Berkhin, “A survey of clustering data mining techniques,” in Grouping
multidimensional data. Springer, 2006, pp. 25–71.

[7] O. Oyelade, O. Oladipupo, and I. Obagbuwa, “Application of k means
clustering algorithm for prediction of students academic performance,”
arXiv preprint arXiv:1002.2425, 2010.

[8] M. R. Badnakhe and P. R. Deshmukh, “An application of k-means
clustering and artificial intelligence in pattern recognition for crop
diseases,” in International Conference on Advancements in Information
Technology, 2011.

[9] A. Srivastava, A. Kundu, S. Sural, and A. Majumdar, “Credit card
fraud detection using hidden markov model,” IEEE Transactions on
dependable and secure computing, vol. 5, no. 1, pp. 37–48, 2008.

[10] R. A. Kadir, Y. Shima, R. Sulaiman, and F. Ali, “Clustering of public
transport operation using k-means,” in 2018 IEEE 3rd International
Conference on Big Data Analysis (ICBDA). IEEE, 2018, pp. 427–432.

[11] J. Stewart, R. Stewart, and S. Kennedy, “Dynamic iot management
system using k-means machine learning for precision agriculture ap-
plications,” in Proceedings of the Second International Conference on
Internet of things and Cloud Computing. ACM, 2017, p. 142.

[12] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” in Proceedings of the eighteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2007, pp. 1027–1035.

[13] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, no. 14. Oakland,
CA, USA, 1967, pp. 281–297.

[14] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–
temporal data,” Data & Knowledge Engineering, vol. 60, no. 1, pp.
208–221, 2007.

[15] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy
covariance matrix,” in 1978 IEEE conference on decision and control
including the 17th symposium on adaptive processes. IEEE, 1979, pp.
761–766.

[16] M. K. Ng, “K-means-type algorithms on distributed memory computer,”
International Journal of High Speed Computing, vol. 11, no. 02, pp. 75–
91, 2000.

[17] I. S. Dhillon and D. S. Modha, “A data-clustering algorithm on dis-
tributed memory multiprocessors,” in Large-scale parallel data mining.
Springer, 2002, pp. 245–260.

[18] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, “The study of parallel k-
means algorithm,” in 2006 6th World Congress on Intelligent Control
and Automation, vol. 2. IEEE, 2006, pp. 5868–5871.

[19] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and
k-median clustering on general topologies,” in Advances in Neural
Information Processing Systems, 2013, pp. 1995–2003.

[20] Y. Liang, M.-F. Balcan, and V. Kanchanapally, “Distributed pca and k-
means clustering,” in The Big Learning Workshop at NIPS, vol. 2013.
Citeseer, 2013.

[21] I. Jolliffe, Principal component analysis. Springer, 2011.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

[22] L. Vendramin, R. J. G. B. Campello, L. F. Coletta, and E. R. Hruschka,
“Distributed fuzzy clustering with automatic detection of the number
of clusters,” in International Symposium on Distributed Computing and
Artificial Intelligence. Springer, 2011, pp. 133–140.

[23] S. Patel, V. Patel, and D. Jinwala, “Privacy preserving distributed k-
means clustering in malicious model using zero knowledge proof,”
in International Conference on Distributed Computing and Internet
Technology. Springer, 2013, pp. 420–431.

[24] D. Arthur, B. Manthey, and H. Röglin, “K-means has polynomial
smoothed complexity,” in 2009 50th Annual IEEE Symposium on
Foundations of Computer Science. IEEE, 2009, pp. 405–414.

[25] E. Kijsipongse, U. Suriya et al., “Dynamic load balancing on gpu
clusters for large-scale k-means clustering,” in 2012 Ninth International
Conference on Computer Science and Software Engineering (JCSSE).
IEEE, 2012, pp. 346–350.

[26] P. Mackey and R. R. Lewis, “Parallel k-means++ for multiple shared-
memory architectures,” in 2016 45th International Conference on Par-
allel Processing (ICPP). IEEE, 2016, pp. 93–102.

[27] B. Hong-Tao, H. Li-li, O. Dan-tong, L. Zhan-shan, and L. He, “K-
means on commodity gpus with cuda,” in 2009 WRI World Congress on
Computer Science and Information Engineering, vol. 3. IEEE, 2009,
pp. 651–655.

[28] R. Farivar, D. Rebolledo, E. Chan, and R. H. Campbell, “A parallel
implementation of k-means clustering on gpus.” in Pdpta, vol. 13, no. 2,
2008, pp. 212–312.

[29] J. Zhang, G. Wu, X. Hu, S. Li, and S. Hao, “A parallel k-means
clustering algorithm with mpi,” in 2011 Fourth International Symposium
on Parallel Architectures, Algorithms and Programming. IEEE, 2011,
pp. 60–64.

[30] V. R. Eluri, M. Ramesh, A. S. M. Al-Jabri, and M. Jane, “A comparative
study of various clustering techniques on big data sets using apache
mahout,” in 2016 3rd MEC International Conference on Big Data and
Smart City (ICBDSC). IEEE, 2016, pp. 1–4.

[31] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii,
“Scalable k-means++,” Proceedings of the VLDB Endowment, vol. 5,
no. 7, pp. 622–633, 2012.

[32] M. Capó, A. Pérez, and J. A. Lozano, “An efficient k-means algorithm
for massive data,” arXiv preprint arXiv:1605.02989, 2016.

[33] ——, “An efficient k-means clustering algorithm for massive data,”
arXiv preprint arXiv:1801.02949, 2018.

[34] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in IEEE International Conference on Cloud Computing.
Springer, 2009, pp. 674–679.

[35] B. T. Polyak and A. B. Juditsky, “Acceleration of stochastic approxima-
tion by averaging,” SIAM Journal on Control and Optimization, vol. 30,
no. 4, pp. 838–855, 1992.

[36] D. Roger. (2018) Understanding the Myriad Interface feature
of HPCC Systems Machine Learning. [Online]. Available: https:
//hpccsystems.com/blog/understanding-myriad-interface

[37] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[38] S. Hettich and S. Bay, “Uci kdd archive,” 1999.
[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine Learning in Python ,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[40] HPCC Systems. (2019) HPCC Systems KMeans Bundle. [Online].
Available: https://github.com/hpcc-systems/KMeans

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on November 11,2020 at 17:57:01 UTC from IEEE Xplore. Restrictions apply.

