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Abstract—In this paper we describe how high performance
computing in the Google Cloud Platform can be utilized in an
urgent and emergency situation to process large amounts of
traffic data efficiently and on demand. Our approach provides
a solution to an urgent need for disaster management using
massive data processing and high performance computing. The
traffic data used in this demonstration is collected from the public
camera systems on Interstate highways in the Southeast United
States. Our solution launches a parallel processing system that
is the size of a Top 5 supercomputer using the Google Cloud
Platform. Results show that the parallel processing system can
be launched in a few hours, that it is effective at fast processing of
high volume data, and can be de-provisioned in a few hours. We
processed 211TB of video utilizing 6,227,593 core hours over the
span of about eight hours with an average cost of around $0.008
per vCPU hour, which is less than the cost of many on-premise
HPC systems.

Index Terms—HPC in the commercial cloud, Google Cloud
Platform, disaster management, massive data processing, traffic
management

I. INTRODUCTION AND MOTIVATION

Imagine a nightmare in which more than three million
people attempt to evacuate a major American city ahead of
a devastating hurricane, but they do not leave soon enough.
Cars stuck on the jammed highways run out of gasoline,
motorists are stranded in a significant heat wave, and more
than 100 people die from the combination of severe gridlock
and excessive heat. This real life nightmare occurred in 2005
in Houston, Texas, as illustrated in Fig. 1.

In this research we demonstrate how high performance
computing (HPC) in the commercial cloud can be utilized in
urgent and emergency situations to process large amounts of
traffic data efficiently and on demand, helping to provide a
solution to a massive and urgent need for disaster management.
Our solution launches a parallel processing system that is the
size of a Top 5 supercomputer [2] using the Google Cloud
Platform. Our approach to an urgent need through the use
of HPC in the commercial cloud has wide applicability. For
example, cities in the southeast region of the US and Texas
have been evacuated regularly due to hurricanes.

This research was supported by NSF Grant #1405767 and by in-kind
support from Google Cloud Platform, Burwood Group, and TrafficVision.

Fig. 1: Traffic jam caused by the evacuation from Hurricane
Rita in Houston TX, September 23rd, 2005 [1]

.
A major hurdle to an emergency evacuation is managing

traffic so that evacuation happens in timely manner [3]. During
an evacuation, traffic can start to back up along the evacuation
routes days before the hurricane is scheduled to make landfall,
limiting the number of people that can be moved in a timely
manner. The ability to create an urgent on-demand HPC
environment in the commercial cloud can assist evacuation
planners in evaluating when and how to begin the evacuation.

Models of evacuation traffic patterns during hurricanes are
valuable tools for adding insight for evacuations. Models can
project and describe evacuation scenarios for similar projected
paths of the hurricane over multiple days and across the region.
These models use data that has been acquired by recording
video across dense camera coverage in a region. The video
enables vision based traffic analytics that can be executed
in batch on an HPC system. Various what-if scenarios can
be evaluated, since the video can be processed according to
potentially affected geographic areas and executed on demand
as the projected path of the oncoming hurricane changes.

The amount of recorded video required for management of
the region as the projected hurricane path changes is large. We
utilize data from public cameras on the US Interstate system
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for our experiment. An evacuation that includes departure,
clean up, and return taking up to 10 days and utilizing 8500
cameras across an evacuation region generates 2M hours of
recorded video and takes up to 2M hours of compute time
to process. The same algorithms that are used to monitor
emergency evacuations and give real time status can also
utilize models built from previous evacuation studies, adding
to the required computational time.

This paper compliments and extends our previous work in
which we identify and propose solutions to the challenges
encountered when executing a massive scale computational
cluster within Amazon Web Services [4]. The natural language
application in the previous work was computationally intensive
and utilized more than 1.2M vCPUs, each concurrently execut-
ing a single threaded process, but the application was not data
intensive. The input for the application was a small number of
parameters and the output of each process was a few thousand
bytes of text data stored in memory until the completion of
execution. The application here is highly data intensive. We
deploy more than 1.5M vCPUs, each concurrently executing a
single threaded process. We utilize the Google Cloud Platform
(GCP), processing about 211TB of video in 2,005,170 hours.
Each process reads its own input file and writes its own output
data, presenting extreme challenges to the storage, network,
compute, and HPC scheduling subsystems, as well as to the
underlying cloud management infrastructure.

The remainder of this paper is organized as follows: Section
II describes related research. Sections III, IV, and V are
organized around the software engineering principles followed
in this research: Requirements Analysis and Specification,
Technology Selection and System Design, and Implementation
and Scalability Evaluation, respectively. Section VI reports the
Integration, Performance, Efficiency and Cost Evaluation. We
conclude the paper in Section VII.

II. RELATED RESEARCH

Three types of related research in the area of urgent comput-
ing are discussed in this section, including research focused on
building infrastructure and support systems, the generation of
simulations, and on creating a generalized definition of urgent
computing. Our work is most closely related to the building
of infrastructure and support systems, but has aspects of all
three types of related research.

The building of infrastructure and support systems tends
to focus on the use of existing computational resources and
how to utilize a type of priority system in order to allow for
urgent computing tasks to be completed in a timely manner.
One system that was designed to help with the issue of urgent
computing is the Special Priority and Urgent Computing
Environment (SPRUCE) [5]. SPRUCE utilizes a token-based
authorization system that can be utilized to facilitate and track
urgent computation sessions. SPRUCE is designed to work
with existing resource providers and to allow the resource
providers to have full control regarding the policies around
which parts of their resources can be utilized for urgent
computation. SPRUCE provides a way for a group of users

to launch their jobs with a higher priority than other users of
the system, which means that their jobs will be executed first
and in a more timely manner. This higher priority can also
mean that for certain resources, a users higher priority job
may “preempt” or cancel another users jobs. These preemption
and priority settings are set by the resource provider. It is the
decision of the administrators to determine where and how
urgent computational jobs are submitted. Thus, researchers
may not have control of when their jobs are executed, which
could cause confusion and lead to job processing delays. The
authors discuss the feasibility of utilizing commercial cloud
resources. However, the paper is focused mainly on existing
supercomputing centers with dedicated resources.

The use of commercial cloud is discussed as a potential
solution in [6]. This work discusses the tradeoffs between
utilizing different types of e-infrastructure, such as HPC or
cloud resources, for different types of urgent computation.
The paper discusses how most users with urgent computational
needs do not have the funding for dedicated resources and how
the commercial cloud could be a potential solution, depending
upon the frequency and type of workload.

The work done on simulation in the context of urgent
computing focuses on helping to predict the damage that
could occur before an impending event happens. The events
can range from hurricanes, forest fires, tornadoes, or even
man-made disasters such as a chemical spill. Examples of
these studies include [7], [8] and [9] that have focused on
simulating different flooding events in different areas. In [7]
the authors utilize an existing resource SX-ACE located at
Tohoku University. The goal of the case-study was to provide
information about impending tsunamis within 20 minutes of
the latest earthquake. The job management system, NQS II,
was enhanced to support urgent job prioritization by auto-
matically suspending all other running jobs to allow for the
tsunami prediction code to execute. In [8], the authors create a
system for monitoring levees within a certain period of time.
This system utilizes the Atmosphere platform for provisioning
the cloud based resources. The workflows for this system are
orchestrated by the HyperFlow workflow management system
which executes the jobs and returns the results to the users via
the graphical user interface (GUI). In [9], the authors describe
a workflow to automate the process of lowering of flood gates
in Saint-Petersburg Barrier. They describe how the workflow
is implemented in the context of urgent computing and how
this helps key decision makers make informed decisions about
when and for what period of time the gates need to be closed.

Another set of related work has to do with simulating traffic,
[3], [10], in regards to evacuations ahead of an impending
event. In [3], the authors discuss the implementation of a
generic incident model to look at the traffic incident impacts
on evacuation times at large scale. They utilize the Real-
Time Evacuation Planning Model (RtePM) to model two
different scenarios: a terrorist attack on Washington D.C. and
a hurricane at Virginia Beach. These types of simulations are
very useful for emergency preparedness and can be enhanced
even further with additional information from previous inci-
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dents. In [10], the authors discuss a generic traffic manage-
ment framework for solving large-scale constraint optimization
problems. They discuss the implementation of the system in
regards to both emergency evacuation and congestion pricing.
In implementing this system, they utilized an HPC cluster at
the University of Toronto to enable the parallelization of the
two cases. This same methodology can also be used for general
traffic understanding outside of emergency situations for large
cities or regions over multiple day large scale traffic studies.

The last portion of the related research brings together a
number of different topics into a widely accepted and gener-
alized definition of urgent computing, as there are currently
many different definitions for urgent computing. In [11] they
explore the related paradigms and provide a comprehensive
general version of the urgent computing definition that clarifies
the differences among them. They define an updated definition
that clarifies common terms, requirements, pre- and post-
computation characteristics, deadline, and cost.

III. REQUIREMENTS ANALYSIS AND SPECIFICATION

This section examines the requirements and specifications
for designing and executing our application urgently at large
scale. The characteristics of the application constrain the avail-
able options and form the basis for the workflow specification.

A. User Application Definition

Monitoring the different evacuation routes for accidents and
tracking vehicles requires specialized software. The software
uses as input video from traditional cameras that have been
placed along the different public evacuation routes. Our ap-
plication is a commercial traffic analytics software, TrafficVi-
sion [12]–[15]. The software package provides incident and
anomaly detection in traffic patterns from existing highway
camera infrastructure. The low resolution of the cameras
preserves the privacy of the motorists while enabling the
monitoring of traffic flow. The software offers the flexibility
to process real time video streams and also can execute using
batch processing. The software has an AutoLearn feature
that is an important feature for the size and scale of this
project. The AutoLearn feature handles real-world hardware
constraints as well as environmental/operational factors such
as camera motion, varying light levels, low or even zero vis-
ibility of pavement markings, or video compression artifacts.
AutoLearn helps to ensure accurate detection of vehicles at
massive scale.

The processing of the video streams is an embarrassingly
parallel task and can be scaled to processing very large
numbers of video streams simultaneously. Each vCPU or core
can process a single 15fps video stream, perform the required
detection, and issue alerts to the users. The TrafficVision
software is a CPU bound application that does not have a
large memory footprint. This important feature means that we
do not require large memory on the VMs, which helps to select
technologies that will save cost during execution.

TABLE I: Comparison of “Spare Capacity” Instance Function-
ality as of August 23, 2019

AWS GCP Azure
Reference [19] [20] [21]
Unlimited Run Time X - X
Fixed Discount - X X
User Bidding X - -
Available Within Standard
Compute Service

X X -

Custom Instance Types - X -
Maximum Discount 90% 80% 80%

B. User Application Requirements

The user requirements to run at large scale while controlling
costs are key requirements that guide our selection of a
commercial cloud and the selection of instance types within
that cloud. The features of commercial cloud are changing
rapidly. At the time of this study there were three main
commercial cloud choices for large-scale execution: Amazon
Web Services (AWS), Google Cloud Platform (GCP), and
Microsoft Azure. Each of these providers offers a wide range
of different specialized services that can be utilized by end
users. All three of these commercial cloud providers offer
similar “core” services such as compute, database, and object
storage and differentiate themselves on the additional services
that they bundle on top of these core services or the way that
they present these services. For example, all three commercial
cloud providers provide users with a list of specific predefined
instance types, which are a combination of CPU, memory,
and GPU. Within AWS and Azure, these instance types are
defined by the cloud provider and the user is not able to modify
them [16], [17]. GCP allows users to specify custom instance
types which can be tailored to fit a specific workload, which
can help to control costs [18]. GCP custom instance types
allow users to specify the number of vCPUs and memory
size that are allocated with their instances. This is useful for
the TrafficVision workflow, which requires a large number of
vCPUs but just a small amount of memory per instance.

All three public cloud providers offer access to their “spare
capacity” in the form of a special type of instance. These
specialized instance types provide users with discounts off the
regular instance price with the caveat that the instance can be
preempted, or shut down, at any time with only a short notice.
A summary of the differences between each cloud provider’s
“spare capacity” instance types can be found in Table I.

Within AWS these instances are called Spot instances. The
pricing is based upon a bid structure and can yield discounts
of up to 90% [19]. Within this structure, users set a price
that they are willing to pay to run the instances and then if
the current Spot price, which is set by AWS and based upon
supply and demand, drops below the price set by the user
the instances will launch. However, if the Spot price increases
above the users set bid price the instance will be shut down
with a two minute warning. Spot instances utilize the same
instance type structure as the rest of AWS. The Spot price is
set on a per-instance basis and can change during the run time
of the instances, as there is no time limit for how long a Spot
instance can run [19]. This dynamic changing of pricing makes
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the overall cost planning more difficult as users can calculate
the maximum that they will spend but may not know the actual
cost until after the execution due to the changing Spot price.

Within GCP these instance types are known as preemptible
instances. Their functionality is similar to that of AWS Spot
instances in that they can be shut down at any time with only a
short notice, but are different in that the price of these instances
is static and set by Google. This fixed discount can range up
to 80% [20] depending upon the configuration of the instance
type. This means that the cost of the instance types does not
change during the execution time and users can know the exact
discount that they will get. This allows for easier cost planning.
GCP preemptible instances also allow users to specify custom
instance types, which allows for even more cost savings. Users
can request only the number of CPUs and amount of memory
required for their application. However, unlike AWSs spot
instances that have no time-limit, each preemptible instance
can only run for a maximum of 24 hours [20]. As with AWS
Spot instances, GCP preemptible instances can be terminated
at any point by GCP with only a two minute warning. Our
workflow consists of many small independent batch jobs. GCP
preemptible instances meet our needs since if a single instance
is preempted, other running jobs are not affected.

Azure also has a similar concept with their Low-Priority
instances, however these instances can only be utilized as
part of a VM Scale Sets or Azure Batch. This makes them
less flexible than either the AWS or GCP options, which
allow users to utilize these discounts in their standard compute
services. Minus that difference, Low-Priority instances behave
similarly to GCPs preemptible instances. The discount is set
between 60%-80% and the instances will only launch when
there is spare capacity for those particular instance types [21].

We chose GCP for this application as the capabilities and
pricing were a good match for the TrafficVision software
requirements. Utilizing the custom instance types that GCP
offers allows us to provision the minimum hardware required
for the TrafficVision software to run effectively. Combined
with the fixed preemptible pricing, these custom instance types
also allow us to have a more stable and predictable cost during
the execution of the run.

Though preemptible instances work well for the application
instances, this is not the case for the rest of the supporting
environment such as the HPC scheduler, Login instance,
Control instance, and NAT instance that are a part of the HPC
software infrastructure in the cloud. These instances need to
constantly be available as without access to these instances,
the compute instances will be unable to receive new jobs.
For HPC infrastructure instances we utilize the standard on-
demand instance types so that these instances will not be
preempted during the execution. By utilizing a combination of
on-demand and preemptible instances, we are able to maintain
our execution and scale goals while still being cost efficient.

In addition to utilizing both preemptible and on-demand
instance types, we also take advantage of the GCP custom
instance types to further help manage our costs. By utilizing
a custom instance type that meets the minimum requirements

of the TrafficVision software, we can ensure that the entire
resource is being utilized and that we are not wasting CPU
cycles or paying for memory that we will not utilize.

IV. TECHNOLOGY SELECTION AND SYSTEM DESIGN

There are a few other technologies that must be selected
for executing our TrafficVision based workflow in the cloud,
including the overall HPC system design.

A. HPC Lifecycle Technology Selection

Several software infrastructure technologies are required to
manage the lifecycle of the HPC environment in the cloud
and the jobs running within it. We evaluated an off-the-shelf
solution provided by GCP as well as our previous work, Pro-
visioning And Workflow manager (PAW). In previous work,
we evaluated alternative resource and workflow management
tools for the cloud and developed a solution, the Automated
Provision And Workflow Management Tool (PAW) [22].

Recently, GCP published an HPC deployment solution in
collaboration with SchedMD that provisions a traditional HPC
environment utilizing the Slurm HPC scheduler [23]. This
solution creates a Login Node, an NFS filesystem, scheduler
instance, and compute instances within either a new or pre-
existing Virtual Private Cloud (VPC) network. The solution
supports many of the previously mentioned GCP specific
features like GCP custom instance types, attachable GPUs,
and preemptible instances. It also allows users to create Slurm
clusters from Google-provided disk images, which can signif-
icantly speed up the launching process of the environment as
the user can pre-configure and install all the packages that their
workflow requires before launching the environment. Utilizing
this method allows the solution to launch a new environment
of 5000 instances within 7 minutes [23]. As with all solutions
though, there are some drawbacks with this approach.

One of the drawbacks to this approach is that users are only
allowed to choose one specific instance type for their Slurm
environment. This tends to lead users to over-provision their
environments as they have to cater to workloads that utilizes
the most resources. This can result in excess costs if the
created resources are not properly utilized for all workloads.
Another drawback of this solution is that it is a GCP-only
solution and the configuration will not transfer easily to
another commercial cloud provider. This can create a vendor
lock-in effect which can limit users from using another cloud
for their workflow in the case of a disaster-caused outage.
Interoperability is very important when dealing with disasters
and urgent computational needs, as users require the ability to
take advantage of any available cloud resources regardless of
the provider to get the data processed in a timely manner. Also,
although the solution does provide an HPC scheduler to help
manage batch jobs there is no native workflow management
built-in to the solution. Users are expected to manage and
submit the jobs either with a customized script or manually.
While this is fine for smaller HPC environments, submitting
and tracking hundreds of thousands of jobs can be difficult
and time consuming.
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Fig. 2: A simplified view of the typical lifecycle for a PAW
User-Defined Workflow.

PAW is designed to be cloud-provider agnostic and to tackle
the challenges of managing the lifecycle of both the cloud
resources and the scientific workflow. PAW automates the steps
of dynamically provisioning a large-scale cluster environment,
executing user defined workflows, and de-provisioning the
cluster environment when the workflow is finished. PAW is
designed to automatically perform all the key management
tasks that are typically associated with the management of
these large scale environments with a single command.

Along with being cloud-provider agnostic, PAW is also
workflow-agnostic and is designed to complement the other
off the shelf workflow management tools such as SWIFT
[24], Tigres [25], and Pegasus [26]. The PAW implementation
utilizes CloudyCluster [27], [28] APIs and the included meta-
scheduler CCQ [29] to perform the key management tasks
for the HPC environment. One advantage to utilizing PAW
is that it can operate across cloud providers and has been
tested at a massive scale. In our previous work, we utilized
PAW to create a 1.1M vCPU HPC cluster on AWS to perform
topic modeling research [22]. By utilizing a solution that has
already been tested at a large scale on another cloud provider,
we have the added benefit of a solution that can be deployed
to multiple cloud providers which unlocks more available
resources for urgent processing. We chose to modify and
extend PAW to accommodate our applications requirements
as we were already familiar with the solution and it provided
the most flexibility.

B. System and Workflow Design

The overall design of the software and virtual hardware
infrastructure in the cloud resembles the typical structure of a
traditional HPC environment and batch processing workflow.
The major differences are that instead of all the resources
being pre-provisioned and ready to go, the resources are
created on demand in the cloud when the workflow is submit-
ted, and then are de-provisioned when execution is complete.
Fig. 2 shows an overview of how a typical user workflow
is deployed. Resources are provisioned and de-provisioned
during the execution of the workflow.

The system design begins with the specification of a single
PAW configuration file that contains the specifications for
both the HPC environment to be created and the workflow to
be processed, as described in [22]. This configuration file is
then submitted to PAW which processes the HPC environment

Fig. 3: A simplified view of the TrafficVision workflow utilized
to process the video clips during execution.

configuration and begins to create the specified infrastructure
for processing. The infrastructure created at this stage is called
the “base environment” and contains the minimum resources
required for the HPC environment to operate. These resources
can include a Login instance, HPC scheduler, NAT, or a shared
filesystem. Depending upon the workflow characteristics, some
or all of these resources may be required.

For our TrafficVision workflow, our base environment con-
sists of a Login instance, NAT, and HPC scheduler. No shared
filesystem is required, but rather we download input files from
Google Cloud Storage (GCS) to local disk storage and write
output to GCS directly as a part of the execution script. Fig.
3 illustrates the TrafficVision application workflow.

In order to reach the processing scale needed for managing
vehicle evacuation at hurricane proportions, we utilize multiple
of these base environments that, in aggregate, provide a mas-
sive processing environment. There are two reasons for utiliz-
ing multiple base environments. First, multiple environments
prevent a single point of failure within an environment from
causing the application to fail catastrophically. For example,
if the HPC scheduler fails then any submitted jobs would fail
to execute, and the whole application would fail. By creating
multiple smaller environments, if one environment goes down,
the rest of the environments will continue processing. A
second reason is that environments may be launched across
different geographical regions to handle the processing. If a
cloud region itself fails, which could happen in the case of
an impending natural disaster, then computation can continue
even if some data centers are taken offline.

Once the base environment is in place, PAW can submit the
user-defined workflow to the environment for execution and
processing. During this phase, PAW reads the workflow con-
figuration from the configuration file and launches the required
processing instances for the workflow. Once these instances
are in place then the rest of the workflow is submitted to the
HPC scheduler just like in a traditional HPC environment. The
scheduler handles all of the job execution and management
from this point forward and PAW monitors the number of
jobs in the scheduler queue. When there are no more jobs
in the queue or executing, PAW begins to de-provision the
environment so that the user is no longer charged for the
resources. The deletion of the environment is an optional
step that can be opted out for environments with a shared
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filesystem, if the data needs to be preserved.
The PAW framework enables users to quickly and efficiently

launch a large scale HPC processing environment in the cloud
where they have full control and use of the resources contained
within. There is no waiting for queue time which may occur in
a locally provisioned resources, even with priority scheduling.
The resources are “owned” by the user, who has full priority on
their use. By integrating with PAW, workflow definition also
provides the advantage of being able to dynamically change
the specifications of the hardware for different types of pro-
cessing within the same environment. This allows for greater
control over costs and better overall processing efficiency.

When designing the application we were presented with
two different options for accessing the data to be processed.
The first option was to receive the live video feeds from a
number of cameras and to process that data in real time to
showcase the abilities of the system. However, as ordinary
citizens we do not have access to the full scale of cameras
or network access for the live video feeds that may be used
in a real hurricane scenario. The second option was to record
a number of publicly available video feeds for a few weeks
and store this in Google Cloud Storage (GCS). This way we
would ensure that we have access to enough video to emulate
the video workload of a real scenario, and that we do not get
our network access blocked while attempting to access such a
large amount of data in a short period of time. While we ran
our application using recorded video, the use of a live-feed
just involves swapping out arguments to our processing script.
We envision that a combination of these two approaches could
be utilized simultaneously during a natural disaster to inform
responsible parties during the event as well as for after-the-fact
analysis to help better prepare for the next natural disaster.

We implemented our workflow as a user-defined workflow
within the PAW tool. The parameters specified in the PAW
configuration file are used by PAW to create a batch script
to be submitted to the HPC scheduler. This batch script
creates a work queue on each of the instances within the HPC
environment. The required pre-recorded video clip is copied
from GCS to local instance storage for processing. Each video
clip is processed as a single “job” on the instance. When that
work item (i.e., video clip) has been processed, a new work
item is pulled from the queue and processing continues. The
video clips are formatted into one hour chunks. Each clip is
processed as though it is done in real-time and takes about
an hour to process. This ensures that all of our video clips
are processed during the execution. In the case of a real-time
implementation, the work queue would still be the same but
instead of copying a video clip name from GCS and only
processing for an hour, a URL pointing to a video stream
would be steamed instead and that vCPU would continue
to process that same URL video stream until some stopping
criteria is reached.

After a video clip has been processed, the TrafficVision
software uploads the results about what has been detected in
the clip back to GCS where it is stored and can be analyzed
with the rest of the video clips. In the real-time situation

these results would be reported in real-time to a dashboard
that would be monitored by first responders so that they can
make decisions based upon what is happening in real-time.

Our application takes advantage of a feature of Cloudy-
Cluster that is exposed via PAW that allows computation
to begin before all of the instances have been created. This
feature allows for the submission of the workflow when the
first instance comes up. In our TrafficVision workflow, the
first job that is submitted is considered a “parent” job that
generates and submits a specified number of batch jobs. Then
as the instances launch and are added to the HPC scheduler,
they begin to process a job that is waiting in the queue. This
eliminates waiting for all of the compute instances to come
up before the processing begins. It provides better utilization
of the resources and maximum cost efficiency.

V. IMPLEMENTATION AND SCALABILITY EVALUATION

During our execution we did not experience many unex-
pected challenges. We had already identified a number of
challenges in our previous work and avoided the same pitfalls
during this application. However, we did find and identify
two challenges that still surprised us, even with our prior
experience. One of the unexpected challenges we encountered
was with API rate limits per GCP Project, and the second
was with the very rapid provisioning of instances on GCP
that created some complex interactions with the software
infrastructure.

To identify and resolve any potential issues, we developed
a testing plan that would help us to evaluate our architecture
at a number of different scales. We initially tested environ-
ments that were 1% of our total size which equates to about
15,000 vCPUs. After success at the smaller scale, we tested
a modest medium-sized scale in which where we launched
5,000 instances per environment. This medium experiment
tests the limitations of the HPC scheduler and the underlying
provisioning software along with any other new limitations
that we may find. We note that a 5,000-instance environment
exceeds the size of many on-campus HPC clusters. Achieving
success with one single 5,000 instance environment allowed
us to move forward with the execution of the multiple 5,000
instance environments that were utilized in our final run.

A. API Limitations Per Project

As with all commercial cloud providers, there are API limits
in place to ensure the reliability and usability of the system.
The first challenge that we encountered during was a limitation
on the number of certain API calls within a single GCP
project. A GCP project can be thought of as an overarching
“container” for a user’s GCP resources. Each GCP project
acts like its own GCP account, where each account has its
own limits (or quotas as they are called in GCP), Identity and
Access Management users and policies, Virtual Private Clouds
(VPC), and resources. This concept is especially useful for
organizations that have a number of different concurrent tasks
that they wish to keep separate but have them all appear under
the same account. Resources within a single GCP project can
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be launched within any GCP region as one of the features of
GCP is that their VPC networks are global and can contain
resources running in multiple regions. This is in contrast to
how AWS and Azure VPC networks operate as they are tied
only having resources from a single region. We originally
thought that this would be useful as it would allow us to
run multiple environments from a single project in multiple
regions. However, this turned out not to be the case.

Within a GCP project, there are a number of quotas (limits),
on how many resources and API calls a user can utilize within
the project. Some of these quotas are per region but there are
some that are global and apply to all the resources within a
specific GCP project. This is where we encountered our first
challenge. When attempting to spin up multiple environments
in multiple regions within the same GCP project, we found that
we were hitting a number of GCP Compute Engine quotas
with only one or two environments. These quotas included:
List requests per 100 seconds, Read requests per 100 seconds,
and Heavy-weight read requests per 100 seconds. These are
the API calls that we were utilizing to create, monitor, and
delete instances during our execution and upon scaling up we
quickly hit these quotas which would result in throttling from
GCP which would not allow us to get to our target threshold
as the requests to launch new instances would fail.

Our solution to this challenge was two-fold. First we
attempted the most obvious solution: submit a request to
increase the quota to allow for more API calls to be made
within the 100 second window. We were granted an increase
in our quotas that increased our limit from 2,000 to 6,000
API calls per 100 seconds for all of those quotas. However,
we still needed to launch 93,750 instances in order to get to
the scale that we wanted and by allowing for 6,000 API calls
per 100 seconds it would take 26 minutes of just launching
instances to get us to our goal. This also does not take into
account any additional calls that may be made during that 26
minute period for monitoring of the instances that have already
been launched. Due to these limits being global for the entire
project, they would negatively affect each environment that we
launched within the same project even if it was in a different
region.

In order to work around this, we decided to move to a
multiple GCP project setup where we had a single project for
each region that we wanted to utilize during the execution
of the application. This way we could increase the quotas
across multiple projects and spread out the number of API calls
being made within a single project. Another additional benefit
of splitting out the environments across multiple projects is
that during execution we can launch environments in multiple
projects simultaneously instead of having to wait a period of
time for the quota to clear.

During the execution we utilized multiple projects, but we
attempted to launch environments located in different regions
within a single project. We found that by doing this we were
limiting the number of environments that we could launch at a
time. If we attempted to launch too many environments in one
project we would hit the quota and the environments would

not get to the proper scale. Since we utilized preemptible
instances, we were executing with GCP’s spare capacity, which
can vary greatly from region to region depending on the
date and time. This variation means that users have to be
highly flexible in where they can launch their instances. If
they depend on launching all instance in one specific region,
that region may run out of capacity and not allow scaling to
scale to their target. By attempting to have environments from
multiple regions within the same project, we found that we hurt
our ability to utilize all the available capacity as sometimes
the most capacity would be in a project where another region
had already maxed out the API quotas. Our solution was to
limit projects to one region. In this case the user can assure
that they will always be able to launch some environments in
all regions without having the API quota consumed by another
region.

Another area where we ran into these API quota issues was
during the de-provisioning of the environments. As with the
other cloud providers, GCP is a “pay-as-you-go” service. This
means that when it comes time to shutdown the environments,
say after the evacuation order has been lifted, we want the
environment to shutdown as quickly as possible to avoid
paying for additional compute that we do not need. However,
the Compute Engine API quotas per 100 seconds still apply
to delete calls as well. This is more of an issue than the one
encountered with launching instances as now we are paying for
compute that we are no longer using as they wait for the 100
second period to pass before new delete calls can be issued.

The solution was to utilize the pre-existing Salt master-
minion setup that the underlying CloudyCluster provisioning
software already has set up to issue the “shutdown” command
to all of the compute instances within the environment. This
“shutdown” command will cause the instance to shutdown and
enter the “Stopped” state within GCP. Instances that are in the
“Stopped” state within GCP are not charged for runtime, only
storage which is generally a fraction of the runtime costs. Now
having to wait for the 100 second period between making a
batch of 6,000 API calls does not matter as much since we are
not being charged for the runtime. This allows the environment
to take its time deleting the instances and not have to worry
about attempting to get them down as soon as possible.

B. Rapid Provisioning Of Instances

The second unexpected challenge that we encountered was
with the rapid provisioning of instances within GCP. At first
glance, this seems like a positive thing as the faster that
instances are provisioned the sooner that they can begin doing
work. However, when working at larger scales this quick
provisioning means that a large number of instances all launch
and begin attempting to communicate to the HPC scheduler
at the same time. When these large number of instances start
attempting to communicate with the HPC scheduler at the
same time, it can cause a distributed denial of service (DDoS)
attack on the single HPC scheduler instance.

We first encountered this issue when moving from the small
1% tests to the large 5,000 instance tests. At first everything
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looked fine as a couple of instances began coming up, but
as more and more instances were launched the scheduler
instance quickly became less responsive until we could no
longer connect to it via SSH. This was something that we
had not anticipated and it took us a little while to figure out
that the rapid registration of new nodes coming online was
the culprit. Once the issue was identified, we developed a
method to stagger the instance launch requests, utilizing the
GCP Batch request API. This API allows users to issue up
to 5,000 API calls within a single batch request. Utilizing it
allowed us to launch instances in more manageable batches
with randomized amount of time in between to help to limit
the number of instances attempting to register with the HPC
scheduler at the same time.

This solution did help to shrink the problem as the instances
were now able to register with the scheduler but it was still
taking a large amount of time for all of the instances to register
and begin work. There were a small number of instances that
would register right away and begin work but overall the full
registration process was still taking too long. We eventually
narrowed down the culprit for the delay to the configuration of
Salt and the Slurm HPC scheduler within the CloudyCluster
provisioning software utilized by PAW. It turned out that
although we had mitigated the simulated DDoS attack on the
scheduler, both Salt and Slurm were still having issues trying
to add and authenticate the larger number of instances.

To fix this, we looked at two potential solutions. The first so-
lution that we looked into was provided by the GCP SchedMD
collaboration. This potential solution involved putting the
Slurm configuration file on a shared filesystem that all the
instances could mount and read the file from a central location.
This would eliminate the need to have Salt push out the
configuration file to each instance as was the case with the
CloudyCluster software. While this solution does yield an
overall faster launch and registration time, it is not scalable as
there are known limitations to the scalability of shared filesys-
tems [30]. Also, this would require us to create and maintain
a shared filesystem within our environment which would add
additional cost and complexity to the environment. For our
application all of the data is stored in Google Cloud Storage
(GCS) which can be accessed from any of the instances but
does not have to be maintained or mounted on the instances
to be utilized.

The second solution that we considered was to add addi-
tional configuration within both Slurm and Salt to try to limit
the number of connections and registrations that can happen
simultaneously. This approach does not yield the same drastic
increase in launch time, as the Slurm configuration file still
has to be pushed across the network to each of the registered
instances each time new instances are added, but it does
help keep the underlying architecture scalable and eliminates
the requirement to create and maintain a shared filesystem
within our current architecture. By performing some minor
configuration file edits, we were able to drop the instance
registration time from around 40 minutes to 20 minutes for
all instances to be registered and computing.

VI. INTEGRATION AND SYSTEM EVALUATION

In this section we discuss execution and evaluation of our
final TrafficVision workflow, including a detailed discussion of
the technical integration aspects and cost analysis required in
order to get the data processed and achieve our goal of 1.5M
vCPUs.

A. Performance and Efficiency Evaluation

1) System Performance: As previously mentioned, our
workflow ran across a set of HPC environments that were
launched within different regions and GCP Projects. In GCP
it is possible to have instances from multiple regions running
within the same VPC. Although this was not needed for
our workflow because the regions we executed in were split
across projects, there are other use cases where this would
be a large advantage. One of these cases is with the use of
preemptible instances. Since preemptible instances are pulled
from the spare capacity in the location requested, by requesting
in multiple regions users may have access to a larger pool of
resources. However, there are other factors such as latency and
network egress to other regions that users must consider.

We utilized a total of 4 different GCP projects and 6
different GCP regions for the execution of our workflow. Each
of these projects were based within a different GCP region
depending upon which regions had the most available spare
capacity at the time of execution. We worked with our Google
colleagues for guidance about which regions would be the best
to execute in and in the end we selected us-central1, europe-
west4, us-east1, asia-east1, us-west1, and europe-west1. By
spreading out our workflow across these different regions we
unlocked additional spare capacity and were not attempting to
compete against ourselves for resources within a single region.

The workflow utilized a single GCP custom instance type,
custom-16-16384, which has 16 vCPUs and 16GB of memory.
This custom instance type allowed us to pay for the minimum
amount of memory, which helps to keep our costs down
significantly. It also was chosen due to the fact that smaller
to medium instance types are less likely to be preempted due
to their ability to “fit” into more slots. The more resources
that a preemptible instance requests, the more likely it is to
be preempted and the more difficult it is to find a location to
launch it. In order to reach our goal, we needed to launch
a minimum of 93,750 instances. We want our preemptible
instances to be able to “fit” in as many places as possible.

The ramp summary of the total number of instances and
vCPUs is shown in Fig. 4 A. During the execution of the
workflow, at our peak around 9:30pm we had 93,905 instances
running across 30 HPC environments totaling 1,502,480 vC-
PUs executing concurrently. A breakdown of the instance
distribution by GCP region and zone is shown in Table II.
Although we launched almost 100,000 instances, the overall
preemption rate during the run remained low and relatively
stable throughout. The highest peaks for preemption were
around 300 instances which is less than 1% of the total.

A majority of the instances that we launched remained
running until we shut them down at the end of workflow. The
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Fig. 4: The overall view of workflow execution. In graphs B and D each line represents a single GCP Zone, names are
not shown for space reasons. A) A timeline of the total number of instances in all regions/zones launched during workflow
execution. B) A timeline of the total number of instances launched per Zone during workflow execution. C) A timeline of the
total number of vCPUs launched in all regions/zones during workflow execution. D) A timeline of the total number of vCPUs
per Zone during workflow execution.

TABLE II: Breakdown of the number of instances provisioned
per GCP Region/Zone at peak

Region Zone
A B C D F

us-central1 2,661 3,464 4,155 - 4,904
us-east1 - 6,708 1,915 3,066 -
us-west1 4,853 4,846 4,177 - -

europe-west1 - 10,803 1,462 8,898 -
europe-west4 6,477 8,324 3,917 - -

asia-east1 6,509 2,780 3,904 - -

overall preemption rate throughout the execution is shown in
Fig. 5.

There was some API throttling encountered during the
execution of the experiment. The effects of this can be seen
in the graphs in Fig. 4 around the 6:00-7:30pm mark during
creation along with the 10:00-11:00pm mark during deletion.
During these periods the number of instances that were being
launched or deleted slowed down or leveled out. To move past
this issue, we created additional environments and used other
projects to limit the number of API calls being sent in each
project.

2) GCS Performance: In order to increase the access effi-
ciency of GCS within our workflow, we integrated the concept
of GCP Private Routes which allow network traffic destined
for other GCP services to bypass the NAT process. This
eliminates a potential bottleneck in the NAT instance as all
the compute instances in HPC environments can communicate
directly with GCS without having to all funnel through a single
instance. This is especially important at scale as we can have
thousands of instances attempting to access GCS at the same
time, which would be more than enough to overwhelm a single
NAT instance. With the integration of the Private Routes,
we did not hit any scalability or performance issues with

Fig. 5: A timeline of the rate of instance preemption through-
out the execution of the workload. Each line represents a single
GCP Zone, names are not shown for space reasons.

accessing the pre-recorded video clips or uploading the results
to GCS during our execution. The throughput that we achieved
throughout our execution shows that we hit a maximum rate of
52GiB/s read and 768MiB/s write to GCS from our workflow
during the execution. The overall throughput rates to GCS are
shown in Fig. 6 graphs A and B.

In the eight hours that our workflow executed, we processed
2,006,170 hours (∼211 TB) of video. The rate of processing
completion is shown in Fig. 7. We note that there are not a
lot of completions within the first hour because our our pre-
recorded video is divided into one hour chunks and the results
are not uploaded until the entire file has been analyzed. When
running in real-time with a standard video stream, the results
would be uploaded as they are found.

B. Cost Evaluation

An important consideration when utilizing the cloud for any
type of computing is the overall cost and the comparison with
the cost of traditional resources. These types of comparisons
are complex in nature and can depend upon a large number
of variables that are sometimes not well defined. There are
certain costs associated with different resources that one may
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Fig. 6: The overall view of GCS performance throughout
workflow execution. In both graphs each line represents a
single GCS Bucket, the names are not shown for space
reasons. A) A timeline of the throughput of data sent to
the running instances during the workflow execution. B) A
timeline of the throughput of the data sent back to GCS after
being processed by our workflow.

not consider. Cost estimation at a representative university
suggests that the typical local campus computation costs are
under US $0.02 per core hour but perhaps not less than $0.01
per core hour. This is regardless of job type (serial or parallel)
and includes all of the costs for hardware, software, land,
power, cooling, labor, network, etc. However, this cost estimate
does not include things such as user-support and research
computing facilitation.

By utilizing our custom machine type, we were able to
reduce the amount of memory utilized for each instance. At
the time of this paper, the GCP standard instance type with
16 vCPUs comes with 64GB of memory and costs $0.1600
USD per hour with preemptible pricing, while our custom
instance type costs $0.1264 USD per hour. This gives us
a $0.0336 USD savings per instance per hour, which when
multiplied with the roughly 94,000 instances required provides
savings of $3,158.40 USD per hour over on-demand costs.
This cost savings is particularly significant if a workflow needs
to execute for an extended period of time. In addition, the
preemptible discount for each instance is a set price and will
not vary throughout the life of the instance. This allows users
to better plan for the cost of execution. Note that the cost
savings is not uniform across different regions and needs to
be considered when executing across different regions.

We executed our workflow for approximately eight hours
and utilized a total of 6,227,593 core hours. The overall cost
was $55,044.95 USD. Our overall cost per core hour was
approximately $0.008 USD. This number aligns well with the
cost estimation for local resources. There are other costs that
are associated with execution in the cloud that also need to be
taken into consideration as well, such as the cost to store the
processed data, download or transfer the processed data, etc.
however these costs will vary based upon the workflow and

Fig. 7: A timeline view of the video clips analyzed during the
execution of our workflow. Each line represents a different
GCP Region, the names are not shown for space reasons.

execution model.

VII. CONCLUSIONS

In this paper we present a proof of concept that commercial
clouds can handle urgent HPC processing of massive data.
We provisioned, utilized, and de-provisioned an HPC cluster
with more than 1.5M vCPUs, or the size of a Top 500
supercomputer, in about eight hours. Our application ran in
the Google Cloud Platform and demonstrates how urgent HPC
can assist with evacuations in the event of an impending
natural disaster. We have shown that features now offered
by commercial cloud providers and for the right workload,
the commercial cloud can provide a cost-effective on-demand
infrastructure for urgent HPC and computing in general.

We utilized the cloud-agnostic Automated Provisioning
And Workflow Management tool (PAW) to build our HPC
environments and execute our workflow. Utilizing PAW and
CloudyCluster APIs we showed how the commercial cloud
can be utilized. We ran traffic analysis on 2,006,170 hours
(∼211 TB) of video. Our workflow ran for an average cost of
$0.008 per vCPU hour.

We discussed some of the issues that were encountered
during the execution of the project and provided solutions
within the system and within our workflow. We provided an
overview of how the TrafficVision workflow was developed
and deployed. For the development of our workflow, we uti-
lized a user-defined workflow within PAW. We also discussed
how this workflow can easily be converted from processing
pre-recorded video to processing live video with a simple
change in script arguments.

We envision that this type of system can be utilized to help
aid in streamlining the evacuation processes by allowing first
responders or DOTs to observe and simulate traffic in real
time during a major event, and also enabling a post-evacuation
analysis for improving future responses.

The execution of this massive scale on-demand HPC en-
vironment across multiple geographic regions showcases the
flexibility and redundancy offered by the commercial cloud
along with providing a starting point for others to get started
building their own workflows.

One outcome of our work here is a corpus of vehi-
cle roadway trajectories that can be leveraged for traf-
fic research purposes and for increasing the accuracy of
these types of simulations. This dataset will be available at
https://www.cs.clemson.edu/dice.
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