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Machine learning algorithms have recently been used to predict students’ performance in an introductory
physics class. The prediction model classified students as those likely to receive an A or B or students likely
to receive a grade of C, D, F or withdraw from the class. Early prediction could better allow the direction of
educational interventions and the allocation of educational resources. However, the performance metrics
used in that study become unreliable when used to classify whether a student would receive an A, B, or C
(the ABC outcome) or if they would receive a D, F or withdraw (W) from the class (the DFW outcome)
because the outcome is substantially unbalanced with between 10% to 20% of the students receiving a D, F,
or W. This work presents techniques to adjust the prediction models and alternate model performance
metrics more appropriate for unbalanced outcome variables. These techniques were applied to three
samples drawn from introductory mechanics classes at two institutions (N ¼ 7184, 1683, and 926).
Applying the same methods as the earlier study produced a classifier that was very inaccurate, classifying
only 16% of the DFW cases correctly; tuning the model increased the DFW classification accuracy to 43%.
Using a combination of institutional and in-class data improved DFWaccuracy to 53% by the second week
of class. As in the prior study, demographic variables such as gender, underrepresented minority status,
first-generation college student status, and low socioeconomic status were not important variables in the
final prediction models.
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I. INTRODUCTION

Physics courses, along with other core science and
mathematics courses, form key hurdles for science, tech-
nology, engineering, and mathematics (STEM) students
early in their college career. Student success in these classes
is important to improving STEM retention; the success of
students traditionally underrepresented in STEM disci-
plines in the core classes may be a limiting factor in
increasing inclusion in STEM fields. Physics education
research (PER) has developed a wide range of research-
based instructional materials and practices to help students
learn physics [1]. Research-based instructional strategies
have been demonstrated to increase student success and
retention [2]. While some of these strategies are easily
implemented for large classes, others have substantial
implementation costs. Further, no class could implement

all possible research-based strategies, and some may be
more appropriate for some subsets of students than for
others. One method to better distribute resources to the
students who would benefit the most is to identify at-risk
students early in physics classes. The effective identifica-
tion of students at risk in physics classes and the efficacious
uses of this classification represents a promising new
research strand in PER.
The need for STEM graduates continues to increase at a

rate that is outstripping STEM graduation rates across
American institutions. A 2012 report from the President’s
Council of Advisors on Science and Technology [3]
identified the need to increase graduation of STEM majors
to avoid a projected shortfall of one million STEM job
candidates over the next decade. Improving STEM reten-
tion has long been an important area of investigation for
science education researchers [4–11]. Targeting interven-
tions to students at risk in core introductory science and
mathematics courses taken early in college offers one
potential mechanism to improve STEM graduation rates.
In recent years, educational data mining has become a
prominent method of analyzing student data to inform
course redesign and to predict student performance and
persistence [12–16].
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The current study investigates the application of machine
learning algorithms to identify at-risk students. Machine
learning and data science as a whole are growing explo-
sively in many segments of the economy as these new
methods are used to make sense and exploit the exponen-
tially growing data collected in an increasing online world.
These methods are also being adapted to understand and
improve educational data systems. It seems likely that this
process will accelerate in the near future as universities, in a
challenging financial climate, attempt to retain as many
students as possible. We argue that PER should both help
shape the construction of retention models of physics
students and explore their most effective and most ethical
use. The following summarizes the prior study applying
education data mining (EDM) techniques in physics
classes, provides an overview of EDM, and more specifi-
cally an overview of the use of EDM for grade prediction.

A. Prior study: Study 1

This study extends the results of Zabriskie et al. [17]
which will be referred to as study 1 in this work. Study 1
used institutional data such as ACT scores and college GPA
(CGPA) as well as data collected within a physics class
such as homework grades and test scores to predict whether
a student would receive an A or B in the first and second
semester of a calculus-based physics class at a large
university. The study used both logistic regression and
random forests to classify students. Random forest classi-
fication using only institutional variables was 73% accurate
for the first semester class. This accuracy increased to 80%
by the fifth week of the class when in-class variables were
included. The logistic regression and random forest clas-
sification algorithms generated very similar results. Study 1
chose to predict A and B outcomes, rather than the more
important A, B, and C outcomes, partially because the
sample was significantly unbalanced. Sample imbalance
makes classification accuracy more difficult to interpret.
Study 1 investigated the effect of a number of demographic
variables [gender, underrepresented minority (URM) sta-
tus, and first-generation status] on grade prediction and
found they were not important to grade classification.
These groups (women, underrepresented minority students,
and first-generation students) were very underrepresented
in the sample studied; it was unclear to what extent the low
importance of the demographic variables was caused by the
demographic imbalance of the sample.

B. Research questions

This study seeks to extend the application of machine
learning algorithms to predict whether a student will earn a
D or F or withdraw (W) from a physics class. In particular,
we explore the following research questions.

RQ1: How can machine learning algorithms be applied
to predict an unbalanced outcome in a physics class?

RQ2: Does classification accuracy differ for underre-
presented groups in physics? If so, how and why does
it differ?

RQ3: How can the results of a machine learning analysis
be applied to better understand and improve physics
instruction?

C. Educational data mining

Educational data mining can be described as the use of
statistical, machine learning, and traditional data mining
methods to draw conclusions from large educational data-
sets while incorporating predictive modeling and psycho-
metric modeling [16]. In a 2014 meta-analysis of 240 EDM
articles by Peña-Ayala, 88% of the studies were found to
use a statistical and/or machine learning approach to draw
conclusions from the data presented. Of these studies, 22%
analyzed student behavior, 21% examined student perfor-
mance, and 20% examined assessments [18]. Peña-Ayala
also found that classification was the most common method
used in EDM applied in 42% of all analyses, with clustering
used in 27%, and regression used in 15% of studies.
Educational data mining encompasses a large number of

statistical and machine learning techniques with logistic
regression, decision trees, random forests, neural networks,
naive Bayes, support vector machines, and K-nearest neigh-
bor algorithms commonly applied [19]. Peña-Ayala’s [18]
analysis found 20% of studies employed Bayes theorem and
18%decision trees. Decision trees and random forests are one
of themore commonly used techniques inEDM.Weuse these
techniques to investigate our research questions and explore
ways to assess the success of machine learning algorithms.
More information on the fundamentals of these and other
machine learning techniques are readily available through a
number of machine learning texts [20,21].

D. Grade prediction and persistence

While EDM is used for a wide array of purposes, it has
often been used to examine student performance and
persistence. One survey by Shahiri et al. summarized 30
studies in which student performance was examined using
EDM techniques [22]. Neural networks and decision trees
were the two most common techniques used in studies ex-
amining student performance with naive Bayes, K-nearest
neighbors, and support vector machines used in some
studies. A study by Huang and Fang examined student
performance on the final exam for a large-enrollment
engineering course using measurements of college GPA,
performance in three prerequisite math classes as well as
Physics 1, and student performance on in-semester exami-
nations [23]. They analyzed the data using a large
number of techniques commonly used in EDM and found
relatively little difference in the accuracy of the resulting
models. Study 1 also found little difference in the per-
formance of machine learning algorithms in predicting
physics grades. Another study examining an introductory
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engineering course by Marbouti et al. used an array of
EDM techniques to predict student grade outcomes of C or
better [24]. They used in-class measures of student per-
formance including homework, quiz, and exam 1 scores
and found that logistic regression provided the highest
accuracy at 94%. A study by Macfadyen and Dawson
attempted to identify students at risk of failure in an
introductory biology course [25]. Using logistic regression
they were able to identify students failing (defined as
having a grade of less than 50%) with 81% accuracy. With
the goal of improving STEM retention, many universities
are taking a rising interest in using EDM techniques for
grade and persistence prediction in STEM classes [26].
The use of machine learning techniques in physics

classes has only begun recently. In addition to study 1,
random forests were used in a 2018 study by Aiken et al. to
predict student persistence as physics majors and identify
the factors that are predictive of students either remaining
physics majors or becoming engineering majors [27].

II. METHODS

A. Sample

This study used three samples drawn from the intro-
ductory calculus-based physics classes at two institutions.
Samples 1 and 2 were collected in the introductory,

calculus-based mechanics course (Physics 1) taken by
physical science and engineering students at a large
Eastern land-grant university (Institution 1) serving approx-
imately 21 000 undergraduate students. The general uni-
versity undergraduate population had ACT scores ranging
from 21 to 26 (25th–75th percentile) [28]. The overall
undergraduate demographics were 80% White, 4%
Hispanic, 6% international, 4% African American, 4%
students reporting two or more races, 2% Asian, and other
groups each with 1% or less [28].
Sample 1 was drawn from institutional records and

includes all students who completed Physics 1 from
2000 to 2018, for a sample size of 7184. Over the period
studied, the instructional environment of the course varied
widely, and as such, the result for this sample may be robust
to pedagogical variations. Prior to the Spring 2011 semes-
ter, the course was presented traditionally with multiple
instructors teaching largely traditional lectures and students
performing cookbook laboratory exercises. In Spring 2011,
the department implemented a learning assistant (LA)
program [29] using the Tutorials in Introductory Physics
[30]. In Fall 2015, the program was modified because of a
funding change with LAs assigned to only a subset of
laboratory sections. The tutorials were replaced with open
source materials [31] which lowered textbook costs to
students and allowed full integration of the research-based
materials with laboratory activities.
Sample 2 was collected from the Fall 2016 to the Spring

2019 semesterwhen the instructional environmentwas stable,

for a sample size of 1683. The same institutional data were
collected and the sample also included a limited number
of in-class performancemeasures: clicker average, homework
average, Force and Motion Conceptual Evaluation (FMCE)
pretest score, FMCEpretest participation, and the score on in-
semester examinations. A more detailed explanation of these
variables will be provided in the next section.
Sample 3 was collected at a primarily undergraduate and

Hispanic-serving university (Institution 2) with approxi-
mately 26 000 students in the western U.S. Fifty percent of
the general undergraduate population had ACT scores in
the range 19 to 27. The demographics of the general
undergraduate population were 46% Hispanic, 21% Asian,
16% White, 6% international, 4% two or more races, 3%
African American, 3% unknown, with other races 1% or
less [28]. The sample was collected in the introductory
calculus-based mechanics class for all four quarters of the
2017 calendar year. This class also primarily serves
physical science and engineering students. The course
was taught in multiple sections each quarter with multiple
different instructors. The pedagogical style varied greatly
with some instructors giving traditional lectures and some
teaching using active-learning methods.

B. Variables

The variables used in this study were drawn from
institutional records and from data collected within the
classes and are shown in Table I. Two types of variables
were used: two-level dichotomous variables and continu-
ous variables. A few variables require additional explan-
ation. The variable CalReady measures the student’s math
readiness. Calculus 1 is a prerequisite for Physics 1. For the
vast majority of students in Physics 1, the student’s four-
year degree plans assume the student enrolls in Calculus 1
their first semester at the university. These students are
considered “math ready.” A substantial percentage of the
students at Institution 1 are not math ready. The variable
STEMCls captures the number of STEM classes completed
before the start of the course studied. STEM classes include
mathematics, biology, chemistry, engineering, and physics
classes.
For all samples, demographic information was also

collected from institutional records. Students were consid-
ered first generation if neither of their parents completed a
four-year degree. A student was classified as an under-
represented minority student (URM) if they identified as
Hispanic or reported a race other than White or Asian.
Gender was also collected from university records; for the
period studied gender was recorded as a binary variable.
While not optimal, this reporting is consistent with the use
of gender in most studies in PER; for a more nuanced
discussion of gender and physics, see Traxler et al. [32].
For sample 2, in-class data were also available on a

weekly basis. These data included clicker scores (given for
participation points), homework averages, test scores, and a
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conceptual pretest score (PreScore) using the FMCE [33].
Students not in attendance on the day the FMCE was given
received a zero; whether students completed the FMCEwas
captured by the dichotomous variable (PreTaken) which is
one if the test was taken, zero otherwise.
For sample 3, socioeconomic status (SES) was measured

by whether the students qualified for a federal Pell grant.
A student is eligible for a Pell grant if their family income is
less than $50 000 U.S. dollars; however, most Pell grants
are awarded to students with family incomes less than
$20 000 [34].

C. Random forest classification models

This work employs the random forests machine learning
algorithm to predict students’ final grade outcomes in
introductory physics. Random forests are one of many
machine learning classification algorithms. Study 1
reported that most machine learning algorithms had similar
performance when predicting physics grades. A classifica-
tion algorithm seeks to divide a dataset into multiple
classes. This study will classify students as those who will
receive an A, B, or C (ABC students) and students who will
receive a D or F or withdraw (W) (DFW students).
To understand the performance of a classification algo-

rithm, the dataset is first divided into test and training
datasets. The training dataset is used to develop the
classification model, to train the classifier. The test dataset

is then used to characterize the model performance. The
classification model is used to predict the outcome of each
student in the test dataset; this prediction is compared to
the actual outcome. Section II D discusses performance
metrics used to characterize the success of the classification
algorithm. For this work, 50% of the data were included in
the test dataset and 50% in the training dataset. This split
was selected to maintain a substantial number of under-
represented students in both the test and training datasets.
The random forest algorithm uses decision trees, another

machine learning classification algorithm. Decision trees
work by splitting the dataset into two or more subgroups
based on one of the model variables. The variable selected
for each split is chosen to divide the dataset into the two
most homogeneous subsets of outcomes possible, that is,
subsets with a high percentage of one of the two classi-
fication outcomes. The variable and the threshold for the
variable represents the decision for each node in the tree.
For example, one node may split the dataset using the
criteria (the decision) that a student’s college GPA is less
than 3.2. The process continues by splitting the subsets
forming the decision tree until each node contains only one
of the two possible outcomes. Decision trees are less
susceptible to multicollinearity than many statistical meth-
ods common in PER such as linear regression [35].

Random forests extend the decision tree algorithm by
growing many trees instead of a single tree. The “forest” of
decision trees is used to classify each instance in the data;

TABLE I. Full list of variables.

Sample

Variable 1 2 3 Type Description

Institutional variables

Gender × × × Dichotomous Does the student identify as a man or a women?
URM × × × Dichotomous Does the student identify as an underrepresented minority?
FirstGen × × × Dichotomous Is the student a first-generation college student?
CalReady × × Dichotomous Is the student ready for calculus?
SES × Dichotomous Does the student qualify for a Pell grant?
CmpPct × × Continuous Percentage of credit hours attempted that were completed.
CGPA × × × Continuous College GPA at the start of the course.
STEMCls × × Continuous Number of STEM classes completed at the start of the course.
HrsCmp × × Continuous Total credit hours earned at the start of the course.
HrsEnroll × × Continuous Current credit hours enrolled at the start of the course.
HSGPA × × × Continuous High school GPA.
ACTM × × × Continuous ACT or SAT mathematics percentile score.
ACTV × × Continuous ACT or SAT verbal percentile score.
APCredit × × Continuous Number of credit hours received from AP courses.
TransCrd × × Continuous Number of credit hours received from transfer courses.

In-class variables
Clicker × Continuous Average clicker score graded for participation.
Homework × Continuous Homework average.
TestAve × Continuous Average for the first or the first and second exam.
Pretest participation × Dichotomous Was the pretest taken?
Pretest score × Continuous FMCE pretest score.
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each tree “votes” on the most probable outcome. The
decision threshold determines what fraction of the trees
must vote for the outcome for the outcome to be selected as
the overall prediction of the random forest. Random forests
use bootstrapping to prevent one variable from being
obscured by another variable. Bootstrapping is a statistical
method where multiple random subsets of a dataset are
created by sampling with replacement. Individual trees are
grown on Z subsamples generated by sampling the training
dataset with replacement using a subset of size m ¼ ffiffiffi

k
p

of
thevariables,where k is the number of independent variables
in the model [36]. This method ensures the trees are not
correlated and that the stronger variables do not overwhelm
weaker variables [20]. The “randomForest” package in “R”
was used for the analysis. The Supplemental Material
contains an example of random forest code in R [37].

D. Performance metrics

The confusion matrix [38] as shown in Table II summa-
rizes the results of a classification algorithm and is the basis
for calculating most model performance metrics. To con-
struct the confusion matrix, the classification model devel-
oped from the training dataset is used to classify students in
the test dataset. The confusion matrix categorizes the
outcome of this classification.
For classification, one of the dichotomous outcomes is

selected as the positive result. In the current study, we use
the DFW outcome as the positive result. This choice was
made because some of the model performance metrics
focus on the positive results and we feel that most
instructors would be more interested in accurately identi-
fying students at risk of failure.
From the confusion matrix, many performance metrics

can be calculated. Study 1 reported the overall classifica-
tion accuracy, the fraction of correct predictions, shown in
Eq. (1):

overall accuracy ¼ TNþ TP
Ntest

; ð1Þ

where Ntest ¼ TPþ TNþ FPþ FN is the size of the test
dataset.
The true positive rate (TPR) and the true negative rate

(TNR) characterize the rate of making accurate predictions
of either the DFWor the ABC outcome. The DFWaccuracy
is the fraction of the actual DFW cases that are classified as
DFW in the test dataset:

DFWaccuracy ¼ TPR ¼ TP
TPþ FN

: ð2Þ

ABC accuracy is the fraction of the actual ABC cases that
are classified as ABC:

ABC accuracy ¼ TNR ¼ TN
TNþ FP

: ð3Þ

DFWaccuracy is called “sensitivity” or “recall” in machine
learning; ABC accuracy is “specificity.”

ABC and DFW accuracy can be adjusted by changing
the strictness of the classification criteria. If the model
classifies even the only slightly promising cases as DFW, it
will probably classify most actual DFW cases as DFW
producing a high DFW accuracy. It will also make a lot of
mistakes; the DFW precision or the positive predictive
value (PPV) captures the rate of making correct predictions
and is defined as the fraction of the DFW predictions which
are correct:

DFWprecision ¼ PPV ¼ TP
TPþ FP

: ð4Þ

DFW precision is called “precision” or “positive predictive
value” in machine learning.
This study seeks models that balance DFWaccuracy and

precision; however, the correct balance for a given appli-
cation must be selected based on the individual features of
the situation. If there is little cost and no risk to an
intervention, then optimizing for higher DFW accuracy
might be the correct choice to identify as many DFW
students as possible. If the intervention is expensive or
carries risk, optimizing the DFW precision so that most
students who are given the intervention are actually at risk
might be more appropriate.
Beyond simply evaluating the overall performance of a

classification algorithm, we would like to establish how
much better the algorithm performs than pure guessing. For
example, sample 1 is substantially unbalanced between the
DFW and ABC outcomes with 88% of the students
receiving an A, B, or C. If a classification method guessed
that all student would receive an A, B, or C, then the
classifier would have an overall accuracy of 0.88; therefore,
overall accuracy would not be a useful metric to character-
ize model performance in this case.
In order to provide a more complete picture of

model performance, additional performance metrics were
explored. Cohen’s kappa κ measures agreement among
observers [39] correcting for the effect of pure guessing as

κ ¼ p0 − pe

1 − pe
; ð5Þ

where p0 is the observed agreement and pe is agreement by
chance. Fit criteria have been developed for κ with κ less

TABLE II. Confusion matrix.

Actual negative Actual positive

Predicted negative True negative (TN) False negative (FN)
Predicted positive False positive (FP) True positive (TP)
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than 0.2 as poor agreement, 0.2–0.4 fair agreement, 0.4–0.6
moderate agreement, 0.6–0.8 good agreement, and 0.8–1.0
excellent agreement between observers [40].
The receive operating characteristic (ROC) curve (origi-

nally developed to evaluate radar) plots the true positive
rate against the false positive rate (FPR). The area under the
curve (AUC) is a measure of the model’s discrimination
between the two outcomes; AUC is the integrated area
under the ROC curve. For a classifier that uses pure
guessing, the ROC curve is a straight line between (0,0)
and (1,1) and the AUC is 0.5. An AUC of 1.0 represents
perfect discrimination [38,41]. Hosmer et al. [41] suggest
an AUC threshold of 0.80 for excellent discrimination.

E. Model tuning and validation

We will find that the random forest classification models
have poor performance predicting whether a student will
receive a D, F, or W using the default parameters of the
model. To improve performance, the models are tuned by
adjusting the decision threshold. The imbalance of both the
outcome variable and some of the demographic variables

must also be investigated to verify that the models are valid
and the conclusions are reliable. This process is described
in detail the Supplemental Material [37].

III. RESULTS

General descriptive statistics are shown in Tables III and
IV for samples 1 and 3, respectively. The descriptive
statistics for sample 2 are similar to sample 1 and are
presented in the Supplemental Material [37]. The dichoto-
mous outcome variable divides each sample into two
subsets with different academic characteristics. The
dichotomous independent variables further divide the sub-
sets defined by the outcome variables. The overall dem-
ographic composition of the sample is shown for each
sample in the Supplemental Material [37].

A. Classification models

To explore the classification of DFW students, multiple
classification models were constructed for each sample. To
allow comparison, each model was tuned so that the DFW

TABLE III. Descriptive statistics for sample 1. All values are the mean � the standard deviation.

N Physics grade ACT math (%) HSGPA CGPA

Overall 7184 2.70� 1.3 79� 14 3.71� 0.5 3.18� 0.5

ABC students 6337 3.05� 0.8 80� 14 3.75� 0.4 3.25� 0.5
DFW students 847 0.05� 0.9 73� 15 3.43� 0.5 2.65� 0.5

Women 1270 2.83� 1.2 79� 14 3.94� 0.4 3.38� 0.5
Men 5914 2.67� 1.3 79� 14 3.66� 0.5 3.14� 0.5

URM 388 2.42� 1.3 73� 17 3.53� 0.5 3.03� 0.6
Not URM 6796 2.71� 1.3 80� 14 3.72� 0.5 3.19� 0.5

First generation 815 2.66� 1.3 77� 15 3.72� 0.5 3.15� 0.5
Not first generation 6369 2.70� 1.3 80� 14 3.71� 0.5 3.18� 0.5

TABLE IV. Descriptive statistics for sample 3. All values are the mean � the standard deviation.

N Physics grade SAT math (%) HSGPA CGPA

Overall 926 2.34� 1.2 75� 18 3.66� 0.4 3.10� 0.6

ABC students 740 2.83� 0.8 77� 17 3.70� 0.3 3.20� 0.5
DFW students 186 0.39� 0.5 68� 19 3.49� 0.4 2.70� 0.5

Women 259 2.21� 1.2 71� 19 3.70� 0.3 3.13� 0.5
Men 667 2.39� 1.2 77� 17 3.64� 0.4 3.09� 0.6

URM 396 2.13� 1.3 68� 19 3.64� 0.4 3.02� 0.6
Not URM 530 2.49� 1.2 81� 14 3.67� 0.3 3.16� 0.5

First generation 440 2.18� 1.2 70� 19 3.63� 0.4 3.03� 0.6
Not first generation 486 2.49� 1.2 80� 15 3.68� 0.3 3.16� 0.6

Low SES 351 2.26� 1.2 71� 19 3.65� 0.4 3.06� 0.6
Not Low SES 575 2.39� 1.2 78� 16 3.67� 0.3 3.12� 0.6
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accuracy and DFW precision were approximately equal.
Table V shows the overall model fit for all samples. Each
sample is discussed separately.

1. Sample 1

Sample 1 was first analyzed using the default decision
threshold for the randomForest package in R where 50% of
the trees must vote for the outcome to be selected. This was
the threshold used in study 1. This result is shown as the
“Default”model in Table V. The model has very poor DFW
accuracy with only 16% of the DFW students identified. It
also has fairly poor κ and AUC. This poor performance
results from the unbalanced DFWoutcomewhere only 12%
of the students receive a D, F, or W. This model was tuned
to produce the “Overall” model by adjusting the decision
threshold as shown in the Supplemental Material [37].
A threshold of 32% of trees voting for the DFW classi-
fication produced the Overall model which balanced DFW
accuracy and precision. This model substantially improved
DFW accuracy to 43% at the expense of lower DFW
precision and had substantially better κ and AUC; κ ¼ 0.36
represented fair agreement; however, the AUC value of
0.68 was well below Hosmer’s threshold of 0.80 for
excellent discrimination.
The classification model constructed on the full training

dataset was then used to classify each demographic sub-
group in the test dataset to determine if a model trained on a

sample composed predominantly of majority students
would be accurate for other students. The κ and AUC of
the models classifying women, URM students, and first-
generation students were very similar. Some, but not
extreme, variation was measured for DFW accuracy and
precision. The overall classifier had lower DFW accuracy
for women and higher accuracy for URM students (with
corresponding changes in precision). This may indicate that
it would be productive to tune the models separately for
different demographic groups.
Finally, the model labeled “Restricted” was constructed

using only a subset of variables similar to those available
for sample 3. Sample 3 contained institutional variables that
are commonly supplied with a demographic data request to
institutional records; Sample 1 also included variables such
as STEMCls which may be of particular interest for
prediction of the outcomes of physics students and vari-
ables such as the percentage of classes completed that may
be of particular importance in DFW classification. As one
might expect, the restricted model using fewer variables
performed more weakly than the overall model with DFW
accuracy reduced by 7%.

2. Sample 2

Sample 2 contained the same institutional variables as
sample 1, but also included in-class data such as homework
grades and clicker grades which were available on a weekly

TABLE V. Model performance parameters. Values represent the mean � the standard deviation.

Model Overall accuracy DFW accuracy ABC accuracy DFW precision κ AUC

Sample 1 (N ¼ 7184)

Default 0.89� 0.00 0.16� 0.02 0.98� 0.00 0.57� 0.04 0.21� 0.02 0.57� 0.01
Overall 0.87� 0.01 0.43� 0.02 0.93� 0.01 0.44� 0.02 0.36� 0.02 0.68� 0.01
Female students 0.90� 0.01 0.38� 0.05 0.96� 0.01 0.49� 0.06 0.37� 0.05 0.67� 0.03
URM students 0.80� 0.02 0.48� 0.07 0.86� 0.02 0.40� 0.06 0.32� 0.06 0.67� 0.04
First-generation students 0.87� 0.01 0.44� 0.06 0.92� 0.01 0.42� 0.06 0.35� 0.05 0.68� 0.03
Restricted 0.85� 0.01 0.36� 0.02 0.91� 0.01 0.36� 0.02 0.28� 0.02 0.64� 0.01

Sample 2 (N ¼ 1683)

Institutional 0.90� 0.01 0.50� 0.05 0.95� 0.01 0.50� 0.04 0.45� 0.04 0.73� 0.02
In-class only week 1 0.88� 0.01 0.37� 0.05 0.94� 0.02 0.38� 0.05 0.31� 0.04 0.65� 0.02
Institutional and in-class week 1 0.91� 0.01 0.53� 0.05 0.95� 0.01 0.53� 0.04 0.48� 0.04 0.74� 0.02
In-class only week 2 0.89� 0.01 0.42� 0.05 0.94� 0.01 0.43� 0.05 0.36� 0.04 0.68� 0.02
Institutional and in-class week 2 0.91� 0.01 0.56� 0.05 0.95� 0.01 0.55� 0.04 0.51� 0.04 0.76� 0.02
In-class only week 5 0.92� 0.01 0.54� 0.06 0.95� 0.01 0.54� 0.05 0.49� 0.04 0.74� 0.03
Institutional and in-class week 5 0.93� 0.01 0.59� 0.05 0.96� 0.01 0.60� 0.05 0.55� 0.04 0.78� 0.04
In-class only week 8 0.94� 0.01 0.66� 0.05 0.96� 0.01 0.65� 0.05 0.62� 0.04 0.81� 0.03
Institutional and in-class week 8 0.94� 0.01 0.68� 0.05 0.97� 0.01 0.68� 0.04 0.65� 0.04 0.82� 0.02

Sample 3 (N ¼ 926)

Overall 0.74� 0.02 0.37� 0.05 0.84� 0.03 0.37� 0.03 0.21� 0.04 0.61� 0.02
Female students 0.70� 0.02 0.40� 0.08 0.79� 0.04 0.38� 0.05 0.19� 0.06 0.60� 0.03
URM students 0.67� 0.03 0.41� 0.09 0.76� 0.05 0.37� 0.05 0.16� 0.06 0.58� 0.04
First-generation students 0.72� 0.02 0.45� 0.07 0.80� 0.03 0.43� 0.04 0.25� 0.06 0.63� 0.03
Low SES students 0.72� 0.03 0.35� 0.09 0.82� 0.05 0.36� 0.06 0.17� 0.07 0.58� 0.04
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basis. While the institutional data would require a data
request to institutional research at most institutions, the in-
class variables should be available to most physics instruc-
tors. Table V shows the progression of DFW accuracy and
precision as the class progresses.
A model using only the institutional variables was first

constructed to determine how well DFW students could be
identified using only variables available before the semester
begins. This model (Institutional) had superior performance
characteristics to the overallmodel of sample 1whichused the
same variables and a larger sample collected over a longer
time period. The improved performance quite possibly was
the result of sample 1 averaging over many instructional
environments while sample 2 contained data from a single
instructional design. This suggests that limiting the data used
for the classifier to the current implementation of a course
may produce superior results, even with lower sample size.
The performance of models using only the in-class data

easily available to instructors consistently performed more
weakly than those which mixed in-class and institutional
data. The in-class-only models improved as the class
progressed and became better than the model including
only institutional data after the first test was given in
week 5. The in-class-only model was substantially better
than the institutional model after the second test was given
in week 8. As such, if the goal of a classification algorithm
is to predict student outcomes well into the class, only
in-class data are needed.
The models combining in-class and institutional data

added surprisingly little predictive power to the institutional
model, particularly early in the class. This further supports
the need to access a rich set of institutional data for accurate
classification early in a class and suggests predictions made
using only institutional data will not be substantially
modified using in-class data until the first test is given.

3. Sample 3

As shown in Table I, sample 3 contains many fewer
variables than sample 1. The classification model for
sample 3 had lower DFW accuracy and precision than
similar models for samples 1 and 2. Restricting the variable
set of sample 1 to be approximately that of sample 3 (the
reduced model) produced a classifier with similar proper-
ties to that of sample 3. The difference in classification
accuracy, therefore, seems to be the result of the difference
in the variables available and not the difference in sample
size or differences between the universities.
The student population of sample 3 is substantially more

diverse than that of sample 1 or 2. Model performance
predicting only the outcomes of minority demographic
subgroups was approximately that of the overall model
performance with somewhat lower variation than sample 1.
This suggests that the differences in model performance for
demographic subgroups observed in sample 1 were not a
result of the low representation of those groups in the

sample. Low SES students were also analyzed separately;
the model performance for low SES students was similar to
the overall model performance.

B. Variable importance

Once constructed, classification models can provide
physics instructors and departments a much more nuanced
picture of student risk and provide tools to better serve their
students. This section and the next section will introduce
some of the additional insights which can be extracted once
a classification model is constructed.
Institutional data are exceptionally complex; random

forest classification models allow the identification of the
parts of the institutional data that are important for the
prediction of student risk and the thresholds in that data that
go into classifying a student as at risk.
The first measure useful in further understanding which

variables are most important in the classification process is
“variable importance.” The importance of a variable to one
of the model characterization metrics such as DFW
accuracy is computed by fitting the model with the variable
and then without the variable to determine the mean
decrease in the characterization measure when the variable
is removed from the model. Figure 1 shows the mean
decrease in DFW accuracy, DFW precision, and overall
accuracy as the different variables used in the full model are
removed for sample 2 using data available in the second
week of the class. Similar plots for samples 1 and 3 are
presented in the Supplemental Material [37].
The variable importance plots shown in Fig. 1 show that

homework average followed by CGPA were the most
important variables in accurately identifying DFW stu-
dents. In addition to these variables, only CmpPct (the
percentage of credit hours completed) has an error bar that
does not include zero. These results are very different than
the variable importance results of study 1 which predicted
the AB outcome and used overall accuracy to measure
model performance. In study 1, while homework grade
grew in variable importance from week to week, it was less
important than CGPA until week 5 when test 1 was given.
As in study 1, a very limited number of institutional
variables were needed to predict grades in a physics class.
While many instructors would select CGPA as an impor-

tant variable and would hope that homework averages were
important, quantitatively having a relative measure of impor-
tance is valuable. The variable importance plots in Fig. 1 also
identify many variables that seem important such as high
school GPA (HSGPA), ACT or SAT mathematics percentile
score (ACTM), and demographic variables, which were not
important for the prediction of the DFW outcome.

C. Applying classification models

The most basic output of a classification model is the
assignment of each student in the dataset into one of two
classes: those students likely to receive an A, B, or C and
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those likely to receive a D, F, or W. Classification
algorithms, once constructed, can provide a finer-grained
picture of student risk that may be more useful in applying
machine learning results to manage instructional interven-
tions for at-risk students. A classification model can also
provide the probability a student will receive each outcome.
The predicted probability density distribution of receiving
an A, B, or C is plotted for each actual grade outcome in
Fig. 2. Two plots are provided to improve readability. The
distribution of probability estimates of students who
actually earn an A or B is very narrow, with most students
with a predicted probability above 0.75. This suggests that
the students who actually receive A or B in the class are
predicted to receive an A, B, or C with very high
probability. The probability curve for students earning a
C is much broader but still peaked near one. Examination of
the C distribution illustrates two key features of the
prediction: (1) the vast majority of students who actually
earn a C are predicted to do so with probability p > 0.5 and
(2) some students who receive a C are predicted to do so
with very low probability. As such, an instructor should not
interpret a low probability of receiving a C as a guarantee
that a student will not succeed in the class. The probability
distributions of the F and W outcomes are very broad,
showing these students are very difficult to predict accu-
rately. Examination of these distributions can help instruc-
tors understand how an individual student’s probability
estimate translates into actual grade outcomes and inform
risk decisions.
Variable importance plots quantify the relative impor-

tance of the many variables used in the classification model
correcting for the collinearity of many of the variables.

These plots, however, do not provide information about the
levels of these variables important in making the classi-
fication. A random forest grows thousands of decision trees
on a subset of the variables; examining a single decision
tree using all variables can show the thresholds for the
important variables. The decision tree for the training
dataset of sample 2 in week 2 of the class is shown in
Fig. 3. Each node in the tree is labeled with the majority
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FIG. 1. Variable importance of the optimized model predicting DFW for sample 2 using institutional data and data available in class at
the end of week 2. Error bars are one standard deviation in length.

FIG. 2. Predicted probability of earning an A, B, or C for
sample 1 disaggregated by the actual grade received in the class.
The figure plots the probability density of each outcome. The
order of the peaks in the lower figure from left to right is
W, F, D, C.

USING MACHINE LEARNING TO IDENTIFY THE … PHYS. REV. PHYS. EDUC. RES. 16, 020130 (2020)

020130-9



member of the node, either ABC or DFW. The root node
(top node) contains the entire training dataset, indicated by
the 100% at the bottom node. Every node indicates the
fraction of the training dataset contained in the node. The
fraction of each outcome is shown in the center of the node;
for example, the root node contains 10% DFW students and
90% ABC students. The decision condition is printed
below the node. If the condition is true for the student,
the left branch of the tree is taken; if false, the right branch
is taken. For example, the decision condition for the root
node is whether the week 2 homework average is above or
below 62%. For the 8% of the students below this average,
the left branch is taken to node 2. Only 47% of the students
in node 2 receive an A, B, or C. For the 3% of these
students with CGPA less than 2.5, only 17% receive an A,
B, or C (node 10). The decision tree gives a very clear
picture of the relative variable importance (higher variables
in the tree are more important) and the threshold of risk of
receiving a D, F, or W at each level of the tree.

IV. DISCUSSION

This study sought to answer three research questions;
they will be addressed in the order proposed.
RQ1: How can machine learning algorithms be applied

to predict unbalanced physics class outcomes?Study 1 used
random forests and logistic regression to predict which
students would receive an A or B in introductory physics.
The default random forest parameters were used to build the
models and the models were characterized by their overall

accuracy, κ, and AUC. Because the outcome variable was
fairly balanced, with 63% of the students receiving an A or
B, overall accuracy provided an acceptable measure of
model performance. The pure guessing accuracy was
63%, and therefore, this statistic could vary over the range
63%–100% as variables were added to the model.

In the current work, the methods introduced in study 1
were unproductive because the outcome variable, predict-
ing the DFW outcome, was substantially unbalanced with
only 10% (sample 2) to 20% (sample 3) of the students
receiving this outcome. For this outcome, the pure guessing
overall accuracy (simply predicting everyone receives an A,
B, or C) is from 80% to 90%, making it an inappropriate
statistic to judge model quality. This work introduced the
DFW accuracy and precision as more useful statistics to
evaluate model performance. In sample 1, using the default
random forest algorithm parameters (Table V, default
model) produced a model with very low DFW accuracy
identifying only 16% of the students who actually received
a D, F, or W in the test dataset; however, 57% of its
predictions were correct. This does not necessarily make it
a bad model, rather a model that is tuned for a specific
purpose where it is much more important for the predictions
to be correct than it is to identify the most potentially at-risk
students. This might be useful for an application that tries to
identify students for a high cost or non-negligible-risk
intervention where only the most likely at-risk students
could be accommodated.
Multiple methods were explored to improve model

performance: oversampling, undersampling, hyperpara-
meter tuning, and grid search. This exploration is described
in the Supplemental Material [37]. All methods improved
the balance of DFW accuracy and precision. Oversampling
led to models that overfit the data and was not used. Grid
search showed that, for this dataset, it was always possible
to use hyperparameter tuning by adjusting the decision
threshold without having to undersample to produce a
model with a balance of DFW accuracy and precision. The
decision threshold for models in Table V excluding the
default model and the models applied only to under-
represented groups was adjusted for each model to balance
DFW accuracy and precision. For the overall model of
sample 1, this produced a model with substantially higher
DFW accuracy and κ than the default model; however, it
still only identified 43% of the students who would receive
a D, F, or W, DFW accuracy of 0.43, and had κ ¼ 0.36 in
the range fair agreement by Cohen’s criteria.
Sample 2 restricted the time frame in which the institu-

tional data were collected to a 3-year period in which the
course studied had a consistent instructional environment.
Even though the size of the sample was much smaller,
model performance was improved, showing that it is
important to collect the training sample for a period where
the class was presented in the same form as the class in
which the model will be used.
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FIG. 3. Decision tree for predicting the DFW outcome for
sample 2 using institutional data and data available in class at the
end of week 2.
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The sample 2 model using only institutional variables
was much better than models using only in-class variables
early in the semester. If an instructor wants to develop
classification models for prediction of students at risk early
in the semester, accessing a set of institutional data can
substantially improve the models. The combination of
institutional and in-class variables gave the highest model
performance with an improvement of 3% in week 1, 6% in
week 2, 9% in week 5 (when test 1 grades were available),
and 18% in week 8 (when test 2 grades were available)
compared to the model containing only institutional var-
iables. As such, for identification of at-risk students early in
the semester most of the prediction accuracy can be
achieved with institutional data alone.
Sample 3 included a more restricted set of institutional

variables than sample 1, but included a variable indicating
socioeconomic status and featured a more demographically
diverse population. The overall model for this sample had
weaker performance metrics than the overall model for
sample 1 or the institutional model for sample 2. When the
set of variables used in sample 1 was restricted to be
approximately those used in sample 3, model performance
was commensurate. It is, therefore, important for improving
model performance to work with institutional research to
provide the machine learning algorithms with as rich a set
of data as possible.
RQ2: Does classification accuracy differ for underre-

presented groups in physics? If so, how and why does it
differ? For samples 1 and 3, once the model was constructed
for the full training dataset, the overall model was used to
classify demographic subgroups in the test dataset sepa-
rately, as shown in Table V. Thesemodels examinedwomen,
URM students, first-generation college students, and low
SES students. In both samples, the model performance
metrics for some minority demographic groups were differ-
ent (either better or worse) than the overall model; however,
these differences were within one standard deviation of the
overallmodel. As such, the classifier built on the full training
dataset predicted the outcomes of underrepresented physics
students with approximately equal accuracy. While the
differences observed in Table V are within the error of the
sample, should significant differences be detected, it is
possible to retune the models for each underrepresented
group separately.
Figure 1 and similar figures in the Supplemental Material

[37] show the demographic variables, gender, URM,
FirstGen, and SES are of low importance in the classi-
fication models. This is likely because these factors already
have a general effect on other variables included in the
models such as CGPA. The Supplemental Material [37]
includes an analysis which undersamples the majority
demographic class (for example, men) to produce a more
balanced dataset (for example, a dataset with the same
number of men and women) (Supplemental Figs. 7–9 [37]).
The variable importance of the demographic variables used

in this study was fairly consistent with the rate of under-
sampling showing that the low importance was not simply a
result of the lower number of students from minority
demographic groups in the sample.
To further investigate the low variable importance of the

demographic variables, we examined a more diverse
population (sample 3). Model performance metrics were
consistent with those obtained from sample 1, suggesting
the low variable importance was not the result of the
restricted number of underrepresented students in the
sample.
RQ3: How can the results of a machine learning analysis

be used to better understand and improve physics instruc-
tion? Once a classification model is constructed, the same
model can be used to characterize new groups of students.
Sections III B and III C presented three different possible
analyses that can be performed with classification models
that have classroom applications.
The first analysis computed the variable importance of

each variable in the classifier, Fig. 1. This is done by
finding the mean decrease in some performance metric if
the variable is removed from the model. This analysis
allows the identification of the variables which are most
predictive of a student receiving a D, F, or W. This can
show a working instructor where to look in complex
institutional datasets and allow departments to shape their
data requests.
The second analysis computed a probability of receiving

an A, B, or C for each individual student. This was plotted
for each actual grade received in Fig. 2. This allows an
individual quantitative risk to be applied to each student.
This risk could be updated as the semester progresses based
on in-class performance.
The final analysis computed a decision tree, Fig. 3. This

tree shows the decision thresholds which indicate the levels
of the variable that are important in classifying at-risk
students. As long as the instructional setting and assign-
ment policy remains consistent, these trees can be reused
semester to semester without having to rerun the analysis.
The tree shows that homework average, CGPA, and the
percent of hours completed were important in the decision
to classify a student at risk of a DFW outcome.
These analysis results represent examples of the addi-

tional tools classification algorithms can provide instruc-
tors; many more examples could be given. The following
represent some of the applications of these results being
considered at Institution 1. These applications are designed
around the principle that any additional instructional
activity must potentially benefit all students. The models
are far from perfect and, as such, all students may actually
be at risk, so any intervention must be available to any
student.
Informing resource allocation.—Students in physics

classes at Institution 1 elect laboratory sections where a
substantial part of the interactive instruction in the course is
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presented. Because a success probability can be generated
for each student, an average probability of success could be
calculated for each laboratory section. The physics depart-
ment has a learning assistant [29] program. If sufficient
LAs were available, one could provide additional LAs to at-
risk sections.
Planning revised assignment policy.—The decision tree

in Fig. 3 and variable importance measures in Fig. 1 show
that homework grades in the second week of the class are
the most important variable for predicting success and give
a homework score threshold of 62% as the highest level
decision for predicting success or failure. To develop the
habit of completing homework and investing sufficient
effort to do well on homework, a policy allowing the
reworking of homework assignments which received a
grade of less than 60% for additional (or initial) credit could
be implemented early in the class.
Planning student communication.—Instructors can use

the variable importance results to provide general advice to
students with low homework grades and encourage them to
seek additional help by attending office hours or to change
habits so homework assignments are started earlier and
sufficient time is allowed for completion. In general, an
instructor of a large service course does not have time to
personally communicate with each student; however, the
combination of the individual success probability, variable
importance, and variable decision threshold would allow an
instructor to monitor and communicate directly with a
small subset of students particularly at risk in the class.
These communications could let the students know that the
instructor noticed that early homework assignments needed
additional work and suggest strategies to the students for
improvement opening channels of personal communication
with at-risk students.
Many other potential instructional uses of this type of

analysis are possible. Naturally, if the intervention is
successful, it will modify student outcomes changing
students’ risk profiles. The classifier will need to be rebuilt
using student outcomes after the implementation of the
intervention to reflect this modified risk.
While using the random forest algorithm to make

predictions is technically fairly straightforward for instruc-
tors trained in physics (the base code is presented in the
Supplemental Material [37]), obtaining the institutional
dataset may present a substantial barrier for overworked
instructors of large service introductory classes. As such,
we present some recommendations for managing the
process of obtaining institutional data.
Gathering additional data for use by instructors should

probably be the responsibility of a departmental committee
or staff. The data required for different classes are quite
similar. A departmental data committee would also be able
to establish ethical standards for the use and handling of the
data. Some effort will be needed to understand the data
available at the institutional level and to work with

institutional research to fine-tune the data request. For
example, if one requests a basic set of demographic and
descriptive variables about students enrolled in a course
over a number of semesters, the GPAvariable provided will
probably be the student’s current GPA where one actually
wants the student’s GPA before he or she enrolled in the
class of interest. Some interaction would also be required to
develop variables such as the student’s math readiness or
the fraction of classes completed. However, once a set of
variables is identified, institutional records can quickly
generate the data for the department each semester. Once
the institutional data are acquired and understood, applying
the machine learning code is fairly straightforward. It is
also worth pursuing the possibility that institutional
research could handle the entire process and provide a
machine learning risk analysis to interested instructors.
Student retention is of vital interest to most institutions with
retention in core mathematics and science classes an
important part of the puzzle.

V. ETHICAL CONSIDERATIONS

The results of a machine learning classification represent
a new tool for physics instructors to shape instruction; as
with any tool, it can be correctly used or misused. If an
instructor is to use the predictions of a classification
algorithm, it is important that these results do not bias
their treatment of individual students. Figure 2 shows that it
is possible for students with very low predicted probability
of earning an A, B, or C to get a C or higher in the class.
Machine learning algorithms will never be 100% accurate
and this should be taken into account in any application of
the results of the algorithms. Further, while the classifica-
tion results may be used to direct resources to the students
most at risk, this should be done with the goal of improving
instruction for all students. Machine learning results should
also not be used to exclude students from additional
educational activities to support at-risk students. Because
the predictions are not 100% accurate, additional tutoring
sessions or similar resources should be available to all;
however, the results of classification models could be used
to deliver encouragement to the students most at risk to
avail themselves of these opportunities. One should also be
aware that individual features of the instructional environ-
ment can affect predictive accuracy [42] and be aware of the
general ethical considerations of using institutional
data [43].

VI. CONCLUSIONS

This work applied the random forest machine learning
algorithm to predict whether introductory mechanics
students would receive a grade of D or F or withdraw
from a physics class. Metrics and methods applied in
previous work produced classification models with poor
performance; however, selecting metrics appropriate for
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unbalanced outcomes and tuning the random forest models
greatly improved the classification accuracy of the DFW
outcome. Classification models performed similarly for
students from two institutions with very different demo-
graphic characteristics. Models with a richer set of institu-
tional variables were somewhat (7%) more accurate than
models with a limited set of variables. The addition of in-
semester variables, particularly homework averages and
test scores, improved model performance. The institutional
model far outperformed a model using only in-semester
variables early in the semester; the performance of the in-
semester only models exceeded that of the institutional
only models once the first test was included as a variable.

The classifier trained on the full set of students produced
somewhat different performance for women, underrepre-
sented minority students, and first-generation college
students with some metrics improved and some weaker
for these students. Once a classifier is constructed, multiple
new analyses are available allowing the direction of addi-
tional resources to at-risk students.
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