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Abstract—In this paper, we study random gossip processes in
communication models that describe the peer-to-peer networking
functionality included in standard smartphone operating systems.
These processes are well-understood in standard peer-to-peer
network models, but little is known about their behavior in
models that abstract the smartphone peer-to-peer setting. With
this in mind, we begin by studying a simple random gossip
process in the synchronous mobile telephone model (the most
common abstraction used to study smartphone peer-to-peer sys-
tems). We prove that the simple process is actually more efficient
than the best-known gossip algorithm in the mobile telephone
model, which required complicated coordination among the nodes
in the network. We then introduce a novel variation of the
mobile telephone model that removes the synchronized round
assumption, shrinking the gap between theory and practice. We
prove that simple random gossip processes still converge in this
setting and that information spreading still improves along with
graph connectivity.

Index Terms—gossip, distributed algorithms, peer-to-peer net-
works

I. INTRODUCTION

In this paper, we study random gossip processes in smart-
phone peer-to-peer networks. We prove the best-known gossip
bound in the standard synchronous model used to describe this
setting, and then establish new results in a novel asynchronous
variation of this model that more directly matches the real
world behavior of smartphone networks. Our results imply
that simple information spreading strategies work surprisingly
well in this complicated but increasingly relevant environment.

In more detail, a random gossip process is a classical strat-
egy for spreading messages through a peer-to-peer network.
It has the communicating nodes randomly select connection
partners from their eligible neighbors, and then once connected
exchange useful information.! As elaborated in Section II,
these random processes are well-studied in standard peer-to-
peer models where they have been shown to spread informa-
tion efficiently despite their simplicity.

To date, however, little is known about these processes in
the emerging setting of smartphone peer-to-peer networks, in
which nearby smartphone devices connect with direct radio
links that do not require WiFi or cellular infrastructure. As also
elaborated in Section II, both Android and iOS now provide
support for these direct peer-to-peer connections, enabling

'The main place where different random gossip processes vary is in their
definition of “eligible.” What unites them is the same underlying approach of
random connections to nearby nodes.
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the possibility of smartphone apps that generate large peer-
to-peer networks that can be deployed, for example, when
infrastructure is unavailable (i.e., due to a disaster) or censored
(i.e., due to government repression). This paper investigates
whether the random gossip processes that have been shown
to spread information well in other peer-to-peer settings will
prove similarly useful in this intriguing new context.

A. The Mobile Telephone Model (MTM)

The mobile telephone model (MTM), introduced by Ghaffari
and Newport [1], extends the well-studied felephone model of
wired peer-to-peer networks (e.g., [2]-[10]) to better capture
the dynamics of standard smartphone peer-to-peer libraries.
In recent years, several important peer-to-peer problems have
been studied in the MTM, including rumor spreading [1], load
balancing [11], leader election [12], and gossip [13].

As we elaborate in Section III-A, the mobile telephone
model describes a peer-to-peer network topology with an
undirected graph, where the nodes correspond to the wireless
devices, and an edge between two nodes indicates the corre-
sponding devices are close enough to enable a direct device-
to-device link. Time proceeds in synchronous rounds. At the
beginning of each round, each node can advertise a bounded
amount of information to its neighbors in the topology. At this
point, each node can then decide to either send a connection
invitation to a neighbor, or instead receive these invitations,
choosing at most one incoming invitation to accept, forming
a connection. Once connected, a pair of node can perform a
bounded amount of communication before the round ends.

B. Gossip in the MTM

The gossip problem assumes that k£ out of the n > k nodes
start with a gossip message. The problem is solved once all
nodes have learned all £ messages. In the context of the MTM,
we typically assume that at most O(1) gossip messages can
be transferred over a connection in a single round, and that
advertisements are bounded to O(logn) bits.

A natural random gossip process in this setting is to have
nodes advertise a hash of their current token set and only
attempt random connections with nodes advertising different
hashes. It is straightforward to establish that this process solves
gossip in O(nk) rounds, with high probability in n (see [13]
for the details of this analysis).

In our previous work [13], we improved on this bound
by introducing a more complicated gossip algorithm called



crowded bin, which requires, among other feats of distributed
coordination, for nodes to run a subroutine that estimates
k, and then uses this value to build a TDMA schedule that
enables k independent spreading processes to run in parallel.
We prove that crowded bin solves gossip in O((k/a)log® n)
rounds, with high probability in n, when run in a network
topology with vertex expansion « (see Section III-C). For all
but the smallest « values (i.e., least amounts of connectivity)
this result improves the O(nk) bound for the simple process.

A key open question from [13] is whether or not it is
possible to close the time complexity gap between appealingly
simple random gossip processes and the more complicated
machinations of crowded bin. As we detail next, this is a core
question tackled in this paper.

C. New Result #1: Improved Analysis for Gossip in the MTM

In Section III-A, we consider a simple random gossip pro-
cess that we call random spread. By introducing a new analysis
technique, we significantly improve on the straightforward
O(nk) bound from [13] for processes of this type. Indeed, we
prove random spread is actually slightly more efficient than
the much more complicated crowded bin algorithm from [13],
showing that with high probability in n, random spread
requires only O((k/c)log® n) rounds to solve gossip.

The primary advantage of random spread gossip is its
simplicity. A secondary advantage is that this algorithm works
in the ongoing communication scenario in which new rumors
keep arriving in the system. Starting from any point in an
execution, if there are k rumors that are not yet fully dis-
seminated, they will reach all nodes in at most an additional
O((k/a) log* n) rounds, regardless of how many rumors have
been previously spread. The solution in [13], by contrast, must
be restarted for each collection of k rumors, and includes no
mechanism for devices to discover that gossip has completed
for the current collection. Accordingly, this new result fully
supersedes the best-known existing results for gossip in the
MTM under similar assumptions.?

At the core of our analysis is a new data structure we call
a size band table that tracks the progress of the spreading
rumors. We use this table to support an amortized analysis of
spreading that proves that the stages in which rumors spread
slowly are balanced out sufficiently by stages in which they
spread quickly, providing a reasonable average rate.

D. New Result #2: Gossiping in the Asynchronous MTM

The mobile telephone model is a high-level abstraction
that captures the core dynamics of smartphone peer-to-peer
communication, but it does not exactly match the behavior
of real smartphone networking libraries. The core difference
between theory and practice in this context is synchronization.
To support deep analysis, this abstract model (like many
models used to study distributed graph algorithms) synchro-
nizes devices into well-defined rounds. Real smartphones, by
contrast, do not offer this synchronization. It follows that

2In [13], we also study gossip under other assumptions, like changing
communication graphs and the lack of good hash functions.

algorithms developed in the mobile telephone model cannot
be directly implemented on real hardware.

With the goal of closing this gap, in Section IV we in-
troduce the asynchronous mobile telephone model (aMTM),
a variation of the MTM that removes the synchronous round
assumption, allowing nodes and communication to operate at
different speeds. The main advantage of the aMTM is that
algorithms specified and analyzed in the aMTM can be directly
implemented using existing smartphone peer-to-peer libraries.
The main disadvantage is that the introduction of asynchrony
complicates analysis.

In Section IV, we first study the question of whether
simple random gossip processes even still converge in an
asynchronous setting. The answer is not a priori obvious
as it might be possible that the adversarial scheduler could
starve certain messages. We answer this question positively by
proving that an asynchronous version of random spread solves
gossip in O(nkd,,q,) time, where §,,4, is an upper bound
on the maximum time for certain key steps (as is standard,
we assume 0,4, 1S determined by an adversary, can change
between executions, and is unknown to the algorithm).

We then tackle the challenge of adapting the analysis tech-
niques from the synchronous MTM, which heavily leverage
the model synchronization, to show that information spreading
still speeds up with respect to vertex expansion in the asyn-
chronous setting. By introducing a novel analysis technique,
in which we show that the probabilistic connection behavior in
the aMTM over time sufficiently approximates synchronized
behavior, to allow our more abstract graph theory results to
apply. we prove that for £k = 1, the single message spreads
in at most O(y/(n/c) - 1og? na - d,a) time. This result falls
somewhere between our previous O (10,4, ) result for gossip
with k£ = 1 in the aMTM, and the bound of O(polylog(n)/«)
rounds possible in the synchronous MTM for k£ = 1.

We argue that our introduction of the aMTM, as well as a
powerful set of tools for analyzing information spreading in
this setting, provides an important foundation for the future
study of communication processes in realistic smartphone
peer-to-peer models.

II. RELATED WORK

In recent years, there has been a growing amount of research
on smartphone peer-to-peer networking [14]-[20] (see [21]
for a survey). In this paper, we both study and extend the
mobile telephone model introduced in 2016 by Ghaffari and
Newport [1]. Among other results, we prove that a simple
random gossip process solves the problem in O((k/a) log* n)
rounds in the mobile telephone model, improving over the
O((k/a)log® n) result proved for a more complicated algo-
rithm in [13]. To put these bounds into context, note that
previous work in the mobile telephone model solved rumor
spreading [1] and leader election [12] in O(polylog(n)/«)
rounds. In the classical telephone model, a series of papers [7]—
[10] (each optimizing the previous) established that simple
random rumor spreading requires O(log®n/a) rounds [10],
which is optimal in the sense that for many o values, there



exists networks with a diameter in Q(log® n/«). The fact that
our gossip solution increases these bounds by a factor of &
(ignoring log factors) is natural given that we allow only a
constant number of tokens to be transferred per round.

As mentioned, random gossip processes more generally
have been studied in other network models. These abstractions
generally model time as synchronized rounds and by definition
require nodes to select a neighbor uniformly at random in each
round [25] [26]. More recent work has demonstrated that these
protocols take advantage of key graph properties such as vertex
expansion and graph conductance [27]. Asynchronous variants
of these protocols have also been explored, where asynchrony
is captured by assigning each node a clock following an
unknown but well-defined probability distribution [25] [28].
The asynchronous MTM model introduced in our paper, by
contrast, deploys a more general and classical approach to
asynchrony in which an adversarial scheduler controls the time
required for key events in a worst-case fashion.

III. RANDOM GOSSIP IN THE MOBILE TELEPHONE MODEL

Here we study a simple random gossip process in the
mobile telephone model. We begin by formalizing the model,
the problem, and some graph theory preliminaries, before
continuing with the algorithm description and analysis.

A. The Mobile Telephone Model

The mobile telelphone model describes a smartphone peer-
to-peer network topology as an undirected connected graph
G = (V,E). A computational process (called a node in the
following) is assigned to each vertex in V. The edges in E
describe which node pairs are within communication range.
In the following, we use © € V to indicate both the vertex
in the topology graph as well as the computational process
(node) assigned to that vertex. We use n = |V| to indicate the
network size.

Executions proceed in synchronous rounds labeled 1,2, ...,
and we assume all nodes start during round 1. At the beginning
of each round, each node u € V selects an advertisement to
broadcast to its neighbors N(u) in G. This advertisement is a
bit string containing no more than O(logn + ¢}) bits, where
£y is the digest length of a standard hash function parame-
terized to obtain the desired collision resistance guarantees.
After broadcasting its advertisement, node v then receives the
advertisements broadcast by its neighbors in G for this round.

At this point, v decides to either send a connection invitation
to a neighbor, or passively receive these invitations. If u
decides to receive, and at least one connection invitation
arrives at u, then node u can select at most one such incoming
invitation to accept, forming a connection between u and the
node v that sent the accepted invitation. Once u and v are
connected, they can perform a bounded amount of reliable
interactive communication before the round ends, where the
magnitude of this bound is specified as a parameter of the
problem studied. Notice that the model does not guarantee to
deliver u all invitations sent to w by its neighbors. It instead
only guarantees that if at least one neighbor of w sends an

invitation, then u will receive a non-empty subset (selected
arbitrarily) of these invitations before it must make its choice
about acceptance.

If u instead chooses to send a connection invitation to a
neighbor v, there are two outcomes. If v accepts u’s invitation,
a connection is formed as described above. Otherwise, u’s
invitation is implicitly rejected.

B. The Gossip Problem

The gossip problem is parameterized with a token count
k > 0. It assumes k unique fokens are distributed to nodes at
the beginning of the execution. The problem is solved once all
nodes have received all k tokens. We treat the tokens as black
boxes objects that are large compared to the advertisements.
With this in mind, we assume the only ways for a node u to
learn token t are: (1) u starts with token ¢; or (2) a node v
that previously learned ¢ sends the token to v during a round
in which v and u are connected.

We assume that at most a constant number of tokens can
be sent over a given connection. Notice that this restriction
enforces a trivial (k) round lower bound for the problem.

C. Vertex Expansion

Some network topologies are more suitable for information
dissemination than others. In a clique, for example, a mes-
sage can spread quickly through epidemic replication, while
spreading a message from one endpoint of a line to another
is necessarily slow. With this in mind, the time complexity of
information dissemination algorithms are often expressed with
respect to graph connectivity metrics such as vertex expansion
or graph conductance. In this way, an algorithm’s performance
can be proved to improve along with available connectivity.

In this paper, as in previous studies of algorithms in the
mobile telephone model [1], [11]-[13], we express our results
with respect to vertex expansion (see [1] for an extended
discussion of why this metric is more appropriate than conduc-
tance in our setting). Here we define this metric and establish
a useful related property.

For fixed undirected connected graph G = (V, E), and a
given S C V, we define the boundary of S, indicated 9.5, as
follows: 35S = {v € V\ S : N(v)NS # (}: that is, S is the
set of nodes not in S that are directly connected to S by an
edge in E. We define a(S) = |0S5|/|S|. We define the vertex
expansion « of a given graph G = (V| E) as follows:

a= a(S).

min

Scv,0<|S|<n/2
Notice that despite the possibility of a(S) > 1 for some .S, we
always have a < 1. In more detail, this parameter ranges from
2/n for poorly connected graphs (e.g., a line) to values as large
as 1 for well-connected graphs (e.g., a clique). Larger values
indicate more potential for fast information dissemination.

The mobile telephone model requires the set of pairwise
connections in a given round to form a matching in the topol-
ogy graph G = (V, E). The induces a connection between
maximum matchings and the maximum amount of potential



communication in a given round. Here we adapt a useful
result from [1] that formalizes the relationship between vertex
expansion and these matchings as defined with respect to given
partition.

In more detail, for a given graph G = (V, F) and node
subset S C V, we define B(S) to be the bipartite graph
with bipartitions (S, V' \ S), and the edge set Es = {(u,v) :
(u,v) € E, u € S, and v € V \ S}. Recall that the
edge independence number of a graph H, denoted v(H),
describes the size of a maximum matching on H. For a
given S, therefore, v(B(.S)) describes the maximum number
of concurrent connections that a network can support in the
mobile telephone model between nodes in .S and nodes outside
of S. This property follows from the restriction in this model
that each node can participate in at most one connection per
round.

The following result notes that the vertex expansion does a
good job of approximating the size of the maximum matching
across any partition:

Lemma IIL.1 (from [1]). Fix a graph G = (V,E)
with |V| = n with vertex expansion «. Let v =
mingcv,sj<n/2{¥(B(S))/|S|}. It follows that v > a/4.

D. The Random Spread Gossip Algorithm

We formalize our random spread gossip algorithm with
the pseudocode labeled Algorithm 1. Here we summarize its
behavior.

The basic idea of the algorithm is that in each round,
each node advertises a hash of their token set. Nodes then
attempt to connect only to neighbors that advertised a different
hash, indicating their token sets are different. When two nodes
connect, they can transfer a constant number of tokens in the
non-empty set difference of their respective token sets.

As detailed in the pseudocode, the random spread algorithm
implements the above strategy combined with some minor
additional structure that supports the analysis. In particular,
nodes partition rounds into phases of length [log N, where
N > 1 is an upper bound on the maximum degree A in
the network topology. Instead of each node deciding whether
to send or receive connection invitations at the beginning of
each round, they make this decision at the beginning of each
phase, and then preserve this decision throughout the phase
(this is captured in the pseudocode with the status flag that
is randomly set every [log N'| rounds). Each receiver node also
advertises whether or not it has been involved in a connection
already during the current phase (as captured with the done
flag). A sender node will only consider neighbors that advertise
a different hash, are receivers in the current phase, and have
not yet been involved in a connection during the phase.

E. Analysis of Random Spread Gossip

Our goal is to prove the following result about the perfor-
mance of random spread gossip:

Theorem IIL.2. With high probability, the random
spread gossip algorithm solves the gossip problem in

Algorithm 1 Random spread gossip (for node w).

Initialization:

N < upper bound on maximum degree in topology
T + initial tokens (if any) known by

H is a hash function

For each round r:

if » mod [log N = 1 then
status < random bit (1=sender; O=receiver)
done < 0

Advertise((status,done, H(T,r),u))
A <+ RecvAdvertisements()

A {v](0,0,h,v) € A,h# H(T,r)}
if status = 1 and |A’| > 0 then
v < node selected with uniform randomness from A’
(Attempt to connect with v. If successful, exchange a
token in set difference.)
else if status = 0 then
(If receive connection proposal(s): accept one, exchange
token in the set difference, set done < 1.)

O((k/a)log® nlog Nlog A) rounds, when executed with
k > 0 initial tokens and degree bound N > A, in a network
topology graph of size m, maximum degree A\, and vertex
expansion «.

We begin by establishing some preliminary notations and

assumptions before continuing to the main proof argument.

a) Notation: For a fixed execution, let () be the non-
empty set of k tokens that the algorithm must spread. For
each round r > 0 and node u € V, let T,,(r) be the tokens (if
any) “known” by w at the start of round r (that is, the tokens
that u starts with as well as every token it received through a
connection in rounds 1 to r — 1).

For each ¢ € ), and round r > 0, let Sy(r) = {v : t €
T,(r)} be the nodes that know token ¢ at the start of round 7.
Let n:(r) = |St(r)| be the number of nodes that know token ¢
iat the beginning of this round, and let n; () = min{n:(r), n—
ng(r)}.

Finally, let £*(r) = argmax,c,{n; (r)} be a token ¢ with the
maximum n; () value in this round (breaking ties arbitrarily).
According to Lemma III.1, which connects vertex expansion
to matchings, there is a matching between nodes in S (r)
and V'\ Si- -y (1) of size at least (o/4) M () (r). Token t*(r),
in other words, has the largest guaranteed potential to spread
in round ~ among all tokens.> Accordingly, in the analysis
that follows, we will focus on this token in each phase to help
lower bound the amount of spreading we hope to achieve.

3To be slightly more precise, (a/4) - N}w (7)) is a lower bound on the
size of the matching across the cut defined by t*(r), so t*(r) is the token
with the largest lower bound guarantee on the size of its matching.



b) Productive Connections and Hash Collisions: In the
following, we say a given pairwise connection between nodes
uw and v in some round r is productive if T, (r) # T,(r).
That is, at least one of these two nodes learns a new token
during the connection. By the definition of our algorithm, if
w and v connect in round 7, then it must be the case that
H(Ty(r),r) # H(Ty(r),r), where H is the hash function
used by the random spread gossip algorithm. This implies
T,(r) # T,(r)—indicating that every connection created by
our algorithm is productive.

On the other hand, it is possible for some u, v, and r that
even though T, (r) # T, (r), H(Ty(r),r) = H(T,(r),r) due
to a hash collision. For the sake of clarity, in the analysis
that follows we assume that no hash collisions occur in the
analyzed execution. Given the execution length is polynomial
in the network size n, and there are at most n different
token sets hashed in each round, for standard parameters the
probability of a collision among this set would be extremely
small, supporting our assumption. Even if such collisions do
occasionally occur, their impact on our algorithm is negligible.

¢) Matching Phases: Recall that our algorithm partitions
rounds into phases of length [log N']. For each phase i > 0,
let r; = [log N']-(i—1)+1 be the first round of that phase. Fix
some arbitrary phase ¢ and consider token ¢ = ¢*(r;), which, as
argued above, is the token with the largest guaranteed potential
to spread in round r;. Our goal in this part of the analysis
is to prove that with constant probability, our algorithm will
create enough productive connections during this phase to
well-approximate this potential. This alone is not enough to
prove our algorithm terminates efficiently, as in some phases, it
might be the case that no token has a large potential to spread.
The next part of our argument will tackle this challenge by
proving that over a sufficient number of phases the aggregate
amount of progress must be large.

We begin by establishing the notion of a productive sub-
graph:

Definition II1.3. At the beginning of any round r > 0, we
define the productive subgraph of the network topology G =
(V,E) forr as: G, = (V, E,.), where E, = {{u,v} | {u,v} €
E,T,(r) # T,(r),u.status(r) # v.status(r)}, and for each
w €V, w.status(r) indicates the value of the node w’s status
bit for the phase containing round 7.

That is, the productive subgraph for round r is the subgraph
of G that contains only edges where the endpoints: (1) have
different token set; and (2) have different statuses (one is a
sender during this phase and one is a receiver). This subgraph
contains every possible connection for a given round of our
gossip algorithm (we ignore done flags because, as will soon
be made clear, we consider these graphs defined only for the
first round of phases, a point at which all done flags are reset
to 0). Accordingly, a maximum matching on this subgraph
upper bounds the maximum number of concurrent connections
possible in a round.

We begin by lower bounding the size of the maximum
matching in a productive subgraph at the beginning of a given

phase i using the token ¢ = t*(r;). Recall that nj(r;) is the
number of nodes that know token ¢ at the beginning of r,
if less than half know the token, and otherwise indicates the
number of nodes that do not know t.

Lemma III4. Fix some phase i. Let t = t*(r;). Let G,
be the productive subgraph for round r;, M; be a maximum
matching on G.,,, and m; = |M;|. With constant probability
(defined over the status assignments): m; > (a/16)nf(r;).

We now turn our attention to our gossip algorithm’s ability
to take advantage of the potential productive connections
captured by the productive subgraph defined at the beginning
of the phase. To do so, we first adapt a useful result on rumor
spreading from [1] to the behavior of our gossip algorithm.
Notice that it is the proof of the below adapted lemma that
requires the use of the done flag in our algorithm.

Lemma IIL.5 (adapted from Theorem 7.2 in [1]). Fix a phase
i. Let G’ be a subgraph of the productive subgraph G.., that
satisfies the following:

1) there is a matching of size m in G';
2) the set L of nodes in G' with sender status is of size m;
and
3) for each node u € L, every neighbor of u in G, is in
G
With constant probability (defined over the random neighbor
choices), during the first log A rounds of phase i, at least
Q m neighbors of nodes in L in G’ participate in a
productive connection.

We now combine Lemmas III.4 and IIL.5 to derive our main
result for this part of the analysis.

Lemma IIL.6. Fix some phase i. Let t = t*(r;). With constant

probability, the number of productive connections in this phase
any (ri)
lognlogA J*

is in Q)
d) The Size Band Table: In the previous part of this
analysis, we proved that with constant probability the number
of productive connections in phase ¢ is bounded with respect
to the number of nodes that know ¢*(r;). In the worst case,
however, ¢*(r;) might be quite small (e.g., at the beginning of
an execution where each token is known by only a constant
number of nodes, this value is constant). We must, therefore,
move beyond a worst-case application of Lemma III.6, and
amortize the progress over time to something more substantial.
To accomplish this goal, we introduce a data structure—a
tool used only in the context of our analysis—that we call a
size band table, which we denote as S. This table has one
column for each token ¢ € T, and 21log (n/2) + 1 rows which
we number 1,2, ...,2logn/2 + 1.

As we will elaborate below, each row is associated with a
range of values that we call a band. We call rows 1 through
log (n/2) growth bands, and rows log(n/2) + 1 through
2log (n/2) 4+ 1 shrink bands. Each cell in S contains a single
bit. We update these bit values after every round of our gossip



algorithm to reflect the extent to which each token has spread
in the system.

In more detail, for each round » > 1, we use S, to describe
the size band table at the beginning of round r. For each token
t € T and row 4,1 <1 < 2log (n/2) + 1, we use S;[t, ] to
refer to the bit value in row ¢ of the column dedicated to token
t in the table for round r.

Finally, we define each of these bit values as follows. For
each round r > 1, token ¢t € T, and growth band ¢ (i.e., for
each i,1 < i < log(n/2)), we define:

1 if at least 2° nodes know

St i] = token ¢ at the beginning of round r,

0 else.

Symmetrically, for each round r» > 1, token ¢ € T, and
shrink band i (i.e., for each i, log (n/2)+1 < ¢ < 2log (n/2)+
1), we define:

1 n
1 if less than = 7z nodes do not

St i) = know token ¢ at the beginning of round 7,

0 else.

A key property of the side band table is that as a given
token ¢ spreads, the cells in its column with 1 bits grow from
the smaller rows toward the larger rows. That is, if row 7 is
1 at the beginning of a given round, all smaller rows for that
token are also 1 at the beginning of that round. Furthermore,
because nodes never lose knowledge of a token, once a cell
is set to 1, it remains 1.

row # band size
9 00000 <1 bound on # nodes
8 00001 <2 that do not know
7 100001 | <4  rumor(flin
6 00001 <8 cell)
shrink 5 00101 <16
growth
4 00101 > 16 bound on #
3 00101 >8 nodes that do
2 10101 >4  know rumor (if
1 |[10111]| =2 [lincel

bty b3ty ts

Fig. 1. An example size band table for token set T' = {t1,t2,3,t4,t5}
and network size n = 32. There is one column for each token. The largest
row containing a 1 for a given token bounds the token spread. Token ¢1, for
example, has spread to at least 4 out of the 32 nodes, while token t5 is known
to all but 1 node (indicating that it has spread to at least 31). In this example
table, token t3, which is spread to somewhere between 16 to 24 nodes, has
the biggest potential to spread in the current round

When all rows for a given token ¢ are set to 1, it follows that
all nodes know t. This follows because the definition of shrink
band i = 2log (n/2) + 1 being set to 1 is that the number of
nodes that do not know ¢ is strictly less than:

n n
9i—log (n/2) 92log(n/2)+1—log (n/2)
n
~  Qlog(n/2)+1
- n
- 9log (n/2) . 21
= 1.

e) Amortized Analysis of Size Band Table Progress: As
the size band table increases the number of 1 bits, we say it
progresses toward a final state of all 1 bits. Here we perform
an amortized analysis of size band table progress.

To do so, we introduce some notation. For each phase ¢, and
token t € T, let b;(7) be the largest row number that contains
a 1l in t’s column in S,,. We call this the current band for
token ¢ in phase 1.

Let a(i) = |by(y,) (i) — log (n/2)| define the distance from
the current band of token ¢*(r;) to the center row number
log (n/2). By the definition of ¢*(r;), no token has a current
band closer to log (n/2) than t*(r;) at the start of phase i. We
say that phase i is associated with the current band for ¢*(r;).

Finally, for a given phase i, with ¢ = t*(r;), we say this
phase is successful if the number of productive connections
during the phase is at least as large as the lower bound
specified by Lemma IIL6; i.e., there are at least %
productive connections. where v > 0 is the constant hidden
in the asymptotic bound in the lemma statement.

Our first goal in this part of the analysis, is to bound the
number of successful phases that can be associated with each
band. To do so, we differentiate between two different types
of successful phases, and then bound each separately.

Definition IIL.7. Fix some phase i that is associated with some
band j at distance a(i) from the center of the size band table.
We say phase i is an upgrade phase if there exists a subset
of the productive connections during phase i that push some
token t’s current band to a position j' with |log (n/2) —j'| <
a(?). If a phase is not an upgrade phase, and at least one
node is missing at least one token, we call it a fill phase.

Stated less formally, we call a phase an upgrade phase if
it pushes some token’s count closer to the center of the size
band table—row log (n/2)—than the band associated with the
phase. Our definition is somewhat subtle in that it must handle
the case where during a phase a token count does grow to be
closer to the center of the size band table, but then its count
continues to grow until it pushes more than distance a(i) above
the center. We still want to count this as an upgrade phase
(hence the terminology about there existing some subset of
the connections that push the count closer).

Our goal is to bound the number of successful phases
possible before all tokens are spread. We begin with bound
on upgrade phases (which hold whether or not the phase is
successful). Our subsequent bound on fill phases, however,
considers only successful phases.

Lemma IIL8. There can be at most k(2log(n/2) + 1)
upgrade phases.



We now bound the number of successful fill phases. To
do so, we note that the number of fill phases associated
with a given band is bounded by the worst case number of
connections needed before some token’s count must advance
past that band. For bands associated with large ranges this
worst case number is large. As shown in the following lemma,
however, the number of connections in phases associated with
large bands grows proportionally large as well. This balancing
of growth required and growth obtained is at the core of our
amortized analysis.

Lemma IIL9. There can be at most O((k/a)log® nlog A)
successful fill phases.

Proof. Consider a group of successful fill phases associated
with some band j at distance a; from the center of the
size band table. Because these are fill phases, the productive
connections generated during these phases can never push
some token’s count (perhaps temporarily) closer than distance
a; from the center of the table (any phase in which this occurs
becomes, by definition, an upgrade phase).

One way to analyze the distribution of the productive
connections during these phases is to consider a generalization
of the size band table in which we record in each cell [¢,]
the total number of productive connections that spread token
t while its count falls into the band associated with row 7. (Of
course, many connections for a given token might occur in a
given round, in which we case, we process them one by one
in an arbitrary order while updating the cell counts.)

If we apply this analysis only for the fill phases fixed above,
then we know that the counts in all cells of distance less than
a; from the center of the table remain at 0. By the definition of
the size band table, for a given token ¢, the maximum number
of connections we can add to cells of distance at least a; from
the center is loosely upper bounded by 2 - 2!°2 ("/2)=a; (the
extra factor of two captures both growth and shrink band cells
at least distance a;). Therefore, the total number of productive
connections we can process into cells at distance at least a;
is at most 2k2'°8 (n/2)—a;

By the definition, each phase ¢ that is a successful fill
phase associated with j generates at least % productive
connections, where ¢ = ¢*(r;). By the definition of ¢*(r;), t’s
current band is distance a; from the center. Therefore, n; (r;)
is within a factor of 2 of 2'°8("/2)=a; By absorbing that
constant factor into the constant y (to produce a new constant
~"), it follows that this phase generates at least

,y/a2log (n/2)—a;
log nlog A

new productive connections. Combined with our above upper
bound on the total possible productive connections for suc-
cessful fill phases associated with j, it follows that the total
number of successful fill phases associated with j as less than:

Z—12k210g (n/2)—a; ( lognlogA

log (n/2)—a;
’)//CYQlOg (n/2)—a; ) 2k2 !
O((k/a)lognlog A).

We multiply this bound over 21log (n/2) 4 1 possible bands
to derive O((k/a)log® nlog A) total possible successful fill
phases, providing the bound claimed by the lemma statement.

O

f) Pulling Together the Pieces: We are now ready to
combine the above lemmas to prove our main theorem.

Proof (of Theorem I11.2). Combining Lemmas III.8 and IIL.9,
it follows that there can be at most ¢ = k(2log (n/2) + 1) +
O((k/a)log®nlog A) = O((k/a)log®nlogA) successful
upgrade and fill phases before all k tokens are spread.

By Lemma II1.6, if the token spreading is not yet complete,
then the probability that the current phase is successful is
lower bounded by some constant probability p > 0. The actual
probability might depend on the execution history up until
the current phase, but the lower bound of p always holds,
regardless of this history. We can tame these dependencies
with a stochastic dominance argument.

In more detail, for each phase ¢ before the tokens are
spread, we define a trivial random variable XZ that is 1
with independent probability p, and otherwise 0. Let X, by
contrast, be the random indicator variable that is 1 if phase ¢
is successful, and otherwise 0. For each phase ¢ that occurs
after the tokens are spread, X, =X;=1 by default.

Note that for each i, X stochastically dominates X;.
follows that if Y = Z =1 X; is greater than some x W1th
some probability p, then Yr = 21:1 X, is greater than x
with probability at least p.

With this established, consider the first T = (¢/p)¢ phases,
for some constant ¢ > 2. Note that for this value of T,
E[Yr] = cl. Because Y is the sum of independent random
variables, we concentrate around this expectation. In particular,
we once again apply the following form of a Chernoff Bound:
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Pr(Y < (1)) < e 7",

forY = Y/T, 0 =1/2, and pu = ¢/, to derive that the probabil-
ity that Y < (¢/2)¢ > ¢, is upper bounded by e~ % . The same
bound therefore holds for the probability that Y < (¢/2)¢.
Notice that this error bound is polynomially small in n with
an exponent that grows with constant c. It follows, therefore,
that with high probability in n, that token spreading succeeds
in the first T = (¢/p)¢ = O((k/) log® nlog A) phases.

To achieve the final round complexity bound claimed by the
theorem statement, we multiply this upper bound on phases
by the length of log N rounds per phase. O

IV. RANDOM GOSSIP IN THE ASYNCHRONOUS MOBILE
TELEPHONE MODEL

The mobile telephone model captures the basic dynamics
of the peer-to-peer libraries included in standard smartphone



operating systems. This abstraction, however, makes simpli-
fying assumptions—namely, the assumption of synchronized
rounds. In this section we analyze the performance of simple
random gossip processes in a more realistic version of the
model that eliminates the synchronous round assumption. In
particular, we first define the asynchronous mobile telephone
model (aMTM), which describes an event-driven peer-to-peer
abstraction in which an adversarial scheduler controls the
timing of key events in the execution.

A key property of the asynchronous mobile telephone
model is the abstraction of complex communication details
from algorithmic design. The sophisticated communication
patterns possible in the asynchronous setting are abstracted as
a continuously-looping process, the execution of which can be
altered by access to data members modified asynchronously by
the model. The maximum duration of a single iteration of this
loop is captured by the main model parameter §,,4,, which is
not exposed to the algorithm.

We then implement the random spread gossip algorithm
for the asynchronous setting using our abstraction (a detailed
specification of both the model and algorithm can be found
in the full version of this paper [?]). We conclude with an
in-depth analysis of the performance of this algorithm and
provide two primary results, the first of which is a proof of
worst-case convergence.

Theorem IV.1. The asynchronous random gossip algorithm
takes time O(nkdp,q.) to spread all k tokens to all n nodes
of the network where 0,4, is the maximum amount of time
between iterations of the algorithm loop.

Finally, we analyze the spread of a single token in the net-
work to demonstrate that the performance of the asynchronous
random spread gossip algorithm still improves with the vertex
expansion «, thereby proving the following theorem.

Theorem IV.2. The asynchronous random spread gossip algo-
rithm takes time at most O(y/n/alog? (n@)dmaz ), where n is
the number of nodes in the network, « is the vertex expansion,
and pyq. is the maximum time required for an iteration of the
asynchronous mobile telephone model loop.
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